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CHAPTER

ONE

OVERVIEW

This document provides the reader with the information necessary to carry out numerical experiments using MITgcm.
It gives a comprehensive description of the continuous equations on which the model is based, the numerical algorithms
the model employs and a description of the associated program code. Along with the hydrodynamical kernel, physical
and biogeochemical parameterizations of key atmospheric and oceanic processes are available. A number of examples
illustrating the use of the model in both process and general circulation studies of the atmosphere and ocean are also
presented.

1.1 Introduction

MITgcm has a number of novel aspects:

• it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is
used to drive forward both atmospheric and oceanic models - see Figure 1.1

Atmospheric
Model

Dynamical Kernel
Atmospheric
Physics

Ocean
Physics

Ocean
Model

Figure 1.1: MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric simulations.

• it has a non-hydrostatic capability and so can be used to study both small-scale and large scale
processes - see Figure 1.2

1
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Figure 1.2: MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of phenomenon -
from convection on the left, all the way through to global circulation patterns on the right.

• finite volume techniques are employed yielding an intuitive discretization and support for the treat-
ment of irregular geometries using orthogonal curvilinear grids and shaved cells - see Figure 1.3

• tangent linear and adjoint counterparts are automatically maintained along with the forward model,
permitting sensitivity and optimization studies.

• the model is developed to perform efficiently on a wide variety of computational platforms.

Key publications reporting on and charting the development of the model are Hill and Marshall (1995), Marshall et al.
(1997a), Marshall et al. (1997b), Adcroft and Marshall (1997), Marshall et al. (1998), Adcroft and Marshall (1999),
Hill et al. (1999), Marotzke et al. (1999), Adcroft and Campin (2004), Adcroft et al. (2004b), Marshall et al. (2004)
(an overview on the model formulation can also be found in Adcroft et al. (2004c)):

Hill, C. and J. Marshall, (1995) Application of a Parallel Navier-Stokes Model to Ocean Circulation in Parallel Com-
putational Fluid Dynamics, In Proceedings of Parallel Computational Fluid Dynamics: Implementations and Results
Using Parallel Computers, 545-552. Elsevier Science B.V.: New York [HM95]

Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean
modeling, J. Geophysical Res., 102(C3), 5733-5752 [MHPA97]

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997b) A finite-volume, incompressible Navier Stokes
model for studies of the ocean on parallel computers, J. Geophysical Res., 102(C3), 5753-5766 [MAH+97]

Adcroft, A.J., Hill, C.N. and J. Marshall, (1997) Representation of topography by shaved cells in a height coordinate
ocean model, Mon Wea Rev, 125, 2293-2315 [AHM97]

Marshall, J., Jones, H. and C. Hill, (1998) Efficient ocean modeling using non-hydrostatic algorithms, Journal of
Marine Systems, 18, 115-134 [MJH98]

Adcroft, A., Hill C. and J. Marshall: (1999) A new treatment of the Coriolis terms in C-grid models at both high and
low resolutions, Mon. Wea. Rev., 127, 1928-1936 [AHM99]

Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999) A Strategy for Terascale Climate Modeling, In Proceedings of
the Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, 406-425 World Scientific Publishing
Co: UK [HAJM99]

Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999) Construction of the adjoint MIT ocean
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Finite Volume: Shaved Cells
Stream Function Ψ Tracer θ at t=0.3

Figure 1.3: Finite volume techniques (bottom panel) are used, permitting a treatment of topography that rivals 𝜎
(terrain following) coordinates.

1.1. Introduction 3
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general circulation model and application to Atlantic heat transport variability, J. Geophysical Res., 104(C12), 29,529-
29,547 [MGZ+99]

A. Adcroft and J.-M. Campin, (2004a) Re-scaled height coordinates for accurate representation of free-surface flows
in ocean circulation models, Ocean Modelling, 7, 269–284 [AC04]

A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall, (2004b) Implementation of an atmosphere-ocean general circula-
tion model on the expanded spherical cube, Mon Wea Rev , 132, 2845–2863 [ACHM04]

J. Marshall, A. Adcroft, J.-M. Campin, C. Hill, and A. White, (2004) Atmosphere-ocean modeling exploiting fluid
isomorphisms, Mon. Wea. Rev., 132, 2882–2894 [MAC+04]

A. Adcroft, C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, (2004c) Overview of the formulation and numerics
of the MITgcm, In Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numer-
ical methods for atmosphere and ocean modelling, 139–149. URL: http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf
[AHJMC+04]

We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems
that can be addressed using it.

1.2 Illustrations of the model in action

MITgcm has been designed and used to model a wide range of phenomena, from convection on the scale of meters in
the ocean to the global pattern of atmospheric winds - see Figure 1.2. To give a flavor of the kinds of problems the
model has been used to study, we briefly describe some of them here. A more detailed description of the underlying
formulation, numerical algorithm and implementation that lie behind these calculations is given later. Indeed many
of the illustrative examples shown below can be easily reproduced: simply download the model (the minimum you
need is a PC running Linux, together with a FORTRAN77 compiler) and follow the examples described in detail in
the documentation.

1.2.1 Global atmosphere: ‘Held-Suarez’ benchmark

A novel feature of MITgcm is its ability to simulate, using one basic algorithm, both atmospheric and oceanographic
flows at both small and large scales.

Figure 1.4 shows an instantaneous plot of the 500 mb temperature field obtained using the atmospheric isomorph of
MITgcm run at 2.8° resolution on the cubed sphere. We see cold air over the pole (blue) and warm air along an
equatorial band (red). Fully developed baroclinic eddies spawned in the northern hemisphere storm track are evident.
There are no mountains or land-sea contrast in this calculation, but you can easily put them in. The model is driven
by relaxation to a radiative-convective equilibrium profile, following the description set out in Held and Suarez (1994)
[HS94] designed to test atmospheric hydrodynamical cores - there are no mountains or land-sea contrast.

As described in Adcroft et al. (2004) [ACHM04], a ‘cubed sphere’ is used to discretize the globe permitting a uniform
griding and obviated the need to Fourier filter. The ‘vector-invariant’ form of MITgcm supports any orthogonal
curvilinear grid, of which the cubed sphere is just one of many choices.

Figure 1.5 shows the 5-year mean, zonally averaged zonal wind from a 20-level configuration of the model. It compares
favorable with more conventional spatial discretization approaches. The two plots show the field calculated using
the cube-sphere grid and the flow calculated using a regular, spherical polar latitude-longitude grid. Both grids are
supported within the model.

4 Chapter 1. Overview
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Figure 1.4: Instantaneous plot of the temperature field at 500 mb obtained using the atmospheric isomorph of MITgcm

1.2.2 Ocean gyres

Baroclinic instability is a ubiquitous process in the ocean, as well as the atmosphere. Ocean eddies play an important
role in modifying the hydrographic structure and current systems of the oceans. Coarse resolution models of the
oceans cannot resolve the eddy field and yield rather broad, diffusive patterns of ocean currents. But if the resolution
of our models is increased until the baroclinic instability process is resolved, numerical solutions of a different and
much more realistic kind, can be obtained.

Figure 1.6 shows the surface temperature and velocity field obtained from MITgcm run at 1
6

∘ horizontal resolution
on a lat-lon grid in which the pole has been rotated by 90° on to the equator (to avoid the converging of meridian in
northern latitudes). 21 vertical levels are used in the vertical with a ‘lopped cell’ representation of topography. The
development and propagation of anomalously warm and cold eddies can be clearly seen in the Gulf Stream region.
The transport of warm water northward by the mean flow of the Gulf Stream is also clearly visible.

1.2.3 Global ocean circulation

Figure 1.7 shows the pattern of ocean currents at the surface of a 4° global ocean model run with 15 vertical levels.
Lopped cells are used to represent topography on a regular lat-lon grid extending from 70°N to 70°S. The model is
driven using monthly-mean winds with mixed boundary conditions on temperature and salinity at the surface. The
transfer properties of ocean eddies, convection and mixing is parameterized in this model.

Figure 1.8 shows the meridional overturning circulation of the global ocean in Sverdrups.

1.2. Illustrations of the model in action 5
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Figure 1.5: Five year mean, zonally averaged zonal flow for cube-sphere simulation (top) and latitude-longitude
simulation (bottom) and using Held-Suarez forcing. Note the difference in the solutions over the pole — the cubed
sphere is superior.
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Figure 1.6: Instantaneous temperature map from a 1
6

∘ simulation of the North Atlantic. The figure shows the temper-
ature in the second layer (37.5 m deep).

1.2. Illustrations of the model in action 7
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Figure 1.7: Pattern of surface ocean currents from a global integration of the model at 4° horizontal resolution and
with 15 vertical levels.

Figure 1.8: Meridional overturning stream function (in Sverdrups) from a global integration of the model at 4° hori-
zontal resolution and with 15 vertical levels.
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1.2.4 Convection and mixing over topography

Dense plumes generated by localized cooling on the continental shelf of the ocean may be influenced by rotation when
the deformation radius is smaller than the width of the cooling region. Rather than gravity plumes, the mechanism for
moving dense fluid down the shelf is then through geostrophic eddies. The simulation shown in Figure 1.9 (blue is
cold dense fluid, red is warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to trigger convection
by surface cooling. The cold, dense water falls down the slope but is deflected along the slope by rotation. It is found
that entrainment in the vertical plane is reduced when rotational control is strong, and replaced by lateral entrainment
due to the baroclinic instability of the along-slope current.

Figure 1.9: MITgcm run in a non-hydrostatic configuration to study convection over a slope.

1.2.5 Boundary forced internal waves

The unique ability of MITgcm to treat non-hydrostatic dynamics in the presence of complex geometry makes it an ideal
tool to study internal wave dynamics and mixing in oceanic canyons and ridges driven by large amplitude barotropic
tidal currents imposed through open boundary conditions.

Figure 1.10 shows the influence of cross-slope topographic variations on internal wave breaking - the cross-slope
velocity is in color, the density contoured. The internal waves are excited by application of open boundary conditions
on the left. They propagate to the sloping boundary (represented using MITgcm’s finite volume spatial discretization)
where they break under non-hydrostatic dynamics.

1.2. Illustrations of the model in action 9
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Figure 1.10: Simulation of internal waves forced at an open boundary (on the left) impacting a sloping shelf. The
along slope velocity is shown colored, contour lines show density surfaces. The slope is represented with high-fidelity
using lopped cells.
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1.2.6 Parameter sensitivity using the adjoint of MITgcm

Forward and tangent linear counterparts of MITgcm are supported using an ‘automatic adjoint compiler’. These can
be used in parameter sensitivity and data assimilation studies.

As one example of application of the MITgcm adjoint, Figure 1.11 maps the gradient 𝜕𝐽
𝜕ℋ where 𝐽 is the magnitude

of the overturning stream-function shown in Figure 1.8 at 60°N and ℋ(𝜆, 𝜙) is the mean, local air-sea heat flux over a
100 year period. We see that 𝐽 is sensitive to heat fluxes over the Labrador Sea, one of the important sources of deep
water for the thermohaline circulations. This calculation also yields sensitivities to all other model parameters.

180W 150W 120W  90W  60W  30W   0  30E  60E  90E 120E 150E 180E
 90S

 60S

 30S

  0 

 30N

 60N

 90N
Heat Flux   (Min =  −7.7 10−4 Sv W−1 m2; Max =  42.9 10−4 Sv W−1 m2)

 −10   −5    0    5   10   15   20   25   30   35   40   45   50

10−4 Sv W−1 m2

Sensitivity of the Meridional Overturning − Ocean

Figure 1.11: Sensitivity of meridional overturning strength to surface heat flux changes. Contours show the magnitude
of the response (in Sv x 10-4 ) that a persistent +1 Wm-2 heat flux anomaly at a given grid point would produce.

1.2.7 Global state estimation of the ocean

An important application of MITgcm is in state estimation of the global ocean circulation. An appropriately defined
‘cost function’, which measures the departure of the model from observations (both remotely sensed and in-situ)
over an interval of time, is minimized by adjusting ‘control parameters’ such as air-sea fluxes, the wind field, the
initial conditions etc. Figure 1.12 and Figure 1.13 show the large scale planetary circulation and a Hopf-Muller plot of
Equatorial sea-surface height. Both are obtained from assimilation bringing the model in to consistency with altimetric
and in-situ observations over the period 1992-1997.

1.2. Illustrations of the model in action 11
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Figure 1.12: Circulation patterns from a multi-year, global circulation simulation constrained by Topex altimeter data
and WOCE cruise observations. This output is from a higher resolution, shorter duration experiment with equatorially
enhanced grid spacing.
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Figure 1.13: Equatorial sea-surface height in unconstrained (left), constrained (middle) simulations and in observations
(right).

1.2. Illustrations of the model in action 13
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1.2.8 Ocean biogeochemical cycles

MITgcm is being used to study global biogeochemical cycles in the ocean. For example one can study the effects of
interannual changes in meteorological forcing and upper ocean circulation on the fluxes of carbon dioxide and oxygen
between the ocean and atmosphere. Figure 1.14 shows the annual air-sea flux of oxygen and its relation to density
outcrops in the southern oceans from a single year of a global, interannually varying simulation. The simulation is run
at 1°x1° resolution telescoping to 1

3

∘ x 1
3

∘ in the tropics (not shown).
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Figure 1.14: Annual air-sea flux of oxygen (shaded) plotted along with potential density outcrops of the surface of the
southern ocean from a global 1°x1° integration with a telescoping grid (to 1

3

∘ ) at the equator.
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1.2.9 Simulations of laboratory experiments

Figure 1.16 shows MITgcm being used to simulate a laboratory experiment (Figure 1.15) inquiring into the dynamics
of the Antarctic Circumpolar Current (ACC). An initially homogeneous tank of water (1 m in diameter) is driven from
its free surface by a rotating heated disk. The combined action of mechanical and thermal forcing creates a lens of
fluid which becomes baroclinically unstable. The stratification and depth of penetration of the lens is arrested by its
instability in a process analogous to that which sets the stratification of the ACC.

Figure 1.15: A 1 m diameter laboratory experiment simulating the dynamics of the Antarctic Circumpolar Current.

1.3 Continuous equations in ‘r’ coordinates

To render atmosphere and ocean models from one dynamical core we exploit ‘isomorphisms’ between equation sets
that govern the evolution of the respective fluids - see Figure 1.17. One system of hydrodynamical equations is written
down and encoded. The model variables have different interpretations depending on whether the atmosphere or ocean
is being studied. Thus, for example, the vertical coordinate ‘𝑟’ is interpreted as pressure, 𝑝, if we are modeling the
atmosphere (right hand side of Figure 1.17) and height, 𝑧, if we are modeling the ocean (left hand side of Figure 1.17).

The state of the fluid at any time is characterized by the distribution of velocity v⃗, active tracers 𝜃 and 𝑆, a ‘geopoten-
tial’ 𝜑 and density 𝜌 = 𝜌(𝜃, 𝑆, 𝑝) which may depend on 𝜃, 𝑆, and 𝑝. The equations that govern the evolution of these
fields, obtained by applying the laws of classical mechanics and thermodynamics to a Boussinesq, Navier-Stokes fluid
are, written in terms of a generic vertical coordinate, 𝑟, so that the appropriate kinematic boundary conditions can be
applied isomorphically see Figure 1.18.

𝐷v⃗ℎ

𝐷𝑡
+
(︁

2Ω⃗ × v⃗
)︁
ℎ

+ ∇ℎ𝜑 = ℱv⃗ℎ
horizontal momentum (1.1)

𝐷𝑟̇

𝐷𝑡
+ ̂︀𝑘 · (︁2Ω⃗ × v⃗

)︁
+
𝜕𝜑

𝜕𝑟
+ 𝑏 = ℱ𝑟̇ vertical momentum (1.2)

1.3. Continuous equations in ‘r’ coordinates 15
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Figure 1.16: A numerical simulation of the laboratory experiment using MITgcm.

Figure 1.17: Isomorphic equation sets used for atmosphere (right) and ocean (left).

16 Chapter 1. Overview



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da
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Figure 1.18: Vertical coordinates and kinematic boundary conditions for atmosphere (top) and ocean (bottom).

∇ℎ · v⃗ℎ +
𝜕𝑟̇

𝜕𝑟
= 0 continuity (1.3)

𝑏 = 𝑏(𝜃, 𝑆, 𝑟) equation of state (1.4)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 potential temperature (1.5)

𝐷𝑆

𝐷𝑡
= 𝒬𝑆 humidity/salinity (1.6)

Here:

𝑟 is the vertical coordinate

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ v⃗ · ∇ is the total derivative

∇ = ∇ℎ + ̂︀𝑘 𝜕
𝜕𝑟

is the ‘grad’ operator

with ∇ℎ operating in the horizontal and ̂︀𝑘 𝜕
𝜕𝑟 operating in the vertical, where ̂︀𝑘 is a unit vector in the vertical

𝑡 is time

v⃗ = (𝑢, 𝑣, 𝑟̇) = (v⃗ℎ, 𝑟̇) is the velocity

𝜑 is the ‘pressure’/‘geopotential’

Ω⃗ is the Earth’s rotation

𝑏 is the ‘buoyancy’

𝜃 is potential temperature

𝑆 is specific humidity in the atmosphere; salinity in the ocean

1.3. Continuous equations in ‘r’ coordinates 17
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ℱv⃗ are forcing and dissipation of v⃗

𝒬𝜃 are forcing and dissipation of 𝜃

𝒬𝑆 are forcing and dissipation of 𝑆

The ℱ ′𝑠 and 𝒬′𝑠 are provided by ‘physics’ and forcing packages for atmosphere and ocean. These are described in
later chapters.

1.3.1 Kinematic Boundary conditions

1.3.1.1 Vertical

at fixed and moving 𝑟 surfaces we set (see Figure 1.18):

𝑟̇ = 0 at 𝑟 = 𝑅𝑓𝑖𝑥𝑒𝑑(𝑥, 𝑦) (ocean bottom, top of the atmosphere) (1.7)

𝑟̇ =
𝐷𝑟

𝐷𝑡
at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔(𝑥, 𝑦) (ocean surface, bottom of the atmosphere) (1.8)

Here

𝑅𝑚𝑜𝑣𝑖𝑛𝑔 = 𝑅𝑜 + 𝜂

where 𝑅𝑜(𝑥, 𝑦) is the ‘𝑟−value’ (height or pressure, depending on whether we are in the atmosphere or ocean) of the
‘moving surface’ in the resting fluid and 𝜂 is the departure from 𝑅𝑜(𝑥, 𝑦) in the presence of motion.

1.3.1.2 Horizontal

v⃗ · n⃗ = 0 (1.9)

where n⃗ is the normal to a solid boundary.

1.3.2 Atmosphere

In the atmosphere, (see Figure 1.18), we interpret:

𝑟 = 𝑝 is the pressure (1.10)

𝑟̇ =
𝐷𝑝

𝐷𝑡
= 𝜔 is the vertical velocity in p coordinates (1.11)

𝜑 = 𝑔 𝑧 is the geopotential height (1.12)

𝑏 =
𝜕Π

𝜕𝑝
𝜃 is the buoyancy (1.13)

𝜃 = 𝑇 (
𝑝𝑐
𝑝

)𝜅 is potential temperature (1.14)

𝑆 = 𝑞 is the specific humidity (1.15)

where

𝑇 is absolute temperature

𝑝 is the pressure
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𝑧 is the height of the pressure surface
𝑔 is the acceleration due to gravity

In the above the ideal gas law, 𝑝 = 𝜌𝑅𝑇 , has been expressed in terms of the Exner function Π(𝑝) given by (1.16) (see
also Section 1.4.1)

Π(𝑝) = 𝑐𝑝(
𝑝

𝑝𝑐
)𝜅 (1.16)

where 𝑝𝑐 is a reference pressure and 𝜅 = 𝑅/𝑐𝑝 with 𝑅 the gas constant and 𝑐𝑝 the specific heat of air at constant
pressure.

At the top of the atmosphere (which is ‘fixed’ in our 𝑟 coordinate):

𝑅𝑓𝑖𝑥𝑒𝑑 = 𝑝𝑡𝑜𝑝 = 0

In a resting atmosphere the elevation of the mountains at the bottom is given by

𝑅𝑚𝑜𝑣𝑖𝑛𝑔 = 𝑅𝑜(𝑥, 𝑦) = 𝑝𝑜(𝑥, 𝑦)

i.e. the (hydrostatic) pressure at the top of the mountains in a resting atmosphere.

The boundary conditions at top and bottom are given by:

𝜔 = 0 at 𝑟 = 𝑅𝑓𝑖𝑥𝑒𝑑 (top of the atmosphere) (1.17)

𝜔 =
𝐷𝑝𝑠
𝐷𝑡

at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 (bottom of the atmosphere) (1.18)

Then the (hydrostatic form of) equations (1.1)-(1.6) yields a consistent set of atmospheric equations which, for conve-
nience, are written out in 𝑝−coordinates in Section 1.4.1 - see eqs. (1.59)-(1.63).

1.3.3 Ocean

In the ocean we interpret:

𝑟 = 𝑧 is the height (1.19)

𝑟̇ =
𝐷𝑧

𝐷𝑡
= 𝑤 is the vertical velocity (1.20)

𝜑 =
𝑝

𝜌𝑐
is the pressure (1.21)

𝑏(𝜃, 𝑆, 𝑟) =
𝑔

𝜌𝑐
(𝜌(𝜃, 𝑆, 𝑟) − 𝜌𝑐) is the buoyancy (1.22)

where 𝜌𝑐 is a fixed reference density of water and 𝑔 is the acceleration due to gravity.

In the above:

At the bottom of the ocean: 𝑅𝑓𝑖𝑥𝑒𝑑(𝑥, 𝑦) = −𝐻(𝑥, 𝑦).

The surface of the ocean is given by: 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 = 𝜂

The position of the resting free surface of the ocean is given by 𝑅𝑜 = 𝑍𝑜 = 0.

Boundary conditions are:

𝑤 = 0 at 𝑟 = 𝑅𝑓𝑖𝑥𝑒𝑑 (ocean bottom) (1.23)

𝑤 =
𝐷𝜂

𝐷𝑡
at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 = 𝜂 (ocean surface) (1.24)

where 𝜂 is the elevation of the free surface.

Then equations (1.1)- (1.6) yield a consistent set of oceanic equations which, for convenience, are written out in
𝑧−coordinates in Section 1.5.1 - see eqs. (1.98) to (1.103).
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1.3.4 Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic
forms

Let us separate 𝜑 in to surface, hydrostatic and non-hydrostatic terms:

𝜑(𝑥, 𝑦, 𝑟) = 𝜑𝑠(𝑥, 𝑦) + 𝜑ℎ𝑦𝑑(𝑥, 𝑦, 𝑟) + 𝜑𝑛ℎ(𝑥, 𝑦, 𝑟) (1.25)

and write (1.1) in the form:

𝜕v⃗ℎ

𝜕𝑡
+ ∇ℎ𝜑𝑠 + ∇ℎ𝜑ℎ𝑦𝑑 + 𝜖𝑛ℎ∇ℎ𝜑𝑛ℎ = G⃗𝑣⃗ℎ

(1.26)

𝜕𝜑ℎ𝑦𝑑
𝜕𝑟

= −𝑏 (1.27)

𝜖𝑛ℎ
𝜕𝑟̇

𝜕𝑡
+
𝜕𝜑𝑛ℎ
𝜕𝑟

= 𝐺𝑟̇ (1.28)

Here 𝜖𝑛ℎ is a non-hydrostatic parameter.

The
(︁
G⃗𝑣⃗, 𝐺𝑟̇

)︁
in (1.26) and (1.28) represent advective, metric and Coriolis terms in the momentum equations. In

spherical coordinates they take the form1 - see Marshall et al. (1997a) [MHPA97] for a full discussion:

𝐺𝑢 = − v⃗.∇𝑢 advection

−
{︂
𝑢𝑟̇

𝑟
− 𝑢𝑣 tan𝜙

𝑟

}︂
metric

−
{︀
−2Ω𝑣 sin𝜙+ 2Ω𝑟̇ cos𝜙

}︀
Coriolis

+ ℱ𝑢 forcing/dissipation

(1.29)

𝐺𝑣 = − v⃗.∇𝑣 advection

−
{︂
𝑣𝑟̇

𝑟
− 𝑢2 tan𝜙

𝑟

}︂
metric

− {2Ω𝑢 sin𝜙} Coriolis
+ ℱ𝑣 forcing/dissipation

(1.30)

𝐺𝑟̇ = − v⃗.∇𝑟̇ advection

−
{︂
𝑢2 + 𝑣2

𝑟

}︂
metric

+ 2Ω𝑢 cos𝜙 Coriolis

+ ℱ𝑟̇ forcing/dissipation

(1.31)

In the above ‘𝑟’ is the distance from the center of the earth and ‘𝜙 ’ is latitude (see Figure 1.20).

Grad and div operators in spherical coordinates are defined in Coordinate systems.

1 In the hydrostatic primitive equations (HPE) all underlined terms in (1.29), (1.30) and (1.31) are omitted; the singly-underlined terms are
included in the quasi-hydrostatic model (QH). The fully non-hydrostatic model (NH) includes all terms.
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1.3.4.1 Shallow atmosphere approximation

Most models are based on the ‘hydrostatic primitive equations’ (HPE’s) in which the vertical momentum equation is
reduced to a statement of hydrostatic balance and the ‘traditional approximation’ is made in which the Coriolis force
is treated approximately and the shallow atmosphere approximation is made. MITgcm need not make the ‘traditional
approximation’. To be able to support consistent non-hydrostatic forms the shallow atmosphere approximation can be
relaxed - when dividing through by 𝑟 in, for example, (1.29), we do not replace 𝑟 by 𝑎, the radius of the earth.

1.3.4.2 Hydrostatic and quasi-hydrostatic forms

These are discussed at length in Marshall et al. (1997a) [MHPA97].

In the ‘hydrostatic primitive equations’ (HPE) all the underlined terms in Eqs. (1.29) → (1.31) are neglected and ‘𝑟’
is replaced by ‘𝑎’, the mean radius of the earth. Once the pressure is found at one level - e.g. by inverting a 2-d Elliptic
equation for 𝜑𝑠 at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 - the pressure can be computed at all other levels by integration of the hydrostatic
relation, eq (1.27).

In the ‘quasi-hydrostatic’ equations (QH) strict balance between gravity and vertical pressure gradients is not imposed.
The 2Ω𝑢 cos𝜙 Coriolis term are not neglected and are balanced by a non-hydrostatic contribution to the pressure field:
only the terms underlined twice in Eqs. (1.29) → (1.31) are set to zero and, simultaneously, the shallow atmosphere
approximation is relaxed. In QH all the metric terms are retained and the full variation of the radial position of a
particle monitored. The QH vertical momentum equation (1.28) becomes:

𝜕𝜑𝑛ℎ
𝜕𝑟

= 2Ω𝑢 cos𝜙

making a small correction to the hydrostatic pressure.

QH has good energetic credentials - they are the same as for HPE. Importantly, however, it has the same angular
momentum principle as the full non-hydrostatic model (NH) - see Marshall et.al. (1997a) [MHPA97]. As in HPE
only a 2-d elliptic problem need be solved.

1.3.4.3 Non-hydrostatic and quasi-nonhydrostatic forms

MITgcm presently supports a full non-hydrostatic ocean isomorph, but only a quasi-non-hydrostatic atmospheric
isomorph.

Non-hydrostatic Ocean

In the non-hydrostatic ocean model all terms in equations Eqs. (1.29) → (1.31) are retained. A three dimensional
elliptic equation must be solved subject to Neumann boundary conditions (see below). It is important to note that
use of the full NH does not admit any new ‘fast’ waves in to the system - the incompressible condition (1.3) has
already filtered out acoustic modes. It does, however, ensure that the gravity waves are treated accurately with an
exact dispersion relation. The NH set has a complete angular momentum principle and consistent energetics - see
White and Bromley (1995) [WB95]; Marshall et al. (1997a) [MHPA97].
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Quasi-nonhydrostatic Atmosphere

In the non-hydrostatic version of our atmospheric model we approximate 𝑟̇ in the vertical momentum eqs. (1.28) and
(1.30) (but only here) by:

𝑟̇ =
𝐷𝑝

𝐷𝑡
=

1

𝑔

𝐷𝜑

𝐷𝑡
(1.32)

where 𝑝ℎ𝑦 is the hydrostatic pressure.

1.3.4.4 Summary of equation sets supported by model

Atmosphere

Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the compressible non-Boussinesq equations in
𝑝−coordinates are supported.

Hydrostatic and quasi-hydrostatic

The hydrostatic set is written out in 𝑝−coordinates in Hydrostatic Primitive Equations for the Atmosphere in Pressure
Coordinates - see eqs. (1.59) to (1.63).

Quasi-nonhydrostatic

A quasi-nonhydrostatic form is also supported.

Ocean

Hydrostatic and quasi-hydrostatic

Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq equations in 𝑧−coordinates are supported.

Non-hydrostatic

Non-hydrostatic forms of the incompressible Boussinesq equations in 𝑧− coordinates are supported - see eqs. (1.98)
to (1.103).

1.3.5 Solution strategy

The method of solution employed in the HPE, QH and NH models is summarized in Figure 1.19. Under all dy-
namics, a 2-d elliptic equation is first solved to find the surface pressure and the hydrostatic pressure at any level
computed from the weight of fluid above. Under HPE and QH dynamics, the horizontal momentum equations are
then stepped forward and 𝑟̇ found from continuity. Under NH dynamics a 3-d elliptic equation must be solved for the
non-hydrostatic pressure before stepping forward the horizontal momentum equations; 𝑟̇ is found by stepping forward
the vertical momentum equation.

There is no penalty in implementing QH over HPE except, of course, some complication that goes with the inclusion
of cos𝜙 Coriolis terms and the relaxation of the shallow atmosphere approximation. But this leads to negligible
increase in computation. In NH, in contrast, one additional elliptic equation - a three-dimensional one - must be
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inverted for 𝑝𝑛ℎ. However the ‘overhead’ of the NH model is essentially negligible in the hydrostatic limit (see detailed
discussion in Marshall et al. (1997) [MHPA97] resulting in a non-hydrostatic algorithm that, in the hydrostatic limit,
is as computationally economic as the HPEs.

Figure 1.19: Basic solution strategy in MITgcm. HPE and QH forms diagnose the vertical velocity, in NH a prognostic
equation for the vertical velocity is integrated.

1.3.6 Finding the pressure field

Unlike the prognostic variables 𝑢, 𝑣, 𝑤, 𝜃 and 𝑆, the pressure field must be obtained diagnostically. We proceed,
as before, by dividing the total (pressure/geo) potential in to three parts, a surface part, 𝜑𝑠(𝑥, 𝑦), a hydrostatic part
𝜑ℎ𝑦𝑑(𝑥, 𝑦, 𝑟) and a non-hydrostatic part 𝜑𝑛ℎ(𝑥, 𝑦, 𝑟), as in (1.25), and writing the momentum equation as in (1.26).

1.3.6.1 Hydrostatic pressure

Hydrostatic pressure is obtained by integrating (1.27) vertically from 𝑟 = 𝑅𝑜 where 𝜑ℎ𝑦𝑑(𝑟 = 𝑅𝑜) = 0, to yield:∫︁ 𝑅𝑜

𝑟

𝜕𝜑ℎ𝑦𝑑
𝜕𝑟

𝑑𝑟 = [𝜑ℎ𝑦𝑑]
𝑅𝑜

𝑟 =

∫︁ 𝑅𝑜

𝑟

−𝑏𝑑𝑟

and so

𝜑ℎ𝑦𝑑(𝑥, 𝑦, 𝑟) =

∫︁ 𝑅𝑜

𝑟

𝑏𝑑𝑟 (1.33)

The model can be easily modified to accommodate a loading term (e.g atmospheric pressure pushing down on the
ocean’s surface) by setting:

𝜑ℎ𝑦𝑑(𝑟 = 𝑅𝑜) = 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (1.34)
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1.3.6.2 Surface pressure

The surface pressure equation can be obtained by integrating continuity, (1.3), vertically from 𝑟 = 𝑅𝑓𝑖𝑥𝑒𝑑 to 𝑟 =
𝑅𝑚𝑜𝑣𝑖𝑛𝑔 ∫︁ 𝑅𝑚𝑜𝑣𝑖𝑛𝑔

𝑅𝑓𝑖𝑥𝑒𝑑

(∇ℎ · v⃗ℎ + 𝜕𝑟 𝑟̇) 𝑑𝑟 = 0

Thus:

𝜕𝜂

𝜕𝑡
+ v⃗.∇𝜂 +

∫︁ 𝑅𝑚𝑜𝑣𝑖𝑛𝑔

𝑅𝑓𝑖𝑥𝑒𝑑

∇ℎ · v⃗ℎ𝑑𝑟 = 0

where 𝜂 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 − 𝑅𝑜 is the free-surface 𝑟-anomaly in units of 𝑟. The above can be rearranged to yield, using
Leibnitz’s theorem:

𝜕𝜂

𝜕𝑡
+ ∇ℎ ·

∫︁ 𝑅𝑚𝑜𝑣𝑖𝑛𝑔

𝑅𝑓𝑖𝑥𝑒𝑑

v⃗ℎ𝑑𝑟 = source (1.35)

where we have incorporated a source term.

Whether 𝜑 is pressure (ocean model, 𝑝/𝜌𝑐) or geopotential (atmospheric model), in (1.26), the horizontal gradient
term can be written

∇ℎ𝜑𝑠 = ∇ℎ (𝑏𝑠𝜂) (1.36)

where 𝑏𝑠 is the buoyancy at the surface.

In the hydrostatic limit (𝜖𝑛ℎ = 0), equations (1.26), (1.35) and (1.36) can be solved by inverting a 2-d elliptic equation
for 𝜑𝑠 as described in Chapter 2. Both ‘free surface’ and ‘rigid lid’ approaches are available.

1.3.6.3 Non-hydrostatic pressure

Taking the horizontal divergence of (1.26) and adding 𝜕
𝜕𝑟 of (1.28), invoking the continuity equation (1.3), we deduce

that:

∇2
3𝜑𝑛ℎ = ∇.G⃗𝑣⃗ −

(︀
∇2

ℎ𝜑𝑠 + ∇2𝜑ℎ𝑦𝑑
)︀

= ∇.F⃗ (1.37)

For a given rhs this 3-d elliptic equation must be inverted for 𝜑𝑛ℎ subject to appropriate choice of boundary conditions.
This method is usually called The Pressure Method [Harlow and Welch (1965) [HW65]; Williams (1969) [Wil69];
Potter (1973) [Pot73]. In the hydrostatic primitive equations case (HPE), the 3-d problem does not need to be solved.

Boundary Conditions

We apply the condition of no normal flow through all solid boundaries - the coasts (in the ocean) and the bottom:

v⃗.̂︀𝑛 = 0 (1.38)

where ̂︀𝑛 is a vector of unit length normal to the boundary. The kinematic condition (1.38) is also applied to the
vertical velocity at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 . No-slip (𝑣𝑇 = 0) or slip (𝜕𝑣𝑇 /𝜕𝑛 = 0) conditions are employed on the tangential
component of velocity, 𝑣𝑇 , at all solid boundaries, depending on the form chosen for the dissipative terms in the
momentum equations - see below.

Eq. (1.38) implies, making use of (1.26), that:

̂︀𝑛.∇𝜑𝑛ℎ = ̂︀𝑛.F⃗ (1.39)
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where

F⃗ = G⃗𝑣⃗ − (∇ℎ𝜑𝑠 + ∇𝜑ℎ𝑦𝑑)

presenting inhomogeneous Neumann boundary conditions to the Elliptic problem (1.37). As shown, for example, by
Williams (1969) [Wil69], one can exploit classical 3D potential theory and, by introducing an appropriately chosen
𝛿-function sheet of ‘source-charge’, replace the inhomogeneous boundary condition on pressure by a homogeneous
one. The source term 𝑟ℎ𝑠 in (1.37) is the divergence of the vector F⃗. By simultaneously setting ̂︀𝑛.F⃗ = 0 and̂︀𝑛.∇𝜑𝑛ℎ = 0 on the boundary the following self-consistent but simpler homogenized Elliptic problem is obtained:

∇2𝜑𝑛ℎ = ∇. ̃⃗︀F
where ̃⃗︀F is a modified F⃗ such that ̃⃗︀F.̂︀𝑛 = 0. As is implied by (1.39) the modified boundary condition becomes:

̂︀𝑛.∇𝜑𝑛ℎ = 0 (1.40)

If the flow is ‘close’ to hydrostatic balance then the 3-d inversion converges rapidly because 𝜑𝑛ℎ is then only a small
correction to the hydrostatic pressure field (see the discussion in Marshall et al. (1997a,b) [MHPA97] [MAH+97].

The solution 𝜑𝑛ℎ to (1.37) and (1.39) does not vanish at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 , and so refines the pressure there.

1.3.7 Forcing/dissipation

1.3.7.1 Forcing

The forcing terms ℱ on the rhs of the equations are provided by ‘physics packages’ and forcing packages. These are
described later on.

1.3.7.2 Dissipation

Momentum

Many forms of momentum dissipation are available in the model. Laplacian and biharmonic frictions are commonly
used:

𝐷𝑉 = 𝐴ℎ∇2
ℎ𝑣 +𝐴𝑣

𝜕2𝑣

𝜕𝑧2
+𝐴4∇4

ℎ𝑣 (1.41)

where 𝐴ℎ and 𝐴𝑣 are (constant) horizontal and vertical viscosity coefficients and 𝐴4 is the horizontal coefficient for
biharmonic friction. These coefficients are the same for all velocity components.

Tracers

The mixing terms for the temperature and salinity equations have a similar form to that of momentum except that the
diffusion tensor can be non-diagonal and have varying coefficients.

𝐷𝑇,𝑆 = ∇.[𝐾∇(𝑇, 𝑆)] +𝐾4∇4
ℎ(𝑇, 𝑆) (1.42)

where 𝐾 is the diffusion tensor and the 𝐾4 horizontal coefficient for biharmonic diffusion. In the simplest case where
the subgrid-scale fluxes of heat and salt are parameterized with constant horizontal and vertical diffusion coefficients,
𝐾, reduces to a diagonal matrix with constant coefficients:

𝐾 =

⎛⎝ 𝐾ℎ 0 0
0 𝐾ℎ 0
0 0 𝐾𝑣

⎞⎠ (1.43)
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where 𝐾ℎ and 𝐾𝑣 are the horizontal and vertical diffusion coefficients. These coefficients are the same for all tracers
(temperature, salinity . . . ).

1.3.8 Vector invariant form

For some purposes it is advantageous to write momentum advection in eq (1.1) and (1.2) in the (so-called) ‘vector
invariant’ form:

𝐷v⃗

𝐷𝑡
=
𝜕v⃗

𝜕𝑡
+ (∇× v⃗) × v⃗ + ∇

[︂
1

2
(v⃗ · v⃗)

]︂
(1.44)

This permits alternative numerical treatments of the non-linear terms based on their representation as a vorticity flux.
Because gradients of coordinate vectors no longer appear on the rhs of (1.44), explicit representation of the metric
terms in (1.29), (1.30) and (1.31), can be avoided: information about the geometry is contained in the areas and
lengths of the volumes used to discretize the model.

1.3.9 Adjoint

Tangent linear and adjoint counterparts of the forward model are described in Section 7.

1.4 Appendix ATMOSPHERE

1.4.1 Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates

The hydrostatic primitive equations (HPE’s) in 𝑝−coordinates are:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ + ∇𝑝𝜑 = ℱ⃗ (1.45)

𝜕𝜑

𝜕𝑝
+ 𝛼 = 0 (1.46)

∇𝑝 · v⃗ℎ +
𝜕𝜔

𝜕𝑝
= 0 (1.47)

𝑝𝛼 = 𝑅𝑇 (1.48)

𝑐𝑣
𝐷𝑇

𝐷𝑡
+ 𝑝

𝐷𝛼

𝐷𝑡
= 𝒬 (1.49)

where v⃗ℎ = (𝑢, 𝑣, 0) is the ‘horizontal’ (on pressure surfaces) component of velocity, 𝐷
𝐷𝑡 = 𝜕

𝜕𝑡 + v⃗ℎ ·∇𝑝 +𝜔 𝜕
𝜕𝑝 is the

total derivative, 𝑓 = 2Ω sin𝜙 is the Coriolis parameter, 𝜑 = 𝑔𝑧 is the geopotential, 𝛼 = 1/𝜌 is the specific volume,
𝜔 = 𝐷𝑝

𝐷𝑡 is the vertical velocity in the 𝑝−coordinate. Equation (1.49) is the first law of thermodynamics where internal
energy 𝑒 = 𝑐𝑣𝑇 , 𝑇 is temperature, 𝑄 is the rate of heating per unit mass and 𝑝𝐷𝛼

𝐷𝑡 is the work done by the fluid in
compressing.

It is convenient to cast the heat equation in terms of potential temperature 𝜃 so that it looks more like a generic
conservation law. Differentiating (1.48) we get:

𝑝
𝐷𝛼

𝐷𝑡
+ 𝛼

𝐷𝑝

𝐷𝑡
= 𝑅

𝐷𝑇

𝐷𝑡

which, when added to the heat equation (1.49) and using 𝑐𝑝 = 𝑐𝑣 +𝑅, gives:

𝑐𝑝
𝐷𝑇

𝐷𝑡
− 𝛼

𝐷𝑝

𝐷𝑡
= 𝒬 (1.50)
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Potential temperature is defined:

𝜃 = 𝑇 (
𝑝𝑐
𝑝

)𝜅 (1.51)

where 𝑝𝑐 is a reference pressure and 𝜅 = 𝑅/𝑐𝑝. For convenience we will make use of the Exner function Π(𝑝) which
is defined by:

Π(𝑝) = 𝑐𝑝(
𝑝

𝑝𝑐
)𝜅 (1.52)

The following relations will be useful and are easily expressed in terms of the Exner function:

𝑐𝑝𝑇 = Π𝜃 ;
𝜕Π

𝜕𝑝
=
𝜅Π

𝑝
; 𝛼 =

𝜅Π𝜃

𝑝
=
𝜕 Π

𝜕𝑝
𝜃 ;

𝐷Π

𝐷𝑡
=
𝜕Π

𝜕𝑝

𝐷𝑝

𝐷𝑡

where 𝑏 = 𝜕 Π
𝜕𝑝 𝜃 is the buoyancy.

The heat equation is obtained by noting that

𝑐𝑝
𝐷𝑇

𝐷𝑡
=
𝐷(Π𝜃)

𝐷𝑡
= Π

𝐷𝜃

𝐷𝑡
+ 𝜃

𝐷Π

𝐷𝑡
= Π

𝐷𝜃

𝐷𝑡
+ 𝛼

𝐷𝑝

𝐷𝑡

and on substituting into (1.50) gives:

Π
𝐷𝜃

𝐷𝑡
= 𝒬 (1.53)

which is in conservative form.

For convenience in the model we prefer to step forward (1.53) rather than (1.49).

1.4.1.1 Boundary conditions

The upper and lower boundary conditions are:

at the top: 𝑝 = 0, 𝜔 =
𝐷𝑝

𝐷𝑡
= 0 (1.54)

at the surface: 𝑝 = 𝑝𝑠, 𝜑 = 𝜑𝑡𝑜𝑝𝑜 = 𝑔 𝑍𝑡𝑜𝑝𝑜 (1.55)

In 𝑝−coordinates, the upper boundary acts like a solid boundary (𝜔 = 0 ); in 𝑧−coordinates the lower boundary is
analogous to a free surface (𝜑 is imposed and 𝜔 ̸= 0).

1.4.1.2 Splitting the geopotential

For the purposes of initialization and reducing round-off errors, the model deals with perturbations from reference (or
‘standard’) profiles. For example, the hydrostatic geopotential associated with the resting atmosphere is not dynami-
cally relevant and can therefore be subtracted from the equations. The equations written in terms of perturbations are
obtained by substituting the following definitions into the previous model equations:

𝜃 = 𝜃𝑜 + 𝜃′ (1.56)

𝛼 = 𝛼𝑜 + 𝛼′ (1.57)

𝜑 = 𝜑𝑜 + 𝜑′ (1.58)

The reference state (indicated by subscript ‘o’) corresponds to horizontally homogeneous atmosphere at rest
(𝜃𝑜, 𝛼𝑜, 𝜑𝑜) with surface pressure 𝑝𝑜(𝑥, 𝑦) that satisfies 𝜑𝑜(𝑝𝑜) = 𝑔 𝑍𝑡𝑜𝑝𝑜, defined:

𝜃𝑜(𝑝) = 𝑓𝑛(𝑝)
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𝛼𝑜(𝑝) = Π𝑝𝜃𝑜

𝜑𝑜(𝑝) = 𝜑𝑡𝑜𝑝𝑜 −
∫︁ 𝑝

𝑝0

𝛼𝑜𝑑𝑝

The final form of the HPE’s in 𝑝−coordinates is then:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ + ∇𝑝𝜑

′ = ℱ⃗ (1.59)

𝜕𝜑′

𝜕𝑝
+ 𝛼′ = 0 (1.60)

∇𝑝 · v⃗ℎ +
𝜕𝜔

𝜕𝑝
= 0 (1.61)

𝜕Π

𝜕𝑝
𝜃′ = 𝛼′ (1.62)

𝐷𝜃

𝐷𝑡
=

𝒬
Π

(1.63)

1.5 Appendix OCEAN

1.5.1 Equations of Motion for the Ocean

We review here the method by which the standard (Boussinesq, incompressible) HPE’s for the ocean written in
𝑧−coordinates are obtained. The non-Boussinesq equations for oceanic motion are:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌
∇𝑧𝑝 = ℱ⃗ (1.64)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+ 𝑔 +

1

𝜌

𝜕𝑝

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.65)

1

𝜌

𝐷𝜌

𝐷𝑡
+ ∇𝑧 · v⃗ℎ +

𝜕𝑤

𝜕𝑧
= 0 (1.66)

𝜌 = 𝜌(𝜃, 𝑆, 𝑝) (1.67)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.68)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.69)

These equations permit acoustics modes, inertia-gravity waves, non-hydrostatic motions, a geostrophic (Rossby) mode
and a thermohaline mode. As written, they cannot be integrated forward consistently - if we step 𝜌 forward in (1.66),
the answer will not be consistent with that obtained by stepping (1.68) and (1.69) and then using (1.67) to yield 𝜌. It
is therefore necessary to manipulate the system as follows. Differentiating the EOS (equation of state) gives:

𝐷𝜌

𝐷𝑡
=
𝜕𝜌

𝜕𝜃

⃒⃒⃒⃒
𝑆,𝑝

𝐷𝜃

𝐷𝑡
+

𝜕𝜌

𝜕𝑆

⃒⃒⃒⃒
𝜃,𝑝

𝐷𝑆

𝐷𝑡
+
𝜕𝜌

𝜕𝑝

⃒⃒⃒⃒
𝜃,𝑆

𝐷𝑝

𝐷𝑡
(1.70)

Note that 𝜕𝜌
𝜕𝑝 = 1

𝑐2𝑠
is the reciprocal of the sound speed (𝑐𝑠) squared. Substituting into (1.66) gives:

1

𝜌𝑐2𝑠

𝐷𝑝

𝐷𝑡
+ ∇𝑧 · v⃗ + 𝜕𝑧𝑤 ≈ 0 (1.71)
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where we have used an approximation sign to indicate that we have assumed adiabatic motion, dropping the 𝐷𝜃
𝐷𝑡 and

𝐷𝑆
𝐷𝑡 . Replacing (1.66) with (1.71) yields a system that can be explicitly integrated forward:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌
∇𝑧𝑝 = ℱ⃗ (1.72)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+ 𝑔 +

1

𝜌

𝜕𝑝

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.73)

1

𝜌𝑐2𝑠

𝐷𝑝

𝐷𝑡
+ ∇𝑧 · v⃗ℎ +

𝜕𝑤

𝜕𝑧
= 0 (1.74)

𝜌 = 𝜌(𝜃, 𝑆, 𝑝) (1.75)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.76)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.77)

1.5.1.1 Compressible z-coordinate equations

Here we linearize the acoustic modes by replacing 𝜌 with 𝜌𝑜(𝑧) wherever it appears in a product (ie. non-linear
term) - this is the ‘Boussinesq assumption’. The only term that then retains the full variation in 𝜌 is the gravitational
acceleration:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌𝑜
∇𝑧𝑝 = ℱ⃗ (1.78)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+
𝑔𝜌

𝜌𝑜
+

1

𝜌𝑜

𝜕𝑝

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.79)

1

𝜌𝑜𝑐2𝑠

𝐷𝑝

𝐷𝑡
+ ∇𝑧 · v⃗ℎ +

𝜕𝑤

𝜕𝑧
= 0 (1.80)

𝜌 = 𝜌(𝜃, 𝑆, 𝑝) (1.81)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.82)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.83)

These equations still retain acoustic modes. But, because the “compressible” terms are linearized, the pressure equa-
tion (1.80) can be integrated implicitly with ease (the time-dependent term appears as a Helmholtz term in the non-
hydrostatic pressure equation). These are the truly compressible Boussinesq equations. Note that the EOS must have
the same pressure dependency as the linearized pressure term, ie. 𝜕𝜌

𝜕𝑝

⃒⃒⃒
𝜃,𝑆

= 1
𝑐2𝑠

, for consistency.

1.5.1.2 ‘Anelastic’ z-coordinate equations

The anelastic approximation filters the acoustic mode by removing the time-dependency in the continuity (now
pressure-) equation (1.80). This could be done simply by noting that 𝐷𝑝

𝐷𝑡 ≈ −𝑔𝜌𝑜 𝐷𝑧
𝐷𝑡 = −𝑔𝜌𝑜𝑤, but this leads to

an inconsistency between continuity and EOS. A better solution is to change the dependency on pressure in the EOS
by splitting the pressure into a reference function of height and a perturbation:

𝜌 = 𝜌(𝜃, 𝑆, 𝑝𝑜(𝑧) + 𝜖𝑠𝑝
′)
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Remembering that the term 𝐷𝑝
𝐷𝑡 in continuity comes from differentiating the EOS, the continuity equation then be-

comes:

1

𝜌𝑜𝑐2𝑠

(︂
𝐷𝑝𝑜
𝐷𝑡

+ 𝜖𝑠
𝐷𝑝′

𝐷𝑡

)︂
+ ∇𝑧 · v⃗ℎ +

𝜕𝑤

𝜕𝑧
= 0

If the time- and space-scales of the motions of interest are longer than those of acoustic modes, then 𝐷𝑝′

𝐷𝑡 << (𝐷𝑝𝑜

𝐷𝑡 ,∇·
v⃗ℎ) in the continuity equations and 𝜕𝜌

𝜕𝑝

⃒⃒⃒
𝜃,𝑆

𝐷𝑝′

𝐷𝑡 << 𝜕𝜌
𝜕𝑝

⃒⃒⃒
𝜃,𝑆

𝐷𝑝𝑜

𝐷𝑡 in the EOS (1.70). Thus we set 𝜖𝑠 = 0, removing

the dependency on 𝑝′ in the continuity equation and EOS. Expanding 𝐷𝑝𝑜(𝑧)
𝐷𝑡 = −𝑔𝜌𝑜𝑤 then leads to the anelastic

continuity equation:

∇𝑧 · v⃗ℎ +
𝜕𝑤

𝜕𝑧
− 𝑔

𝑐2𝑠
𝑤 = 0 (1.84)

A slightly different route leads to the quasi-Boussinesq continuity equation where we use the scaling 𝜕𝜌′

𝜕𝑡 +∇3 ·𝜌′v⃗ <<
∇3 · 𝜌𝑜v⃗ yielding:

∇𝑧 · v⃗ℎ +
1

𝜌𝑜

𝜕 (𝜌𝑜𝑤)

𝜕𝑧
= 0 (1.85)

Equations (1.84) and (1.85) are in fact the same equation if:

1

𝜌𝑜

𝜕𝜌𝑜
𝜕𝑧

=
−𝑔
𝑐2𝑠

Again, note that if 𝜌𝑜 is evaluated from prescribed 𝜃𝑜 and 𝑆𝑜 profiles, then the EOS dependency on 𝑝𝑜 and the term 𝑔
𝑐2𝑠

in continuity should be referred to those same profiles. The full set of ‘quasi-Boussinesq’ or ‘anelastic’ equations for
the ocean are then:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌𝑜
∇𝑧𝑝 = ℱ⃗ (1.86)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+
𝑔𝜌

𝜌𝑜
+

1

𝜌𝑜

𝜕𝑝

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.87)

∇𝑧 · v⃗ℎ +
1

𝜌𝑜

𝜕 (𝜌𝑜𝑤)

𝜕𝑧
= 0 (1.88)

𝜌 = 𝜌(𝜃, 𝑆, 𝑝𝑜(𝑧)) (1.89)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.90)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.91)

1.5.1.3 Incompressible z-coordinate equations

Here, the objective is to drop the depth dependence of 𝜌𝑜 and so, technically, to also remove the dependence of 𝜌 on
𝑝𝑜. This would yield the “truly” incompressible Boussinesq equations:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌𝑐
∇𝑧𝑝 = ℱ⃗ (1.92)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+
𝑔𝜌

𝜌𝑐
+

1

𝜌𝑐

𝜕𝑝

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.93)

∇𝑧 · v⃗ℎ +
𝜕𝑤

𝜕𝑧
= 0 (1.94)
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𝜌 = 𝜌(𝜃, 𝑆) (1.95)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.96)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.97)

where 𝜌𝑐 is a constant reference density of water.

1.5.1.4 Compressible non-divergent equations

The above “incompressible” equations are incompressible in both the flow and the density. In many oceanic appli-
cations, however, it is important to retain compressibility effects in the density. To do this we must split the density
thus:

𝜌 = 𝜌𝑜 + 𝜌′

We then assert that variations with depth of 𝜌𝑜 are unimportant while the compressible effects in 𝜌′ are:

𝜌𝑜 = 𝜌𝑐

𝜌′ = 𝜌(𝜃, 𝑆, 𝑝𝑜(𝑧)) − 𝜌𝑜

This then yields what we can call the semi-compressible Boussinesq equations:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌𝑐
∇𝑧𝑝

′ = ℱ⃗ (1.98)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+
𝑔𝜌′

𝜌𝑐
+

1

𝜌𝑐

𝜕𝑝′

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.99)

∇𝑧 · v⃗ℎ +
𝜕𝑤

𝜕𝑧
= 0 (1.100)

𝜌′ = 𝜌(𝜃, 𝑆, 𝑝𝑜(𝑧)) − 𝜌𝑐 (1.101)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.102)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.103)

Note that the hydrostatic pressure of the resting fluid, including that associated with 𝜌𝑐, is subtracted out since it has
no effect on the dynamics.

Though necessary, the assumptions that go into these equations are messy since we essentially assume a different
EOS for the reference density and the perturbation density. Nevertheless, it is the hydrostatic (𝜖𝑛ℎ = 0) form of these
equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE’s).

1.6 Appendix OPERATORS

1.6.1 Coordinate systems

1.6.1.1 Spherical coordinates

In spherical coordinates, the velocity components in the zonal, meridional and vertical direction respectively, are given
by:

𝑢 = 𝑟 cos𝜙
𝐷𝜆

𝐷𝑡
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𝑣 = 𝑟
𝐷𝜙

𝐷𝑡

𝑟̇ =
𝐷𝑟

𝐷𝑡

(see Figure 1.20) Here 𝜙 is the latitude, 𝜆 the longitude, 𝑟 the radial distance of the particle from the center of the
earth, Ω is the angular speed of rotation of the Earth and 𝐷/𝐷𝑡 is the total derivative.

The ‘grad’ (∇) and ‘div’ (∇·) operators are defined by, in spherical coordinates:

∇ ≡
(︂

1

𝑟 cos𝜙

𝜕

𝜕𝜆
,

1

𝑟

𝜕

𝜕𝜙
,
𝜕

𝜕𝑟

)︂

∇ · 𝑣 ≡ 1

𝑟 cos𝜙

{︂
𝜕𝑢

𝜕𝜆
+

𝜕

𝜕𝜙
(𝑣 cos𝜙)

}︂
+

1

𝑟2
𝜕
(︀
𝑟2𝑟̇
)︀

𝜕𝑟
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Figure 1.20: Spherical polar coordinates: longitude 𝜆, latitude 𝜙 and 𝑟 the distance from the center.
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CHAPTER

TWO

DISCRETIZATION AND ALGORITHM

This chapter lays out the numerical schemes that are employed in the core MITgcm algorithm. Whenever possible
links are made to actual program code in the MITgcm implementation. The chapter begins with a discussion of the
temporal discretization used in MITgcm. This discussion is followed by sections that describe the spatial discretization.
The schemes employed for momentum terms are described first, afterwards the schemes that apply to passive and
dynamically active tracers are described.

2.1 Notation

Because of the particularity of the vertical direction in stratified fluid context, in this chapter, the vector notations are
mostly used for the horizontal component: the horizontal part of a vector is simply written v⃗ (instead of vh or v⃗ℎ in
chapter 1) and a 3D vector is simply written 𝑣⃗ (instead of v⃗ in chapter 1).

The notations we use to describe the discrete formulation of the model are summarized as follows.

General notation:

∆𝑥,∆𝑦,∆𝑟 grid spacing in X, Y, R directions

𝐴𝑐, 𝐴𝑤, 𝐴𝑠, 𝐴𝜁 : horizontal area of a grid cell surrounding 𝜃, 𝑢, 𝑣, 𝜁 point

𝒱𝑢,𝒱𝑣,𝒱𝑤,𝒱𝜃 : Volume of the grid box surrounding 𝑢, 𝑣, 𝑤, 𝜃 point

𝑖, 𝑗, 𝑘 : current index relative to X, Y, R directions

Basic operators:

𝛿𝑖 : 𝛿𝑖Φ = Φ𝑖+1/2 − Φ𝑖−1/2

−𝑖 : Φ
𝑖

= (Φ𝑖+1/2 + Φ𝑖−1/2)/2

𝛿𝑥 : 𝛿𝑥Φ = 1
Δ𝑥𝛿𝑖Φ

∇ = horizontal gradient operator : ∇Φ = {𝛿𝑥Φ, 𝛿𝑦Φ}

35
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∇· = horizontal divergence operator : ∇ · f⃗ = 1
𝒜{𝛿𝑖∆𝑦 f𝑥 + 𝛿𝑗∆𝑥 f𝑦}

∇2
= horizontal Laplacian operator : ∇2

Φ = ∇ · ∇Φ

2.2 Time-stepping

The equations of motion integrated by the model involve four prognostic equations for flow, 𝑢 and 𝑣, temperature,
𝜃, and salt/moisture, 𝑆, and three diagnostic equations for vertical flow, 𝑤, density/buoyancy, 𝜌/𝑏, and pressure/geo-
potential, 𝜑ℎ𝑦𝑑. In addition, the surface pressure or height may by described by either a prognostic or diagnostic
equation and if non-hydrostatics terms are included then a diagnostic equation for non-hydrostatic pressure is also
solved. The combination of prognostic and diagnostic equations requires a model algorithm that can march forward
prognostic variables while satisfying constraints imposed by diagnostic equations.

Since the model comes in several flavors and formulation, it would be confusing to present the model algorithm exactly
as written into code along with all the switches and optional terms. Instead, we present the algorithm for each of the
basic formulations which are:

1. the semi-implicit pressure method for hydrostatic equations with a rigid-lid, variables co-located in time and
with Adams-Bashforth time-stepping;

2. as 1 but with an implicit linear free-surface;

3. as 1 or 2 but with variables staggered in time;

4. as 1 or 2 but with non-hydrostatic terms included;

5. as 2 or 3 but with non-linear free-surface.

In all the above configurations it is also possible to substitute the Adams-Bashforth with an alternative time-stepping
scheme for terms evaluated explicitly in time. Since the over-arching algorithm is independent of the particular time-
stepping scheme chosen we will describe first the over-arching algorithm, known as the pressure method, with a
rigid-lid model in Section 2.3. This algorithm is essentially unchanged, apart for some coefficients, when the rigid
lid assumption is replaced with a linearized implicit free-surface, described in Section 2.4. These two flavors of the
pressure-method encompass all formulations of the model as it exists today. The integration of explicit in time terms
is out-lined in Section 2.5 and put into the context of the overall algorithm in Section 2.7 and Section 2.8. Inclusion
of non-hydrostatic terms requires applying the pressure method in three dimensions instead of two and this algorithm
modification is described in Section 2.9. Finally, the free-surface equation may be treated more exactly, including
non-linear terms, and this is described in Section 2.10.2.

2.3 Pressure method with rigid-lid

The horizontal momentum and continuity equations for the ocean ((1.98) and (1.100)), or for the atmosphere ((1.45)
and (1.47)), can be summarized by:

𝜕𝑡𝑢+ 𝑔𝜕𝑥𝜂 = 𝐺𝑢

𝜕𝑡𝑣 + 𝑔𝜕𝑦𝜂 = 𝐺𝑣

𝜕𝑥𝑢+ 𝜕𝑦𝑣 + 𝜕𝑧𝑤 = 0

where we are adopting the oceanic notation for brevity. All terms in the momentum equations, except for surface
pressure gradient, are encapsulated in the 𝐺 vector. The continuity equation, when integrated over the fluid depth, 𝐻 ,
and with the rigid-lid/no normal flow boundary conditions applied, becomes:

𝜕𝑥𝐻̂︀𝑢+ 𝜕𝑦𝐻̂︀𝑣 = 0 (2.1)
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Here, 𝐻̂︀𝑢 =
∫︀
𝐻
𝑢𝑑𝑧 is the depth integral of 𝑢, similarly for 𝐻̂︀𝑣. The rigid-lid approximation sets 𝑤 = 0 at the lid so

that it does not move but allows a pressure to be exerted on the fluid by the lid. The horizontal momentum equations
and vertically integrated continuity equation are be discretized in time and space as follows:

𝑢𝑛+1 + ∆𝑡𝑔𝜕𝑥𝜂
𝑛+1 = 𝑢𝑛 + ∆𝑡𝐺(𝑛+1/2)

𝑢 (2.2)

𝑣𝑛+1 + ∆𝑡𝑔𝜕𝑦𝜂
𝑛+1 = 𝑣𝑛 + ∆𝑡𝐺(𝑛+1/2)

𝑣 (2.3)

𝜕𝑥𝐻𝑢𝑛+1 + 𝜕𝑦𝐻𝑣𝑛+1 = 0 (2.4)

As written here, terms on the LHS all involve time level 𝑛 + 1 and are referred to as implicit; the implicit backward
time stepping scheme is being used. All other terms in the RHS are explicit in time. The thermodynamic quantities
are integrated forward in time in parallel with the flow and will be discussed later. For the purposes of describing the
pressure method it suffices to say that the hydrostatic pressure gradient is explicit and so can be included in the vector
𝐺.

Substituting the two momentum equations into the depth integrated continuity equation eliminates 𝑢𝑛+1 and 𝑣𝑛+1

yielding an elliptic equation for 𝜂𝑛+1. Equations (2.2), (2.3) and (2.4) can then be re-arranged as follows:

𝑢* = 𝑢𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑢 (2.5)

𝑣* = 𝑣𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑣 (2.6)

𝜕𝑥∆𝑡𝑔𝐻𝜕𝑥𝜂
𝑛+1 + 𝜕𝑦∆𝑡𝑔𝐻𝜕𝑦𝜂

𝑛+1 = 𝜕𝑥𝐻̂︁𝑢* + 𝜕𝑦𝐻 ̂︀𝑣* (2.7)

𝑢𝑛+1 = 𝑢* − ∆𝑡𝑔𝜕𝑥𝜂
𝑛+1 (2.8)

𝑣𝑛+1 = 𝑣* − ∆𝑡𝑔𝜕𝑦𝜂
𝑛+1 (2.9)

Equations (2.5) to (2.9), solved sequentially, represent the pressure method algorithm used in the model. The essence
of the pressure method lies in the fact that any explicit prediction for the flow would lead to a divergence flow field
so a pressure field must be found that keeps the flow non-divergent over each step of the integration. The particular
location in time of the pressure field is somewhat ambiguous; in Figure 2.1 we depicted as co-located with the future
flow field (time level 𝑛+ 1) but it could equally have been drawn as staggered in time with the flow.

The correspondence to the code is as follows:

• the prognostic phase, equations (2.5) and (2.6), stepping forward 𝑢𝑛 and 𝑣𝑛 to 𝑢* and 𝑣* is coded in timestep.F

• the vertical integration, 𝐻̂︁𝑢* and 𝐻 ̂︀𝑣*, divergence and inversion of the elliptic operator in equation (2.7) is
coded in solve_for_pressure.F

• finally, the new flow field at time level 𝑛+1 given by equations (2.8) and (2.9) is calculated in correction_step.F

The calling tree for these routines is as follows:

Pressure method calling tree

FORWARD_STEP
DYNAMICS

TIMESTEP 𝑢*, 𝑣* (2.5) , (2.6)
SOLVE_FOR_PRESSURE

CALC_DIV_GHAT 𝐻̂︁𝑢*, 𝐻 ̂︀𝑣* (2.7)
CG2D 𝜂𝑛+1 (2.7)

MOMENTUM_CORRECTION_STEP
CALC_GRAD_PHI_SURF ∇𝜂𝑛+1
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Figure 2.1: A schematic of the evolution in time of the pressure method algorithm. A prediction for the flow variables
at time level 𝑛 + 1 is made based only on the explicit terms, 𝐺(𝑛+1/2), and denoted 𝑢*, 𝑣*. Next, a pressure field is
found such that 𝑢𝑛+1, 𝑣𝑛+1 will be non-divergent. Conceptually, the * quantities exist at time level 𝑛+ 1 but they are
intermediate and only temporary.

CORRECTION_STEP 𝑢𝑛+1, 𝑣𝑛+1 (2.8) , (2.9)

In general, the horizontal momentum time-stepping can contain some terms that are treated implicitly in time, such as
the vertical viscosity when using the backward time-stepping scheme (implicitViscosity =.TRUE.). The method used
to solve those implicit terms is provided in Section 2.6, and modifies equations (2.2) and (2.3) to give:

𝑢𝑛+1 − ∆𝑡𝜕𝑧𝐴𝑣𝜕𝑧𝑢
𝑛+1 + ∆𝑡𝑔𝜕𝑥𝜂

𝑛+1 = 𝑢𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑢

𝑣𝑛+1 − ∆𝑡𝜕𝑧𝐴𝑣𝜕𝑧𝑣
𝑛+1 + ∆𝑡𝑔𝜕𝑦𝜂

𝑛+1 = 𝑣𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑣

2.4 Pressure method with implicit linear free-surface

The rigid-lid approximation filters out external gravity waves subsequently modifying the dispersion relation of
barotropic Rossby waves. The discrete form of the elliptic equation has some zero eigenvalues which makes it a
potentially tricky or inefficient problem to solve.

The rigid-lid approximation can be easily replaced by a linearization of the free-surface equation which can be written:

𝜕𝑡𝜂 + 𝜕𝑥𝐻̂︀𝑢+ 𝜕𝑦𝐻̂︀𝑣 = 𝒫 − ℰ + ℛ (2.10)

which differs from the depth integrated continuity equation with rigid-lid ((2.1)) by the time-dependent term and
fresh-water source term.

Equation (2.4) in the rigid-lid pressure method is then replaced by the time discretization of (2.10) which is:

𝜂𝑛+1 + ∆𝑡𝜕𝑥𝐻𝑢𝑛+1 + ∆𝑡𝜕𝑦𝐻𝑣𝑛+1 = 𝜂𝑛 + ∆𝑡(𝒫 − ℰ) (2.11)

where the use of flow at time level 𝑛+1 makes the method implicit and backward in time. This is the preferred scheme
since it still filters the fast unresolved wave motions by damping them. A centered scheme, such as Crank-Nicholson
(see Section 2.10.1), would alias the energy of the fast modes onto slower modes of motion.
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As for the rigid-lid pressure method, equations (2.2), (2.3) and (2.11) can be re-arranged as follows:

𝑢* = 𝑢𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑢 (2.12)

𝑣* = 𝑣𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑣 (2.13)

𝜂* = 𝜖𝑓𝑠(𝜂
𝑛 + ∆𝑡(𝒫 − ℰ)) − ∆𝑡(𝜕𝑥𝐻̂︁𝑢* + 𝜕𝑦𝐻 ̂︀𝑣*) (2.14)

𝜕𝑥𝑔𝐻𝜕𝑥𝜂
𝑛+1 + 𝜕𝑦𝑔𝐻𝜕𝑦𝜂

𝑛+1 − 𝜖𝑓𝑠𝜂
𝑛+1

∆𝑡2
= − 𝜂*

∆𝑡2
(2.15)

𝑢𝑛+1 = 𝑢* − ∆𝑡𝑔𝜕𝑥𝜂
𝑛+1 (2.16)

𝑣𝑛+1 = 𝑣* − ∆𝑡𝑔𝜕𝑦𝜂
𝑛+1 (2.17)

Equations (2.12) to (2.17), solved sequentially, represent the pressure method algorithm with a backward implicit,
linearized free surface. The method is still formerly a pressure method because in the limit of large ∆𝑡 the rigid-
lid method is recovered. However, the implicit treatment of the free-surface allows the flow to be divergent and
for the surface pressure/elevation to respond on a finite time-scale (as opposed to instantly). To recover the rigid-
lid formulation, we use a switch-like variable, 𝜖𝑓𝑠 (freesurfFac), which selects between the free-surface and rigid-lid;
𝜖𝑓𝑠 = 1 allows the free-surface to evolve; 𝜖𝑓𝑠 = 0 imposes the rigid-lid. The evolution in time and location of variables
is exactly as it was for the rigid-lid model so that Figure 2.1 is still applicable. Similarly, the calling sequence, given
here, is as for the pressure-method.

2.5 Explicit time-stepping: Adams-Bashforth

In describing the the pressure method above we deferred describing the time discretization of the explicit terms.
We have historically used the quasi-second order Adams-Bashforth method (AB-II) for all explicit terms in both the
momentum and tracer equations. This is still the default mode of operation but it is now possible to use alternate
schemes for tracers (see Section 2.16), or a 3rd order Adams-Bashforth method (AB-III). In the previous sections, we
summarized an explicit scheme as:

𝜏* = 𝜏𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝜏 (2.18)

where 𝜏 could be any prognostic variable (𝑢, 𝑣, 𝜃 or 𝑆) and 𝜏* is an explicit estimate of 𝜏𝑛+1 and would be exact if not
for implicit-in-time terms. The parenthesis about 𝑛 + 1/2 indicates that the term is explicit and extrapolated forward
in time. Below we describe in more detail the AB-II and AB-III schemes.

2.5.1 Adams-Bashforth II

The quasi-second order Adams-Bashforth scheme is formulated as follows:

𝐺(𝑛+1/2)
𝜏 = (3/2 + 𝜖𝐴𝐵)𝐺𝑛

𝜏 − (1/2 + 𝜖𝐴𝐵)𝐺𝑛−1
𝜏 (2.19)

This is a linear extrapolation, forward in time, to 𝑡 = (𝑛+ 1/2 + 𝜖𝐴𝐵)∆𝑡. An extrapolation to the mid-point in time,
𝑡 = (𝑛 + 1/2)∆𝑡, corresponding to 𝜖𝐴𝐵 = 0, would be second order accurate but is weakly unstable for oscillatory
terms. A small but finite value for 𝜖𝐴𝐵 stabilizes the method. Strictly speaking, damping terms such as diffusion and
dissipation, and fixed terms (forcing), do not need to be inside the Adams-Bashforth extrapolation. However, in the
current code, it is simpler to include these terms and this can be justified if the flow and forcing evolves smoothly.
Problems can, and do, arise when forcing or motions are high frequency and this corresponds to a reduced stability
compared to a simple forward time-stepping of such terms. The model offers the possibility to leave terms outside
the Adams-Bashforth extrapolation, by turning off the logical flag forcing_In_AB (parameter file data, namelist
PARM01, default value = TRUE) and then setting tracForcingOutAB (default=0), momForcingOutAB (default=0),
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and momDissip_In_AB (parameter file data, namelist PARM01, default value = TRUE), respectively for the tracer
terms, momentum forcing terms, and the dissipation terms.

A stability analysis for an oscillation equation should be given at this point.

A stability analysis for a relaxation equation should be given at this point.

2.5.2 Adams-Bashforth III

The 3rd order Adams-Bashforth time stepping (AB-III) provides several advantages (see, e.g., Durran 1991 [Dur91])
compared to the default quasi-second order Adams-Bashforth method:

• higher accuracy;

• stable with a longer time-step;

• no additional computation (just requires the storage of one additional time level).

The 3rd order Adams-Bashforth can be used to extrapolate forward in time the tendency (replacing (2.19)) as:

𝐺(𝑛+1/2)
𝜏 = (1 + 𝛼𝐴𝐵 + 𝛽𝐴𝐵)𝐺𝑛

𝜏 − (𝛼𝐴𝐵 + 2𝛽𝐴𝐵)𝐺𝑛−1
𝜏 + 𝛽𝐴𝐵𝐺

𝑛−2
𝜏 (2.20)

3rd order accuracy is obtained with (𝛼𝐴𝐵 , 𝛽𝐴𝐵) = (1/2, 5/12). Note that selecting (𝛼𝐴𝐵 , 𝛽𝐴𝐵) = (1/2 + 𝜖𝐴𝐵 , 0)
one recovers AB-II. The AB-III time stepping improves the stability limit for an oscillatory problem like advection
or Coriolis. As seen from Figure 2.3, it remains stable up to a CFL of 0.72, compared to only 0.50 with AB-II and
𝜖𝐴𝐵 = 0.1. It is interesting to note that the stability limit can be further extended up to a CFL of 0.786 for an oscillatory
problem (see Figure 2.3) using (𝛼𝐴𝐵 , 𝛽𝐴𝐵) = (0.5, 0.2811) but then the scheme is only second order accurate.

However, the behavior of the AB-III for a damping problem (like diffusion) is less favorable, since the stability limit
is reduced to 0.54 only (and 0.64 with 𝛽𝐴𝐵 = 0.2811) compared to 1.0 (and 0.9 with 𝜖𝐴𝐵 = 0.1) with the AB-II (see
Figure 2.4).

A way to enable the use of a longer time step is to keep the dissipation terms outside the AB extrapolation (setting
momDissip_In_AB to .FALSE. in main parameter file data, namelist PARM03, thus returning to a simple forward
time-stepping for dissipation, and to use AB-III only for advection and Coriolis terms.

The AB-III time stepping is activated by defining the option #define ALLOW_ADAMSBASHFORTH_3 in
CPP_OPTIONS.h. The parameters 𝛼𝐴𝐵 , 𝛽𝐴𝐵 can be set from the main parameter file data (namelist PARM03)
and their default values correspond to the 3rd order Adams-Bashforth. A simple example is provided in verifica-
tion/advect_xy/input.ab3_c4.

AB-III is not yet available for the vertical momentum equation (non-hydrostatic) nor for passive tracers.

2.6 Implicit time-stepping: backward method

Vertical diffusion and viscosity can be treated implicitly in time using the backward method which is an intrinsic
scheme. Recently, the option to treat the vertical advection implicitly has been added, but not yet tested; therefore, the
description hereafter is limited to diffusion and viscosity. For tracers, the time discretized equation is:

𝜏𝑛+1 − ∆𝑡𝜕𝑟𝜅𝑣𝜕𝑟𝜏
𝑛+1 = 𝜏𝑛 + ∆𝑡𝐺(𝑛+1/2)

𝜏 (2.21)

where 𝐺(𝑛+1/2)
𝜏 is the remaining explicit terms extrapolated using the Adams-Bashforth method as described above.

Equation (2.21) can be split split into:

𝜏* = 𝜏𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝜏 (2.22)
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Figure 2.2: Oscillatory and damping response of quasi-second order Adams-Bashforth scheme for different values of
the 𝜖𝐴𝐵 parameter (0.0, 0.1, 0.25, from top to bottom) The analytical solution (in black), the physical mode (in blue)
and the numerical mode (in red) are represented with a CFL step of 0.1. The left column represents the oscillatory
response on the complex plane for CFL ranging from 0.1 up to 0.9. The right column represents the damping response
amplitude (y-axis) function of the CFL (x-axis).
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Figure 2.3: Oscillatory response of third order Adams-Bashforth scheme for different values of the (𝛼𝐴𝐵 , 𝛽𝐴𝐵)
parameters. The analytical solution (in black), the physical mode (in blue) and the numerical mode (in red) are
represented with a CFL step of 0.1.
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eters. The analytical solution (in black), the physical mode (in blue) and the numerical mode (in red) are represented
with a CFL step of 0.1.
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𝜏𝑛+1 = ℒ−1
𝜏 (𝜏*) (2.23)

where ℒ−1
𝜏 is the inverse of the operator

ℒ𝜏 = [1 + ∆𝑡𝜕𝑟𝜅𝑣𝜕𝑟]

Equation (2.22) looks exactly as (2.18) while (2.23) involves an operator or matrix inversion. By re-arranging (2.21)
in this way we have cast the method as an explicit prediction step and an implicit step allowing the latter to be inserted
into the over all algorithm with minimal interference.

The calling sequence for stepping forward a tracer variable such as temperature with implicit diffusion is as follows:

Adams-Bashforth calling tree

FORWARD_STEP
THERMODYNAMICS

TEMP_INTEGRATE
GAD_CALC_RHS 𝐺𝑛

𝜃 = 𝐺𝜃(𝑢, 𝜃𝑛)

either
EXTERNAL_FORCING 𝐺𝑛

𝜃 = 𝐺𝑛
𝜃 + 𝒬

ADAMS_BASHFORTH2 𝐺
(𝑛+1/2)
𝜃 (2.19)

or
EXTERNAL_FORCING 𝐺

(𝑛+1/2)
𝜃 = 𝐺

(𝑛+1/2)
𝜃 + 𝒬

TIMESTEP_TRACER 𝜏* (2.18)
IMPLDIFF 𝜏 (𝑛+1) (2.23)

In order to fit within the pressure method, the implicit viscosity must not alter the barotropic flow. In other words, it
can only redistribute momentum in the vertical. The upshot of this is that although vertical viscosity may be backward
implicit and unconditionally stable, no-slip boundary conditions may not be made implicit and are thus cast as a an
explicit drag term.

2.7 Synchronous time-stepping: variables co-located in time

The Adams-Bashforth extrapolation of explicit tendencies fits neatly into the pressure method algorithm when all state
variables are co-located in time. The algorithm can be represented by the sequential solution of the follow equations:

𝐺𝑛
𝜃,𝑆 = 𝐺𝜃,𝑆(𝑢𝑛, 𝜃𝑛, 𝑆𝑛) (2.24)

𝐺
(𝑛+1/2)
𝜃,𝑆 = (3/2 + 𝜖𝐴𝐵)𝐺𝑛

𝜃,𝑆 − (1/2 + 𝜖𝐴𝐵)𝐺𝑛−1
𝜃,𝑆

(2.25)

(𝜃*, 𝑆*) = (𝜃𝑛, 𝑆𝑛) + ∆𝑡𝐺
(𝑛+1/2)
𝜃,𝑆

(2.26)

(𝜃𝑛+1, 𝑆𝑛+1) = ℒ−1
𝜃,𝑆(𝜃*, 𝑆*) (2.27)

𝜑𝑛ℎ𝑦𝑑 =

∫︁
𝑏(𝜃𝑛, 𝑆𝑛)𝑑𝑟 (2.28)

G⃗𝑛
v⃗ = G⃗v⃗(v⃗𝑛, 𝜑𝑛ℎ𝑦𝑑) (2.29)

G⃗
(𝑛+1/2)
v⃗ = (3/2 + 𝜖𝐴𝐵)G⃗𝑛

v⃗ − (1/2 + 𝜖𝐴𝐵)G⃗𝑛−1
v⃗

(2.30)

v⃗* = v⃗𝑛 + ∆𝑡G⃗
(𝑛+1/2)
v⃗

(2.31)
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Figure 2.5: A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the algorithm. All
prognostic variables are co-located in time. Explicit tendencies are evaluated at time level 𝑛 as a function of the state
at that time level (dotted arrow). The explicit tendency from the previous time level, 𝑛 − 1, is used to extrapolate
tendencies to 𝑛 + 1/2 (dashed arrow). This extrapolated tendency allows variables to be stably integrated forward-
in-time to render an estimate (* -variables) at the 𝑛 + 1 time level (solid arc-arrow). The operator ℒ formed from
implicit-in-time terms is solved to yield the state variables at time level 𝑛+ 1.
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v⃗** = ℒ−1
v⃗ (v⃗*) (2.32)

𝜂* = 𝜖𝑓𝑠 (𝜂𝑛 + ∆𝑡(𝒫 − ℰ)) − ∆𝑡∇ ·𝐻̂⃗︂v** (2.33)

∇ · 𝑔𝐻∇𝜂𝑛+1 − 𝜖𝑓𝑠𝜂
𝑛+1

∆𝑡2
= − 𝜂*

∆𝑡2
(2.34)

v⃗𝑛+1 = v⃗** − ∆𝑡𝑔∇𝜂𝑛+1 (2.35)

Figure 2.5 illustrates the location of variables in time and evolution of the algorithm with time. The Adams-Bashforth
extrapolation of the tracer tendencies is illustrated by the dashed arrow, the prediction at 𝑛 + 1 is indicated by the
solid arc. Inversion of the implicit terms, ℒ−1

𝜃,𝑆 , then yields the new tracer fields at 𝑛 + 1. All these operations are
carried out in subroutine THERMODYNAMICS and subsidiaries, which correspond to equations (2.24) to (2.27).
Similarly illustrated is the Adams-Bashforth extrapolation of accelerations, stepping forward and solving of implicit
viscosity and surface pressure gradient terms, corresponding to equations (2.29) to (2.35). These operations are carried
out in subroutines DYNAMICS, SOLVE_FOR_PRESSURE and MOMENTUM_CORRECTION_STEP. This, then,
represents an entire algorithm for stepping forward the model one time-step. The corresponding calling tree for the
overall synchronous algorithm using Adams-Bashforth time-stepping is given below. The place where the model
geometry hFac factors) is updated is added here but is only relevant for the non-linear free-surface algorithm. For
completeness, the external forcing, ocean and atmospheric physics have been added, although they are mainly optional.

Synchronous Adams-Bashforth calling tree

FORWARD_STEP
EXTERNAL_FIELDS_LOAD
DO_ATMOSPHERIC_PHYS
DO_OCEANIC_PHYS

THERMODYNAMICS
CALC_GT

GAD_CALC_RHS 𝐺𝑛
𝜃 = 𝐺𝜃(𝑢, 𝜃𝑛) (2.24)

EXTERNAL_FORCING 𝐺𝑛
𝜃 = 𝐺𝑛

𝜃 + 𝒬
ADAMS_BASHFORTH2 𝐺

(𝑛+1/2)
𝜃 (2.25)

TIMESTEP_TRACER 𝜃* (2.26)
IMPLDIFF 𝜃(𝑛+1) (2.27)

DYNAMICS
CALC_PHI_HYD 𝜑𝑛ℎ𝑦𝑑 (2.28)
MOM_FLUXFORM or MOM_VECINV 𝐺𝑛

v⃗ (2.29)
TIMESTEP v⃗* (2.30), (2.31)
IMPLDIFF v⃗** (2.32)

UPDATE_R_STAR or UPDATE_SURF_DR (NonLin-FS only)
SOLVE_FOR_PRESSURE

CALC_DIV_GHAT 𝜂* (2.33)
CG2D 𝜂𝑛+1 (2.34)

MOMENTUM_CORRECTION_STEP
CALC_GRAD_PHI_SURF ∇𝜂𝑛+1

CORRECTION_STEP 𝑢𝑛+1, 𝑣𝑛+1 (2.35)
TRACERS_CORRECTION_STEP

CYCLE_TRACER 𝜃𝑛+1

SHAP_FILT_APPLY_TS or ZONAL_FILT_APPLY_TS
CONVECTIVE_ADJUSTMENT
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2.8 Staggered baroclinic time-stepping
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Figure 2.6: A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the algorithm but with
staggering in time of thermodynamic variables with the flow. Explicit momentum tendencies are evaluated at time
level 𝑛 − 1/2 as a function of the flow field at that time level 𝑛 − 1/2. The explicit tendency from the previous time
level, 𝑛 − 3/2, is used to extrapolate tendencies to 𝑛 (dashed arrow). The hydrostatic pressure/geo-potential 𝜑ℎ𝑦𝑑
is evaluated directly at time level 𝑛 (vertical arrows) and used with the extrapolated tendencies to step forward the
flow variables from 𝑛− 1/2 to 𝑛+ 1/2 (solid arc-arrow). The implicit-in-time operator ℒu,v (vertical arrows) is then
applied to the previous estimation of the the flow field (* -variables) and yields to the two velocity components 𝑢, 𝑣 at
time level 𝑛 + 1/2. These are then used to calculate the advection term (dashed arc-arrow) of the thermo-dynamics
tendencies at time step 𝑛. The extrapolated thermodynamics tendency, from time level 𝑛− 1 and 𝑛 to 𝑛+ 1/2, allows
thermodynamic variables to be stably integrated forward-in-time (solid arc-arrow) up to time level 𝑛+ 1.

For well-stratified problems, internal gravity waves may be the limiting process for determining a stable time-step. In
the circumstance, it is more efficient to stagger in time the thermodynamic variables with the flow variables. Figure
2.6 illustrates the staggering and algorithm. The key difference between this and Figure 2.5 is that the thermodynamic
variables are solved after the dynamics, using the recently updated flow field. This essentially allows the gravity wave
terms to leap-frog in time giving second order accuracy and more stability.

The essential change in the staggered algorithm is that the thermodynamics solver is delayed from half a time step,
allowing the use of the most recent velocities to compute the advection terms. Once the thermodynamics fields are
updated, the hydrostatic pressure is computed to step forward the dynamics. Note that the pressure gradient must also
be taken out of the Adams-Bashforth extrapolation. Also, retaining the integer time-levels, 𝑛 and 𝑛 + 1, does not
give a user the sense of where variables are located in time. Instead, we re-write the entire algorithm, (2.24) to (2.35),
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annotating the position in time of variables appropriately:

𝜑𝑛ℎ𝑦𝑑 =

∫︁
𝑏(𝜃𝑛, 𝑆𝑛)𝑑𝑟 (2.36)

G⃗
𝑛−1/2
v⃗ = G⃗v⃗(v⃗𝑛−1/2) (2.37)

G⃗
(𝑛)
v⃗ = (3/2 + 𝜖𝐴𝐵)G⃗

𝑛−1/2
v⃗ − (1/2 + 𝜖𝐴𝐵)G⃗

𝑛−3/2
v⃗

(2.38)

v⃗* = v⃗𝑛−1/2 + ∆𝑡
(︁
G⃗

(𝑛)
v⃗ −∇𝜑𝑛ℎ𝑦𝑑

)︁
(2.39)

v⃗** = ℒ−1
v⃗ (v⃗*) (2.40)

𝜂* = 𝜖𝑓𝑠

(︁
𝜂𝑛−1/2 + ∆𝑡(𝒫 − ℰ)𝑛

)︁
− ∆𝑡∇ ·𝐻̂⃗︂v** (2.41)

∇ · 𝑔𝐻∇𝜂𝑛+1/2 − 𝜖𝑓𝑠𝜂
𝑛+1/2

∆𝑡2
= − 𝜂*

∆𝑡2
(2.42)

v⃗𝑛+1/2 = v⃗** − ∆𝑡𝑔∇𝜂𝑛+1/2 (2.43)

𝐺𝑛
𝜃,𝑆 = 𝐺𝜃,𝑆(𝑢𝑛+1/2, 𝜃𝑛, 𝑆𝑛) (2.44)

𝐺
(𝑛+1/2)
𝜃,𝑆 = (3/2 + 𝜖𝐴𝐵)𝐺𝑛

𝜃,𝑆 − (1/2 + 𝜖𝐴𝐵)𝐺𝑛−1
𝜃,𝑆

(2.45)

(𝜃*, 𝑆*) = (𝜃𝑛, 𝑆𝑛) + ∆𝑡𝐺
(𝑛+1/2)
𝜃,𝑆

(2.46)

(𝜃𝑛+1, 𝑆𝑛+1) = ℒ−1
𝜃,𝑆(𝜃*, 𝑆*) (2.47)

The corresponding calling tree is given below. The staggered algorithm is activated with the run-time flag stagger-
TimeStep =.TRUE. in parameter file data, namelist PARM01.

Staggered Adams-Bashforth calling tree

FORWARD_STEP
EXTERNAL_FIELDS_LOAD
DO_ATMOSPHERIC_PHYS
DO_OCEANIC_PHYS

DYNAMICS
CALC_PHI_HYD 𝜑𝑛ℎ𝑦𝑑 (2.36)

MOM_FLUXFORM or MOM_VECINV 𝐺
𝑛−1/2
v⃗ (2.37)

TIMESTEP v⃗* (2.38), (2.39)
IMPLDIFF v⃗** (2.40)

UPDATE_R_STAR or UPDATE_SURF_DR (NonLin-FS only)
SOLVE_FOR_PRESSURE

CALC_DIV_GHAT 𝜂* (2.41)
CG2D 𝜂𝑛+1/2 (2.42)

MOMENTUM_CORRECTION_STEP
CALC_GRAD_PHI_SURF ∇𝜂𝑛+1/2

CORRECTION_STEP 𝑢𝑛+1/2, 𝑣𝑛+1/2 (2.43)
THERMODYNAMICS

CALC_GT
GAD_CALC_RHS 𝐺𝑛

𝜃 = 𝐺𝜃(𝑢, 𝜃𝑛) (2.44)
EXTERNAL_FORCING 𝐺𝑛

𝜃 = 𝐺𝑛
𝜃 + 𝒬

ADAMS_BASHFORTH2 𝐺
(𝑛+1/2)
𝜃 (2.45)
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TIMESTEP_TRACER 𝜃* (2.46)
IMPLDIFF 𝜃(𝑛+1) (2.47)

TRACERS_CORRECTION_STEP
CYCLE_TRACER 𝜃𝑛+1

SHAP_FILT_APPLY_TS or ZONAL_FILT_APPLY_TS
CONVECTIVE_ADJUSTMENT

The only difficulty with this approach is apparent in equation (2.44) and illustrated by the dotted arrow connecting
𝑢, 𝑣𝑛+1/2 with 𝐺𝑛

𝜃 . The flow used to advect tracers around is not naturally located in time. This could be avoided by
applying the Adams-Bashforth extrapolation to the tracer field itself and advecting that around but this approach is not
yet available. We’re not aware of any detrimental effect of this feature. The difficulty lies mainly in interpretation of
what time-level variables and terms correspond to.

2.9 Non-hydrostatic formulation

The non-hydrostatic formulation re-introduces the full vertical momentum equation and requires the solution of a 3-D
elliptic equations for non-hydrostatic pressure perturbation. We still integrate vertically for the hydrostatic pressure
and solve a 2-D elliptic equation for the surface pressure/elevation for this reduces the amount of work needed to solve
for the non-hydrostatic pressure.

The momentum equations are discretized in time as follows:

1

∆𝑡
𝑢𝑛+1 + 𝑔𝜕𝑥𝜂

𝑛+1 + 𝜕𝑥𝜑
𝑛+1
𝑛ℎ =

1

∆𝑡
𝑢𝑛 +𝐺(𝑛+1/2)

𝑢 (2.48)

1

∆𝑡
𝑣𝑛+1 + 𝑔𝜕𝑦𝜂

𝑛+1 + 𝜕𝑦𝜑
𝑛+1
𝑛ℎ =

1

∆𝑡
𝑣𝑛 +𝐺(𝑛+1/2)

𝑣 (2.49)

1

∆𝑡
𝑤𝑛+1 + 𝜕𝑟𝜑

𝑛+1
𝑛ℎ =

1

∆𝑡
𝑤𝑛 +𝐺(𝑛+1/2)

𝑤 (2.50)

which must satisfy the discrete-in-time depth integrated continuity, equation (2.11) and the local continuity equation

𝜕𝑥𝑢
𝑛+1 + 𝜕𝑦𝑣

𝑛+1 + 𝜕𝑟𝑤
𝑛+1 = 0 (2.51)

As before, the explicit predictions for momentum are consolidated as:

𝑢* = 𝑢𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑢

𝑣* = 𝑣𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑣

𝑤* = 𝑤𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑤

but this time we introduce an intermediate step by splitting the tendency of the flow as follows:

𝑢𝑛+1 = 𝑢** − ∆𝑡𝜕𝑥𝜑
𝑛+1
𝑛ℎ 𝑢** = 𝑢* − ∆𝑡𝑔𝜕𝑥𝜂

𝑛+1

𝑣𝑛+1 = 𝑣** − ∆𝑡𝜕𝑦𝜑
𝑛+1
𝑛ℎ 𝑣** = 𝑣* − ∆𝑡𝑔𝜕𝑦𝜂

𝑛+1

Substituting into the depth integrated continuity (equation (2.11)) gives

𝜕𝑥𝐻𝜕𝑥

(︁
𝑔𝜂𝑛+1 + ̂︀𝜑𝑛+1

𝑛ℎ

)︁
+ 𝜕𝑦𝐻𝜕𝑦

(︁
𝑔𝜂𝑛+1 + ̂︀𝜑𝑛+1

𝑛ℎ

)︁
− 𝜖𝑓𝑠𝜂

𝑛+1

∆𝑡2
= − 𝜂*

∆𝑡2
(2.52)

which is approximated by equation (2.15) on the basis that i) 𝜑𝑛+1
𝑛ℎ is not yet known and ii) ∇̂︀𝜑𝑛ℎ << 𝑔∇𝜂. If (2.15)

is solved accurately then the implication is that ̂︀𝜑𝑛ℎ ≈ 0 so that the non-hydrostatic pressure field does not drive
barotropic motion.
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The flow must satisfy non-divergence (equation (2.51)) locally, as well as depth integrated, and this constraint is used
to form a 3-D elliptic equations for 𝜑𝑛+1

𝑛ℎ :

𝜕𝑥𝑥𝜑
𝑛+1
𝑛ℎ + 𝜕𝑦𝑦𝜑

𝑛+1
𝑛ℎ + 𝜕𝑟𝑟𝜑

𝑛+1
𝑛ℎ = 𝜕𝑥𝑢

** + 𝜕𝑦𝑣
** + 𝜕𝑟𝑤

* (2.53)

The entire algorithm can be summarized as the sequential solution of the following equations:

𝑢* = 𝑢𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑢 (2.54)

𝑣* = 𝑣𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑣 (2.55)

𝑤* = 𝑤𝑛 + ∆𝑡𝐺(𝑛+1/2)
𝑤 (2.56)

𝜂* = 𝜖𝑓𝑠 (𝜂𝑛 + ∆𝑡(𝒫 − ℰ)) − ∆𝑡
(︁
𝜕𝑥𝐻̂︁𝑢* + 𝜕𝑦𝐻 ̂︀𝑣*)︁ (2.57)

𝜕𝑥𝑔𝐻𝜕𝑥𝜂
𝑛+1 + 𝜕𝑦𝑔𝐻𝜕𝑦𝜂

𝑛+1 − 𝜖𝑓𝑠𝜂
𝑛+1

∆𝑡2
= − 𝜂*

∆𝑡2
(2.58)

𝑢** = 𝑢* − ∆𝑡𝑔𝜕𝑥𝜂
𝑛+1 (2.59)

𝑣** = 𝑣* − ∆𝑡𝑔𝜕𝑦𝜂
𝑛+1 (2.60)

𝜕𝑥𝑥𝜑
𝑛+1
𝑛ℎ + 𝜕𝑦𝑦𝜑

𝑛+1
𝑛ℎ + 𝜕𝑟𝑟𝜑

𝑛+1
𝑛ℎ = 𝜕𝑥𝑢

** + 𝜕𝑦𝑣
** + 𝜕𝑟𝑤

* (2.61)

𝑢𝑛+1 = 𝑢** − ∆𝑡𝜕𝑥𝜑
𝑛+1
𝑛ℎ (2.62)

𝑣𝑛+1 = 𝑣** − ∆𝑡𝜕𝑦𝜑
𝑛+1
𝑛ℎ (2.63)

𝜕𝑟𝑤
𝑛+1 = −𝜕𝑥𝑢𝑛+1 − 𝜕𝑦𝑣

𝑛+1 (2.64)

where the last equation is solved by vertically integrating for 𝑤𝑛+1.

2.10 Variants on the Free Surface

We now describe the various formulations of the free-surface that include non-linear forms, implicit in time using
Crank-Nicholson, explicit and [one day] split-explicit. First, we’ll reiterate the underlying algorithm but this time using
the notation consistent with the more general vertical coordinate 𝑟. The elliptic equation for free-surface coordinate
(units of 𝑟), corresponding to (2.11), and assuming no non-hydrostatic effects (𝜖𝑛ℎ = 0) is:

𝜖𝑓𝑠𝜂
𝑛+1 −∇ℎ · ∆𝑡2(𝑅𝑜 −𝑅𝑓𝑖𝑥𝑒𝑑)∇ℎ𝑏𝑠𝜂

𝑛+1 = 𝜂* (2.65)

where

𝜂* = 𝜖𝑓𝑠 𝜂
𝑛 − ∆𝑡∇ℎ ·

∫︁ 𝑅𝑜

𝑅𝑓𝑖𝑥𝑒𝑑

v⃗*𝑑𝑟 + 𝜖𝑓𝑤∆𝑡(𝒫 − ℰ)𝑛 (2.66)

S/R SOLVE_FOR_PRESSURE

𝑢* : gU ( DYNVARS.h )
𝑣* : gV ( DYNVARS.h )
𝜂* : cg2d_b ( SOLVE_FOR_PRESSURE.h )
𝜂𝑛+1 : etaN ( DYNVARS.h )
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Once 𝜂𝑛+1 has been found, substituting into (2.2), (2.3) yields v⃗𝑛+1 if the model is hydrostatic (𝜖𝑛ℎ = 0):

v⃗𝑛+1 = v⃗* − ∆𝑡∇ℎ𝑏𝑠𝜂
𝑛+1

This is known as the correction step. However, when the model is non-hydrostatic (𝜖𝑛ℎ = 1) we need an additional
step and an additional equation for 𝜑′𝑛ℎ. This is obtained by substituting (2.48), (2.49) and (2.50) into continuity:

[∇2
ℎ + 𝜕𝑟𝑟]𝜑′𝑛ℎ

𝑛+1
=

1

∆𝑡
∇ℎ · v⃗** + 𝜕𝑟 𝑟̇

* (2.67)

where

v⃗** = v⃗* − ∆𝑡∇ℎ𝑏𝑠𝜂
𝑛+1

Note that 𝜂𝑛+1 is also used to update the second RHS term 𝜕𝑟 𝑟̇
* since the vertical velocity at the surface (𝑟̇𝑠𝑢𝑟𝑓 ) is

evaluated as (𝜂𝑛+1 − 𝜂𝑛)/∆𝑡.

Finally, the horizontal velocities at the new time level are found by:

v⃗𝑛+1 = v⃗** − 𝜖𝑛ℎ∆𝑡∇ℎ𝜑
′
𝑛ℎ

𝑛+1 (2.68)

and the vertical velocity is found by integrating the continuity equation vertically. Note that, for the convenience of
the restart procedure, the vertical integration of the continuity equation has been moved to the beginning of the time
step (instead of at the end), without any consequence on the solution.

S/R CORRECTION_STEP

𝜂𝑛+1 : etaN ( DYNVARS.h )
𝜑𝑛+1
𝑛ℎ : phi_nh ( NH_VARS.h )
𝑢* : gU ( DYNVARS.h )
𝑣* : gV ( DYNVARS.h )
𝑢𝑛+1 : uVel ( DYNVARS.h )
𝑣𝑛+1 : vVel ( DYNVARS.h )

Regarding the implementation of the surface pressure solver, all computation are done within the routine
SOLVE_FOR_PRESSURE and its dependent calls. The standard method to solve the 2D elliptic problem (2.65)
uses the conjugate gradient method (routine CG2D); the solver matrix and conjugate gradient operator are only func-
tion of the discretized domain and are therefore evaluated separately, before the time iteration loop, within INI_CG2D.
The computation of the RHS 𝜂* is partly done in CALC_DIV_GHAT and in SOLVE_FOR_PRESSURE.

The same method is applied for the non hydrostatic part, using a conjugate gradient 3D solver (CG3D) that is initialized
in INI_CG3D. The RHS terms of 2D and 3D problems are computed together at the same point in the code.

2.10.1 Crank-Nicolson barotropic time stepping

The full implicit time stepping described previously is unconditionally stable but damps the fast gravity waves, result-
ing in a loss of potential energy. The modification presented now allows one to combine an implicit part (𝛾, 𝛽) and
an explicit part (1 − 𝛾, 1 − 𝛽) for the surface pressure gradient (𝛾) and for the barotropic flow divergence (𝛽). For
instance, 𝛾 = 𝛽 = 1 is the previous fully implicit scheme; 𝛾 = 𝛽 = 1/2 is the non damping (energy conserving),
unconditionally stable, Crank-Nicolson scheme; (𝛾, 𝛽) = (1, 0) or = (0, 1) corresponds to the forward - backward
scheme that conserves energy but is only stable for small time steps. In the code, 𝛾, 𝛽 are defined as parameters, re-
spectively implicSurfPress, implicDiv2DFlow. They are read from the main parameter file data (namelist PARM01)
and are set by default to 1,1.
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Equations (2.12) – (2.17) are modified as follows:

v⃗𝑛+1

∆𝑡
+ ∇ℎ𝑏𝑠[𝛾𝜂

𝑛+1 + (1 − 𝛾)𝜂𝑛] + 𝜖𝑛ℎ∇ℎ𝜑
′
𝑛ℎ

𝑛+1
=

v⃗𝑛

∆𝑡
+ G⃗

(𝑛+1/2)
v⃗ + ∇ℎ𝜑

′
ℎ𝑦𝑑

(𝑛+1/2)

𝜖𝑓𝑠
𝜂𝑛+1 − 𝜂𝑛

∆𝑡
+ ∇ℎ ·

∫︁ 𝑅𝑜

𝑅𝑓𝑖𝑥𝑒𝑑

[𝛽v⃗𝑛+1 + (1 − 𝛽)v⃗𝑛]𝑑𝑟 = 𝜖𝑓𝑤(𝒫 − ℰ) (2.69)

We set

v⃗* = v⃗𝑛 + ∆𝑡G⃗
(𝑛+1/2)
v⃗ + (𝛾 − 1)∆𝑡∇ℎ𝑏𝑠𝜂

𝑛 + ∆𝑡∇ℎ𝜑
′
ℎ𝑦𝑑

(𝑛+1/2)

𝜂* = 𝜖𝑓𝑠𝜂
𝑛 + 𝜖𝑓𝑤∆𝑡(𝒫 − ℰ) − ∆𝑡∇ℎ ·

∫︁ 𝑅𝑜

𝑅𝑓𝑖𝑥𝑒𝑑

[𝛽v⃗* + (1 − 𝛽)v⃗𝑛]𝑑𝑟

In the hydrostatic case 𝜖𝑛ℎ = 0, allowing us to find 𝜂𝑛+1, thus:

𝜖𝑓𝑠𝜂
𝑛+1 −∇ℎ · 𝛾𝛽∆𝑡2𝑏𝑠(𝑅𝑜 −𝑅𝑓𝑖𝑥𝑒𝑑)∇ℎ𝜂

𝑛+1 = 𝜂*

and then to compute (CORRECTION_STEP):

v⃗𝑛+1 = v⃗* − 𝛾∆𝑡∇ℎ𝑏𝑠𝜂
𝑛+1

Notes:

1. The RHS term of equation (2.69) corresponds the contribution of fresh water flux ({mathcal{P-E}}) to the free-
surface variations (𝜖𝑓𝑤 = 1, useRealFreshWaterFlux =.TRUE. in parameter file data). In order to remain
consistent with the tracer equation, specially in the non-linear free-surface formulation, this term is also affected
by the Crank-Nicolson time stepping. The RHS reads: 𝜖𝑓𝑤(𝛽(𝒫 − ℰ)𝑛+1/2 + (1 − 𝛽)(𝒫 − ℰ)𝑛−1/2)

2. The stability criteria with Crank-Nicolson time stepping for the pure linear gravity wave problem in cartesian
coordinates is:

• 𝛾 + 𝛽 < 1 : unstable

• 𝛾 ≥ 1/2 and 𝛽 ≥ 1/2 : stable

• 𝛾 + 𝛽 ≥ 1 : stable if 𝑐2𝑚𝑎𝑥(𝛾 − 1/2)(𝛽 − 1/2) + 1 ≥ 0 with 𝑐𝑚𝑎𝑥 = 2∆𝑡
√
𝑔𝐻
√︁

1
Δ𝑥2 + 1

Δ𝑦2

3. A similar mixed forward/backward time-stepping is also available for the non-hydrostatic algorithm, with a
fraction 𝛾𝑛ℎ (0 < 𝛾𝑛ℎ ≤ 1) of the non-hydrostatic pressure gradient being evaluated at time step 𝑛+1 (backward
in time) and the remaining part (1 − 𝛾𝑛ℎ) being evaluated at time step 𝑛 (forward in time). The run-time
parameter implicitNHPress corresponding to the implicit fraction 𝛾𝑛ℎ of the non-hydrostatic pressure is set by
default to the implicit fraction 𝛾 of surface pressure (implicSurfPress), but can also be specified independently
(in main parameter file data, namelist PARM01).

2.10.2 Non-linear free-surface

Options have been added to the model that concern the free surface formulation.

2.10.2.1 Pressure/geo-potential and free surface

For the atmosphere, since 𝜑 = 𝜑𝑡𝑜𝑝𝑜 −
∫︀ 𝑝

𝑝𝑠
𝛼𝑑𝑝, subtracting the reference state defined in section Section 1.4.1.2 :

𝜑𝑜 = 𝜑𝑡𝑜𝑝𝑜 −
∫︁ 𝑝

𝑝𝑜

𝛼𝑜𝑑𝑝 with 𝜑𝑜(𝑝𝑜) = 𝜑𝑡𝑜𝑝𝑜
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we get:

𝜑′ = 𝜑− 𝜑𝑜 =

∫︁ 𝑝𝑠

𝑝

𝛼𝑑𝑝−
∫︁ 𝑝𝑜

𝑝

𝛼𝑜𝑑𝑝

For the ocean, the reference state is simpler since 𝜌𝑐 does not dependent on 𝑧 (𝑏𝑜 = 𝑔) and the surface reference
position is uniformly 𝑧 = 0 (𝑅𝑜 = 0), and the same subtraction leads to a similar relation. For both fluids, using the
isomorphic notations, we can write:

𝜑′ =

∫︁ 𝑟𝑠𝑢𝑟𝑓

𝑟

𝑏 𝑑𝑟 −
∫︁ 𝑅𝑜

𝑟

𝑏𝑜𝑑𝑟

and re-write as:

𝜑′ =

∫︁ 𝑟𝑠𝑢𝑟𝑓

𝑅𝑜

𝑏 𝑑𝑟 +

∫︁ 𝑅𝑜

𝑟

(𝑏− 𝑏𝑜)𝑑𝑟 (2.70)

or:

𝜑′ =

∫︁ 𝑟𝑠𝑢𝑟𝑓

𝑅𝑜

𝑏𝑜𝑑𝑟 +

∫︁ 𝑟𝑠𝑢𝑟𝑓

𝑟

(𝑏− 𝑏𝑜)𝑑𝑟 (2.71)

In section Section 1.3.6, following eq. (2.70), the pressure/geo-potential 𝜑′ has been separated into surface (𝜑𝑠), and
hydrostatic anomaly (𝜑′ℎ𝑦𝑑). In this section, the split between 𝜑𝑠 and 𝜑′ℎ𝑦𝑑 is made according to equation (2.71). This
slightly different definition reflects the actual implementation in the code and is valid for both linear and non-linear
free-surface formulation, in both r-coordinate and r*-coordinate.

Because the linear free-surface approximation ignores the tracer content of the fluid parcel between 𝑅𝑜 and 𝑟𝑠𝑢𝑟𝑓 =
𝑅𝑜 + 𝜂, for consistency reasons, this part is also neglected in 𝜑′ℎ𝑦𝑑 :

𝜑′ℎ𝑦𝑑 =

∫︁ 𝑟𝑠𝑢𝑟𝑓

𝑟

(𝑏− 𝑏𝑜)𝑑𝑟 ≃
∫︁ 𝑅𝑜

𝑟

(𝑏− 𝑏𝑜)𝑑𝑟

Note that in this case, the two definitions of 𝜑𝑠 and 𝜑′ℎ𝑦𝑑 from equations (2.70) and (2.71) converge toward the

same (approximated) expressions: 𝜑𝑠 =
∫︀ 𝑟𝑠𝑢𝑟𝑓

𝑅𝑜
𝑏𝑜𝑑𝑟 and 𝜑′ℎ𝑦𝑑 =

∫︀ 𝑅𝑜

𝑟
𝑏′𝑑𝑟. On the contrary, the unapproximated

formulation (see Section 2.10.2.2) retains the full expression: 𝜑′ℎ𝑦𝑑 =
∫︀ 𝑟𝑠𝑢𝑟𝑓

𝑟
(𝑏− 𝑏𝑜)𝑑𝑟 . This is obtained by selecting

nonlinFreeSurf =4 in parameter file data. Regarding the surface potential:

𝜑𝑠 =

∫︁ 𝑅𝑜+𝜂

𝑅𝑜

𝑏𝑜𝑑𝑟 = 𝑏𝑠𝜂 with 𝑏𝑠 =
1

𝜂

∫︁ 𝑅𝑜+𝜂

𝑅𝑜

𝑏𝑜𝑑𝑟

𝑏𝑠 ≃ 𝑏𝑜(𝑅𝑜) is an excellent approximation (better than the usual numerical truncation, since generally |𝜂| is smaller
than the vertical grid increment).

For the ocean, 𝜑𝑠 = 𝑔𝜂 and 𝑏𝑠 = 𝑔 is uniform. For the atmosphere, however, because of topographic effects, the
reference surface pressure 𝑅𝑜 = 𝑝𝑜 has large spatial variations that are responsible for significant 𝑏𝑠 variations (from
0.8 to 1.2 [𝑚3/𝑘𝑔]). For this reason, when uniformLin_PhiSurf =.FALSE. (parameter file data, namelist PARAM01)
a non-uniform linear coefficient 𝑏𝑠 is used and computed (INI_LINEAR_PHISURF) according to the reference surface
pressure 𝑝𝑜: 𝑏𝑠 = 𝑏𝑜(𝑅𝑜) = 𝑐𝑝𝜅(𝑝𝑜/𝑃

𝑜
𝑆𝐿)(𝜅−1)𝜃𝑟𝑒𝑓 (𝑝𝑜), with 𝑃 𝑜

𝑆𝐿 the mean sea-level pressure.

2.10.2.2 Free surface effect on column total thickness (Non-linear free-surface)

The total thickness of the fluid column is 𝑟𝑠𝑢𝑟𝑓 − 𝑅𝑓𝑖𝑥𝑒𝑑 = 𝜂 + 𝑅𝑜 − 𝑅𝑓𝑖𝑥𝑒𝑑. In most applications, the free surface
displacements are small compared to the total thickness 𝜂 ≪ 𝐻𝑜 = 𝑅𝑜 − 𝑅𝑓𝑖𝑥𝑒𝑑. In the previous sections and in
older version of the model, the linearized free-surface approximation was made, assuming 𝑟𝑠𝑢𝑟𝑓 − 𝑅𝑓𝑖𝑥𝑒𝑑 ≃ 𝐻𝑜

when computing horizontal transports, either in the continuity equation or in tracer and momentum advection terms.
This approximation is dropped when using the non-linear free-surface formulation and the total thickness, including
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the time varying part 𝜂, is considered when computing horizontal transports. Implications for the barotropic part are
presented hereafter. In section Section 2.10.2.3 consequences for tracer conservation is briefly discussed (more details
can be found in Campin et al. (2004) [CAHM04]) ; the general time-stepping is presented in section Section 2.10.2.4
with some limitations regarding the vertical resolution in section Section 2.10.2.5.

In the non-linear formulation, the continuous form of the model equations remains unchanged, except for the 2D
continuity equation (2.11) which is now integrated from 𝑅𝑓𝑖𝑥𝑒𝑑(𝑥, 𝑦) up to 𝑟𝑠𝑢𝑟𝑓 = 𝑅𝑜 + 𝜂 :

𝜖𝑓𝑠𝜕𝑡𝜂 = 𝑟̇|𝑟=𝑟𝑠𝑢𝑟𝑓
+ 𝜖𝑓𝑤(𝒫 − ℰ) = −∇ℎ ·

∫︁ 𝑅𝑜+𝜂

𝑅𝑓𝑖𝑥𝑒𝑑

v⃗𝑑𝑟 + 𝜖𝑓𝑤(𝒫 − ℰ)

Since 𝜂 has a direct effect on the horizontal velocity (through ∇ℎΦ𝑠𝑢𝑟𝑓 ), this adds a non-linear term to the free surface
equation. Several options for the time discretization of this non-linear part can be considered, as detailed below.

If the column thickness is evaluated at time step 𝑛, and with implicit treatment of the surface potential gradient,
equations (2.65) and (2.66) become:

𝜖𝑓𝑠𝜂
𝑛+1 −∇ℎ · ∆𝑡2(𝜂𝑛 +𝑅𝑜 −𝑅𝑓𝑖𝑥𝑒𝑑)∇ℎ𝑏𝑠𝜂

𝑛+1 = 𝜂*

where

𝜂* = 𝜖𝑓𝑠 𝜂
𝑛 − ∆𝑡∇ℎ ·

∫︁ 𝑅𝑜+𝜂𝑛

𝑅𝑓𝑖𝑥𝑒𝑑

v⃗*𝑑𝑟 + 𝜖𝑓𝑤∆𝑡(𝒫 − ℰ)𝑛

This method requires us to update the solver matrix at each time step.

Alternatively, the non-linear contribution can be evaluated fully explicitly:

𝜖𝑓𝑠𝜂
𝑛+1 −∇ℎ · ∆𝑡2(𝑅𝑜 −𝑅𝑓𝑖𝑥𝑒𝑑)∇ℎ𝑏𝑠𝜂

𝑛+1 = 𝜂* + ∇ℎ · ∆𝑡2(𝜂𝑛)∇ℎ𝑏𝑠𝜂
𝑛

This formulation allows one to keep the initial solver matrix unchanged though throughout the integration, since the
non-linear free surface only affects the RHS.

Finally, another option is a “linearized” formulation where the total column thickness appears only in the integral term
of the RHS (2.66) but not directly in the equation (2.65).

Those different options (see Table 2.1) have been tested and show little differences. However, we recommend the use
of the most precise method (nonlinFreeSurf =4) since the computation cost involved in the solver matrix update is
negligible.

Table 2.1: Non-linear free-surface flags
Parameter Value Description
nonlinFreeSurf -1 linear free-surface, restart from a pickup file produced

with #undef EXACT_CONSERV code
0 linear free-surface (= default)
4 full non-linear free-surface
3 same as 4 but neglecting

∫︀ 𝑅𝑜+𝜂

𝑅𝑜
𝑏′𝑑𝑟 in Φ′

ℎ𝑦𝑑

2 same as 3 but do not update cg2d solver matrix
1 same as 2 but treat momentum as in linear free-surface

select_rStar 0 do not use 𝑟* vertical coordinate (= default)
2 use 𝑟* vertical coordinate
1 same as 2 but without the contribution of the slope of

the coordinate in ∇Φ
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2.10.2.3 Tracer conservation with non-linear free-surface

To ensure global tracer conservation (i.e., the total amount) as well as local conservation, the change in the surface
level thickness must be consistent with the way the continuity equation is integrated, both in the barotropic part (to
find 𝜂) and baroclinic part (to find 𝑤 = 𝑟̇).

To illustrate this, consider the shallow water model, with a source of fresh water (𝒫):

𝜕𝑡ℎ+ ∇ · ℎv⃗ = 𝒫

where ℎ is the total thickness of the water column. To conserve the tracer 𝜃 we have to discretize:

𝜕𝑡(ℎ𝜃) + ∇ · (ℎ𝜃v⃗) = 𝒫𝜃rain

Using the implicit (non-linear) free surface described above (Section 2.4) we have:

ℎ𝑛+1 = ℎ𝑛 − ∆𝑡∇ · (ℎ𝑛 v⃗𝑛+1) + ∆𝑡𝒫

The discretized form of the tracer equation must adopt the same “form” in the computation of tracer fluxes, that is, the
same value of ℎ, as used in the continuity equation:

ℎ𝑛+1 𝜃𝑛+1 = ℎ𝑛 𝜃𝑛 − ∆𝑡∇ · (ℎ𝑛 𝜃𝑛 v⃗𝑛+1) + ∆𝑡𝒫𝜃𝑟𝑎𝑖𝑛

The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth make the conservation sightly tricky.
The current implementation with the Adams-Bashforth time-stepping provides an exact local conservation and pre-
vents any drift in the global tracer content (Campin et al. (2004) [CAHM04]). Compared to the linear free-surface
method, an additional step is required: the variation of the water column thickness (from ℎ𝑛 to ℎ𝑛+1) is not incorpo-
rated directly into the tracer equation. Instead, the model uses the 𝐺𝜃 terms (first step) as in the linear free surface
formulation (with the “surface correction” turned “on”, see tracer section):

𝐺𝑛
𝜃 =

(︁
−∇ · (ℎ𝑛 𝜃𝑛 v⃗𝑛+1) − 𝑟̇𝑛+1

𝑠𝑢𝑟𝑓𝜃
𝑛
)︁
/ℎ𝑛

Then, in a second step, the thickness variation (expansion/reduction) is taken into account:

𝜃𝑛+1 = 𝜃𝑛 + ∆𝑡
ℎ𝑛

ℎ𝑛+1

(︁
𝐺

(𝑛+1/2)
𝜃 + 𝒫(𝜃rain − 𝜃𝑛)/ℎ𝑛

)︁
Note that with a simple forward time step (no Adams-Bashforth), these two formulations are equivalent, since (ℎ𝑛+1−
ℎ𝑛)/∆𝑡 = 𝒫 −∇ · (ℎ𝑛 v⃗𝑛+1) = 𝑃 + 𝑟̇𝑛+1

𝑠𝑢𝑟𝑓

2.10.2.4 Time stepping implementation of the non-linear free-surface

The grid cell thickness was hold constant with the linear free-surface; with the non-linear free-surface, it is now
varying in time, at least at the surface level. This implies some modifications of the general algorithm described earlier
in sections Section 2.7 and Section 2.8.

A simplified version of the staggered in time, non-linear free-surface algorithm is detailed hereafter, and can be
compared to the equivalent linear free-surface case (eq. (2.37) to (2.47)) and can also be easily transposed to the
synchronous time-stepping case. Among the simplifications, salinity equation, implicit operator and detailed ellip-
tic equation are omitted. Surface forcing is explicitly written as fluxes of temperature, fresh water and momentum,
𝒬𝑛+1/2,𝒫𝑛+1/2,ℱ𝑛

v respectively. ℎ𝑛 and 𝑑ℎ𝑛 are the column and grid box thickness in r-coordinate.

𝜑𝑛ℎ𝑦𝑑 =

∫︁
𝑏(𝜃𝑛, 𝑆𝑛, 𝑟)𝑑𝑟 (2.72)
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G⃗
𝑛−1/2
v⃗ = G⃗v⃗(𝑑ℎ𝑛−1, v⃗𝑛−1/2) ; G⃗

(𝑛)
v⃗ =

3

2
G⃗

𝑛−1/2
v⃗ − 1

2
G⃗

𝑛−3/2
v⃗

(2.73)

v⃗* = v⃗𝑛−1/2 + ∆𝑡
𝑑ℎ𝑛−1

𝑑ℎ𝑛

(︁
G⃗

(𝑛)
v⃗ + 𝐹𝑛

v⃗ /𝑑ℎ
𝑛−1
)︁
− ∆𝑡∇𝜑𝑛ℎ𝑦𝑑 (2.74)

−→ 𝑢𝑝𝑑𝑎𝑡𝑒 𝑚𝑜𝑑𝑒𝑙 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 : hFac(𝑑ℎ𝑛)

𝜂𝑛+1/2= 𝜂𝑛−1/2 + ∆𝑡𝑃𝑛+1/2 − ∆𝑡∇ ·
∫︁

v⃗𝑛+1/2𝑑ℎ𝑛

= 𝜂𝑛−1/2 + ∆𝑡𝑃𝑛+1/2 − ∆𝑡∇ ·
∫︁(︁

v⃗* − 𝑔∆𝑡∇𝜂𝑛+1/2
)︁
𝑑ℎ𝑛

(2.75)

v⃗𝑛+1/2= v⃗* − 𝑔∆𝑡∇𝜂𝑛+1/2 (2.76)

ℎ𝑛+1 = ℎ𝑛 + ∆𝑡𝑃𝑛+1/2 − ∆𝑡∇ ·
∫︁

v⃗𝑛+1/2𝑑ℎ𝑛 (2.77)

𝐺𝑛
𝜃 = 𝐺𝜃(𝑑ℎ𝑛, 𝑢𝑛+1/2, 𝜃𝑛) ; 𝐺

(𝑛+1/2)
𝜃 =

3

2
𝐺𝑛

𝜃 − 1

2
𝐺𝑛−1

𝜃
(2.78)

𝜃𝑛+1 = 𝜃𝑛 + ∆𝑡
𝑑ℎ𝑛

𝑑ℎ𝑛+1

(︁
𝐺

(𝑛+1/2)
𝜃 + (𝑃𝑛+1/2(𝜃rain − 𝜃𝑛) + 𝒬𝑛+1/2)/𝑑ℎ𝑛

)︁
Two steps have been added to linear free-surface algorithm (eq. (2.37) to (2.47)): Firstly, the model “geometry” (here
the hFacC,W,S) is updated just before entering SOLVE_FOR_PRESSURE, using the current 𝑑ℎ𝑛 field. Secondly,
the vertically integrated continuity equation (2.77) has been added (exactConserv =.TRUE., in parameter file data,
namelist PARM01) just before computing the vertical velocity, in subroutine INTEGR_CONTINUITY. Although this
equation might appear redundant with (2.75), the integrated column thickness ℎ𝑛+1 will be different from 𝜂𝑛+1/2 +
𝐻 in the following cases:

• when Crank-Nicolson time-stepping is used (see Section 2.10.1).

• when filters are applied to the flow field, after (2.76), and alter the divergence of the flow.

• when the solver does not iterate until convergence; for example, because a too large residual target was set
(cg2dTargetResidual, parameter file data, namelist PARM02).

In this staggered time-stepping algorithm, the momentum tendencies are computed using 𝑑ℎ𝑛−1 geometry factors
(2.73) and then rescaled in subroutine TIMESTEP, (2.74), similarly to tracer tendencies (see Section 2.10.2.3). The
tracers are stepped forward later, using the recently updated flow field v𝑛+1/2 and the corresponding model geometry
𝑑ℎ𝑛 to compute the tendencies (2.78); then the tendencies are rescaled by 𝑑ℎ𝑛/𝑑ℎ𝑛+1 to derive the new tracers values
(𝜃, 𝑆)𝑛+1 ((2.79), in subroutines CALC_GT, CALC_GS).

Note that the fresh-water input is added in a consistent way in the continuity equation and in the tracer equation, taking
into account the fresh-water temperature 𝜃rain.

Regarding the restart procedure, two 2D fields ℎ𝑛−1 and (ℎ𝑛 − ℎ𝑛−1)/∆𝑡 in addition to the standard state variables
and tendencies (𝜂𝑛−1/2, v𝑛−1/2, 𝜃𝑛, 𝑆𝑛, G𝑛−3/2

v , 𝐺𝑛−1
𝜃,𝑆 ) are stored in a “pickup” file. The model restarts reading

this pickup file, then updates the model geometry according to ℎ𝑛−1, and compute ℎ𝑛 and the vertical velocity before
starting the main calling sequence (eq. (2.72) to (2.79), FORWARD_STEP).

S/R INTEGR_CONTINUITY

ℎ𝑛+1 −𝐻𝑜 : etaH ( DYNVARS.h )
ℎ𝑛 −𝐻𝑜 : etaHnm1 ( SURFACE.h )
(ℎ𝑛+1 − ℎ𝑛)/∆𝑡 : dEtaHdt ( SURFACE.h )
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2.10.2.5 Non-linear free-surface and vertical resolution

When the amplitude of the free-surface variations becomes as large as the vertical resolution near the surface, the
surface layer thickness can decrease to nearly zero or can even vanish completely. This later possibility has not been
implemented, and a minimum relative thickness is imposed (hFacInf, parameter file data, namelist PARM01) to
prevent numerical instabilities caused by very thin surface level.

A better alternative to the vanishing level problem relies on a different vertical coordinate 𝑟* : The time variation of
the total column thickness becomes part of the 𝑟* coordinate motion, as in a 𝜎𝑧, 𝜎𝑝 model, but the fixed part related
to topography is treated as in a height or pressure coordinate model. A complete description is given in Adcroft and
Campin (2004) [AC04].

The time-stepping implementation of the 𝑟* coordinate is identical to the non-linear free-surface in 𝑟 coordinate, and
differences appear only in the spacial discretization.

2.11 Spatial discretization of the dynamical equations

Spatial discretization is carried out using the finite volume method. This amounts to a grid-point method (namely
second-order centered finite difference) in the fluid interior but allows boundaries to intersect a regular grid allowing
a more accurate representation of the position of the boundary. We treat the horizontal and vertical directions as
separable and differently.

2.11.1 The finite volume method: finite volumes versus finite difference

The finite volume method is used to discretize the equations in space. The expression “finite volume” actually has two
meanings; one is the method of embedded or intersecting boundaries (shaved or lopped cells in our terminology) and
the other is non-linear interpolation methods that can deal with non-smooth solutions such as shocks (i.e. flux limiters
for advection). Both make use of the integral form of the conservation laws to which the weak solution is a solution
on each finite volume of (sub-domain). The weak solution can be constructed out of piece-wise constant elements or
be differentiable. The differentiable equations can not be satisfied by piece-wise constant functions.

As an example, the 1-D constant coefficient advection-diffusion equation:

𝜕𝑡𝜃 + 𝜕𝑥(𝑢𝜃 − 𝜅𝜕𝑥𝜃) = 0

can be discretized by integrating over finite sub-domains, i.e. the lengths ∆𝑥𝑖:

∆𝑥𝜕𝑡𝜃 + 𝛿𝑖(𝐹 ) = 0

is exact if 𝜃(𝑥) is piece-wise constant over the interval ∆𝑥𝑖 or more generally if 𝜃𝑖 is defined as the average over the
interval ∆𝑥𝑖.

The flux, 𝐹𝑖−1/2, must be approximated:

𝐹 = 𝑢𝜃 − 𝜅

∆𝑥𝑐
𝜕𝑖𝜃

and this is where truncation errors can enter the solution. The method for obtaining 𝜃 is unspecified and a wide range
of possibilities exist including centered and upwind interpolation, polynomial fits based on the the volume average
definitions of quantities and non-linear interpolation such as flux-limiters.

Choosing simple centered second-order interpolation and differencing recovers the same ODE’s resulting from finite
differencing for the interior of a fluid. Differences arise at boundaries where a boundary is not positioned on a regular
or smoothly varying grid. This method is used to represent the topography using lopped cell, see Adcroft et al. (1997)
[AHM97]. Subtle difference also appear in more than one dimension away from boundaries. This happens because
each direction is discretized independently in the finite difference method while the integrating over finite volume
implicitly treats all directions simultaneously.
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2.11.2 C grid staggering of variables

The basic algorithm employed for stepping forward the momentum equations is based on retaining non-divergence of
the flow at all times. This is most naturally done if the components of flow are staggered in space in the form of an
Arakawa C grid (Arakawa and Lamb, 1977 [AL77]).

Figure 2.7 shows the components of flow (𝑢,𝑣,𝑤) staggered in space such that the zonal component falls on the
interface between continuity cells in the zonal direction. Similarly for the meridional and vertical directions. The
continuity cell is synonymous with tracer cells (they are one and the same).

u
v

v u

w

w

Figure 2.7: Three dimensional staggering of velocity components. This facilitates the natural discretization of the
continuity and tracer equations.

2.11.3 Grid initialization and data

Initialization of grid data is controlled by subroutine INI_GRID which in calls INI_VERTICAL_GRID to
initialize the vertical grid, and then either of INI_CARTESIAN_GRID, INI_SPHERICAL_POLAR_GRID or
INI_CURVILINEAR_GRID to initialize the horizontal grid for cartesian, spherical-polar or curvilinear coordinates
respectively.

The reciprocals of all grid quantities are pre-calculated and this is done in subroutine INI_MASKS_ETC which is
called later by subroutine INITIALISE_FIXED.

All grid descriptors are global arrays and stored in common blocks in GRID.h and a generally declared as _RS.

2.11.4 Horizontal grid

The model domain is decomposed into tiles and within each tile a quasi-regular grid is used. A tile is the ba-
sic unit of domain decomposition for parallelization but may be used whether parallelized or not; see section
[sec:domain_decomposition] for more details. Although the tiles may be patched together in an unstructured manner
(i.e. irregular or non-tessilating pattern), the interior of tiles is a structured grid of quadrilateral cells. The horizon-
tal coordinate system is orthogonal curvilinear meaning we can not necessarily treat the two horizontal directions as
separable. Instead, each cell in the horizontal grid is described by the length of it’s sides and it’s area.

The grid information is quite general and describes any of the available coordinates systems, cartesian, spherical-
polar or curvilinear. All that is necessary to distinguish between the coordinate systems is to initialize the grid data
(descriptors) appropriately.
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In the following, we refer to the orientation of quantities on the computational grid using geographic terminology
such as points of the compass. This is purely for convenience but should not be confused with the actual geographic
orientation of model quantities.
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Figure 2.8: Staggering of horizontal grid descriptors (lengths and areas). The grid lines indicate the tracer cell bound-
aries and are the reference grid for all panels. a) The area of a tracer cell, 𝐴𝑐, is bordered by the lengths ∆𝑥𝑔 and ∆𝑦𝑔 .
b) The area of a vorticity cell, 𝐴𝜁 , is bordered by the lengths ∆𝑥𝑐 and ∆𝑦𝑐. c) The area of a u cell, 𝐴𝑤, is bordered by
the lengths ∆𝑥𝑣 and ∆𝑦𝑓 . d) The area of a v cell, 𝐴𝑠, is bordered by the lengths ∆𝑥𝑓 and ∆𝑦𝑢.

Figure 2.8 (a) shows the tracer cell (synonymous with the continuity cell). The length of the southern edge, ∆𝑥𝑔 ,
western edge, ∆𝑦𝑔 and surface area, 𝐴𝑐, presented in the vertical are stored in arrays dxG, dyG and rA. The “g” suffix
indicates that the lengths are along the defining grid boundaries. The “c” suffix associates the quantity with the cell
centers. The quantities are staggered in space and the indexing is such that dxG(i,j) is positioned to the south of rA(i,j)
and dyG(i,j) positioned to the west.

Figure 2.8 (b) shows the vorticity cell. The length of the southern edge, ∆𝑥𝑐, western edge, ∆𝑦𝑐 and surface area, 𝐴𝜁 ,
presented in the vertical are stored in arrays dxC, dyC and rAz. The “z” suffix indicates that the lengths are measured
between the cell centers and the “𝜁” suffix associates points with the vorticity points. The quantities are staggered in
space and the indexing is such that dxC(i,j) is positioned to the north of rAz(i,j) and dyC(i,j) positioned to the east.

Figure 2.8 (c) shows the “u” or western (w) cell. The length of the southern edge, ∆𝑥𝑣 , eastern edge, ∆𝑦𝑓 and surface
area, 𝐴𝑤, presented in the vertical are stored in arrays dxV, dyF and rAw. The “v” suffix indicates that the length is
measured between the v-points, the “f” suffix indicates that the length is measured between the (tracer) cell faces and
the “w” suffix associates points with the u-points (w stands for west). The quantities are staggered in space and the
indexing is such that dxV(i,j) is positioned to the south of rAw(i,j) and dyF(i,j) positioned to the east.

Figure 2.8 (d) shows the “v” or southern (s) cell. The length of the northern edge, ∆𝑥𝑓 , western edge, ∆𝑦𝑢 and surface
area, 𝐴𝑠, presented in the vertical are stored in arrays dxF, dyU and rAs. The “u” suffix indicates that the length is
measured between the u-points, the “f” suffix indicates that the length is measured between the (tracer) cell faces and
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the “s” suffix associates points with the v-points (s stands for south). The quantities are staggered in space and the
indexing is such that dxF(i,j) is positioned to the north of rAs(i,j) and dyU(i,j) positioned to the west.

S/R INI_CARTESIAN_GRID , INI_SPHERICAL_POLAR_GRID , INI_CURVILINEAR_GRID

𝐴𝑐, 𝐴𝜁 , 𝐴𝑤, 𝐴𝑠 : rA, rAz, rAw, rAs ( GRID.h )
∆𝑥𝑔,∆𝑦𝑔 : dxG, dyG ( GRID.h )
∆𝑥𝑐,∆𝑦𝑐 : dxC, dyC ( GRID.h )
∆𝑥𝑓 ,∆𝑦𝑓 : dxF, dyF ( GRID.h )
∆𝑥𝑣,∆𝑦𝑢 : dxV, dyU ( GRID.h )

2.11.4.1 Reciprocals of horizontal grid descriptors

Lengths and areas appear in the denominator of expressions as much as in the numerator. For efficiency and portability,
we pre-calculate the reciprocal of the horizontal grid quantities so that in-line divisions can be avoided.

For each grid descriptor (array) there is a reciprocal named using the prefix recip_. This doubles the amount of
storage in GRID.h but they are all only 2-D descriptors.

S/R INI_MASKS_ETC

𝐴−1
𝑐 , 𝐴−1

𝜁 , 𝐴−1
𝑤 , 𝐴−1

𝑠 : recip_rA, recip_rAz, recip_rAw, recip_rAs ( GRID.h )

∆𝑥−1
𝑔 ,∆𝑦−1

𝑔 : recip_dxG, recip_dyG ( GRID.h )
∆𝑥−1

𝑐 ,∆𝑦−1
𝑐 : recip_dxC, recip_dyC ( GRID.h )

∆𝑥−1
𝑓 ,∆𝑦−1

𝑓 : recip_dxF, recip_dyF ( GRID.h )

∆𝑥−1
𝑣 ,∆𝑦−1

𝑢 : recip_dxV, recip_dyU ( GRID.h )

2.11.4.2 Cartesian coordinates

Cartesian coordinates are selected when the logical flag usingCartesianGrid in namelist PARM04 is set to true. The
grid spacing can be set to uniform via scalars dXspacing and dYspacing in namelist PARM04 or to variable resolution
by the vectors DELX and DELY. Units are normally meters. Non-dimensional coordinates can be used by interpreting
the gravitational constant as the Rayleigh number.

2.11.4.3 Spherical-polar coordinates

Spherical coordinates are selected when the logical flag usingSphericalPolarGrid in namelist PARM04 is set to true.
The grid spacing can be set to uniform via scalars dXspacing and dYspacing in namelist PARM04 or to variable
resolution by the vectors DELX and DELY. Units of these namelist variables are alway degrees. The horizontal grid
descriptors are calculated from these namelist variables have units of meters.

60 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=rA
http://mitgcm.org/lxr/ident/MITgcm?_i=rAz
http://mitgcm.org/lxr/ident/MITgcm?_i=rAw
http://mitgcm.org/lxr/ident/MITgcm?_i=rAs
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=dxG
http://mitgcm.org/lxr/ident/MITgcm?_i=dyG
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=dxC
http://mitgcm.org/lxr/ident/MITgcm?_i=dyC
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=dxF
http://mitgcm.org/lxr/ident/MITgcm?_i=dyF
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=dxV
http://mitgcm.org/lxr/ident/MITgcm?_i=dyU
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rA
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rAz
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rAw
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rAs
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxG
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyG
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxC
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyC
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxF
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyF
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxV
http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyU
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h
http://mitgcm.org/lxr/ident/MITgcm?_i=usingCartesianGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=dXspacing
http://mitgcm.org/lxr/ident/MITgcm?_i=dYspacing
http://mitgcm.org/lxr/ident/MITgcm?_i=DELX
http://mitgcm.org/lxr/ident/MITgcm?_i=DELY
http://mitgcm.org/lxr/ident/MITgcm?_i=usingSphericalPolarGrid
http://mitgcm.org/lxr/ident/MITgcm?_i=dXspacing
http://mitgcm.org/lxr/ident/MITgcm?_i=dYspacing
http://mitgcm.org/lxr/ident/MITgcm?_i=DELX
http://mitgcm.org/lxr/ident/MITgcm?_i=DELY


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

2.11.4.4 Curvilinear coordinates

Curvilinear coordinates are selected when the logical flag usingCurvilinearGrid in namelist PARM04 is set to true.
The grid spacing can not be set via the namelist. Instead, the grid descriptors are read from data files, one for each
descriptor. As for other grids, the horizontal grid descriptors have units of meters.

2.11.5 Vertical grid
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Figure 2.9: Two versions of the vertical grid. a) The cell centered approach where the interface depths are specified
and the tracer points centered in between the interfaces. b) The interface centered approach where tracer levels are
specified and the w-interfaces are centered in between.

As for the horizontal grid, we use the suffixes “c” and “f” to indicates faces and centers. Figure 2.9 (a) shows the default
vertical grid used by the model. ∆𝑟𝑓 is the difference in 𝑟 (vertical coordinate) between the faces (i.e. ∆𝑟𝑓 ≡ −𝛿𝑘𝑟
where the minus sign appears due to the convention that the surface layer has index 𝑘 = 1.).

The vertical grid is calculated in subroutine INI_VERTICAL_GRID and specified via the vector delR in namelist
PARM04. The units of “r” are either meters or Pascals depending on the isomorphism being used which in turn is
dependent only on the choice of equation of state.

There are alternative namelist vectors delZ and delP which dictate whether z- or p- coordinates are to be used but we
intend to phase this out since they are redundant.

The reciprocals ∆𝑟−1
𝑓 and ∆𝑟−1

𝑐 are pre-calculated (also in subroutine INI_VERTICAL_GRID). All vertical grid
descriptors are stored in common blocks in GRID.h.
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The above grid Figure 2.9 (a) is known as the cell centered approach because the tracer points are at cell centers; the
cell centers are mid-way between the cell interfaces. This discretization is selected when the thickness of the levels
are provided (delR, parameter file data, namelist PARM04) An alternative, the vertex or interface centered approach,
is shown in Figure 2.9 (b). Here, the interior interfaces are positioned mid-way between the tracer nodes (no longer
cell centers). This approach is formally more accurate for evaluation of hydrostatic pressure and vertical advection but
historically the cell centered approach has been used. An alternative form of subroutine INI_VERTICAL_GRID is
used to select the interface centered approach This form requires to specify𝑁𝑟+1 vertical distances delRc (parameter
file data, namelist PARM04, e.g. ideal_2D_oce/input/data) corresponding to surface to center,𝑁𝑟−1 center to center,
and center to bottom distances.

S/R INI_VERTICAL_GRID

∆𝑟𝑓 ,∆𝑟𝑐 : drF, drC ( GRID.h )
∆𝑟−1

𝑓 ,∆𝑟−1
𝑐 : recip_drF, recip_drC ( GRID.h )

2.11.6 Topography: partially filled cells

Adcroft et al. (1997) [AHM97] presented two alternatives to the step-wise finite difference representation of topogra-
phy. The method is known to the engineering community as intersecting boundary method. It involves allowing the
boundary to intersect a grid of cells thereby modifying the shape of those cells intersected. We suggested allowing the
topography to take on a piece-wise linear representation (shaved cells) or a simpler piecewise constant representation
(partial step). Both show dramatic improvements in solution compared to the traditional full step representation, the
piece-wise linear being the best. However, the storage requirements are excessive so the simpler piece-wise constant
or partial-step method is all that is currently supported.

hwΔrf

x

r

hcΔrf
Δrf

Figure 2.10: A schematic of the x-r plane showing the location of the non-dimensional fractions ℎ𝑐 and ℎ𝑤 . The
physical thickness of a tracer cell is given by ℎ𝑐(𝑖, 𝑗, 𝑘)∆𝑟𝑓 (𝑘) and the physical thickness of the open side is given by
ℎ𝑤(𝑖, 𝑗, 𝑘)∆𝑟𝑓 (𝑘) .

Figure 2.10 shows a schematic of the x-r plane indicating how the thickness of a level is determined at tracer and u
points. The physical thickness of a tracer cell is given by ℎ𝑐(𝑖, 𝑗, 𝑘)∆𝑟𝑓 (𝑘) and the physical thickness of the open
side is given by ℎ𝑤(𝑖, 𝑗, 𝑘)∆𝑟𝑓 (𝑘). Three 3-D descriptors ℎ𝑐, ℎ𝑤 and ℎ𝑠 are used to describe the geometry: hFacC,
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hFacW and hFacS respectively. These are calculated in subroutine INI_MASKS_ETC along with there reciprocals
recip_hFacC, recip_hFacW and recip_hFacS.

The non-dimensional fractions (or h-facs as we call them) are calculated from the model depth array and then processed
to avoid tiny volumes. The rule is that if a fraction is less than hFacMin then it is rounded to the nearer of 0 or hFacMin
or if the physical thickness is less than hFacMinDr then it is similarly rounded. The larger of the two methods is used
when there is a conflict. By setting hFacMinDr equal to or larger than the thinnest nominal layers, min (∆𝑧𝑓 ), but
setting hFacMin to some small fraction then the model will only lop thick layers but retain stability based on the
thinnest unlopped thickness; min (∆𝑧𝑓 , ℎ𝐹𝑎𝑐𝑀𝑖𝑛𝐷𝑟).

S/R :filelink:INI_MASKS_ETC

ℎ𝑐, ℎ𝑤, ℎ𝑠 : hFacC, hFacW, hFacS ( GRID.h )
ℎ−1
𝑐 , ℎ−1

𝑤 , ℎ−1
𝑠 : recip_hFacC, recip_hFacW, recip_hFacS ( GRID.h )

2.12 Continuity and horizontal pressure gradient term

The core algorithm is based on the “C grid” discretization of the continuity equation which can be summarized as:

𝜕𝑡𝑢+
1

∆𝑥𝑐
𝛿𝑖
𝜕Φ

𝜕𝑟

⃒⃒⃒⃒
𝑠

𝜂 +
𝜖𝑛ℎ
∆𝑥𝑐

𝛿𝑖Φ
′
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𝜕Φ

𝜕𝑟

⃒⃒⃒⃒
𝑠
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𝜖𝑛ℎ

(︂
𝜕𝑡𝑤 +

1

∆𝑟𝑐
𝛿𝑘Φ′

𝑛ℎ

)︂
= 𝜖𝑛ℎ𝐺𝑤 + 𝑏

𝑘 − 1

∆𝑟𝑐
𝛿𝑘Φ′

ℎ (2.81)

𝛿𝑖∆𝑦𝑔∆𝑟𝑓ℎ𝑤𝑢+ 𝛿𝑗∆𝑥𝑔∆𝑟𝑓ℎ𝑠𝑣 + 𝛿𝑘𝒜𝑐𝑤 = 𝒜𝑐𝛿𝑘(𝒫 − ℰ)𝑟=0 (2.82)

where the continuity equation has been most naturally discretized by staggering the three components of velocity as
shown in Figure 2.7. The grid lengths ∆𝑥𝑐 and ∆𝑦𝑐 are the lengths between tracer points (cell centers). The grid
lengths ∆𝑥𝑔 , ∆𝑦𝑔 are the grid lengths between cell corners. ∆𝑟𝑓 and ∆𝑟𝑐 are the distance (in units of 𝑟) between
level interfaces (w-level) and level centers (tracer level). The surface area presented in the vertical is denoted 𝒜𝑐. The
factors ℎ𝑤 and ℎ𝑠 are non-dimensional fractions (between 0 and 1) that represent the fraction cell depth that is “open”
for fluid flow.

The last equation, the discrete continuity equation, can be summed in the vertical to yield the free-surface equation:

𝒜𝑐𝜕𝑡𝜂 + 𝛿𝑖
∑︁
𝑘

∆𝑦𝑔∆𝑟𝑓ℎ𝑤𝑢+ 𝛿𝑗
∑︁
𝑘

∆𝑥𝑔∆𝑟𝑓ℎ𝑠𝑣 = 𝒜𝑐(𝒫 − ℰ)𝑟=0 (2.83)

The source term 𝒫 − ℰ on the rhs of continuity accounts for the local addition of volume due to excess precipitation
and run-off over evaporation and only enters the top-level of the ocean model.

2.13 Hydrostatic balance

The vertical momentum equation has the hydrostatic or quasi-hydrostatic balance on the right hand side. This dis-
cretization guarantees that the conversion of potential to kinetic energy as derived from the buoyancy equation exactly
matches the form derived from the pressure gradient terms when forming the kinetic energy equation.

In the ocean, using z-coordinates, the hydrostatic balance terms are discretized:

𝜖𝑛ℎ𝜕𝑡𝑤 + 𝑔𝜌′
𝑘

+
1

∆𝑧
𝛿𝑘Φ′

ℎ = . . . (2.84)
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In the atmosphere, using p-coordinates, hydrostatic balance is discretized:

𝜃′
𝑘

+
1

∆Π
𝛿𝑘Φ′

ℎ = 0 (2.85)

where ∆Π is the difference in Exner function between the pressure points. The non-hydrostatic equations are not
available in the atmosphere.

The difference in approach between ocean and atmosphere occurs because of the direct use of the ideal gas equation
in forming the potential energy conversion term 𝛼𝜔. Because of the different representation of hydrostatic balance
between ocean and atmosphere there is no elegant way to represent both systems using an arbitrary coordinate.

The integration for hydrostatic pressure is made in the positive 𝑟 direction (increasing k-index). For the ocean, this is
from the free-surface down and for the atmosphere this is from the ground up.

The calculations are made in the subroutine CALC_PHI_HYD. Inside this routine, one of other of the atmo-
spheric/oceanic form is selected based on the string variable buoyancyRelation.

2.14 Flux-form momentum equations

The original finite volume model was based on the Eulerian flux form momentum equations. This is the default though
the vector invariant form is optionally available (and recommended in some cases).

The “G’s” (our colloquial name for all terms on rhs!) are broken into the various advective, Coriolis, horizontal
dissipation, vertical dissipation and metric forces:

𝐺𝑢 = 𝐺𝑎𝑑𝑣
𝑢 +𝐺𝑐𝑜𝑟

𝑢 +𝐺ℎ−𝑑𝑖𝑠𝑠
𝑢 +𝐺𝑣−𝑑𝑖𝑠𝑠

𝑢 +𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑢 +𝐺𝑛ℎ−𝑚𝑒𝑡𝑟𝑖𝑐

𝑢 (2.86)

𝐺𝑣 = 𝐺𝑎𝑑𝑣
𝑣 +𝐺𝑐𝑜𝑟

𝑣 +𝐺ℎ−𝑑𝑖𝑠𝑠
𝑣 +𝐺𝑣−𝑑𝑖𝑠𝑠

𝑣 +𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑣 +𝐺𝑛ℎ−𝑚𝑒𝑡𝑟𝑖𝑐

𝑣 (2.87)

𝐺𝑤 = 𝐺𝑎𝑑𝑣
𝑤 +𝐺𝑐𝑜𝑟

𝑤 +𝐺ℎ−𝑑𝑖𝑠𝑠
𝑤 +𝐺𝑣−𝑑𝑖𝑠𝑠

𝑤 +𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑤 +𝐺𝑛ℎ−𝑚𝑒𝑡𝑟𝑖𝑐

𝑤 (2.88)

In the hydrostatic limit, 𝐺𝑤 = 0 and 𝜖𝑛ℎ = 0, reducing the vertical momentum to hydrostatic balance.

These terms are calculated in routines called from subroutine MOM_FLUXFORM and collected into the global arrays
gU, gV, and gW.

S/R MOM_FLUXFORM

𝐺𝑢 : gU ( DYNVARS.h )
𝐺𝑣 : gV ( DYNVARS.h )
𝐺𝑤 : gW ( NH_VARS.h )

2.14.1 Advection of momentum

The advective operator is second order accurate in space:

𝒜𝑤∆𝑟𝑓ℎ𝑤𝐺
𝑎𝑑𝑣
𝑢 = 𝛿𝑖𝑈

𝑖
𝑢𝑖 + 𝛿𝑗𝑉

𝑖
𝑢𝑗 + 𝛿𝑘𝑊

𝑖
𝑢𝑘 (2.89)

𝒜𝑠∆𝑟𝑓ℎ𝑠𝐺
𝑎𝑑𝑣
𝑣 = 𝛿𝑖𝑈

𝑗
𝑣𝑖 + 𝛿𝑗𝑉

𝑗
𝑣𝑗 + 𝛿𝑘𝑊

𝑗
𝑣𝑘 (2.90)

𝒜𝑐∆𝑟𝑐𝐺
𝑎𝑑𝑣
𝑤 = 𝛿𝑖𝑈

𝑘
𝑤𝑖 + 𝛿𝑗𝑉

𝑘
𝑤𝑗 + 𝛿𝑘𝑊

𝑘
𝑤𝑘 (2.91)
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and because of the flux form does not contribute to the global budget of linear momentum. The quantities 𝑈 , 𝑉 and
𝑊 are volume fluxes defined:

𝑈 = ∆𝑦𝑔∆𝑟𝑓ℎ𝑤𝑢 (2.92)

𝑉 = ∆𝑥𝑔∆𝑟𝑓ℎ𝑠𝑣 (2.93)

𝑊 = 𝒜𝑐𝑤 (2.94)

The advection of momentum takes the same form as the advection of tracers but by a translated advective flow.
Consequently, the conservation of second moments, derived for tracers later, applies to 𝑢2 and 𝑣2 and 𝑤2 so that
advection of momentum correctly conserves kinetic energy.

S/R MOM_U_ADV_UU, MOM_U_ADV_VU, MOM_U_ADV_WU

𝑢𝑢, 𝑣𝑢, 𝑤𝑢 : fZon, fMer, fVerUkp ( local to MOM_FLUXFORM.F )

S/R MOM_V_ADV_UV, MOM_V_ADV_VV, MOM_V_ADV_WV

𝑢𝑣, 𝑣𝑣, 𝑤𝑣 : fZon, fMer, fVerVkp ( local to MOM_FLUXFORM.F )

2.14.2 Coriolis terms

The “pure C grid” Coriolis terms (i.e. in absence of C-D scheme) are discretized:

𝒜𝑤∆𝑟𝑓ℎ𝑤𝐺
𝐶𝑜𝑟
𝑢 = 𝑓𝒜𝑐∆𝑟𝑓ℎ𝑐𝑣

𝑗
𝑖
− 𝜖𝑛ℎ𝑓 ′𝒜𝑐∆𝑟𝑓ℎ𝑐𝑤

𝑘
𝑖

(2.95)

𝒜𝑠∆𝑟𝑓ℎ𝑠𝐺
𝐶𝑜𝑟
𝑣 = −𝑓𝒜𝑐∆𝑟𝑓ℎ𝑐𝑢

𝑖
𝑗 (2.96)

𝒜𝑐∆𝑟𝑐𝐺
𝐶𝑜𝑟
𝑤 = 𝜖𝑛ℎ𝑓 ′𝒜𝑐∆𝑟𝑓ℎ𝑐𝑢

𝑖
𝑘 (2.97)

where the Coriolis parameters 𝑓 and 𝑓 ′ are defined:

𝑓 = 2Ω sin𝜙

𝑓 ′ = 2Ω cos𝜙

where 𝜙 is geographic latitude when using spherical geometry, otherwise the 𝛽-plane definition is used:

𝑓 = 𝑓𝑜 + 𝛽𝑦

𝑓 ′ = 0

This discretization globally conserves kinetic energy. It should be noted that despite the use of this discretization in
former publications, all calculations to date have used the following different discretization:

𝐺𝐶𝑜𝑟
𝑢 = 𝑓𝑢𝑣

𝑗𝑖 − 𝜖𝑛ℎ𝑓
′
𝑢𝑤

𝑖𝑘 (2.98)

𝐺𝐶𝑜𝑟
𝑣 = −𝑓𝑣𝑢𝑖𝑗 (2.99)

𝐺𝐶𝑜𝑟
𝑤 = 𝜖𝑛ℎ𝑓

′
𝑤𝑢

𝑖𝑘 (2.100)

where the subscripts on 𝑓 and 𝑓 ′ indicate evaluation of the Coriolis parameters at the appropriate points in space.
The above discretization does not conserve anything, especially energy, but for historical reasons is the default for the
code. A flag controls this discretization: set run-time integer selectCoriScheme to two (=2) (which otherwise defaults
to zero) to select the energy-conserving conserving form (2.95), (2.96), and (2.97) above.

S/R CD_CODE_SCHEME, MOM_U_CORIOLIS, MOM_V_CORIOLIS
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𝐺𝐶𝑜𝑟
𝑢 , 𝐺𝐶𝑜𝑟

𝑣 : cF ( local to MOM_FLUXFORM.F )

2.14.3 Curvature metric terms

The most commonly used coordinate system on the sphere is the geographic system (𝜆, 𝜙). The curvilinear nature
of these coordinates on the sphere lead to some “metric” terms in the component momentum equations. Under the
thin-atmosphere and hydrostatic approximations these terms are discretized:

𝒜𝑤∆𝑟𝑓ℎ𝑤𝐺
𝑚𝑒𝑡𝑟𝑖𝑐
𝑢 =

𝑢𝑖

𝑎
tan𝜙𝒜𝑐∆𝑟𝑓ℎ𝑐𝑣

𝑗

𝑖

(2.101)

𝒜𝑠∆𝑟𝑓ℎ𝑠𝐺
𝑚𝑒𝑡𝑟𝑖𝑐
𝑣 = −𝑢

𝑖

𝑎
tan𝜙𝒜𝑐∆𝑟𝑓ℎ𝑐𝑢

𝑖

𝑗

(2.102)

𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑤 = 0 (2.103)

where 𝑎 is the radius of the planet (sphericity is assumed) or the radial distance of the particle (i.e. a function of
height). It is easy to see that this discretization satisfies all the properties of the discrete Coriolis terms since the metric
factor 𝑢

𝑎 tan𝜙 can be viewed as a modification of the vertical Coriolis parameter: 𝑓 → 𝑓 + 𝑢
𝑎 tan𝜙.

However, as for the Coriolis terms, a non-energy conserving form has exclusively been used to date:

𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑢 =

𝑢𝑣𝑖𝑗

𝑎
tan𝜙

𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑣 =

𝑢𝑖𝑗𝑢𝑖𝑗

𝑎
tan𝜙

where tan𝜙 is evaluated at the 𝑢 and 𝑣 points respectively.

S/R MOM_U_METRIC_SPHERE, MOM_V_METRIC_SPHERE

𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑢 , 𝐺𝑚𝑒𝑡𝑟𝑖𝑐

𝑣 : mT ( local to MOM_FLUXFORM.F )

2.14.4 Non-hydrostatic metric terms

For the non-hydrostatic equations, dropping the thin-atmosphere approximation re-introduces metric terms involving
𝑤 which are required to conserve angular momentum:

𝒜𝑤∆𝑟𝑓ℎ𝑤𝐺
𝑚𝑒𝑡𝑟𝑖𝑐
𝑢 = −𝑢

𝑖𝑤𝑘

𝑎
𝒜𝑐∆𝑟𝑓ℎ𝑐

𝑖

(2.104)

𝒜𝑠∆𝑟𝑓ℎ𝑠𝐺
𝑚𝑒𝑡𝑟𝑖𝑐
𝑣 = −𝑣

𝑗𝑤𝑘

𝑎
𝒜𝑐∆𝑟𝑓ℎ𝑐

𝑗

(2.105)

𝒜𝑐∆𝑟𝑐𝐺
𝑚𝑒𝑡𝑟𝑖𝑐
𝑤 =

𝑢𝑖
2

+ 𝑣𝑗
2

𝑎
𝒜𝑐∆𝑟𝑓ℎ𝑐

𝑘

(2.106)

Because we are always consistent, even if consistently wrong, we have, in the past, used a different discretization in
the model which is:

𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑢 = −𝑢

𝑎
𝑤𝑖𝑘

𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑣 = −𝑣

𝑎
𝑤𝑗𝑘

𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑤 =

1

𝑎
(𝑢𝑖𝑘

2
+ 𝑣𝑗𝑘

2
)

66 Chapter 2. Discretization and Algorithm

http://mitgcm.org/lxr/ident/MITgcm?_i=cF
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F
http://mitgcm.org/lxr/ident/MITgcm?_i=mT
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

S/R MOM_U_METRIC_NH, MOM_V_METRIC_NH

𝐺𝑚𝑒𝑡𝑟𝑖𝑐
𝑢 , 𝐺𝑚𝑒𝑡𝑟𝑖𝑐

𝑣 : mT ( local to MOM_FLUXFORM.F )

2.14.5 Lateral dissipation

Historically, we have represented the SGS Reynolds stresses as simply down gradient momentum fluxes, ignoring
constraints on the stress tensor such as symmetry.

𝒜𝑤∆𝑟𝑓ℎ𝑤𝐺
ℎ−𝑑𝑖𝑠𝑠
𝑢 = 𝛿𝑖∆𝑦𝑓∆𝑟𝑓ℎ𝑐𝜏11 + 𝛿𝑗∆𝑥𝑣∆𝑟𝑓ℎ𝜁𝜏12 (2.107)

𝒜𝑠∆𝑟𝑓ℎ𝑠𝐺
ℎ−𝑑𝑖𝑠𝑠
𝑣 = 𝛿𝑖∆𝑦𝑢∆𝑟𝑓ℎ𝜁𝜏21 + 𝛿𝑗∆𝑥𝑓∆𝑟𝑓ℎ𝑐𝜏22 (2.108)

The lateral viscous stresses are discretized:

𝜏11 = 𝐴ℎ𝑐11Δ(𝜙)
1

∆𝑥𝑓
𝛿𝑖𝑢−𝐴4𝑐11Δ2(𝜙)

1

∆𝑥𝑓
𝛿𝑖∇2𝑢 (2.109)

𝜏12 = 𝐴ℎ𝑐12Δ(𝜙)
1

∆𝑦𝑢
𝛿𝑗𝑢−𝐴4𝑐12Δ2(𝜙)

1

∆𝑦𝑢
𝛿𝑗∇2𝑢 (2.110)

𝜏21 = 𝐴ℎ𝑐21Δ(𝜙)
1

∆𝑥𝑣
𝛿𝑖𝑣 −𝐴4𝑐21Δ2(𝜙)

1

∆𝑥𝑣
𝛿𝑖∇2𝑣 (2.111)

𝜏22 = 𝐴ℎ𝑐22Δ(𝜙)
1

∆𝑦𝑓
𝛿𝑗𝑣 −𝐴4𝑐22Δ2(𝜙)

1

∆𝑦𝑓
𝛿𝑗∇2𝑣 (2.112)

where the non-dimensional factors 𝑐𝑙𝑚Δ𝑛(𝜙), {𝑙,𝑚, 𝑛} ∈ {1, 2} define the “cosine” scaling with latitude which can
be applied in various ad-hoc ways. For instance, 𝑐11Δ = 𝑐21Δ = (cos𝜙)3/2, 𝑐12Δ = 𝑐22Δ = 1 would represent the
anisotropic cosine scaling typically used on the “lat-lon” grid for Laplacian viscosity.

It should be noted that despite the ad-hoc nature of the scaling, some scaling must be done since on a lat-lon grid the
converging meridians make it very unlikely that a stable viscosity parameter exists across the entire model domain.

The Laplacian viscosity coefficient, 𝐴ℎ (viscAh), has units of 𝑚2𝑠−1. The bi-harmonic viscosity coefficient, 𝐴4

(viscA4), has units of 𝑚4𝑠−1.

S/R MOM_U_XVISCFLUX, MOM_U_YVISCFLUX

𝜏11, 𝜏12 : vF, v4F ( local to MOM_FLUXFORM.F )

S/R MOM_V_XVISCFLUX, MOM_V_YVISCFLUX

𝜏21, 𝜏22 : vF, v4F ( local to MOM_FLUXFORM.F )

Two types of lateral boundary condition exist for the lateral viscous terms, no-slip and free-slip.

The free-slip condition is most convenient to code since it is equivalent to zero-stress on boundaries. Simple masking
of the stress components sets them to zero. The fractional open stress is properly handled using the lopped cells.

The no-slip condition defines the normal gradient of a tangential flow such that the flow is zero on the boundary. Rather
than modify the stresses by using complicated functions of the masks and “ghost” points (see Adcroft and Marshall
(1998) [AM98]) we add the boundary stresses as an additional source term in cells next to solid boundaries. This has
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the advantage of being able to cope with “thin walls” and also makes the interior stress calculation (code) independent
of the boundary conditions. The “body” force takes the form:

𝐺𝑠𝑖𝑑𝑒−𝑑𝑟𝑎𝑔
𝑢 =

4

∆𝑧𝑓
(1 − ℎ𝜁)

∆𝑥𝑣
∆𝑦𝑢

𝑗 (︀
𝐴ℎ𝑐12Δ(𝜙)𝑢−𝐴4𝑐12Δ2(𝜙)∇2𝑢

)︀
(2.113)

𝐺𝑠𝑖𝑑𝑒−𝑑𝑟𝑎𝑔
𝑣 =

4

∆𝑧𝑓
(1 − ℎ𝜁)

∆𝑦𝑢
∆𝑥𝑣

𝑖 (︀
𝐴ℎ𝑐21Δ(𝜙)𝑣 −𝐴4𝑐21Δ2(𝜙)∇2𝑣

)︀
(2.114)

In fact, the above discretization is not quite complete because it assumes that the bathymetry at velocity points is
deeper than at neighboring vorticity points, e.g. 1 − ℎ𝑤 < 1 − ℎ𝜁

S/R MOM_U_SIDEDRAG, MOM_V_SIDEDRAG

𝐺𝑠𝑖𝑑𝑒−𝑑𝑟𝑎𝑔
𝑢 , 𝐺𝑠𝑖𝑑𝑒−𝑑𝑟𝑎𝑔

𝑣 : vF ( local to MOM_FLUXFORM.F )

2.14.6 Vertical dissipation

Vertical viscosity terms are discretized with only partial adherence to the variable grid lengths introduced by the finite
volume formulation. This reduces the formal accuracy of these terms to just first order but only next to boundaries;
exactly where other terms appear such as linear and quadratic bottom drag.

𝐺𝑣−𝑑𝑖𝑠𝑠
𝑢 =

1

∆𝑟𝑓ℎ𝑤
𝛿𝑘𝜏13 (2.115)

𝐺𝑣−𝑑𝑖𝑠𝑠
𝑣 =

1

∆𝑟𝑓ℎ𝑠
𝛿𝑘𝜏23 (2.116)

𝐺𝑣−𝑑𝑖𝑠𝑠
𝑤 = 𝜖𝑛ℎ

1

∆𝑟𝑓ℎ𝑑
𝛿𝑘𝜏33 (2.117)

represents the general discrete form of the vertical dissipation terms.

In the interior the vertical stresses are discretized:

𝜏13 = 𝐴𝑣
1

∆𝑟𝑐
𝛿𝑘𝑢

𝜏23 = 𝐴𝑣
1

∆𝑟𝑐
𝛿𝑘𝑣

𝜏33 = 𝐴𝑣
1

∆𝑟𝑓
𝛿𝑘𝑤

It should be noted that in the non-hydrostatic form, the stress tensor is even less consistent than for the hydrostatic (see
Wajsowicz (1993) [Waj93]). It is well known how to do this properly (see Griffies and Hallberg (2000) [GH00]) and
is on the list of to-do’s.

S/R MOM_U_RVISCFLUX, MOM_V_RVISCFLUX

𝜏13 : fVrUp, fVrDw ( local to MOM_FLUXFORM.F )
𝜏23 : fVrUp, fVrDw ( local to MOM_FLUXFORM.F )

As for the lateral viscous terms, the free-slip condition is equivalent to simply setting the stress to zero on boundaries.
The no-slip condition is implemented as an additional term acting on top of the interior and free-slip stresses. Bottom
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drag represents additional friction, in addition to that imposed by the no-slip condition at the bottom. The drag is cast
as a stress expressed as a linear or quadratic function of the mean flow in the layer above the topography:

𝜏 𝑏𝑜𝑡𝑡𝑜𝑚−𝑑𝑟𝑎𝑔
13 =

(︃
2𝐴𝑣

1

∆𝑟𝑐
+ 𝑟𝑏 + 𝐶𝑑

√︁
2𝐾𝐸

𝑖

)︃
𝑢 (2.118)

𝜏 𝑏𝑜𝑡𝑡𝑜𝑚−𝑑𝑟𝑎𝑔
23 =

(︃
2𝐴𝑣

1

∆𝑟𝑐
+ 𝑟𝑏 + 𝐶𝑑

√︁
2𝐾𝐸

𝑗

)︃
𝑣 (2.119)

where these terms are only evaluated immediately above topography. 𝑟𝑏 (bottomDragLinear) has units of 𝑚𝑠−1 and a
typical value of the order 0.0002 𝑚𝑠−1. 𝐶𝑑 (bottomDragQuadratic) is dimensionless with typical values in the range
0.001–0.003.

S/R MOM_U_BOTTOMDRAG, MOM_V_BOTTOMDRAG

𝜏 𝑏𝑜𝑡𝑡𝑜𝑚−𝑑𝑟𝑎𝑔
13 /∆𝑟𝑓 , 𝜏

𝑏𝑜𝑡𝑡𝑜𝑚−𝑑𝑟𝑎𝑔
23 /∆𝑟𝑓 : vF ( local to MOM_FLUXFORM.F )

2.14.7 Derivation of discrete energy conservation

These discrete equations conserve kinetic plus potential energy using the following definitions:

𝐾𝐸 =
1

2

(︁
𝑢2

𝑖
+ 𝑣2

𝑗
+ 𝜖𝑛ℎ𝑤2

𝑘
)︁

(2.120)

2.14.8 Mom Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
VISCAHZ | 15 |SZ MR |m^2/s |Harmonic Visc Coefficient (m2/s)
→˓(Zeta Pt)
VISCA4Z | 15 |SZ MR |m^4/s |Biharmonic Visc Coefficient (m4/s)
→˓(Zeta Pt)
VISCAHD | 15 |SM MR |m^2/s |Harmonic Viscosity Coefficient (m2/s)
→˓(Div Pt)
VISCA4D | 15 |SM MR |m^4/s |Biharmonic Viscosity Coefficient (m4/
→˓s) (Div Pt)
VAHZMAX | 15 |SZ MR |m^2/s |CFL-MAX Harm Visc Coefficient (m2/s)
→˓(Zeta Pt)
VA4ZMAX | 15 |SZ MR |m^4/s |CFL-MAX Biharm Visc Coefficient (m4/
→˓s) (Zeta Pt)
VAHDMAX | 15 |SM MR |m^2/s |CFL-MAX Harm Visc Coefficient (m2/s)
→˓(Div Pt)
VA4DMAX | 15 |SM MR |m^4/s |CFL-MAX Biharm Visc Coefficient (m4/
→˓s) (Div Pt)
VAHZMIN | 15 |SZ MR |m^2/s |RE-MIN Harm Visc Coefficient (m2/s)
→˓(Zeta Pt)
VA4ZMIN | 15 |SZ MR |m^4/s |RE-MIN Biharm Visc Coefficient (m4/s)
→˓(Zeta Pt)
VAHDMIN | 15 |SM MR |m^2/s |RE-MIN Harm Visc Coefficient (m2/s)
→˓(Div Pt)
VA4DMIN | 15 |SM MR |m^4/s |RE-MIN Biharm Visc Coefficient (m4/s)
→˓(Div Pt)

(continues on next page)
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VAHZLTH | 15 |SZ MR |m^2/s |Leith Harm Visc Coefficient (m2/s)
→˓(Zeta Pt)
VA4ZLTH | 15 |SZ MR |m^4/s |Leith Biharm Visc Coefficient (m4/s)
→˓(Zeta Pt)
VAHDLTH | 15 |SM MR |m^2/s |Leith Harm Visc Coefficient (m2/s)
→˓(Div Pt)
VA4DLTH | 15 |SM MR |m^4/s |Leith Biharm Visc Coefficient (m4/s)
→˓(Div Pt)
VAHZLTHD| 15 |SZ MR |m^2/s |LeithD Harm Visc Coefficient (m2/s)
→˓(Zeta Pt)
VA4ZLTHD| 15 |SZ MR |m^4/s |LeithD Biharm Visc Coefficient (m4/s)
→˓(Zeta Pt)
VAHDLTHD| 15 |SM MR |m^2/s |LeithD Harm Visc Coefficient (m2/s)
→˓(Div Pt)
VA4DLTHD| 15 |SM MR |m^4/s |LeithD Biharm Visc Coefficient (m4/s)
→˓(Div Pt)
VAHZSMAG| 15 |SZ MR |m^2/s |Smagorinsky Harm Visc Coefficient (m2/
→˓s) (Zeta Pt)
VA4ZSMAG| 15 |SZ MR |m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s)
→˓(Zeta Pt)
VAHDSMAG| 15 |SM MR |m^2/s |Smagorinsky Harm Visc Coefficient (m2/
→˓s) (Div Pt)
VA4DSMAG| 15 |SM MR |m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s)
→˓(Div Pt)
momKE | 15 |SM MR |m^2/s^2 |Kinetic Energy (in momentum Eq.)
momHDiv | 15 |SM MR |s^-1 |Horizontal Divergence (in momentum Eq.
→˓)
momVort3| 15 |SZ MR |s^-1 |3rd component (vertical) of Vorticity
Strain | 15 |SZ MR |s^-1 |Horizontal Strain of Horizontal
→˓Velocities
Tension | 15 |SM MR |s^-1 |Horizontal Tension of Horizontal
→˓Velocities
UBotDrag| 15 |UU 129MR |m/s^2 |U momentum tendency from Bottom Drag
VBotDrag| 15 |VV 128MR |m/s^2 |V momentum tendency from Bottom Drag
USidDrag| 15 |UU 131MR |m/s^2 |U momentum tendency from Side Drag
VSidDrag| 15 |VV 130MR |m/s^2 |V momentum tendency from Side Drag
Um_Diss | 15 |UU 133MR |m/s^2 |U momentum tendency from Dissipation
Vm_Diss | 15 |VV 132MR |m/s^2 |V momentum tendency from Dissipation
Um_Advec| 15 |UU 135MR |m/s^2 |U momentum tendency from Advection
→˓terms
Vm_Advec| 15 |VV 134MR |m/s^2 |V momentum tendency from Advection
→˓terms
Um_Cori | 15 |UU 137MR |m/s^2 |U momentum tendency from Coriolis term
Vm_Cori | 15 |VV 136MR |m/s^2 |V momentum tendency from Coriolis term
Um_Ext | 15 |UU 137MR |m/s^2 |U momentum tendency from external
→˓forcing
Vm_Ext | 15 |VV 138MR |m/s^2 |V momentum tendency from external
→˓forcing
Um_AdvZ3| 15 |UU 141MR |m/s^2 |U momentum tendency from Vorticity
→˓Advection
Vm_AdvZ3| 15 |VV 140MR |m/s^2 |V momentum tendency from Vorticity
→˓Advection
Um_AdvRe| 15 |UU 143MR |m/s^2 |U momentum tendency from vertical
→˓Advection (Explicit part)
Vm_AdvRe| 15 |VV 142MR |m/s^2 |V momentum tendency from vertical
→˓Advection (Explicit part)
ADVx_Um | 15 |UM 145MR |m^4/s^2 |Zonal Advective Flux of U
→˓momentum (continues on next page)
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ADVy_Um | 15 |VZ 144MR |m^4/s^2 |Meridional Advective Flux of U
→˓momentum
ADVrE_Um| 15 |WU LR |m^4/s^2 |Vertical Advective Flux of U
→˓momentum (Explicit part)
ADVx_Vm | 15 |UZ 148MR |m^4/s^2 |Zonal Advective Flux of V
→˓momentum
ADVy_Vm | 15 |VM 147MR |m^4/s^2 |Meridional Advective Flux of V
→˓momentum
ADVrE_Vm| 15 |WV LR |m^4/s^2 |Vertical Advective Flux of V
→˓momentum (Explicit part)
VISCx_Um| 15 |UM 151MR |m^4/s^2 |Zonal Viscous Flux of U momentum
VISCy_Um| 15 |VZ 150MR |m^4/s^2 |Meridional Viscous Flux of U momentum
VISrE_Um| 15 |WU LR |m^4/s^2 |Vertical Viscous Flux of U momentum
→˓(Explicit part)
VISrI_Um| 15 |WU LR |m^4/s^2 |Vertical Viscous Flux of U momentum
→˓(Implicit part)
VISCx_Vm| 15 |UZ 155MR |m^4/s^2 |Zonal Viscous Flux of V momentum
VISCy_Vm| 15 |VM 154MR |m^4/s^2 |Meridional Viscous Flux of V momentum
VISrE_Vm| 15 |WV LR |m^4/s^2 |Vertical Viscous Flux of V momentum
→˓(Explicit part)
VISrI_Vm| 15 |WV LR |m^4/s^2 |Vertical Viscous Flux of V momentum
→˓(Implicit part)

2.15 Vector invariant momentum equations

The finite volume method lends itself to describing the continuity and tracer equations in curvilinear coordinate sys-
tems. However, in curvilinear coordinates many new metric terms appear in the momentum equations (written in
Lagrangian or flux-form) making generalization far from elegant. Fortunately, an alternative form of the equations,
the vector invariant equations are exactly that; invariant under coordinate transformations so that they can be applied
uniformly in any orthogonal curvilinear coordinate system such as spherical coordinates, boundary following or the
conformal spherical cube system.

The non-hydrostatic vector invariant equations read:

𝜕𝑡𝑣⃗ + (2Ω⃗ + 𝜁) ∧ 𝑣⃗ − 𝑏𝑟 + ∇⃗𝐵 = ∇⃗ · 𝜏⃗ (2.121)

which describe motions in any orthogonal curvilinear coordinate system. Here, 𝐵 is the Bernoulli function and 𝜁 =
∇ ∧ 𝑣⃗ is the vorticity vector. We can take advantage of the elegance of these equations when discretizing them and
use the discrete definitions of the grad, curl and divergence operators to satisfy constraints. We can also consider
the analogy to forming derived equations, such as the vorticity equation, and examine how the discretization can be
adjusted to give suitable vorticity advection among other things.

The underlying algorithm is the same as for the flux form equations. All that has changed is the contents of the “G’s”.
For the time-being, only the hydrostatic terms have been coded but we will indicate the points where non-hydrostatic
contributions will enter:

𝐺𝑢 = 𝐺𝑓𝑣
𝑢 +𝐺𝜁3𝑣

𝑢 +𝐺𝜁2𝑤
𝑢 +𝐺𝜕𝑥𝐵

𝑢 +𝐺𝜕𝑧𝜏
𝑥

𝑢 +𝐺ℎ−𝑑𝑖𝑠𝑠𝑖𝑝
𝑢 +𝐺𝑣−𝑑𝑖𝑠𝑠𝑖𝑝

𝑢 (2.122)

𝐺𝑣 = 𝐺𝑓𝑢
𝑣 +𝐺𝜁3𝑢

𝑣 +𝐺𝜁1𝑤
𝑣 +𝐺𝜕𝑦𝐵

𝑣 +𝐺𝜕𝑧𝜏
𝑦

𝑣 +𝐺ℎ−𝑑𝑖𝑠𝑠𝑖𝑝
𝑣 +𝐺𝑣−𝑑𝑖𝑠𝑠𝑖𝑝

𝑣 (2.123)

𝐺𝑤 = 𝐺𝑓𝑢
𝑤 +𝐺𝜁1𝑣

𝑤 +𝐺𝜁2𝑢
𝑤 +𝐺𝜕𝑧𝐵

𝑤 +𝐺ℎ−𝑑𝑖𝑠𝑠𝑖𝑝
𝑤 +𝐺𝑣−𝑑𝑖𝑠𝑠𝑖𝑝

𝑤 (2.124)

S/R MOM_VECINV
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𝐺𝑢 : gU ( DYNVARS.h )
𝐺𝑣 : gV ( DYNVARS.h )
𝐺𝑤 : gW ( NH_VARS.h )

2.15.1 Relative vorticity

The vertical component of relative vorticity is explicitly calculated and use in the discretization. The particular form
is crucial for numerical stability; alternative definitions break the conservation properties of the discrete equations.

Relative vorticity is defined:

𝜁3 =
Γ

𝐴𝜁
=

1

𝒜𝜁
(𝛿𝑖∆𝑦𝑐𝑣 − 𝛿𝑗∆𝑥𝑐𝑢) (2.125)

where 𝒜𝜁 is the area of the vorticity cell presented in the vertical and Γ is the circulation about that cell.

S/R MOM_CALC_RELVORT3

𝜁3 : vort3 ( local to MOM_VECINV.F )

2.15.2 Kinetic energy

The kinetic energy, denoted 𝐾𝐸, is defined:

𝐾𝐸 =
1

2
(𝑢2

𝑖
+ 𝑣2

𝑗
+ 𝜖𝑛ℎ𝑤2

𝑘
) (2.126)

S/R MOM_CALC_KE

𝐾𝐸 : KE ( local to MOM_VECINV.F )

2.15.3 Coriolis terms

The potential enstrophy conserving form of the linear Coriolis terms are written:

𝐺𝑓𝑣
𝑢 =

1

∆𝑥𝑐

𝑓

ℎ𝜁

𝑗

∆𝑥𝑔ℎ𝑠𝑣
𝑗
𝑖

(2.127)

𝐺𝑓𝑢
𝑣 = − 1

∆𝑦𝑐

𝑓

ℎ𝜁

𝑖

∆𝑦𝑔ℎ𝑤𝑢
𝑖
𝑗

(2.128)

Here, the Coriolis parameter 𝑓 is defined at vorticity (corner) points.

The potential enstrophy conserving form of the non-linear Coriolis terms are written:

𝐺𝜁3𝑣
𝑢 =

1

∆𝑥𝑐

𝜁3
ℎ𝜁

𝑗

∆𝑥𝑔ℎ𝑠𝑣
𝑗
𝑖

(2.129)

𝐺𝜁3𝑢
𝑣 = − 1

∆𝑦𝑐

𝜁3
ℎ𝜁

𝑖

∆𝑦𝑔ℎ𝑤𝑢
𝑖
𝑗

(2.130)
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The Coriolis terms can also be evaluated together and expressed in terms of absolute vorticity 𝑓 + 𝜁3. The potential
enstrophy conserving form using the absolute vorticity is written:

𝐺𝑓𝑣
𝑢 +𝐺𝜁3𝑣

𝑢 =
1

∆𝑥𝑐

𝑓 + 𝜁3
ℎ𝜁

𝑗

∆𝑥𝑔ℎ𝑠𝑣
𝑗
𝑖

(2.131)

𝐺𝑓𝑢
𝑣 +𝐺𝜁3𝑢

𝑣 = − 1

∆𝑦𝑐

𝑓 + 𝜁3
ℎ𝜁

𝑖

∆𝑦𝑔ℎ𝑤𝑢
𝑖
𝑗

(2.132)

The distinction between using absolute vorticity or relative vorticity is useful when constructing higher order advection
schemes; monotone advection of relative vorticity behaves differently to monotone advection of absolute vorticity.
Currently the choice of relative/absolute vorticity, centered/upwind/high order advection is available only through
commented subroutine calls.

S/R MOM_VI_CORIOLIS, MOM_VI_U_CORIOLIS, MOM_VI_V_CORIOLIS

𝐺𝑓𝑣
𝑢 , 𝐺𝜁3𝑣

𝑢 : uCf ( local to MOM_VECINV.F )
𝐺𝑓𝑢

𝑣 , 𝐺𝜁3𝑢
𝑣 : vCf ( local to MOM_VECINV.F )

2.15.4 Shear terms

The shear terms (𝜁2𝑤 and 𝜁1𝑤) are are discretized to guarantee that no spurious generation of kinetic energy is possible;
the horizontal gradient of Bernoulli function has to be consistent with the vertical advection of shear:

𝐺𝜁2𝑤
𝑢 =

1

𝒜𝑤∆𝑟𝑓ℎ𝑤
𝒜𝑐𝑤

𝑖
(𝛿𝑘𝑢− 𝜖𝑛ℎ𝛿𝑗𝑤)

𝑘

(2.133)

𝐺𝜁1𝑤
𝑣 =

1

𝒜𝑠∆𝑟𝑓ℎ𝑠
𝒜𝑐𝑤

𝑖
(𝛿𝑘𝑢− 𝜖𝑛ℎ𝛿𝑗𝑤)

𝑘

(2.134)

S/R MOM_VI_U_VERTSHEAR, MOM_VI_V_VERTSHEAR

𝐺𝜁2𝑤
𝑢 : uCf ( local to MOM_VECINV.F )

𝐺𝜁1𝑤
𝑣 : vCf ( local to MOM_VECINV.F )

2.15.5 Gradient of Bernoulli function

𝐺𝜕𝑥𝐵
𝑢 =

1

∆𝑥𝑐
𝛿𝑖(𝜑

′ +𝐾𝐸) (2.135)

𝐺𝜕𝑦𝐵
𝑣 =

1

∆𝑥𝑦
𝛿𝑗(𝜑

′ +𝐾𝐸) (2.136)

S/R MOM_VI_U_GRAD_KE, MOM_VI_V_GRAD_KE

𝐺𝜕𝑥𝐾𝐸
𝑢 : uCf ( local to MOM_VECINV.F )

𝐺
𝜕𝑦𝐾𝐸
𝑣 : vCf ( local to MOM_VECINV.F )
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2.15.6 Horizontal divergence

The horizontal divergence, a complimentary quantity to relative vorticity, is used in parameterizing the Reynolds
stresses and is discretized:

𝐷 =
1

𝒜𝑐ℎ𝑐
(𝛿𝑖∆𝑦𝑔ℎ𝑤𝑢+ 𝛿𝑗∆𝑥𝑔ℎ𝑠𝑣) (2.137)

S/R MOM_CALC_KE

𝐷 : hDiv ( local to MOM_VECINV.F )

2.15.7 Horizontal dissipation

The following discretization of horizontal dissipation conserves potential vorticity (thickness weighted relative vortic-
ity) and divergence and dissipates energy, enstrophy and divergence squared:

𝐺ℎ−𝑑𝑖𝑠𝑠𝑖𝑝
𝑢 =

1

∆𝑥𝑐
𝛿𝑖(𝐴𝐷𝐷 −𝐴𝐷4𝐷

*) − 1

∆𝑦𝑢ℎ𝑤
𝛿𝑗ℎ𝜁(𝐴𝜁𝜁 −𝐴𝜁4𝜁

*) (2.138)

𝐺ℎ−𝑑𝑖𝑠𝑠𝑖𝑝
𝑣 =

1

∆𝑥𝑣ℎ𝑠
𝛿𝑖ℎ𝜁(𝐴𝜁𝜁 −𝐴𝜁𝜁

*) +
1

∆𝑦𝑐
𝛿𝑗(𝐴𝐷𝐷 −𝐴𝐷4𝐷

*) (2.139)

where

𝐷* =
1

𝒜𝑐ℎ𝑐
(𝛿𝑖∆𝑦𝑔ℎ𝑤∇2𝑢+ 𝛿𝑗∆𝑥𝑔ℎ𝑠∇2𝑣)

𝜁* =
1

𝒜𝜁
(𝛿𝑖∆𝑦𝑐∇2𝑣 − 𝛿𝑗∆𝑥𝑐∇2𝑢)

S/R MOM_VI_HDISSIP

𝐺ℎ−𝑑𝑖𝑠𝑠𝑖𝑝
𝑢 : uDissip ( local to MOM_VI_HDISSIP.F )

𝐺ℎ−𝑑𝑖𝑠𝑠𝑖𝑝
𝑣 : vDissip ( local to MOM_VI_HDISSIP.F )

2.15.8 Vertical dissipation

Currently, this is exactly the same code as the flux form equations.

𝐺𝑣−𝑑𝑖𝑠𝑠
𝑢 =

1

∆𝑟𝑓ℎ𝑤
𝛿𝑘𝜏13 (2.140)

𝐺𝑣−𝑑𝑖𝑠𝑠
𝑣 =

1

∆𝑟𝑓ℎ𝑠
𝛿𝑘𝜏23 (2.141)

represents the general discrete form of the vertical dissipation terms.

In the interior the vertical stresses are discretized:

𝜏13 = 𝐴𝑣
1

∆𝑟𝑐
𝛿𝑘𝑢

𝜏23 = 𝐴𝑣
1

∆𝑟𝑐
𝛿𝑘𝑣

S/R MOM_U_RVISCFLUX, MOM_V_RVISCFLUX

𝜏13, 𝜏23 : vrf ( local to MOM_VECINV.F )
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2.16 Tracer equations

The basic discretization used for the tracer equations is the second order piece-wise constant finite volume form of the
forced advection-diffusion equations. There are many alternatives to second order method for advection and alternative
parameterizations for the sub-grid scale processes. The Gent-McWilliams eddy parameterization, KPP mixing scheme
and PV flux parameterization are all dealt with in separate sections. The basic discretization of the advection-diffusion
part of the tracer equations and the various advection schemes will be described here.

2.16.1 Time-stepping of tracers: ABII

The default advection scheme is the centered second order method which requires a second order or quasi-second
order time-stepping scheme to be stable. Historically this has been the quasi-second order Adams-Bashforth method
(ABII) and applied to all terms. For an arbitrary tracer, 𝜏 , the forced advection-diffusion equation reads:

𝜕𝑡𝜏 +𝐺𝜏
𝑎𝑑𝑣 = 𝐺𝜏

𝑑𝑖𝑓𝑓 +𝐺𝜏
𝑓𝑜𝑟𝑐 (2.142)

where 𝐺𝜏
𝑎𝑑𝑣 , 𝐺𝜏

𝑑𝑖𝑓𝑓 and 𝐺𝜏
𝑓𝑜𝑟𝑐 are the tendencies due to advection, diffusion and forcing, respectively, namely:

𝐺𝜏
𝑎𝑑𝑣 = 𝜕𝑥𝑢𝜏 + 𝜕𝑦𝑣𝜏 + 𝜕𝑟𝑤𝜏 − 𝜏∇ · v (2.143)

𝐺𝜏
𝑑𝑖𝑓𝑓 = ∇ ·K∇𝜏 (2.144)

and the forcing can be some arbitrary function of state, time and space.

The term, 𝜏∇ · v, is required to retain local conservation in conjunction with the linear implicit free-surface. It only
affects the surface layer since the flow is non-divergent everywhere else. This term is therefore referred to as the
surface correction term. Global conservation is not possible using the flux-form (as here) and a linearized free-surface
(Griffies and Hallberg (2000) [GH00] , Campin et al. (2004) [CAHM04]).

The continuity equation can be recovered by setting 𝐺𝑑𝑖𝑓𝑓 = 𝐺𝑓𝑜𝑟𝑐 = 0 and 𝜏 = 1.

The driver routine that calls the routines to calculate tendencies are CALC_GT and CALC_GS for temperature and
salt (moisture), respectively. These in turn call a generic advection diffusion routine GAD_CALC_RHS that is called
with the flow field and relevant tracer as arguments and returns the collective tendency due to advection and diffusion.
Forcing is add subsequently in CALC_GT or CALC_GS to the same tendency array.

S/R GAD_CALC_RHS

𝜏 : tau ( argument )
𝐺(𝑛) : gTracer ( argument )
𝐹𝑟 : fVerT ( argument )

The space and time discretization are treated separately (method of lines). Tendencies are calculated at time levels 𝑛
and 𝑛− 1 and extrapolated to 𝑛+ 1/2 using the Adams-Bashforth method:

𝐺(𝑛+1/2) = (
3

2
+ 𝜖)𝐺(𝑛) − (

1

2
+ 𝜖)𝐺(𝑛−1) (2.145)

where 𝐺(𝑛) = 𝐺𝜏
𝑎𝑑𝑣 +𝐺𝜏

𝑑𝑖𝑓𝑓 +𝐺𝜏
𝑠𝑟𝑐 at time step 𝑛. The tendency at 𝑛− 1 is not re-calculated but rather the tendency

at 𝑛 is stored in a global array for later re-use.

S/R ADAMS_BASHFORTH2

𝐺(𝑛+1/2) : gTracer ( argument on exit )
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𝐺(𝑛) : gTracer ( argument on entry )
𝐺(𝑛−1) : gTrNm1 ( argument )
𝜖 : ABeps ( PARAMS.h )

The tracers are stepped forward in time using the extrapolated tendency:

𝜏 (𝑛+1) = 𝜏 (𝑛) + ∆𝑡𝐺(𝑛+1/2) (2.146)

S/R TIMESTEP_TRACER

𝜏 (𝑛+1) : gTracer ( argument on exit )
𝜏 (𝑛) : tracer ( argument on entry )
𝐺(𝑛+1/2) : gTracer ( argument )
∆𝑡 : deltaTtracer ( PARAMS.h )

Strictly speaking the ABII scheme should be applied only to the advection terms. However, this scheme is only used
in conjunction with the standard second, third and fourth order advection schemes. Selection of any other advection
scheme disables Adams-Bashforth for tracers so that explicit diffusion and forcing use the forward method.

2.17 Advection schemes

2.17.1 Linear advection schemes

The advection schemes known as centered second order, centered fourth order, first order upwind and upwind biased
third order are known as linear advection schemes because the coefficient for interpolation of the advected tracer are
linear and a function only of the flow, not the tracer field it self. We discuss these first since they are most commonly
used in the field and most familiar.

2.17.1.1 Centered second order advection-diffusion

The basic discretization, centered second order, is the default. It is designed to be consistent with the continuity
equation to facilitate conservation properties analogous to the continuum. However, centered second order advection
is notoriously noisy and must be used in conjunction with some finite amount of diffusion to produce a sensible
solution.

The advection operator is discretized:

𝒜𝑐∆𝑟𝑓ℎ𝑐𝐺
𝜏
𝑎𝑑𝑣 = 𝛿𝑖𝐹𝑥 + 𝛿𝑗𝐹𝑦 + 𝛿𝑘𝐹𝑟 (2.147)

where the area integrated fluxes are given by:

𝐹𝑥 = 𝑈𝜏 𝑖

𝐹𝑦 = 𝑉 𝜏 𝑗

𝐹𝑟 = 𝑊𝜏𝑘

The quantities 𝑈 , 𝑉 and 𝑊 are volume fluxes. defined as:

𝑈 = ∆𝑦𝑔∆𝑟𝑓ℎ𝑤𝑢

𝑉 = ∆𝑥𝑔∆𝑟𝑓ℎ𝑠𝑣

𝑊 = 𝒜𝑐𝑤
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For non-divergent flow, this discretization can be shown to conserve the tracer both locally and globally and to globally
conserve tracer variance, 𝜏2. The proof is given in Adcroft (1995) [Adc95] and Adcroft et al. (1997) [AHM97] .

S/R GAD_C2_ADV_X

𝐹𝑥 : uT ( argument )
𝑈 : uTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_C2_ADV_Y

𝐹𝑦 : vT ( argument )
𝑉 : vTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_C2_ADV_R

𝐹𝑟 : wT ( argument )
𝑊 : rTrans ( argument )
𝜏 : tracer ( argument )

2.17.1.2 Third order upwind bias advection

Upwind biased third order advection offers a relatively good compromise between accuracy and smoothness. It is not
a “positive” scheme meaning false extrema are permitted but the amplitude of such are significantly reduced over the
centered second order method.

The third order upwind fluxes are discretized:

𝐹𝑥 = 𝑈𝜏 − 1

6
𝛿𝑖𝑖𝜏

𝑖

+
1

2
|𝑈 |𝛿𝑖

1

6
𝛿𝑖𝑖𝜏

𝐹𝑦 = 𝑉 𝜏 − 1

6
𝛿𝑖𝑖𝜏

𝑗

+
1

2
|𝑉 |𝛿𝑗

1

6
𝛿𝑗𝑗𝜏

𝐹𝑟 = 𝑊𝜏 − 1

6
𝛿𝑖𝑖𝜏

𝑘

+
1

2
|𝑊 |𝛿𝑘

1

6
𝛿𝑘𝑘𝜏

At boundaries, 𝛿𝑛̂𝜏 is set to zero allowing 𝛿𝑛𝑛 to be evaluated. We are currently examine the accuracy of this boundary
condition and the effect on the solution.

S/R GAD_U3_ADV_X

𝐹𝑥 : uT ( argument )
𝑈 : uTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_U3_ADV_Y

𝐹𝑦 : vT ( argument )
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𝑉 : vTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_U3_ADV_R

𝐹𝑟 : wT ( argument )
𝑊 : rTrans ( argument )
𝜏 : tracer ( argument )

2.17.1.3 Centered fourth order advection

Centered fourth order advection is formally the most accurate scheme we have implemented and can be used to
great effect in high resolution simulations where dynamical scales are well resolved. However, the scheme is noisy,
like the centered second order method, and so must be used with some finite amount of diffusion. Bi-harmonic is
recommended since it is more scale selective and less likely to diffuse away the well resolved gradient the fourth order
scheme worked so hard to create.

The centered fourth order fluxes are discretized:

𝐹𝑥 = 𝑈𝜏 − 1

6
𝛿𝑖𝑖𝜏

𝑖

𝐹𝑦 = 𝑉 𝜏 − 1

6
𝛿𝑖𝑖𝜏

𝑗

𝐹𝑟 = 𝑊𝜏 − 1

6
𝛿𝑖𝑖𝜏

𝑘

As for the third order scheme, the best discretization near boundaries is under investigation but currently 𝛿𝑖𝜏 = 0 on a
boundary.

S/R GAD_C4_ADV_X

𝐹𝑥 : uT ( argument )
𝑈 : uTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_C4_ADV_Y

𝐹𝑦 : vT ( argument )
𝑉 : vTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_C4_ADV_R

𝐹𝑟 : wT ( argument )
𝑊 : rTrans ( argument )
𝜏 : tracer ( argument )
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2.17.1.4 First order upwind advection

Although the upwind scheme is the underlying scheme for the robust or non-linear methods given in Section 2.17.2,
we haven’t actually implemented this method for general use. It would be very diffusive and it is unlikely that it could
ever produce more useful results than the positive higher order schemes.

Upwind bias is introduced into many schemes using the abs function and it allows the first order upwind flux to be
written:

𝐹𝑥 = 𝑈𝜏 𝑖 − 1

2
|𝑈 |𝛿𝑖𝜏

𝐹𝑦 = 𝑉 𝜏 𝑗 − 1

2
|𝑉 |𝛿𝑗𝜏

𝐹𝑟 = 𝑊𝜏𝑘 − 1

2
|𝑊 |𝛿𝑘𝜏

If for some reason the above method is desired, the second order flux limiter scheme described in Section 2.17.2.1
reduces to the above scheme if the limiter is set to zero.

2.17.2 Non-linear advection schemes

Non-linear advection schemes invoke non-linear interpolation and are widely used in computational fluid dynamics
(non-linear does not refer to the non-linearity of the advection operator). The flux limited advection schemes belong
to the class of finite volume methods which neatly ties into the spatial discretization of the model.

When employing the flux limited schemes, first order upwind or direct-space-time method, the time-stepping is
switched to forward in time.

2.17.2.1 Second order flux limiters

The second order flux limiter method can be cast in several ways but is generally expressed in terms of other flux
approximations. For example, in terms of a first order upwind flux and second order Lax-Wendroff flux, the limited
flux is given as:

𝐹 = 𝐹1 + 𝜓(𝑟)𝐹𝐿𝑊 (2.148)

where 𝜓(𝑟) is the limiter function,

𝐹1 = 𝑢𝜏 𝑖 − 1

2
|𝑢|𝛿𝑖𝜏

is the upwind flux,

𝐹𝐿𝑊 = 𝐹1 +
|𝑢|
2

(1 − 𝑐)𝛿𝑖𝜏

is the Lax-Wendroff flux and 𝑐 = 𝑢Δ𝑡
Δ𝑥 is the Courant (CFL) number.

The limiter function, 𝜓(𝑟), takes the slope ratio

𝑟 =
𝜏𝑖−1 − 𝜏𝑖−2

𝜏𝑖 − 𝜏𝑖−1
∀ 𝑢 > 0

𝑟 =
𝜏𝑖+1 − 𝜏𝑖
𝜏𝑖 − 𝜏𝑖−1

∀ 𝑢 < 0

as its argument. There are many choices of limiter function but we only provide the Superbee limiter (Roe 1995
[Roe85]):

𝜓(𝑟) = max[0,min[1, 2𝑟],min[2, 𝑟]]
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S/R GAD_FLUXLIMIT_ADV_X

𝐹𝑥 : uT ( argument )
𝑈 : uTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_FLUXLIMIT_ADV_Y

𝐹𝑦 : vT ( argument )
𝑉 : vTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_FLUXLIMIT_ADV_R

𝐹𝑟 : wT ( argument )
𝑊 : rTrans ( argument )
𝜏 : tracer ( argument )

2.17.2.2 Third order direct space-time

The direct space-time method deals with space and time discretization together (other methods that treat space and
time separately are known collectively as the “Method of Lines”). The Lax-Wendroff scheme falls into this category;
it adds sufficient diffusion to a second order flux that the forward-in-time method is stable. The upwind biased third
order DST scheme is:

𝐹 = 𝑢 (𝜏𝑖−1 + 𝑑0(𝜏𝑖 − 𝜏𝑖−1) + 𝑑1(𝜏𝑖−1 − 𝜏𝑖−2)) ∀ 𝑢 > 0

𝐹 = 𝑢 (𝜏𝑖 − 𝑑0(𝜏𝑖 − 𝜏𝑖−1) − 𝑑1(𝜏𝑖+1 − 𝜏𝑖)) ∀ 𝑢 < 0
(2.149)

where

𝑑0 =
1

6
(2 − |𝑐|)(1 − |𝑐|)

𝑑1 =
1

6
(1 − |𝑐|)(1 + |𝑐|)

The coefficients 𝑑0 and 𝑑1 approach 1/3 and 1/6 respectively as the Courant number, 𝑐, vanishes. In this limit, the
conventional third order upwind method is recovered. For finite Courant number, the deviations from the linear method
are analogous to the diffusion added to centered second order advection in the Lax-Wendroff scheme.

The DST3 method described above must be used in a forward-in-time manner and is stable for 0 ≤ |𝑐| ≤ 1. Although
the scheme appears to be forward-in-time, it is in fact third order in time and the accuracy increases with the Courant
number! For low Courant number, DST3 produces very similar results (indistinguishable in Figure 2.12) to the linear
third order method but for large Courant number, where the linear upwind third order method is unstable, the scheme
is extremely accurate (Figure 2.13) with only minor overshoots.

S/R GAD_DST3_ADV_X

𝐹𝑥 : uT ( argument )
𝑈 : uTrans ( argument )
𝜏 : tracer ( argument )
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S/R GAD_DST3_ADV_Y

𝐹𝑦 : vT ( argument )
𝑉 : vTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_DST3_ADV_R

𝐹𝑟 : wT ( argument )
𝑊 : rTrans ( argument )
𝜏 : tracer ( argument )

2.17.2.3 Third order direct space-time with flux limiting

The overshoots in the DST3 method can be controlled with a flux limiter. The limited flux is written:

𝐹 =
1

2
(𝑢+ |𝑢|)

(︀
𝜏𝑖−1 + 𝜓(𝑟+)(𝜏𝑖 − 𝜏𝑖−1)

)︀
+

1

2
(𝑢− |𝑢|)

(︀
𝜏𝑖−1 + 𝜓(𝑟−)(𝜏𝑖 − 𝜏𝑖−1)

)︀
(2.150)

where

𝑟+ =
𝜏𝑖−1 − 𝜏𝑖−2

𝜏𝑖 − 𝜏𝑖−1

𝑟− =
𝜏𝑖+1 − 𝜏𝑖
𝜏𝑖 − 𝜏𝑖−1

and the limiter is the Sweby limiter:

𝜓(𝑟) = max[0,min[min(1, 𝑑0 + 𝑑1𝑟],
1 − 𝑐

𝑐
𝑟]]

S/R GAD_DST3FL_ADV_X

𝐹𝑥 : uT ( argument )
𝑈 : uTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_DST3FL_ADV_Y

𝐹𝑦 : vT ( argument )
𝑉 : vTrans ( argument )
𝜏 : tracer ( argument )

S/R GAD_DST3FL_ADV_R

𝐹𝑟 : wT ( argument )
𝑊 : rTrans ( argument )
𝜏 : tracer ( argument )
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2.17.2.4 Multi-dimensional advection

In many of the aforementioned advection schemes the behavior in multiple dimensions is not necessarily as good as
the one dimensional behavior. For instance, a shape preserving monotonic scheme in one dimension can have severe
shape distortion in two dimensions if the two components of horizontal fluxes are treated independently. There is a
large body of literature on the subject dealing with this problem and among the fixes are operator and flux splitting
methods, corner flux methods, and more. We have adopted a variant on the standard splitting methods that allows the
flux calculations to be implemented as if in one dimension:

𝜏𝑛+1/3 = 𝜏𝑛 − ∆𝑡

(︂
1

∆𝑥
𝛿𝑖𝐹

𝑥(𝜏𝑛) − 𝜏𝑛
1

∆𝑥
𝛿𝑖𝑢

)︂
𝜏𝑛+2/3 = 𝜏𝑛+1/3 − ∆𝑡

(︂
1

∆𝑦
𝛿𝑗𝐹

𝑦(𝜏𝑛+1/3) − 𝜏𝑛
1

∆𝑦
𝛿𝑖𝑣

)︂
𝜏𝑛+3/3 = 𝜏𝑛+2/3 − ∆𝑡

(︂
1

∆𝑟
𝛿𝑘𝐹

𝑥(𝜏𝑛+2/3) − 𝜏𝑛
1

∆𝑟
𝛿𝑖𝑤

)︂ (2.151)

In order to incorporate this method into the general model algorithm, we compute the effective tendency rather than
update the tracer so that other terms such as diffusion are using the 𝑛 time-level and not the updated 𝑛+3/3 quantities:

𝐺
𝑛+1/2
𝑎𝑑𝑣 =

1

∆𝑡
(𝜏𝑛+3/3 − 𝜏𝑛)

So that the over all time-stepping looks likes:

𝜏𝑛+1 = 𝜏𝑛 + ∆𝑡
(︁
𝐺

𝑛+1/2
𝑎𝑑𝑣 +𝐺𝑑𝑖𝑓𝑓 (𝜏𝑛) +𝐺𝑛

𝑓𝑜𝑟𝑐𝑖𝑛𝑔

)︁

S/R GAD_ADVECTION

𝜏 : tracer ( argument )

𝐺
𝑛+1/2
𝑎𝑑𝑣 : gTracer ( argument )

𝐹𝑥, 𝐹𝑦, 𝐹𝑟 : aF ( local )
𝑈 : uTrans ( local )
𝑉 : vTrans ( local )
𝑊 : rTrans ( local )

A schematic of multi-dimension time stepping for the cube sphere configuration is show in Figure 2.11 .

2.17.3 Comparison of advection schemes

Table 2.2 shows a summary of the different advection schemes available in MITgcm. “AB” stands for Adams-
Bashforth and “DST” for direct space-time. The code corresponds to the number used to select the corresponding
advection scheme in the parameter file (e.g., tempAdvScheme=3 in file data selects the 3rd order upwind advec-
tion scheme for temperature advection).
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Figure 2.11: Multi-dimensional advection time-stepping with cubed-sphere topology.
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Table 2.2: MITgcm Advection Schemes
Advection Scheme Code Use

AB?
Use multi-
dim?

Stencil (1-
D)

Comments

1st order upwind 1 no yes* 3 linear 𝜏 , non-
linear 𝑣⃗

centered 2nd order 2 yes no 3 linear
3rd order upwind 3 yes no 5 linear 𝜏
centered 4th order 4 yes no 5 linear
2nd order DST (Lax-Wendroff) 20 no yes* 3 linear 𝜏 , non-

linear 𝑣⃗
3rd order DST 30 no yes* 5 linear 𝜏 , non-

linear 𝑣⃗
2nd order flux limiters 77 no yes* 5 non-linear
3rd order DST flux limiter 33 no yes* 5 non-linear
piecewise parabolic w/“null” limiter 40 no yes 7 non-linear
piecewise parabolic w/“mono” limiter 41 no yes 7 non-linear
piecewise parabolic w/“weno” limiter 42 no yes 7 non-linear
piecewise quartic w/“null” limiter 50 no yes 9 non-linear
piecewise quartic w/“mono” limiter 51 no yes 9 non-linear
piecewise quartic w/“weno” limiter 52 no yes 9 non-linear
7th order one-step method w/monotonicity
preserving limiter

7 no yes 9 non-linear

second order-moment Prather 80 no yes 3 non-linear
second order-moment Prather w/limiter 81 no yes 3 non-linear

yes* indicates that either the multi-dim advection algorithm or standard approach can be utilized, controlled by a
namelist parameter multiDimAdvection (in these cases, given that these schemes was designed to use multi-dim ad-
vection, using the standard approach is not recommended). The minimum size of the required tile overlap region
(OLx, OLx) is (stencil size -1)/2. The minimum overlap required by the model in general is 2, so for some of the
above choices the advection scheme will not cost anything in terms of an additional overlap requirement, but es-
pecially given a small tile size, using scheme 7 for example would require costly additional overlap points (note a
cube sphere grid with a “wet-corner” requires doubling this overlap!) In the ‘Comments’ column, 𝜏 refers to tracer
advection, 𝑣⃗ momentum advection.

Shown in Figure 2.12 and Figure 2.13 is a 1-D comparison of advection schemes. Here we advect both a smooth hill
and a hill with a more abrupt shock. Figure 2.12 shown the result for a weak flow (low Courant number) whereas
Figure 2.13 shows the result for a stronger flow (high Courant number).

Figure 2.14, Figure 2.15 and Figure 2.16 show solutions to a simple diagonal advection problem using a selection of
schemes for low, moderate and high Courant numbers, respectively. The top row shows the linear schemes, integrated
with the Adams-Bashforth method. Theses schemes are clearly unstable for the high Courant number and weakly
unstable for the moderate Courant number. The presence of false extrema is very apparent for all Courant numbers.
The middle row shows solutions obtained with the unlimited but multi-dimensional schemes. These solutions also
exhibit false extrema though the pattern now shows symmetry due to the multi-dimensional scheme. Also, the schemes
are stable at high Courant number where the linear schemes weren’t. The bottom row (left and middle) shows the
limited schemes and most obvious is the absence of false extrema. The accuracy and stability of the unlimited non-
linear schemes is retained at high Courant number but at low Courant number the tendency is to lose amplitude in
sharp peaks due to diffusion. The one dimensional tests shown in Figure 2.12 and Figure 2.13 show this phenomenon.

Finally, the bottom left and right panels use the same advection scheme but the right does not use the multi-dimensional
method. At low Courant number this appears to not matter but for moderate Courant number severe distortion of the
feature is apparent. Moreover, the stability of the multi-dimensional scheme is determined by the maximum Courant
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Figure 2.12: Comparison of 1-D advection schemes: Courant number is 0.05 with 60 points and solutions are shown
for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind, DST3, third order upwind
and second order upwind. b) Shows the centered schemes; Lax-Wendroff, DST4, centered second order, centered
fourth order and finite volume fourth order. c) Shows the second order flux limiters: minmod, Superbee, MC limiter
and the van Leer limiter. d) Shows the DST3 method with flux limiters due to Sweby with 𝜇 = 1 , 𝜇 = 𝑐/(1 − 𝑐) and
a fourth order DST method with Sweby limiter, 𝜇 = 𝑐/(1 − 𝑐) .
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Figure 2.13: Comparison of 1-D advection schemes: Courant number is 0.89 with 60 points and solutions are shown
for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind and DST3. Third order
upwind and second order upwind are unstable at this Courant number. b) Shows the centered schemes; Lax-Wendroff,
DST4. Centered second order, centered fourth order and finite volume fourth order are unstable at this Courant number.
c) Shows the second order flux limiters: minmod, Superbee, MC limiter and the van Leer limiter. d) Shows the DST3
method with flux limiters due to Sweby with 𝜇 = 1 , 𝜇 = 𝑐/(1 − 𝑐) and a fourth order DST method with Sweby
limiter, 𝜇 = 𝑐/(1 − 𝑐) .
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number applied of each dimension while the stability of the method of lines is determined by the sum. Hence, in the
high Courant number plot, the scheme is unstable.

With many advection schemes implemented in the code two questions arise: “Which scheme is best?” and “Why don’t
you just offer the best advection scheme?”. Unfortunately, no one advection scheme is “the best” for all particular
applications and for new applications it is often a matter of trial to determine which is most suitable. Here are some
guidelines but these are not the rule;

• If you have a coarsely resolved model, using a positive or upwind biased scheme will introduce significant
diffusion to the solution and using a centered higher order scheme will introduce more noise. In this case,
simplest may be best.

• If you have a high resolution model, using a higher order scheme will give a more accurate solution but scale-
selective diffusion might need to be employed. The flux limited methods offer similar accuracy in this regime.

• If your solution has shocks or propagating fronts then a flux limited scheme is almost essential.

• If your time-step is limited by advection, the multi-dimensional non-linear schemes have the most stability (up
to Courant number 1).

• If you need to know how much diffusion/dissipation has occurred you will have a lot of trouble figuring it out
with a non-linear method.

• The presence of false extrema is non-physical and this alone is the strongest argument for using a positive
scheme.

2.18 Shapiro Filter

The Shapiro filter (Shapiro 1970) [Sha70] is a high order horizontal filter that efficiently remove small scale grid noise
without affecting the physical structures of a field. It is applied at the end of the time step on both velocity and tracer
fields.

Three different space operators are considered here (S1,S2 and S4). They differ essentially by the sequence of deriva-
tive in both X and Y directions. Consequently they show different damping response function specially in the diagonal
directions X+Y and X-Y.

Space derivatives can be computed in the real space, taking into account the grid spacing. Alternatively, a pure
computational filter can be defined, using pure numerical differences and ignoring grid spacing. This later form is
stable whatever the grid is, and therefore specially useful for highly anisotropic grid such as spherical coordinate grid.
A damping time-scale parameter 𝜏𝑠ℎ𝑎𝑝 defines the strength of the filter damping.

The three computational filter operators are :

S1c : [1 − 1/2
∆𝑡

𝜏𝑠ℎ𝑎𝑝
{(

1

4
𝛿𝑖𝑖)

𝑛 + (
1

4
𝛿𝑗𝑗)

𝑛}]

S2c : [1 − ∆𝑡

𝜏𝑠ℎ𝑎𝑝
{1

8
(𝛿𝑖𝑖 + 𝛿𝑗𝑗)}𝑛]

S4c : [1 − ∆𝑡

𝜏𝑠ℎ𝑎𝑝
(
1

4
𝛿𝑖𝑖)

𝑛][1 − ∆𝑡

𝜏𝑠ℎ𝑎𝑝
(
1

4
𝛿𝑗𝑗)

𝑛]

In addition, the S2 operator can easily be extended to a physical space filter:

S2g : [1 − ∆𝑡

𝜏𝑠ℎ𝑎𝑝
{
𝐿2
𝑠ℎ𝑎𝑝

8
∇2}𝑛]

with the Laplacian operator ∇2
and a length scale parameter 𝐿𝑠ℎ𝑎𝑝. The stability of this S2g filter requires 𝐿𝑠ℎ𝑎𝑝 <

Min(𝐺𝑙𝑜𝑏𝑎𝑙)(∆𝑥,∆𝑦).

2.18. Shapiro Filter 87



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

2nd order centered

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3rd order upwind

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4th order centered

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Lax−Wendroff

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3−DST

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4−DST

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Superbee flux limiter

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3−DST Sweby µ=µ(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Superbee (no multi−dim)

Figure 2.14: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.01 with 30 × 30 points and solutions are shown for T=1/2. White lines indicate zero crossing
(ie. the presence of false minima). The left column shows the second order schemes; top) centered second order with
Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third
order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method
and bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-
Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the
Superbee flux limiter (second order) applied independently in each direction (method of lines).

88 Chapter 2. Discretization and Algorithm



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

2nd order centered

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3rd order upwind

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4th order centered

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Lax−Wendroff

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3−DST

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4−DST

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Superbee flux limiter

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

3−DST Sweby µ=µ(c)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Superbee (no multi−dim)

Figure 2.15: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.27 with 30 × 30 points and solutions are shown for T=1/2. White lines indicate zero crossing
(ie. the presence of false minima). The left column shows the second order schemes; top) centered second order with
Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third
order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method
and bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-
Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the
Superbee flux limiter (second order) applied independently in each direction (method of lines).
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Figure 2.16: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.47 with 30 × 30 points and solutions are shown for T=1/2. White lines indicate zero crossings
and initial maximum values (ie. the presence of false extrema). The left column shows the second order schemes; top)
centered second order with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle
column shows the third order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order
direct space-time method and bottom) the same with flux limiting. The top right panel shows the centered fourth order
scheme with Adams-Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right
panel shows the Superbee flux limiter (second order) applied independently in each direction (method of lines).
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2.18.1 SHAP Diagnostics

--------------------------------------------------------------
<-Name->|Levs|parsing code|<-Units->|<- Tile (max=80c)
--------------------------------------------------------------
SHAP_dT | 5 |SM MR |K/s |Temperature Tendency due to Shapiro Filter
SHAP_dS | 5 |SM MR |g/kg/s |Specific Humidity Tendency due to Shapiro Filter
SHAP_dU | 5 |UU 148MR |m/s^2 |Zonal Wind Tendency due to Shapiro Filter
SHAP_dV | 5 |VV 147MR |m/s^2 |Meridional Wind Tendency due to Shapiro Filter

2.19 Nonlinear Viscosities for Large Eddy Simulation

In Large Eddy Simulations (LES), a turbulent closure needs to be provided that accounts for the effects of subgridscale
motions on the large scale. With sufficiently powerful computers, we could resolve the entire flow down to the
molecular viscosity scales (𝐿𝜈 ≈ 1cm). Current computation allows perhaps four decades to be resolved, so the
largest problem computationally feasible would be about 10m. Most oceanographic problems are much larger in
scale, so some form of LES is required, where only the largest scales of motion are resolved, and the subgridscale
effects on the large-scale are parameterized.

To formalize this process, we can introduce a filter over the subgridscale L: 𝑢𝛼 → 𝑢𝛼 and L: 𝑏 → 𝑏. This filter
has some intrinsic length and time scales, and we assume that the flow at that scale can be characterized with a single
velocity scale (𝑉 ) and vertical buoyancy gradient (𝑁2). The filtered equations of motion in a local Mercator projection
about the gridpoint in question (see Appendix for notation and details of approximation) are:

𝐷𝑢̃

𝐷𝑡
− 𝑣 sin 𝜃

Ro sin 𝜃0
+
𝑀𝑅𝑜

Ro

𝜕𝜋

𝜕𝑥
= −

(︂
𝐷𝑢̃

𝐷𝑡
− 𝐷𝑢̃

𝐷𝑡

)︂
+

∇2𝑢̃

Re
(2.152)

𝐷𝑣

𝐷𝑡
− 𝑢̃ sin 𝜃

Ro sin 𝜃0
+
𝑀𝑅𝑜

Ro

𝜕𝜋

𝜕𝑦
= −

(︂
𝐷𝑣

𝐷𝑡
− 𝐷𝑣

𝐷𝑡

)︂
+

∇2𝑣

Re
(2.153)

𝐷𝑤

𝐷𝑡
+

𝜕𝜋
𝜕𝑧 − 𝑏

Fr2𝜆2
= −

(︂
𝐷𝑤

𝐷𝑡
− 𝐷𝑤

𝐷𝑡

)︂
+

∇2𝑤

Re

𝐷𝑏̄

𝐷𝑡
+ 𝑤 = −

(︂
𝐷𝑏

𝐷𝑡
− 𝐷𝑏̄

𝐷𝑡

)︂
+

∇2𝑏

Pr Re

𝜇2

(︂
𝜕𝑢̃

𝜕𝑥
+
𝜕𝑣

𝜕𝑦

)︂
+
𝜕𝑤

𝜕𝑧
= 0 (2.154)

Tildes denote multiplication by cos 𝜃/ cos 𝜃0 to account for converging meridians.

The ocean is usually turbulent, and an operational definition of turbulence is that the terms in parentheses (the ’eddy’
terms) on the right of (2.152) - (2.154)) are of comparable magnitude to the terms on the left-hand side. The terms
proportional to the inverse of , instead, are many orders of magnitude smaller than all of the other terms in virtually
every oceanic application.
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2.19.1 Eddy Viscosity

A turbulent closure provides an approximation to the ’eddy’ terms on the right of the preceding equations. The simplest
form of LES is just to increase the viscosity and diffusivity until the viscous and diffusive scales are resolved. That is,
we approximate (2.152) - (2.154): (︂

𝐷𝑢̃

𝐷𝑡
− 𝐷𝑢̃

𝐷𝑡

)︂
≈ ∇2

ℎ𝑢̃

Reℎ
+

𝜕2𝑢̃
𝜕𝑧2

Re𝑣
(2.155)

(︂
𝐷𝑣

𝐷𝑡
− 𝐷𝑣

𝐷𝑡

)︂
≈ ∇2

ℎ𝑣

Reℎ
+

𝜕2𝑣
𝜕𝑧2

Re𝑣
(2.156)

(︂
𝐷𝑤

𝐷𝑡
− 𝐷𝑤

𝐷𝑡

)︂
≈ ∇2

ℎ𝑤

Reℎ
+

𝜕2𝑤
𝜕𝑧2

Re𝑣
(2.157)

(︂
𝐷𝑏

𝐷𝑡
− 𝐷𝑏̄

𝐷𝑡

)︂
≈ ∇2

ℎ𝑏

Pr Reℎ
+

𝜕2𝑏
𝜕𝑧2

Pr Re𝑣

2.19.1.1 Reynolds-Number Limited Eddy Viscosity

One way of ensuring that the gridscale is sufficiently viscous (i.e., resolved) is to choose the eddy viscosity 𝐴ℎ so that
the gridscale horizontal Reynolds number based on this eddy viscosity, Reℎ, is O(1). That is, if the gridscale is to be
viscous, then the viscosity should be chosen to make the viscous terms as large as the advective ones. Bryan et al.
(1975) [BMP75] notes that a computational mode is squelched by using Reℎ <2.

MITgcm users can select horizontal eddy viscosities based on Reℎ using two methods. 1) The user may estimate the
velocity scale expected from the calculation and grid spacing and set viscAh to satisfy Reℎ < 2. 2) The user may
use viscAhReMax, which ensures that the viscosity is always chosen so that Reℎ < viscAhReMax. This last option
should be used with caution, however, since it effectively implies that viscous terms are fixed in magnitude relative to
advective terms. While it may be a useful method for specifying a minimum viscosity with little effort, tests Bryan et
al. (1975) [BMP75] have shown that setting viscAhReMax =2 often tends to increase the viscosity substantially over
other more ’physical’ parameterizations below, especially in regions where gradients of velocity are small (and thus
turbulence may be weak), so perhaps a more liberal value should be used, e.g. viscAhReMax =10.

While it is certainly necessary that viscosity be active at the gridscale, the wavelength where dissipation of energy or
enstrophy occurs is not necessarily 𝐿 = 𝐴ℎ/𝑈 . In fact, it is by ensuring that either the dissipation of energy in a 3-d
turbulent cascade (Smagorinsky) or dissipation of enstrophy in a 2-d turbulent cascade (Leith) is resolved that these
parameterizations derive their physical meaning.

2.19.1.2 Vertical Eddy Viscosities

Vertical eddy viscosities are often chosen in a more subjective way, as model stability is not usually as sensitive to
vertical viscosity. Usually the ’observed’ value from finescale measurements is used (e.g. viscAr≈ 1 × 10−4𝑚2/𝑠).
However, Smagorinsky (1993) [Sma93] notes that the Smagorinsky parameterization of isotropic turbulence implies a
value of the vertical viscosity as well as the horizontal viscosity (see below).
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2.19.1.3 Smagorinsky Viscosity

Some suggest (see Smagorinsky 1963 [Sma63]; Smagorinsky 1993 [Sma93]) choosing a viscosity that depends on the
resolved motions. Thus, the overall viscous operator has a nonlinear dependence on velocity. Smagorinsky chose his
form of viscosity by considering Kolmogorov’s ideas about the energy spectrum of 3-d isotropic turbulence.

Kolmogorov supposed that energy is injected into the flow at large scales (small 𝑘) and is ’cascaded’ or transferred
conservatively by nonlinear processes to smaller and smaller scales until it is dissipated near the viscous scale. By
setting the energy flux through a particular wavenumber 𝑘, 𝜖, to be a constant in 𝑘, there is only one combination
of viscosity and energy flux that has the units of length, the Kolmogorov wavelength. It is 𝐿𝜖(𝜈) ∝ 𝜋𝜖−1/4𝜈3/4

(the 𝜋 stems from conversion from wavenumber to wavelength). To ensure that this viscous scale is resolved in a
numerical model, the gridscale should be decreased until 𝐿𝜖(𝜈) > 𝐿 (so-called Direct Numerical Simulation, or
DNS). Alternatively, an eddy viscosity can be used and the corresponding Kolmogorov length can be made larger than
the gridscale, 𝐿𝜖(𝐴ℎ) ∝ 𝜋𝜖−1/4𝐴

3/4
ℎ (for Large Eddy Simulation or LES).

There are two methods of ensuring that the Kolmogorov length is resolved in MITgcm. 1) The user can estimate
the flux of energy through spectral space for a given simulation and adjust grid spacing or viscAh to ensure that
𝐿𝜖(𝐴ℎ) > 𝐿; 2) The user may use the approach of Smagorinsky with viscC2Smag, which estimates the energy flux at
every grid point, and adjusts the viscosity accordingly.

Smagorinsky formed the energy equation from the momentum equations by dotting them with velocity. There are
some complications when using the hydrostatic approximation as described by Smagorinsky (1993) [Sma93]. The
positive definite energy dissipation by horizontal viscosity in a hydrostatic flow is 𝜈𝐷2, where D is the deformation
rate at the viscous scale. According to Kolmogorov’s theory, this should be a good approximation to the energy flux
at any wavenumber 𝜖 ≈ 𝜈𝐷2. Kolmogorov and Smagorinsky noted that using an eddy viscosity that exceeds the
molecular value 𝜈 should ensure that the energy flux through viscous scale set by the eddy viscosity is the same as
it would have been had we resolved all the way to the true viscous scale. That is, 𝜖 ≈ 𝐴ℎ𝑆𝑚𝑎𝑔𝐷

2
. If we use this

approximation to estimate the Kolmogorov viscous length, then

𝐿𝜖(𝐴ℎ𝑆𝑚𝑎𝑔) ∝ 𝜋𝜖−1/4𝐴
3/4
ℎ𝑆𝑚𝑎𝑔 ≈ 𝜋(𝐴ℎ𝑆𝑚𝑎𝑔𝐷

2
)−1/4𝐴

3/4
ℎ𝑆𝑚𝑎𝑔 = 𝜋𝐴

1/2
ℎ𝑆𝑚𝑎𝑔𝐷

−1/2 (2.158)

To make 𝐿𝜖(𝐴ℎ𝑆𝑚𝑎𝑔) scale with the gridscale, then

𝐴ℎ𝑆𝑚𝑎𝑔 =

(︂
viscC2Smag

𝜋

)︂2

𝐿2|𝐷| (2.159)

Where the deformation rate appropriate for hydrostatic flows with shallow-water scaling is

|𝐷| =

√︃(︂
𝜕𝑢̃

𝜕𝑥
− 𝜕𝑣

𝜕𝑦

)︂2

+

(︂
𝜕𝑢̃

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

)︂2

(2.160)

The coefficient viscC2Smag is what an MITgcm user sets, and it replaces the proportionality in the Kolmogorov length
with an equality. Others (Griffies and Hallberg, 2000 [GH00]) suggest values of viscC2Smag from 2.2 to 4 for oceanic
problems. Smagorinsky (1993) [Sma93] shows that values from 0.2 to 0.9 have been used in atmospheric modeling.

Smagorinsky (1993) [Sma93] shows that a corresponding vertical viscosity should be used:

𝐴𝑣𝑆𝑚𝑎𝑔 =

(︂
viscC2Smag

𝜋

)︂2

𝐻2

√︃(︂
𝜕𝑢̃

𝜕𝑧

)︂2

+

(︂
𝜕𝑣

𝜕𝑧

)︂2

(2.161)

This vertical viscosity is currently not implemented in MITgcm.
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2.19.1.4 Leith Viscosity

Leith (1968, 1996) [Lei68] [Lei96] notes that 2-D turbulence is quite different from 3-D. In 2-D turbulence, energy
cascades to larger scales, so there is no concern about resolving the scales of energy dissipation. Instead, another
quantity, enstrophy, (which is the vertical component of vorticity squared) is conserved in 2-D turbulence, and it
cascades to smaller scales where it is dissipated.

Following a similar argument to that above about energy flux, the enstrophy flux is estimated to be equal to the
positive-definite gridscale dissipation rate of enstrophy 𝜂 ≈ 𝐴ℎ𝐿𝑒𝑖𝑡ℎ|∇𝜔3|2. By dimensional analysis, the enstrophy-
dissipation scale is 𝐿𝜂(𝐴ℎ𝐿𝑒𝑖𝑡ℎ) ∝ 𝜋𝐴

1/2
ℎ𝐿𝑒𝑖𝑡ℎ𝜂

−1/6. Thus, the Leith-estimated length scale of enstrophy-dissipation
and the resulting eddy viscosity are

𝐿𝜂(𝐴ℎ𝐿𝑒𝑖𝑡ℎ) ∝ 𝜋𝐴
1/2
ℎ𝐿𝑒𝑖𝑡ℎ𝜂

−1/6 = 𝜋𝐴
1/3
ℎ𝐿𝑒𝑖𝑡ℎ|∇𝜔3|−1/3 (2.162)

𝐴ℎ𝐿𝑒𝑖𝑡ℎ =

(︂
viscC2Leith

𝜋

)︂3

𝐿3|∇𝜔3| (2.163)

|∇𝜔3| ≡

√︃[︂
𝜕

𝜕𝑥

(︂
𝜕𝑣

𝜕𝑥
− 𝜕𝑢̃

𝜕𝑦

)︂]︂2
+

[︂
𝜕

𝜕𝑦

(︂
𝜕𝑣

𝜕𝑥
− 𝜕𝑢̃

𝜕𝑦

)︂]︂2
(2.164)

The runtime flag useFullLeith controls whether or not to calculate the full gradients for the Leith viscosity (.TRUE.)
or to use an approximation (.FALSE.). The only reason to set useFullLeith = .FALSE. is if your simulation fails when
computing the gradients. This can occur when using the cubed sphere and other complex grids.

2.19.1.5 Modified Leith Viscosity

The argument above for the Leith viscosity parameterization uses concepts from purely 2-dimensional turbulence,
where the horizontal flow field is assumed to be non-divergent. However, oceanic flows are only quasi-two dimen-
sional. While the barotropic flow, or the flow within isopycnal layers may behave nearly as two-dimensional turbu-
lence, there is a possibility that these flows will be divergent. In a high-resolution numerical model, these flows may
be substantially divergent near the grid scale, and in fact, numerical instabilities exist which are only horizontally
divergent and have little vertical vorticity. This causes a difficulty with the Leith viscosity, which can only respond to
buildup of vorticity at the grid scale.

MITgcm offers two options for dealing with this problem. 1) The Smagorinsky viscosity can be used instead of
Leith, or in conjunction with Leith – a purely divergent flow does cause an increase in Smagorinsky viscosity; 2) The
viscC2LeithD parameter can be set. This is a damping specifically targeting purely divergent instabilities near the
gridscale. The combined viscosity has the form:

𝐴ℎ𝐿𝑒𝑖𝑡ℎ = 𝐿3

√︃(︂
viscC2Leith

𝜋

)︂6

|∇𝜔3|2 +

(︂
viscC2LeithD

𝜋

)︂6

|∇∇ · 𝑢̃ℎ|2 (2.165)

|∇∇ · 𝑢̃ℎ| ≡

√︃[︂
𝜕

𝜕𝑥

(︂
𝜕𝑢̃

𝜕𝑥
+
𝜕𝑣

𝜕𝑦

)︂]︂2
+

[︂
𝜕

𝜕𝑦

(︂
𝜕𝑢̃

𝜕𝑥
+
𝜕𝑣

𝜕𝑦

)︂]︂2
(2.166)

Whether there is any physical rationale for this correction is unclear, but the numerical consequences are good. The
divergence in flows with the grid scale larger or comparable to the Rossby radius is typically much smaller than the
vorticity, so this adjustment only rarely adjusts the viscosity if viscC2LeithD = viscC2Leith. However, the rare regions
where this viscosity acts are often the locations for the largest vales of vertical velocity in the domain. Since the CFL
condition on vertical velocity is often what sets the maximum timestep, this viscosity may substantially increase
the allowable timestep without severely compromising the verity of the simulation. Tests have shown that in some
calculations, a timestep three times larger was allowed when viscC2LeithD = viscC2Leith.
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2.19.1.6 Quasi-Geostrophic Leith Viscosity

A variant of Leith viscosity can be derived for quasi-geostrophic dynamics. This leads to a slightly different equation
for the viscosity that includes a contribution from quasigeostrophic vortex stretching (Bachman et al. 2017 [BFKP17]).
The viscosity is given by

𝜈* =

(︂
Λ∆𝑠

𝜋

)︂3

|∇ℎ(𝑓 ẑ) + ∇ℎ(∇× vℎ*) + 𝜕𝑧
𝑓

𝑁2
∇ℎ𝑏| (2.167)

where Λ is a tunable parameter of 𝒪(1), ∆𝑠 =
√

∆𝑥∆𝑦 is the grid scale, 𝑓 ẑ is the vertical component of the Coriolis
parameter, vℎ* is the horizontal velocity, 𝑁2 is the Brunt-Väisälä frequency, and 𝑏 is the buoyancy.

However, the viscosity given by (2.167) does not constrain purely divergent motions. As such, a small 𝒪(𝜖) correction
is added

𝜈* =

(︂
Λ∆𝑠

𝜋

)︂3
√︂
|∇ℎ(𝑓 ẑ) + ∇ℎ(∇× vℎ*) + 𝜕𝑧

𝑓

𝑁2
∇ℎ𝑏|2 + |∇[∇ · vℎ]|2 (2.168)

This form is, however, numerically awkward; as the Brunt-Väisälä Frequency becomes very small in regions of weak
or vanishing stratification, the vortex stretching term becomes very large. The resulting large viscosities can lead to
numerical instabilities. Bachman et al. (2017) [BFKP17] present two limiting forms for the viscosity based on flow
parameters such as 𝐹𝑟*, the Froude number, and 𝑅𝑜*, the Rossby number. The second of which,

𝜈* =

(︂
Λ∆𝑠

𝜋

)︂3

√︃
𝑚𝑖𝑛

(︂
|∇ℎ𝑞2* + 𝜕𝑧

𝑓2

𝑁2
∇ℎ𝑏|,

(︂
1 +

𝐹𝑟2*
𝑅𝑜2*

+ 𝐹𝑟4*

)︂
|∇ℎ𝑞2*|

)︂2

+ |∇[∇ · vℎ]|2,

(2.169)

has been implemented and is active when #define ALLOW_LEITH_QG is included in a copy of
MOM_COMMON_OPTIONS.h in a code mods directory (specified through -mods command line option in gen-
make2).

LeithQG viscosity is designed to work best in simulations that resolve some mesoscale features. In simulations
that are too coarse to permit eddies or fine enough to resolve submesoscale features, it should fail gracefully. The
non-dimensional parameter viscC2LeithQG corresponds to Λ in the above equations and scales the viscosity; the
recommended value is 1.

There is no reason to use the quasi-geostrophic form of Leith at the same time as either standard Leith or modified
Leith. Therefore, the model will not run if non-zero values have been set for these coefficients; the model will stop
during the configuration check. LeithQG can be used regardless of the setting for useFullLeith. Just as for the other
forms of Leith viscosity, this flag determines whether or not the full gradients are used. The simplified gradients were
originally intended for use on complex grids, but have been shown to produce better kinetic energy spectra even on
very straightforward grids.

To add the LeithQG viscosity to the GMRedi coefficient, as was done in some of the simulations in Bachman et
al. (2017) [BFKP17], #define ALLOW_LEITH_QG must be specified, as described above. In addition to this,
the compile-time flag ALLOW_GM_LEITH_QG must also be defined in a (-mods) copy of GMREDI_OPTIONS.h
when the model is compiled, and the runtime parameter GM_useLeithQG set to .TRUE. in data.gmredi. This will
use the value of viscC2LeithQG specified in the data input file to compute the coefficient.
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2.19.1.7 Courant–Freidrichs–Lewy Constraint on Viscosity

Whatever viscosities are used in the model, the choice is constrained by gridscale and timestep by the
Courant–Freidrichs–Lewy (CFL) constraint on stability:

𝐴ℎ <
𝐿2

4∆𝑡

𝐴4 ≤ 𝐿4

32∆𝑡

The viscosities may be automatically limited to be no greater than these values in MITgcm by specifying viscAhGrid-
Max < 1 and viscA4GridMax < 1. Similarly-scaled minimum values of viscosities are provided by viscAhGridMin
and viscA4GridMin, which if used, should be set to values ≪ 1. 𝐿 is roughly the gridscale (see below).

Following Griffies and Hallberg (2000) [GH00], we note that there is a factor of ∆𝑥2/8 difference between the
harmonic and biharmonic viscosities. Thus, whenever a non-dimensional harmonic coefficient is used in the MITgcm
(e.g. viscAhGridMax < 1), the biharmonic equivalent is scaled so that the same non-dimensional value can be used
(e.g. viscA4GridMax < 1).

2.19.1.8 Biharmonic Viscosity

Holland (1978) [Hol78] suggested that eddy viscosities ought to be focused on the dynamics at the grid scale, as larger
motions would be ’resolved’. To enhance the scale selectivity of the viscous operator, he suggested a biharmonic eddy
viscosity instead of a harmonic (or Laplacian) viscosity:(︂

𝐷𝑢̃

𝐷𝑡
− 𝐷𝑢̃

𝐷𝑡

)︂
≈ −∇4

ℎ𝑢̃

Re4
+

𝜕2𝑢̃
𝜕𝑧2

Re𝑣
(2.170)

(︂
𝐷𝑣

𝐷𝑡
− 𝐷𝑣

𝐷𝑡

)︂
≈ −∇4

ℎ𝑣

Re4
+

𝜕2𝑣
𝜕𝑧2

Re𝑣(︂
𝐷𝑤

𝐷𝑡
− 𝐷𝑤

𝐷𝑡

)︂
≈ −∇4

ℎ𝑤

Re4
+

𝜕2𝑤
𝜕𝑧2

Re𝑣(︂
𝐷𝑏

𝐷𝑡
− 𝐷𝑏̄

𝐷𝑡

)︂
≈ −∇4

ℎ𝑏

Pr Re4
+

𝜕2𝑏
𝜕𝑧2

Pr Re𝑣

Griffies and Hallberg (2000) [GH00] propose that if one scales the biharmonic viscosity by stability considerations,
then the biharmonic viscous terms will be similarly active to harmonic viscous terms at the gridscale of the model, but
much less active on larger scale motions. Similarly, a biharmonic diffusivity can be used for less diffusive flows.

In practice, biharmonic viscosity and diffusivity allow a less viscous, yet numerically stable, simulation than harmonic
viscosity and diffusivity. However, there is no physical rationale for such operators being of leading order, and more
boundary conditions must be specified than for the harmonic operators. If one considers the approximations of (2.155)
- (2.158) and (2.170) - (2.171) to be terms in the Taylor series expansions of the eddy terms as functions of the large-
scale gradient, then one can argue that both harmonic and biharmonic terms would occur in the series, and the only
question is the choice of coefficients. Using biharmonic viscosity alone implies that one zeros the first non-vanishing
term in the Taylor series, which is unsupported by any fluid theory or observation.

Nonetheless, MITgcm supports a plethora of biharmonic viscosities and diffusivities, which are controlled with pa-
rameters named similarly to the harmonic viscosities and diffusivities with the substitution h → 4 in the MITgcm
parameter name. MITgcm also supports biharmonic Leith and Smagorinsky viscosities:

𝐴4𝑆𝑚𝑎𝑔 =

(︂
viscC4Smag

𝜋

)︂2
𝐿4

8
|𝐷| (2.171)
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𝐴4𝐿𝑒𝑖𝑡ℎ =
𝐿5

8

√︃(︂
viscC4Leith

𝜋

)︂6

|∇𝜔3|2 +

(︂
viscC4LeithD

𝜋

)︂6

|∇∇ · ũℎ|2 (2.172)

However, it should be noted that unlike the harmonic forms, the biharmonic scaling does not easily relate to whether
energy-dissipation or enstrophy-dissipation scales are resolved. If similar arguments are used to estimate these scales
and scale them to the gridscale, the resulting biharmonic viscosities should be:

𝐴4𝑆𝑚𝑎𝑔 =

(︂
viscC4Smag

𝜋

)︂5

𝐿5|∇2ũℎ| (2.173)

𝐴4𝐿𝑒𝑖𝑡ℎ = 𝐿6

√︃(︂
viscC4Leith

𝜋

)︂12

|∇2𝜔3|2 +

(︂
viscC4LeithD

𝜋

)︂12

|∇2∇ · ũℎ|2 (2.174)

Thus, the biharmonic scaling suggested by Griffies and Hallberg (2000) [GH00] implies:

|𝐷| ∝ 𝐿|∇2ũℎ|
|∇𝜔3| ∝ 𝐿|∇2𝜔3|

It is not at all clear that these assumptions ought to hold. Only the Griffies and Hallberg (2000) [GH00] forms are
currently implemented in MITgcm.

2.19.1.9 Selection of Length Scale

Above, the length scale of the grid has been denoted 𝐿. However, in strongly anisotropic grids, 𝐿𝑥 and 𝐿𝑦 will be
quite different in some locations. In that case, the CFL condition suggests that the minimum of 𝐿𝑥 and 𝐿𝑦 be used.
On the other hand, other viscosities which involve whether a particular wavelength is ’resolved’ might be better suited
to use the maximum of 𝐿𝑥 and 𝐿𝑦 . Currently, MITgcm uses useAreaViscLength to select between two options. If
false, the square root of the harmonic mean of 𝐿2

𝑥 and 𝐿2
𝑦 is used for all viscosities, which is closer to the minimum

and occurs naturally in the CFL constraint. If useAreaViscLength is true, then the square root of the area of the grid
cell is used.

2.19.2 Mercator, Nondimensional Equations

The rotating, incompressible, Boussinesq equations of motion (Gill, 1982) [Gil82] on a sphere can be written in
Mercator projection about a latitude 𝜃0 and geopotential height 𝑧 = 𝑟 − 𝑟0. The nondimensional form of these
equations is:

Ro
𝐷𝑢̃

𝐷𝑡
− 𝑣 sin 𝜃

sin 𝜃0
+𝑀𝑅𝑜

𝜕𝜋

𝜕𝑥
+
𝜆Fr2𝑀𝑅𝑜 cos 𝜃

𝜇 sin 𝜃0
𝑤 = −Fr2𝑀𝑅𝑜𝑢̃𝑤

𝑟/𝐻
+

Rox̂ · ∇2u

Re
(2.175)

Ro
𝐷𝑣

𝐷𝑡
+
𝑢̃ sin 𝜃

sin 𝜃0
+𝑀𝑅𝑜

𝜕𝜋

𝜕𝑦
= −𝜇Ro tan 𝜃(𝑢̃2 + 𝑣2)

𝑟/𝐿
− Fr2𝑀𝑅𝑜𝑣𝑤

𝑟/𝐻
+

Roŷ · ∇2u

Re
(2.176)

Fr2𝜆2
𝐷𝑤

𝐷𝑡
− 𝑏+

𝜕𝜋

𝜕𝑧
− 𝜆 cot 𝜃0𝑢̃

𝑀𝑅𝑜
=
𝜆𝜇2(𝑢̃2 + 𝑣2)

𝑀𝑅𝑜(𝑟/𝐿)
+

Fr2𝜆2ẑ · ∇2u

Re
(2.177)

𝐷𝑏

𝐷𝑡
+ 𝑤 =

∇2𝑏

Pr Re

𝜇2

(︂
𝜕𝑢̃

𝜕𝑥
+
𝜕𝑣

𝜕𝑦

)︂
+
𝜕𝑤

𝜕𝑧
= 0 (2.178)

Where

𝜇 ≡ cos 𝜃0
cos 𝜃

, 𝑢̃ =
𝑢*

𝑉 𝜇
, 𝑣 =

𝑣*

𝑉 𝜇
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𝑓0 ≡ 2Ω sin 𝜃0,
𝐷

𝐷𝑡
≡ 𝜇2

(︂
𝑢̃
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦

)︂
+

Fr2MRo

Ro
𝑤
𝜕

𝜕𝑧

𝑥 ≡ 𝑟

𝐿
𝜑 cos 𝜃0, 𝑦 ≡ 𝑟

𝐿

∫︁ 𝜃

𝜃0

cos 𝜃0 d𝜃′

cos 𝜃′
, 𝑧 ≡ 𝜆

𝑟 − 𝑟0
𝐿

𝑡* = 𝑡
𝐿

𝑉
, 𝑏* = 𝑏

𝑉 𝑓0𝑀𝑅𝑜

𝜆

𝜋* = 𝜋𝑉 𝑓0𝐿𝑀𝑅𝑜, 𝑤* = 𝑤𝑉
Fr2𝜆𝑀𝑅𝑜

Ro

Ro ≡ 𝑉

𝑓0𝐿
, 𝑀𝑅𝑜 ≡ max[1,Ro]

Fr ≡ 𝑉

𝑁𝜆𝐿
, Re ≡ 𝑉 𝐿

𝜈
, Pr ≡ 𝜈

𝜅

Dimensional variables are denoted by an asterisk where necessary. If we filter over a grid scale typical for ocean
models:

1m < 𝐿 < 100km
0.0001 < 𝜆 < 1
0.001m/s < 𝑉 < 1 m/s
𝑓0 < 0.0001 s -1

0.01 s -1 < 𝑁 < 0.0001 s -1

these equations are very well approximated by

Ro
𝐷𝑢̃

𝐷𝑡
− 𝑣 sin 𝜃

sin 𝜃0
+𝑀𝑅𝑜

𝜕𝜋

𝜕𝑥
= −𝜆Fr2𝑀𝑅𝑜 cos 𝜃

𝜇 sin 𝜃0
𝑤 +

Ro∇2𝑢̃

Re
(2.179)

Ro
𝐷𝑣

𝐷𝑡
+
𝑢̃ sin 𝜃

sin 𝜃0
+𝑀𝑅𝑜

𝜕𝜋

𝜕𝑦
=

Ro∇2𝑣

Re
(2.180)

Fr2𝜆2
𝐷𝑤

𝐷𝑡
− 𝑏+

𝜕𝜋

𝜕𝑧
=
𝜆 cot 𝜃0𝑢̃

𝑀𝑅𝑜
+

Fr2𝜆2∇2𝑤

Re
(2.181)

𝐷𝑏

𝐷𝑡
+ 𝑤 =

∇2𝑏

Pr Re
(2.182)

𝜇2

(︂
𝜕𝑢̃

𝜕𝑥
+
𝜕𝑣

𝜕𝑦

)︂
+
𝜕𝑤

𝜕𝑧
= 0 (2.183)

∇2 ≈
(︂
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜆2𝜕𝑧2

)︂
Neglecting the non-frictional terms on the right-hand side is usually called the ’traditional’ approximation. It is appro-
priate, with either large aspect ratio or far from the tropics. This approximation is used here, as it does not affect the
form of the eddy stresses which is the main topic. The frictional terms are preserved in this approximate form for later
comparison with eddy stresses.
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CHAPTER

THREE

GETTING STARTED WITH MITGCM

This chapter is divided into two main parts. The first part, which is covered in sections Section 3.1 through Section 3.6,
contains information about how to download, build and run MITgcm. We believe the best way to familiarize yourself
with the model is to run one of the tutorial examples provided in the MITgcm repository (see Section 4), so would
suggest newer MITgcm users jump there following a read-through of the first part of this chapter. Information is also
provided in this chapter on how to customize the code when you are ready to try implementing the configuration you
have in mind, in the second part (Section 3.8). The code and algorithm are described more fully in Section 2 and
Section 6 and chapters thereafter.

In this chapter and others (e.g., chapter Contributing to the MITgcm), for arguments where the user is expected to
replace the text with a user-chosen name, userid, etc., our convention is to show these as upper-case text surrounded
by « », such as «USER_MUST_REPLACE_TEXT_HERE». The « and » characters are NOT typed when the text is
replaced.

3.1 Where to find information

There is a web-archived support mailing list for the model that you can email at MITgcm-support@mitgcm.org once
you have subscribed.

To sign up (subscribe) for the mailing list (highly recommended), click here

To browse through the support archive, click here

3.2 Obtaining the code

The MITgcm code and documentation are under continuous development and we generally recommend that one
downloads the latest version of the code. You will need to decide if you want to work in a “git-aware” environment
(Method 1) or with a one-time “stagnant” download (Method 2). We generally recommend method 1, as it is more
flexible and allows your version of the code to be regularly updated as MITgcm developers check in bug fixes and new
features. However, this typically requires at minimum a rudimentary understanding of git in order to make it worth
one’s while.

Periodically we release an official checkpoint (or “tag”). We recommend one download the latest code, unless there
are reasons for obtaining a specific checkpoint (e.g. duplicating older results, collaborating with someone using an
older release, etc.)
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3.2.1 Method 1

This section describes how to download git-aware copies of the repository. In a terminal window, cd to the directory
where you want your code to reside. Type:

% git clone https://github.com/MITgcm/MITgcm.git

This will download the latest available code. If you now want to revert this code to a specific checkpoint release,
first cd into the MITgcm directory you just downloaded, then type git checkout checkpoint«XXX» where
«XXX» is the checkpoint version.

Alternatively, if you prefer to use ssh keys (say for example, you have a firewall which won’t allow a https download),
type:

% git clone git@github.com:MITgcm/MITgcm.git

You will need a GitHub account for this, and will have to generate a ssh key though your GitHub account user settings.

The fully git-aware download is over several hundred MB, which is considerable if one has limited internet download
speed. In comparison, the one-time download zip file (Method 2, below) is order 100 MB. However, one can obtain
a truncated, yet still git-aware copy of the current code by adding the option --depth=1 to the git clone command
above; all files will be present, but it will not include the full git history. However, the repository can be updated going
forward.

3.2.2 Method 2

This section describes how to do a one-time download of MITgcm, NOT git-aware. In a terminal window, cd to the
directory where you want your code to reside. To obtain the current code, type:

% wget https://github.com/MITgcm/MITgcm/archive/master.zip

For specific checkpoint release XXX, instead type:

% wget https://github.com/MITgcm/MITgcm/archive/checkpoint«XXX».zip

3.3 Updating the code

There are several different approaches one can use to obtain updates to MITgcm; which is best for you depends a bit
on how you intend to use MITgcm and your knowledge of git (and/or willingness to learn). Below we outline three
suggested update pathways:

1. Fresh Download of MITgcm

This approach is the most simple, and virtually foolproof. Whether you downloaded the code from a static zip file
(Method 2) or used the git clone command (Method 1), create a new directory and repeat this procedure to download
a current copy of MITgcm. Say for example you are starting a new research project, this would be a great time to grab
the most recent code repository and keep this new work entirely separate from any past simulations. This approach
requires no understanding of git, and you are free to make changes to any files in the MIT repo tree (although we
generally recommend that you avoid doing so, instead working in new subdirectories or on separate scratch disks as
described here, for example).

2. Using git pull to update the (unmodified) MITgcm repo tree

If you have downloaded the code through a git clone command (Method 1 above), you can incorporate any changes to
the source code (including any changes to any files in the MITgcm repository, new packages or analysis routines, etc.)
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that may have occurred since your original download. There is a simple command to bring all code in the repository
to a ‘current release’ state. From the MITgcm top directory or any of its subdirectories, type:

% git pull

and all files will be updated to match the current state of the code repository, as it exists at GitHub. (Note: if you plan
to contribute to MITgcm and followed the steps to download the code as described in Section 5, you will need to type
git pull upstream instead.)

This update pathway is ideal if you are in the midst of a project and you want to incorporate new MITgcm features
into your executable(s), or take advantage of recently added analysis utilties, etc. After the git pull, any changes in
model source code and include files will be updated, so you can repeat the build procedure (Section 3.5) and you will
include all these new features in your new executable.

Be forewarned, this will only work if you have not modified ANY of the files in the MITgcm repository (adding new
files is ok; also, all verification run subdirectories build and run are also ignored by git). If you have modified files
and the git pull fails with errors, there is no easy fix other than to learn something about git (continue reading. . . )

3. Fully embracing the power of git!

Git offers many tools to help organize and track changes in your work. For example, one might keep separate projects
on different branches, and update the code separately (using git pull) on these separate branches. You can even
make changes to code in the MIT repo tree; when git then tries to update code from upstream (see Figure 5.1), it
will notify you about possible conflicts and even merge the code changes together if it can. You can also use git
commit to help you track what you are modifying in your simulations over time. If you’re planning to submit a pull
request to include your changes, you should read the contributing guide in Section 5, and we suggest you do this model
development in a separate, fresh copy of the code. See Section 5.2 for more information and how to use git effectively
to manage your workflow.

3.4 Model and directory structure

The “numerical” model is contained within a execution environment support wrapper. This wrapper is designed to
provide a general framework for grid-point models; MITgcm is a specific numerical model that makes use of this
framework (see Section 6.2 for additional detail). Under this structure, the model is split into execution environment
support code and conventional numerical model code. The execution environment support code is held under the
eesupp directory. The grid point model code is held under the model directory. Code execution actually starts in the
eesupp routines and not in the model routines. For this reason the top-level main.F is in the eesupp/src directory. In
general, end-users should not need to worry about the wrapper support code. The top-level routine for the numerical
part of the code is in model/src/the_model_main.F. Here is a brief description of the directory structure of the model
under the root tree.

• model: this directory contains the main source code. Also subdivided into two subdirectories: model/inc (in-
cludes files) and model/src (source code).

• eesupp: contains the execution environment source code. Also subdivided into two subdirectories: eesupp/inc
and eesupp/src.

• pkg: contains the source code for the packages. Each package corresponds to a subdirectory. For example,
pkg/gmredi contains the code related to the Gent-McWilliams/Redi scheme, pkg/seaice the code for a dynamic
seaice model which can be coupled to the ocean model. The packages are described in detail in Section 8 and
Section 9].

• doc: contains MITgcm documentation in reStructured Text (rst) format.

• tools: this directory contains various useful tools. For example, genmake2 is a script written in bash that should
be used to generate your makefile. The subdirectory tools/build_options contains ‘optfiles’ with the compiler
options for many different compilers and machines that can run MITgcm (see Section 3.5.2.2). This directory
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also contains subdirectories tools/adjoint_options and tools/OAD_support that are used to generate the tangent
linear and adjoint model (see details in Section 7).

• utils: this directory contains various utilities. The utils/matlab subdirectory contains matlab scripts for read-
ing model output directly into matlab. The subdirectory utils/python contains similar routines for python.
utils/scripts contains C-shell post-processing scripts for joining processor-based and tiled-based model output.

• verification: this directory contains the model examples. See Section 4.

• jobs: contains sample job scripts for running MITgcm.

• lsopt: Line search code used for optimization.

• optim: Interface between MITgcm and line search code.

3.5 Building the model

3.5.1 Quickstart Guide

To compile the code, we use the make program. This uses a file (Makefile) that allows us to pre-process source files,
specify compiler and optimization options and also figures out any file dependencies. We supply a script (genmake2),
described in section Section 3.5.2, that automatically generates the Makefile for you. You then need to build the
dependencies and compile the code (Section 3.5.3).

As an example, assume that you want to build and run experiment verification/exp2. Let’s build the code in verifica-
tion/exp2/build:

% cd verification/exp2/build

First, generate the Makefile:

% ../../../tools/genmake2 -mods ../code -optfile «/PATH/TO/OPTFILE»

The -mods command line option tells genmake2 to override model source code with any files in the subdirectory
../code (here, you need to configure the size of the model domain by overriding MITgcm’s default SIZE.h with an
edited copy ../code/SIZE.h containing the specific domain size for exp2).

The -optfile command line option tells genmake2 to run the specified optfile, a bash shell script, dur-
ing genmake2’s execution. An optfile typically contains definitions of environment variables, paths, compiler
options, and anything else that needs to be set in order to compile on your local computer system or clus-
ter with your specific Fortan compiler. As an example, we might replace «/PATH/TO/OPTFILE» with
../../../tools/build_options/linux_amd64_ifort11 for use with the Intel Fortran compiler (version 11 and above) on
a linux x86_64 platform. This and many other optfiles for common systems and Fortran compilers are located in
tools/build_options.

-mods, -optfile, and many additional genmake2 command line options are described more fully in Section
3.5.2.1. Detailed instructions on building with MPI are given in Section 3.5.4.

Once a Makefile has been generated, we create the dependencies with the command:

% make depend

It is important to note that the make depend stage will occasionally produce warnings or errors if the dependency
parsing tool is unable to find all of the necessary header files (e.g., netcdf.inc, or worse, say it cannot find a
Fortran compiler in your path). In some cases you may need to obtain help from your system administrator to locate
these files.

Next, one can compile the code using:
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% make

Assuming no errors occurred, the make command creates an executable called mitgcmuv.

Now you are ready to run the model. General instructions for doing so are given in section Section 3.6.

3.5.2 Generating a Makefile using genmake2

A shell script called genmake2 for generating a Makefile is included as part of MITgcm. Typically genmake2
is used in a sequence of steps as shown below:

% ../../../tools/genmake2 -mods ../code -optfile «/PATH/TO/OPTFILE»
% make depend
% make

The first step above creates a unix-style Makefile. The Makefile is used by make to specify how to compile the
MITgcm source files (for more detailed descriptions of what the make tools are, and how they are used, see here).

This section describes details and capabilities of genmake2, located in the tools directory. genmake2 is a shell script
written to work in bash (and with all “sh”–compatible shells including Bourne shells). Like many unix tools, there is
a help option that is invoked thru genmake2 -h. genmake2 parses information from the following sources, in this
order:

1. Command-line options (see Section 3.5.2.1)

2. A genmake_local file if one is found in the current directory. This is a bash shell script that is executed prior
to the optfile (see step #3), used in some special model configurations and/or to set some options that can affect
which lines of the optfile are executed. For example, this genmake_local file is required for a special setup,
building a ‘MITgcm coupler’ executable; in a more typical setup, one will not require a genmake_local file.

3. An “options file” a.k.a. optfile (a bash shell script) specified by the command-line option -optfile «/
PATH/TO/OPTFILE», as mentioned briefly in Section 3.5.1 and described in detail in Section 3.5.2.2.

4. A packages.conf file (if one is found) with the specific list of packages to compile (see Section 8.1.1). The
search path for file packages.conf is first the current directory, and then each of the -mods directories in
the given order (as described here).

When you run the genmake2 script, typical output might be as follows:

% ../../../tools/genmake2 -mods ../code -optfile ../../../tools/build_options/linux_
→˓amd64_gfortran

GENMAKE :

A program for GENerating MAKEfiles for the MITgcm project.
For a quick list of options, use "genmake2 -h"

or for more detail see the documentation, section "Building the model"
(under "Getting Started") at: https://mitgcm.readthedocs.io/

=== Processing options files and arguments ===
getting local config information: none found

Warning: ROOTDIR was not specified ; try using a local copy of MITgcm found at "../../
→˓.."
getting OPTFILE information:
using OPTFILE="../../../tools/build_options/linux_amd64_gfortran"

getting AD_OPTFILE information:
using AD_OPTFILE="../../../tools/adjoint_options/adjoint_default"

(continues on next page)
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(continued from previous page)

check Fortran Compiler... pass (set FC_CHECK=5/5)
check makedepend (local: 0, system: 1, 1)

=== Checking system libraries ===
Do we have the system() command using gfortran... yes
Do we have the fdate() command using gfortran... yes
Do we have the etime() command using gfortran... c,r: yes (SbR)
Can we call simple C routines (here, "cloc()") using gfortran... yes
Can we unlimit the stack size using gfortran... yes
Can we register a signal handler using gfortran... yes
Can we use stat() through C calls... yes
Can we create NetCDF-enabled binaries... yes
skip check for LAPACK Libs

Can we call FLUSH intrinsic subroutine... yes

=== Setting defaults ===
Adding MODS directories: ../code
Making source files in eesupp from templates
Making source files in pkg/exch2 from templates
Making source files in pkg/regrid from templates

=== Determining package settings ===
getting package dependency info from ../../../pkg/pkg_depend
getting package groups info from ../../../pkg/pkg_groups
checking list of packages to compile:
using PKG_LIST="../code/packages.conf"
before group expansion packages are: oceanic -kpp -gmredi cd_code
replacing "oceanic" with: gfd gmredi kpp
replacing "gfd" with: mom_common mom_fluxform mom_vecinv generic_advdiff debug

→˓mdsio rw monitor
after group expansion packages are: mom_common mom_fluxform mom_vecinv generic_

→˓advdiff debug mdsio rw monitor gmredi kpp -kpp -gmredi cd_code
applying DISABLE settings
applying ENABLE settings
packages are: cd_code debug generic_advdiff mdsio mom_common mom_fluxform mom_

→˓vecinv monitor rw
applying package dependency rules
packages are: cd_code debug generic_advdiff mdsio mom_common mom_fluxform mom_

→˓vecinv monitor rw
Adding STANDARDDIRS='eesupp model'
Searching for *OPTIONS.h files in order to warn about the presence
of "#define "-type statements that are no longer allowed:
found CPP_EEOPTIONS="../../../eesupp/inc/CPP_EEOPTIONS.h"
found CPP_OPTIONS="../../../model/inc/CPP_OPTIONS.h"

Creating the list of files for the adjoint compiler.

=== Creating the Makefile ===
setting INCLUDES
Determining the list of source and include files
Writing makefile: Makefile
Add the source list for AD code generation
Making list of "exceptions" that need ".p" files
Making list of NOOPTFILES
Add rules for links
Adding makedepend marker

=== Done ===
(continues on next page)
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(continued from previous page)

original 'Makefile' generated successfully
=> next steps:

> make depend
> make (<-- to generate executable)

In the above, notice:

• we did not specify ROOTDIR, i.e., a path to your MITgcm repository, but here we are building code from within
the repository (specifically, in one of the verification subdirectory experiments). As such, genmake2 was smart
enough to locate all necessary files on its own. To specify a remote ROOTDIR, see here.

• we specified the optfile linux_amd64_gfortran based on the computer system and Fortran compiler we used
(here, a linux 64-bit machine with gfortran installed).

• genmake2 did some simple checking on availability of certain system libraries; all were found (except LAPACK,
which was not checked since it is not needed here). NetCDF only requires a ‘yes’ if you want to write netCDF
output; more specifically, a ‘no’ response to “Can we create NetCDF-enabled binaries” will disable including
pkg/mnc and switch to output plain binary files. While the makefile can still be built with other ‘no’ responses,
sometimes this will foretell errors during the make depend or make commands.

• any .F or .h files in the -mods directory ../code will also be compiled, overriding any MITgcm repository
versions of files, if they exist.

• a handful of packages are being used in this build; see Section 8.1.1 for more detail about how to enable and
disable packages.

• genmake2 terminated without error (note output at end after === Done ===), generating Makefile and a
log file genmake.log. As mentioned, this does not guarantee that your setup will compile properly, but if
there are errors during make depend or make, these error messages and/or the standard output from gen-
make2 or genmake.log may provide clues as to the problem. If instead genmake2 finishes with a warning
message Warning: FORTRAN compiler test failed , this means that genmake2 is unable to lo-
cate the Fortran compiler or pass a trivial “hello world” Fortran compilation test. In this case, you should see
genmake.log for errors and/or seek assistance from your system administrator; these tests need to pass in
order to proceed to the make steps.

3.5.2.1 Command-line options:

genmake2 supports a number of helpful command-line options. A complete list of these options can be obtained by:

% genmake2 -h

The most important command-line options are:

-optfile «/PATH/TO/OPTFILE» (or shorter: -of ) specifies the optfile that should be used for a particular
build.

If no optfile is specified through the command line, genmake2 will try to make a reasonable guess from the list
provided in tools/build_options. The method used for making this guess is to first determine the combination
of operating system and hardware and then find a working Fortran compiler within the user’s path. When these
three items have been identified, genmake2 will try to find an optfile that has a matching name. See Section
3.5.2.2.

-mods '«DIR1 DIR2 DIR3 ...»' specifies a list of directories containing “modifications”. These directories
contain files with names that may (or may not) exist in the main MITgcm source tree but will be overridden
by any identically-named sources within the -mods directories. Note the quotes around the list of directories,
necessary given multiple arguments.

The order of precedence for versions of files with identical names:
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• “mods” directories in the order given (e.g., will use copy of file located in DIR1 instead of DIR2)

• Packages either explicitly specified or included by default

• Packages included due to package dependencies

• The “standard dirs” (which may have been specified by the -standarddirs option below)

-rootdir «/PATH/TO/MITGCMDIR» specify the location of the MITgcm repository top directory (ROOTDIR).
By default, genmake2 will try to find this location by looking in parent directories from where genmake2 is
executed (up to 5 directory levels above the current directory).

In the quickstart example above (Section 3.5.1) we built the executable in the build directory of the exper-
iment. Below, we show how to configure and compile the code on a scratch disk, without having to copy
the entire source tree. The only requirement is that you have genmake2 in your $PATH, or you know the
absolute path to genmake2. In general, one can compile the code in any given directory by following this pro-
cedure. Assuming the model source is in ~/MITgcm, then the following commands will build the model in
/scratch/exp2-run1:

% cd /scratch/exp2-run1
% ~/MITgcm/tools/genmake2 -rootdir ~/MITgcm -mods ~/MITgcm/verification/exp2/code
% make depend
% make

As an alternative to specifying the MITgcm repository location through the -rootdir command-line option,
genmake2 recognizes the environment variable $MITGCM_ROOTDIR.

-standarddirs «/PATH/TO/STANDARDDIR» specify a path to the standard MITgcm directories for source
and includes files. By default, model and eesupp directories (src and inc) are the “standard dirs”. This
command can be used to reset these default standard directories, or instead NOT include either model or eesupp
as done in some specialized configurations.

-oad generates a makefile for an OpenAD build (see Section 7.5)

-adoptfile «/PATH/TO/FILE» (or shorter: -adof ) specifies the “adjoint” or automatic differentiation op-
tions file to be used. The file is analogous to the optfile defined above but it specifies information for the AD
build process. See Section 7.2.3.4.

The default file is located in tools/adjoint_options/adjoint_default and it defines the “TAF” and “TAMC” com-
piler options.

-mpi enables certain MPI features (using CPP #define) within the code and is necessary for MPI builds (see
Section 3.5.4).

-omp enables OpenMP code and compiler flag OMPFLAG (see Section 3.5.5).

-ieee use IEEE numerics (requires support in optfile). This option is typically a good choice if one wants to compare
output from different machines running the same code. Note using IEEE disables all compiler optimizations.

-devel use IEEE numerics (requires support in optfile) and add additional compiler options to check array bounds
and add other additional warning and debugging flags.

-make «/PATH/TO/GMAKE» due to the poor handling of soft-links and other bugs common with the make ver-
sions provided by commercial unix vendors, GNU make (sometimes called gmake) may be preferred. This
option provides a means for specifying the make executable to be used.

While it is possible to use genmake2 command-line options to set the Fortran or C compiler name (-fc and -cc re-
spectively), we generally recommend setting these through an optfile, as discussed in Section 3.5.2.2. Other genmake2
options are available to enable performance/timing analyses, etc.; see genmake2 -h for more info.
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3.5.2.2 Optfiles in tools/build_options directory:

The purpose of the optfiles is to provide all the compilation options for particular “platforms” (where “platform”
roughly means the combination of the hardware and the compiler) and code configurations. Given the combi-
nations of possible compilers and library dependencies (e.g., MPI or netCDF) there may be numerous optfiles
available for a single machine. The naming scheme for the majority of the optfiles shipped with the code is
OS_HARDWARE_COMPILER where

OS is the name of the operating system (generally the lower-case output of a linux terminal uname command)

HARDWARE is a string that describes the CPU type and corresponds to output from a uname -m command. Some
common CPU types:

amd64 use this code for x86_64 systems (most common, including AMD and Intel 64-bit CPUs)

ia64 is for Intel IA64 systems (eg. Itanium, Itanium2)

ppc is for (old) Mac PowerPC systems

COMPILER is the compiler name (generally, the name of the Fortran compiler executable). MITgcm is primarily
written in FORTRAN 77. Compiling the code requires a FORTRAN 77 compiler. Any more recent compiler
which is backwards compatible with FORTRAN 77 can also be used; for example, the model will build suc-
cessfully with a Fortran 90 or Fortran 95 compiler. A C99 compatible compiler is also need, together with a
C preprocessor . Some optional packages make use of Fortran 90 constructs (either free-form formatting, or
dynamic memory allocation); as such, setups which use these packages require a Fortran 90 or later compiler
build.

There are existing optfiles that work with many common hardware/compiler configurations; we first suggest you peruse
the list in tools/build_options and try to find your platform/compiler configuration. These are the most common:

• linux_amd64_gfortran

• linux_amd64_ifort11

• linux_amd64_ifort+impi

• linux_amd64_pgf77

The above optfiles are all for linux x86_64 (64-bit) systems, utilized in many large high-performance computing
centers. All of the above will work with single-threaded, MPI, or shared memory (OpenMP) code configurations.
gfortran is GNU Fortran, ifort is Intel Fortran, pgf77 is PGI Fortran (formerly known as “The Portland Group”).
Note in the above list there are two ifort optfiles: linux_amd64_ifort+impi is for a specific case of using ifort
with the Intel MPI library (a.k.a. impi), which requires special define statements in the optfile (in contrast with
Open MPI or MVAPICH2 libraries; see Section 3.5.4). Note that both ifort optfiles require ifort version 11 or higher.
Many clusters nowadays use environment modules, which allows one to easily choose which compiler to use through
module load «MODULENAME», automatically configuring your environment for a specific compiler choice (type
echo $PATH to see where genmake2 will look for compilers and system software).

In most cases, your platform configuration will be included in the available optfiles list and will result in a usable
Makefile being generated. If you are unsure which optfile is correct for your configuration, you can try not speci-
fying an optfile; on some systems the genmake2 program will be able to automatically recognize the hardware, find a
compiler and other tools within the user’s path, and then make a best guess as to an appropriate optfile from the list in
the tools/build_options directory. However, for some platforms and code configurations, new optfiles must be written.
To create a new optfile, it is generally best to start with one of the defaults and modify it to suit your needs. Like
genmake2, the optfiles are all written in bash (or using a simple sh–compatible syntax). While nearly all environment
variables used within genmake2 may be specified in the optfiles, the critical ones that should be defined are:

FC the Fortran compiler (executable) to use on .F files, e.g., ifort or gfortran, or if using MPI, the mpi-wrapper
equivalent, e.g., mpif77
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F90C the Fortran compiler to use on .F90 files (only necessary if your setup includes a package which contains
.F90 source code)

CC similarly, the C compiler to use, e.g., icc or gcc, or if using MPI, the mpi-wrapper equivalent, e.g., mpicc

DEFINES command-line options passed to the compiler

CPP the C preprocessor to use, and any necessary command-line options, e.g. cpp -traditional -P

CFLAGS, FFLAGS command-line compiler flags required for your C and Fortran compilers, respectively, to compile
and execute properly. See your C and Fortran compiler documentation for specific options and syntax.

FOPTIM command-line optimization Fortran compiler settings. See your Fortran compiler documentation for specific
options and syntax.

NOOPTFLAGS command-line settings for special files that should not be optimized using the FOPTIM flags

NOOPTFILES list of source code files that should be compiled using NOOPTFLAGS settings

INCLUDES path for additional files (e.g., netcdf.inc, mpif.h) to include in the compilation using the command-
line -I option

INCLUDEDIRS path for additional files to be included in the compilation

LIBS path for additional library files that need to be linked to generate the final executable, e.g., libnetcdf.a

For example, an excerpt from an optfile which specifies several of these variables (here, for the linux-amd64 architec-
ture using the PGI Fortran compiler) is as follows:

if test "x$MPI" = xtrue ; then
CC=mpicc
FC=mpif77
F90C=mpif90

else
CC=pgcc
FC=pgf77
F90C=pgf90

fi

DEFINES="-DWORDLENGTH=4"
if test "x$ALWAYS_USE_F90" = x1 ; then

FC=$F90C
else

DEFINES="$DEFINES -DNML_EXTENDED_F77"
fi
CPP='cpp -traditional -P'
F90FIXEDFORMAT='-Mfixed'
EXTENDED_SRC_FLAG='-Mextend'
GET_FC_VERSION="-V"
OMPFLAG='-mp'

NOOPTFLAGS='-O0'
NOOPTFILES=''

FFLAGS="$FFLAGS -byteswapio -Ktrap=fp"
#- might want to use '-r8' for fizhi pkg:
#FFLAGS="$FFLAGS -r8"

if test "x$IEEE" = x ; then #- with optimisation:
FOPTIM='-tp k8-64 -pc=64 -O2 -Mvect=sse'

#FOPTIM="$FOPTIM -fastsse -O3 -Msmart -Mvect=cachesize:1048576,transform"
else #- no optimisation + IEEE :

(continues on next page)
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(continued from previous page)

#FFLAGS="$FFLAGS -Mdclchk" #- pkg/zonal_filt does not pass with declaration-check
FOPTIM='-pc=64 -O0 -Kieee'

fi

F90FLAGS=$FFLAGS
F90OPTIM=$FOPTIM

The above list of environment variables typically specified in an optfile is by no means complete; additional variables
may be required for your specific setup and/or your specific Fortran (or C) compiler.

If you write an optfile for an unrepresented machine or compiler, you are strongly encouraged to submit the optfile to
the MITgcm project for inclusion. MITgcm developers are willing to provide help writing or modifing optfiles. Please
submit the file through the GitHub issue tracker or email the MITgcm-support@mitgcm.org list.

Instructions on how to use optfiles to build MPI-enabled executables is presented in Section 3.5.4.

3.5.3 make commands

Following a successful build of Makefile, type make depend. This command modifies the Makefile by at-
taching a (usually, long) list of files upon which other files depend. The purpose of this is to reduce re-compilation if
and when you start to modify the code. The make depend command also creates local links for all source files from
the source directories (see “-mods” description in Section 3.5.2.1), so that all source files to be used are visible from
the local build directory, either as hardcopy or as symbolic link.

IMPORTANT NOTE: Editing the source code files in the build directory will not edit a local copy (since these are
just links) but will edit the original files in model/src (or model/inc) or in the specified -mods directory. While the
latter might be what you intend, editing the master copy in model/src is usually NOT what is intended and may cause
grief somewhere down the road. Rather, if you need to add to the list of modified source code files, place a copy of
the file(s) to edit in the -mods directory, make the edits to these -mods directory files, go back to the build directory
and type make Clean, and then re-build the makefile (these latter steps critical or the makefile will not link to this
newly edited file).

The final make invokes the C preprocessor to produce the “little f” files (*.f and *.f90) and then compiles them
to object code using the specified Fortran compiler and options. The C preprocessor step converts a number of CPP
macros and #ifdef statements to actual Fortran and expands C-style #include statements to incorporate header
files into the “little f” files. CPP style macros and #ifdef statements are used to support generating different compile
code for different model configurations. The result of the build process is an executable with the name mitgcmuv.

Additional make “targets” are defined within the makefile to aid in the production of adjoint (Section 7.2.2) and other
versions of MITgcm.

On computers with multiple processor cores, the build process can often be sped up appreciably using the command:

% make -j 2

where the “2” can be replaced with a number that corresponds to the number of cores (or discrete CPUs) available.

In addition, there are several housekeeping make clean options that might be useful:

• make clean removes files that make generates (e.g., *.o and *.f files)

• make Clean removes files and links generated by make and make depend; strongly recommended for
“un-clean” directories which may contain the (perhaps partial) results of previous builds

• make CLEAN removes pretty much everything, including any executables and output from genmake2
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3.5.4 Building with MPI

Building MITgcm to use MPI libraries can be complicated due to the variety of different MPI implementations avail-
able, their dependencies or interactions with different compilers, and their often ad-hoc locations within file systems.
For these reasons, its generally a good idea to start by finding and reading the documentation for your machine(s) and,
if necessary, seeking help from your local systems administrator.

The steps for building MITgcm with MPI support are:

1. Make sure you have MPI libraries installed on your computer system or cluster. Different Fortran compilers
(and different versions of a specific compiler) will generally require a custom version (of a MPI library) built
specifically for it. On environment module-enabled clusters, one typically must first load a Fortran compiler,
then specific MPI libraries for that compiler will become available to load. If libraries are not installed, MPI
implementations and related tools are available including:

• Open MPI

• MVAPICH2

• MPICH

• Intel MPI

Ask you systems administrator for assistance in installing these libraries.

2. Determine the location of your MPI library “wrapper” Fortran compiler, e.g., mpif77 or mpifort etc.
which will be used instead of the name of the fortran compiler (gfortran, ifort, pgi77 etc.) to
compile your code. Often the directory in which these wrappers are located will be automatically added
to your $PATH environment variable when you perform a module load «SOME_MPI_MODULE»; thus,
you will not need to do anything beyond the module load itself. If you are on a cluster that does
not support environment modules, you may have to manually add this directory to your path, e.g., type
PATH=$PATH:«ADD_ADDITIONAL_PATH_TO_MPI_WRAPPER_HERE» in a bash shell.

3. Determine the location of the includes file mpif.h and any other MPI-related includes files. Often these files
will be located in a subdirectory off the main MPI library include/. In all optfiles in tools/build_options, it is
assumed environment variable $MPI_INC_DIR specifies this location; $MPI_INC_DIR should be set in your
terminal session prior to generating a Makefile.

4. Determine how many processors (i.e., CPU cores) you will be using in your run, and modify your configuration’s
SIZE.h (located in a “modified code” directory, as specified in your genmake2 command-line). In SIZE.h, you
will need to set variables nPx*nPy to match the number of processors you will specify in your run script’s
MITgcm execution statement (i.e., typically mpirun or some similar command, see Section 3.6.1). Note that
MITgcm does not use dynamic memory allocation (a feature of Fortran 90, not FORTRAN 77), so all array
sizes, and hence the number of processors to be used in your MPI run, must be specified at compile-time in
addition to run-time. More information about the MITgcm WRAPPER, domain decomposition, and how to
configure SIZE.h can be found in Section 6.3.

5. Build the code with the genmake2 -mpi option using commands such as:

% ../../../tools/genmake2 -mods=../code -mpi -of=«/PATH/TO/OPTFILE»
% make depend
% make
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3.5.5 Building with OpenMP

Unlike MPI, which requires installation of additional software support libraries, using shared memory (OpenMP) for
multi-threaded executable builds can be accomplished simply through the genmake2 command-line option -omp:

% ../../../tools/genmake2 -mods=../code -omp -of=«/PATH/TO/OPTFILE»
% make depend
% make

While the most common optfiles specified in Section 3.5.2.2 include support for the -omp option, some optfiles in
tools/build_options do not include support for multi-threaded executable builds. Before using one of the less common
optfiles, check whether OMPFLAG is defined.

Note that one does not need to specify the number of threads until runtime (see Section 3.6.2). However, the default
maximum number of threads in MITgcm is set to a (low) value of 4, so if you plan on more you will need to change
this value in eesupp/inc/EEPARAMS.h in your modified code directory.

3.6 Running the model

If compilation finished successfully (Section 3.5) then an executable called mitgcmuv will now exist in the local
(build) directory.

To run the model as a single process (i.e., not in parallel) simply type (assuming you are still in the build directory):

% cd ../run
% ln -s ../input/* .
% cp ../build/mitgcmuv .
% ./mitgcmuv

Here, we are making a link to all the support data files (in ../input/) needed by the MITgcm for this experiment,
and then copying the executable from the the build directory. The ./ in the last step is a safe-guard to make sure you
use the local executable in case you have others that might exist in your $PATH. The above command will spew out
many lines of text output to your screen. This output contains details such as parameter values as well as diagnostics
such as mean kinetic energy, largest CFL number, etc. It is worth keeping this text output with the binary output so we
normally re-direct the stdout stream as follows:

% ./mitgcmuv > output.txt

In the event that the model encounters an error and stops, it is very helpful to include the last few line of this output.
txt file along with the (stderr) error message within any bug reports.

For the example experiment in verification/exp2, an example of the output is kept in verification/exp2/results/output.txt
for comparison. You can compare your output.txt with the corresponding one for that experiment to check that
your set-up indeed works. Congratulations!
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3.6.1 Running with MPI

Run the code with the appropriate MPI “run” or “exec” program provided with your particular implementation of MPI.
Typical MPI packages such as Open MPI will use something like:

% mpirun -np 4 ./mitgcmuv

Sightly more complicated scripts may be needed for many machines since execution of the code may be controlled
by both the MPI library and a job scheduling and queueing system such as Slurm, PBS/TORQUE, LoadLeveler, or
any of a number of similar tools. See your local cluster documentation or system administrator for the specific syntax
required to run on your computing facility.

3.6.2 Running with OpenMP

Assuming the executable mitgcmuv was built with OpenMP (see Section 3.5.5), the syntax to run a multi-threaded
simulation is the same as running single-threaded (see Section 3.6), except that the following additional steps are
required beforehand:

1. Environment variables for the number of threads and the stacksize need to be set prior to executing the model.
The exact names of these environment variables differ by Fortran compiler, but are typically some variant of
OMP_NUM_THREADS and OMP_STACKSIZE, respectively. For the latter, in your run script we recommend
adding the line export OMP_STACKSIZE=400M (or for a C shell-variant, setenv OMP_STACKSIZE
400M). If this stacksize setting is insufficient, MITgcm will crash, in which case a larger number can be used.
Similarly, OMP_NUM_THREADS should be set to the exact number of threads you require.

2. In file eedata you will need to change namelist parameters nTx and nTy to reflect the number of threads in
x and y, respectively (for a single-threaded run, nTx =nTy=1). The value of nTx *nTy must equal the value of
environment variable OMP_NUM_THREADS (or its name-equivalent for your Fortan compiler) or MITgcm will
terminate during its initialization with an error message.

MITgcm will take the number of tiles used in the model (as specified in SIZE.h) and the number of threads (nTx and
nTy from file eedata), and in running will spread the tiles out evenly across the threads. This is done independently
for x and y. As such, the number of tiles in x (variable nSx as defined in SIZE.h) must divide evenly by the number
of threads in x (namelist parameter nTx), and similarly for nSy and nTy, else MITgcm will terminate on initialization.
More information about the MITgcm WRAPPER, domain decomposition, and how to configure SIZE.h can be found
in Section 6.3.

112 Chapter 3. Getting Started with MITgcm

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.open-mpi.org/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://slurm.schedmd.com/
http://www.adaptivecomputing.com/products/open-source/torque
https://www-03.ibm.com/systems/power/software/loadleveler/
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/C_shell
http://mitgcm.org/lxr/ident/MITgcm?_i=nTx
http://mitgcm.org/lxr/ident/MITgcm?_i=nTy
http://mitgcm.org/lxr/ident/MITgcm?_i=nTx
http://mitgcm.org/lxr/ident/MITgcm?_i=nTy
http://mitgcm.org/lxr/ident/MITgcm?_i=nTx
http://mitgcm.org/lxr/ident/MITgcm?_i=nTy
https://en.wikipedia.org/wiki/Environment_variable
https://github.com/MITgcm/MITgcm/blob/master/model/inc/SIZE.h
http://mitgcm.org/lxr/ident/MITgcm?_i=nTx
http://mitgcm.org/lxr/ident/MITgcm?_i=nTy
http://mitgcm.org/lxr/ident/MITgcm?_i=nSx
https://github.com/MITgcm/MITgcm/blob/master/model/inc/SIZE.h
http://mitgcm.org/lxr/ident/MITgcm?_i=nTx
http://mitgcm.org/lxr/ident/MITgcm?_i=nSy
http://mitgcm.org/lxr/ident/MITgcm?_i=nTy
https://github.com/MITgcm/MITgcm/blob/master/model/inc/SIZE.h


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

3.6.3 Output files

The model produces various output files and, when using pkg/mnc (i.e., netCDF), sometimes even directories. De-
pending upon the I/O package(s) selected at compile time (either pkg/mdsio, pkg/mnc, or both as determined by
packages.conf) and the run-time flags set (in data.pkg), the following output may appear. More complete
information describing output files and model diagnostics is described in Section 9.

3.6.3.1 Raw binary output files

The “traditional” output files are generated by the pkg/mdsio (see Section 9.2).The pkg/mdsio model data are written
according to a “meta/data” file format. Each variable is associated with two files with suffix names .data and .
meta. The .data file contains the data written in binary form (big endian by default). The .meta file is a “header”
file that contains information about the size and the structure of the .data file. This way of organizing the output is
particularly useful when running multi-processors calculations.

At a minimum, the instantaneous “state” of the model is written out, which is made of the following files:

• U.00000nIter - zonal component of velocity field (m/s and positive eastward).

• V.00000nIter - meridional component of velocity field (m/s and positive northward).

• W.00000nIter - vertical component of velocity field (ocean: m/s and positive upward, atmosphere: Pa/s and
positive towards increasing pressure i.e., downward).

• T.00000nIter - potential temperature (ocean: ∘C, atmosphere: ∘K).

• S.00000nIter - ocean: salinity (psu), atmosphere: water vapor (g/kg).

• Eta.00000nIter - ocean: surface elevation (m), atmosphere: surface pressure anomaly (Pa).

The chain 00000nIter consists of ten figures that specify the iteration number at which the output is written out.
For example, U.0000000300 is the zonal velocity at iteration 300.

In addition, a “pickup” or “checkpoint” file called:

• pickup.00000nIter

is written out. This file represents the state of the model in a condensed form and is used for restarting the integration
(at the specific iteration number). Some additional parameterizations and packages also produce separate pickup files,
e.g.,

• pickup_cd.00000nIter if the C-D scheme is used (see C_D Scheme)

• pickup_seaice.00000nIter if the seaice package is turned on (see SEAICE Package)

• pickup_ptracers.00000nIter if passive tracers are included in the simulation (see PTRACERS Pack-
age)

Rolling checkpoint files are the same as the pickup files but are named differently. Their name contain the chain
ckptA or ckptB instead of 00000nIter. They can be used to restart the model but are overwritten every other
time they are output to save disk space during long integrations.
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3.6.3.2 NetCDF output files

pkg/mnc is a set of routines written to read, write, and append netCDF files. Unlike the pkg/mdsio output, the
pkg/mnc–generated output is usually placed within a subdirectory with a name such as mnc_output_ (by default,
netCDF tries to append, rather than overwrite, existing files, so a unique output directory is helpful for each separate
run).

The pkg/mnc output files are all in the “self-describing” netCDF format and can thus be browsed and/or plotted using
tools such as:

• ncdump is a utility which is typically included with every netCDF install, and converts the netCDF binaries into
formatted ASCII text files.

• ncview is a very convenient and quick way to plot netCDF data and it runs on most platforms. Panoply is a
similar alternative.

• MATLAB, GrADS, IDL and other common post-processing environments provide built-in netCDF interfaces.

3.6.4 Looking at the output

3.6.4.1 MATLAB

Raw binary output

The repository includes a few MATLAB utilities to read binary output files written in the /pkg/mdsio format. The
MATLAB scripts are located in the directory utils/matlab under the root tree. The script utils/matlab/rdmds.m reads
the data. Look at the comments inside the script to see how to use it.

Some examples of reading and visualizing some output in MATLAB:

% matlab
>> H=rdmds('Depth');
>> contourf(H');colorbar;
>> title('Depth of fluid as used by model');

>> eta=rdmds('Eta',10);
>> imagesc(eta');axis ij;colorbar;
>> title('Surface height at iter=10');

>> [eta,iters,M]=rdmds('Eta',NaN); % this will read all dumped iterations
>> % iter numbers put in variable 'iters'; 'M' is a character string w/metadata
>> for n=1:length(iters); imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end

Typing help rdmds in MATLAB will pull up further information on how to use the rdmds utility.

NetCDF output

Similar scripts for netCDF output (e.g., utils/matlab/rdmnc.m) are available and they are described in Section 9.3.
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3.6.4.2 Python

Install the MITgcmutils python package following the instructions in Section 11.1.

Raw binary output

The following example shows how to load in some data:

# python
from MITgcmutils import mds

Eta = mds.rdmds('Eta', itrs=10)

For more information about this function and its options, see the API docs, MITgcmutils.mds.rdmds().

NetCDF output

The netCDF output is currently produced with one file per processor. This means the individual tiles
need to be stitched together to create a single netCDF file that spans the model domain. The script
utils/python/MITgcmutils/scripts/gluemncbig can do this efficiently from the command line. If you have installed
the MITgcmutils package, a copy of gluemncbig should be on your path. For usage information, see Section 11.1.9.

The following example shows how to use the xarray python package to read the resulting netCDF file into Python:

# python
import xarray as xr

Eta = xr.open_dataset('Eta.nc')

3.7 Customizing the Model Configuration - Code Parameters and
Compilation Options

3.7.1 Model Array Dimensions

MITgcm’s array dimensions need to be configured for each unique model domain. The size of each tile (in dimensions
𝑥, 𝑦, and vertical coordinate 𝑟) the “overlap” region of each tile (in 𝑥 and 𝑦), the number of tiles in the 𝑥 and 𝑦
dimensions, and the number of processes (using MPI) in the 𝑥 and 𝑦 dimensions all need to be specified in SIZE.h.
From these parameters, global domain-size variables Nx, Ny are computed by the model. See a more technical
discussion of SIZE.h parameters in in Section 6.3.1, and a detailed explanation of an example SIZE.h setup in tutorial
Baroclinic Ocean Gyre.
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Parameter Default SIZE.h Description
sNx 30 number of points in 𝑥 dimension in a single tile
sNy 15 number of points in 𝑦 dimension in a single tile
Nr 4 number of points in 𝑟 dimension
OLx 2 number of “overlap” points in 𝑥 dimension for a tile
OLy 2 number of “overlap” points in 𝑦 dimension for a tile
nSx 2 number of tile per process in 𝑥 dimension
nSy 4 number of tile per process in 𝑦 dimension
nPx 1 number of processes in 𝑥 dimension
nPy 1 number of processes in 𝑦 dimension

Note the repository version of SIZE.h includes several lines of text at the top that will halt compilation with errors.
Thus, to use MITgcm you will need to copy SIZE.h to a code modification directory and make edits, including deleting
or commenting out the offending lines of text.

3.7.2 C Preprocessor Options

The CPP flags relative to the “numerical model” part of the code are defined and set in the file CPP_OPTIONS.h in the
directory model/inc/. In the parameter tables in Section 3.8 we have noted CPP options that need to be changed from
the default to enable specific runtime parameter to be used properly. Also note many of the options below are for
less-common situations or are somewhat obscure, so newer users of the MITgcm are encouraged to jump to Section
3.8 where more basic runtime parameters are discussed.

CPP Flag Name Default Description
SHORTWAVE_HEATING #undef provide separate shortwave heating file, allowing

shortwave to penetrate below surface layer
ALLOW_GEOTHERMAL_FLUX #undef include code for applying geothermal heat flux at

the bottom of the ocean
ALLOW_FRICTION_HEATING #undef include code to allow heating due to friction (and

momentum dissipation)
ALLOW_ADDFLUID #undef allow mass source or sink of fluid in the inte-

rior (3D generalization of oceanic real-fresh water
flux)

ATMOSPHERIC_LOADING #define include code for atmospheric pressure-loading
(and seaice-loading) on ocean surface

ALLOW_BALANCE_FLUXES #undef include balancing surface forcing fluxes code
ALLOW_BALANCE_RELAX #undef include balancing surface forcing relaxation code
CHECK_SALINITY_FOR_NEGATIVE_VALUES #undef include code checking for negative salinity
EXCLUDE_FFIELDS_LOAD #undef exclude external forcing-fields load; code allows

reading and simple linear time interpolation of
oceanic forcing fields, if no specific pkg (e.g.,
pkg/exf) is used to compute them

INCLUDE_PHIHYD_CALCULATION_CODE #define include code to calculate 𝜑ℎ𝑦𝑑
INCLUDE_CONVECT_CALL #define include code for convective adjustment mixing al-

gorithm
INCLUDE_CALC_DIFFUSIVITY_CALL #define include codes that calculates (tracer) diffusivities

and viscosities
ALLOW_3D_DIFFKR #undef allow full 3D specification of vertical diffusivity
ALLOW_BL79_LAT_VARY #undef allow latitudinally varying Bryan and Lewis 1979

[BL79] vertical diffusivity
continues on next page
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Table 3.1 – continued from previous page
CPP Flag Name Default Description
EXCLUDE_PCELL_MIX_CODE #undef exclude code for partial-cell effect (physical or en-

hanced) in vertical mixing; this allows accounting
for partial-cell in vertical viscosity and diffusion,
either from grid-spacing reduction effect or as ar-
tificially enhanced mixing near surface & bottom
for too thin grid-cell

ALLOW_SOLVE4_PS_AND_DRAG #undef include code for combined surface pressure and
drag implicit solver

INCLUDE_IMPLVERTADV_CODE #define include code for implicit vertical advection
ALLOW_ADAMSBASHFORTH_3 #undef include code for Adams-Bashforth 3rd-order
EXACT_CONSERV #define include code for “exact conservation” of fluid in

free-surface formulation (recompute divergence
after pressure solver)

NONLIN_FRSURF #undef allow the use of non-linear free-surface formu-
lation; implies that grid-cell thickness (hFactors)
varies with time

ALLOW_NONHYDROSTATIC #undef include non-hydrostatic and 3D pressure solver
codes

ALLOW_EDDYPSI #undef include GM-like eddy stress in momentum code
(untested, not recommended)

ALLOW_CG2D_NSA #undef use non-self-adjoint (NSA) conjugate-gradient
solver

ALLOW_SRCG #define include code for single reduction conjugate gradi-
ent solver

SOLVE_DIAGONAL_LOWMEMORY #undef low memory footprint (not suitable for
AD) choice for implicit solver routines
solve_*diagonal.F

SOLVE_DIAGONAL_KINNER #undef choice for implicit solver routines
solve_*diagonal.F suitable for AD

COSINEMETH_III #define selects implementation form of cos𝜙 scaling of
bi-harmonic term for viscosity (note, CPP op-
tion for tracer diffusivity set independently in
GAD_OPTIONS.h)

ISOTROPIC_COS_SCALING #undef selects isotropic scaling of harmonic and bi-
harmonic viscous terms when using the cos𝜙
scaling (note, CPP option for tracer diffusivity set
independently in GAD_OPTIONS.h)

By default, MITgcm includes several core packages, i.e., these packages are enabled during genmake2 execution if
a file packages.conf is not found. See Section 8.1.1 for more information about packages.conf, and see
pkg/pkg_groups for more information about default packages and package groups. These default packages are as
follows:

• pkg/mom_common

• pkg/mom_fluxform

• pkg/mom_vecinv

• pkg/generic_advdiff

• pkg/debug

• pkg/mdsio
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• pkg/rw

• pkg/monitor

Additional CPP options that affect the model core code are set in files ${PKG}_OPTIONS.h located in these pack-
ages’ directories. Similarly, optional (non-default) packages also include package-specific CPP options that must be
set in files ${PKG}_OPTIONS.h.

The file eesupp/inc/CPP_EEOPTIONS.h does not contain any CPP options that typically will need to be modified by
users.

3.8 Customizing the Model Configuration - Runtime Parameters

When you are ready to run the model in the configuration you want, the most straightforward approach is to use and
adapt the setup of a tutorial or verification experiment (described in Section 4) that is the closest to your configuration.
Then, the amount of setup will be minimized. In this section, we document the complete list of MITgcm model
namelist runtime parameters set in file data, which needs to be located in the directory where you will run the model.
Model parameters are defined and declared in the file PARAMS.h and their default values are generally set in the
routine set_defaults.F, otherwise when initialized in the routine ini_parms.F. Section 3.8.9 documents the “execution
environment” namelist parameters in file eedata, which must also reside in the current run directory. Note that
runtime parameters used by (non-default) MITgcm packages are not documented here but rather in Section 8 and
Section 9, and prescribed in package-specific data.${pkg} namelist files which are read in via package-specific
${pkg}_readparms.F where ${pkg} is the package name (see Section 8.1.1).

In what follows, model parameters are grouped into categories related to configuration/computational domain, algo-
rithmic parameters, equations solved in the model, parameters related to model forcing, and simulation controls. The
tables below specify the namelist parameter name, the namelist parameter group in data (and eedata in Section
3.8.9), the default value, and a short description of its function. Runtime parameters that require non-default CPP
options to be set prior to compilation (see Section 3.7) for proper use are noted.

3.8.1 Parameters: Configuration, Computational Domain, Geometry, and Time-
Discretization

3.8.1.1 Model Configuration

buoyancyRelation is set to OCEANIC by default, which employes a 𝑧-coordinate vertical axis. To simulate an ocean
using pressure coordinates in the vertical, set it to OCEANICP. For atmospheric simulations, buoyancyRelation needs
to be set to ATMOSPHERIC, which also uses pressure as the vertical coordinate. The default model configuration is
hydrostatic; to run a non-hydrostatic simulation, set the logical variable nonHydrostatic to .TRUE..

Parameter Group Default Description
buoyancyRelation PARM01 OCEANIC buoyancy relation (OCEANIC, OCEANICP, or ATMOSPHERIC)
quasiHydrostatic PARM01 FALSE quasi-hydrostatic formulation on/off flag
rhoRefFile PARM01 ' ' filename for reference density profile (kg/m3); activates anelastic

form of model
nonHydrostatic PARM01 FALSE non-hydrostatic formulation on/off flag; requires #define AL-

LOW_NONHYDROSTATIC
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3.8.1.2 Grid

Four different grids are available: Cartesian, spherical polar, cylindrical, and curvilinear (which includes the cubed
sphere). The grid is set through the logical variables usingCartesianGrid, usingSphericalPolarGrid, usingCylindrical-
Grid, and usingCurvilinearGrid. Note that the cylindrical grid is designed for modeling a rotating tank, so that 𝑥 is the
azimuthual direction, 𝑦 is the radial direction, and 𝑟 is vertical coordinate (see tutorial rotating tank).

The variable xgOrigin sets the position of the western most gridcell face in the 𝑥 dimension (Cartesian, meters;
spherical and cyclindrical, degrees). For a Cartesian or spherical grid, the southern boundary is defined through the
variable ygOrigin which corresponds to the latitude of the southern most gridcell face (Cartesian, meters; spherical,
degrees). For a cyclindrical grid, a positive ygOrigin (m) adds an inner cylindrical boundary at the center of the tank.
The resolution along the 𝑥 and 𝑦 directions is controlled by the 1-D arrays delX (meters for a Cartesian grid, degrees
otherwise) and delY (meters for Cartesian and cyclindrical grids, degrees spherical). On a spherical polar grid, you
might decide to set the variable cosPower which is set to 0 by default and which represents 𝑛 in (cos𝜙)𝑛, the power of
cosine of latitude to multiply horizontal viscosity and tracer diffusivity. The vertical grid spacing is set through the 1-D
array delR (𝑧-coordinates: in meters; 𝑝-coordinates, in Pa). Using a curvilinear grid requires complete specification
of all horizontal MITgcm grid variables, either through a default filename (link to new doc section) or as specified by
horizGridFile.

The variable seaLev_Z represents the standard position of sea level, in meters. This is typically set to 0 m for the
ocean (default value). If instead pressure is used as the vertical coordinate, the pressure at the top (of the atmosphere
or ocean) is set through top_Pres, typically 0 Pa. As such, these variables are analogous to xgOrigin and ygOrigin
to define the vertical grid axis. But they also are used for a second purpose: in a 𝑧-coordinate setup, top_Pres sets
a reference top pressure (required in a non-linear equation of state computation, for example); note that 1 bar (i.e.,
typical Earth atmospheric sea-level pressure) is added already, so the default is 0 Pa. Similarly, for a 𝑝-coordinate
setup, seaLev_Z is used to set a reference geopotential (after gravity scaling) at the top of the ocean or bottom of the
atmosphere.

Parameter Group Default Description
usingCartesianGrid PARM04 TRUE use Cartesian grid/coordinates on/off flag
usingSphericalPolarGrid PARM04 FALSE use spherical grid/coordinates on/off flag
usingCylindricalGrid PARM04 FALSE use cylindrical grid/coordinates on/off flag
usingCurvilinearGrid PARM04 FALSE use curvilinear grid/coordinates on/off flag
xgOrigin PARM04 0.0 west edge 𝑥-axis origin (Cartesian: m; spherical and cy-

clindrical: degrees longitude)
ygOrigin PARM04 0.0 South edge 𝑦-axis origin (Cartesian and cyclindrical: m;

spherical: degrees latitude)
dxSpacing PARM04 unset 𝑥-axis uniform grid spacing, separation between cell faces

(Cartesian: m; spherical and cyclindrical: degrees)
delX PARM04 dxSpacing 1D array of 𝑥-axis grid spacing, separation between cell

faces (Cartesian: m; spherical and cyclindrical: degrees)
delXFile PARM04 ' ' filename containing 1D array of 𝑥-axis grid spacing
dySpacing PARM04 unset 𝑦-axis uniform grid spacing, separation between cell faces

(Cartesian and cyclindrical: m; spherical: degrees)
delY PARM04 dySpacing 1D array of 𝑥-axis grid spacing, separation between cell

faces (Cartesian and cyclindrical: m; spherical: degrees)
delYFile PARM04 ' ' filename containing 1D array of 𝑦-axis grid spacing
cosPower PARM01 0.0 power law 𝑛 in (cos𝜙)𝑛 factor for horizontal (harmonic

or biharmonic) viscosity and tracer diffusivity (spherical
polar)

delR PARM04 computed
using
delRc

vertical grid spacing 1D array ([𝑟] unit)

continues on next page
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Table 3.2 – continued from previous page
Parameter Group Default Description
delRc PARM04 computed

using delR
vertical cell center spacing 1D array ([𝑟] unit)

delRFile PARM04 ' ' filename for vertical grid spacing 1D array ([𝑟] unit)
delRcFile PARM04 ' ' filename for vertical cell center spacing 1D array ([𝑟] unit)
rSphere PARM04 6.37E+06 radius of sphere for spherical polar or curvilinear grid (m)
seaLev_Z PARM04 0.0 reference height of sea level (m)
top_Pres PARM04 0.0 top pressure (𝑝-coordinates) or top reference pressure (𝑧-

coordinates) (Pa)
selectFindRoSurf PARM01 0 select method to determine surface reference pressure from

orography (atmos.-only)
horizGridFile PARM04 ' ' filename containing full set of horizontal grid variables

(curvilinear)
radius_fromHorizGrid PARM04 rSphere radius of sphere used in input curvilinear horizontal grid

file (m)
phiEuler PARM04 0.0 Euler angle, rotation about original 𝑧-axis (spherical polar)

(degrees)
thetaEuler PARM04 0.0 Euler angle, rotation about new 𝑥-axis (spherical polar)

(degrees)
psiEuler PARM04 0.0 Euler angle, rotation about new 𝑧-axis (spherical polar)

(degrees)

3.8.1.3 Topography - Full and Partial Cells

For the ocean, the topography is read from a file that contains a 2-D(𝑥, 𝑦) map of bathymetry, in meters for 𝑧-
coordinates, in pascals for 𝑝-coordinates. The bathymetry is specified by entering the vertical position of the ocean
floor relative to the surface, so by convention in 𝑧-coordinates bathymetry is specified as negative numbers (“depth”
is defined as positive-definite) whereas in 𝑝-coordinates bathymetry data is positive. The file name is represented by
the variable bathyFile. See our introductory tutorial setup Section 4.1 for additional details on the file format. Note no
changes are required in the model source code to represent enclosed, periodic, or double periodic domains: periodicity
is assumed by default and is suppressed by setting the depths to 0 m for the cells at the limits of the computational
domain.

To use the partial cell capability, the variable hFacMin needs to be set to a value between 0.0 and 1.0 (it is set to
1.0 by default) corresponding to the minimum fractional size of a gridcell. For example, if a gridcell is 500 m thick
and hFacMin is set to 0.1, the minimum thickness for a “thin-cell” for this specific gridcell is 50 m. Thus, if the
specified bathymetry depth were to fall exactly in the middle of this 500m thick gridcell, the initial model variable
hFacC(𝑥, 𝑦, 𝑟) would be set to 0.5. If the specified bathymetry depth fell within the top 50m of this gridcell (i.e., less
than hFacMin), the model bathymetry would snap to the nearest legal value (i.e., initial hFacC(𝑥, 𝑦, 𝑟) would be equal
to 0.0 or 0.1 depending if the depth was within 0-25 m or 25-50 m, respectively). Also note while specified bathymetry
bottom depths (or pressures) need not coincide with the model’s levels as deduced from delR, any depth falling below
the model’s defined vertical axis is truncated.

Parameter Group Default Description
bathyFile PARM05 ' ' filename for 2D bathymetry (ocean) (𝑧-coor.: m, negative; 𝑝-

coor.: Pa, positive)
topoFile PARM05 ' ' filename for 2D surface topography (atmosphere) (m)
addWwallFile PARM05 ' ' filename for 2D western cell-edge “thin-wall”
addSwallFile PARM05 ' ' filename for 2D southern cell-edge “thin-wall”
hFacMin PARM01 1.0E+00 minimum fraction size of a cell
hFacMinDr PARM01 1.0E+00 minimum dimensional size of a cell ([𝑟] unit)

continues on next page
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Table 3.3 – continued from previous page
Parameter Group Default Description
hFacInf PARM01 2.0E-01 lower threshold fraction for surface cell; for non-linear free sur-

face only, see parameter nonlinFreeSurf
hFacSup PARM01 2.0E+00 upper threshold fraction for surface cell; for non-linear free sur-

face, only see parameter nonlinFreeSurf
useMin4hFacEdges PARM04 FALSE set hFacW, hFacS as minimum of adjacent hFacC on/off flag
pCellMix_select PARM04 0 option/factor to enhance mixing at the surface or bottom (0- 99)
pCellMix_maxFac PARM04 1.0E+04 maximum enhanced mixing factor for too thin partial-cell (non-

dim.)
pCellMix_delR PARM04 0.0 thickness criteria for too thin partial-cell ([𝑟] unit)

3.8.1.4 Physical Constants

Parameter Group Default Description
rhoConst PARM01 rhoNil vertically constant reference density (Boussinesq) (kg/m3)
gravity PARM01 9.81E+00 gravitational acceleration (m/s2)
gravityFile PARM01 ' ' filename for 1D gravity vertical profile (m/s2)
gBaro PARM01 gravity gravity constant in barotropic equation (m/s2)

3.8.1.5 Rotation

For a Cartesian or cylindical grid, the Coriolis parameter 𝑓 is set through the variables f0 (in s–1) and beta (𝜕𝑓𝜕𝑦 ; in
m–1s–1), which corresponds to a Coriolis parameter 𝑓 = 𝑓𝑜 + 𝛽𝑦 (the so-called 𝛽-plane).

Parameter Group Default Description
rotationPeriod PARM01 8.6164E+04 rotation period (s)
omega PARM01 2𝜋/rotationPeriod angular velocity (rad/s)
selectCoriMap PARM01 depends on grid

(Cartesian and
cylindrical=1,
spherical and
curvilinear=2)

Coriolis map options
• 0: f-plane
• 1: beta-plane
• 2: spherical Coriolis (= 2Ω sin𝜙)
• 3: read 2D field from file

f0 PARM01 1.0E-04 reference Coriolis parameter (Cartesian or cylindrical grid)
(1/s)

beta PARM01 1.0E-11 𝛽 (Cartesian or cylindrical grid) (m–1s–1)
fPrime PARM01 0.0 2Ω cos𝜑 parameter (Cartesian or cylindical grid) (1/s); i.e.,

for cos𝜙 Coriolis terms from horizontal component of ro-
tation vector (also sometimes referred to as reciprocal Cori-
olis parm.)
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3.8.1.6 Free Surface

The logical variables rigidLid and implicitFreeSurface specify your choice for ocean upper boundary (or lower bound-
ary if using 𝑝-coordinates); set one to .TRUE. and the other to .FALSE.. These settings affect the calculations of
surface pressure (for the ocean) or surface geopotential (for the atmosphere); see Section 3.8.2.

Parameter Group Default Description
implicitFreeSurface PARM01 TRUE implicit free surface on/off flag
rigidLid PARM01 FALSE rigid lid on/off flag
useRealFreshWaterFlux PARM01 FALSE use true E-P-R freshwater flux (changes free surface/sea

level) on/off flag
implicSurfPress PARM01 1.0E+00 implicit fraction of the surface pressure gradient (0-1)
implicDiv2Dflow PARM01 1.0E+00 implicit fraction of the barotropic flow divergence (0-1)
implicitNHPress PARM01 implicSurfPress implicit fraction of the non-hydrostatic pressure gradient

(0-1); for non-hydrostatic only, see parameter nonHydro-
static

nonlinFreeSurf PARM01 0 non-linear free surface options (-1,0,1,2,3; see Table 2.1);
requires #define NONLIN_FRSURF

select_rStar PARM01 0 vertical coordinate option
• 0: use r
• >0: use 𝑟*

see Table 2.1; requires #define NONLIN_FRSURF
selectNHfreeSurf PARM01 0 non-hydrostatic free surface formulation option

• 0: don’t use
• >0: use

requires non-hydrostatic formulation, see parameter non-
Hydrostatic

exactConserv PARM01 FALSE exact total volume conservation (recompute divergence af-
ter pressure solver) on/off flag

3.8.1.7 Time-Discretization

The time steps are set through the real variables deltaTMom and deltaTtracer (in seconds) which represent the time
step for the momentum and tracer equations, respectively (or you can prescribe a single time step value for all param-
eters using deltaT). The model “clock” is defined by the variable deltaTClock (in seconds) which determines the I/O
frequencies and is used in tagging output. Time in the model is thus computed as:

model time = baseTime + iteration number * deltaTClock

Parameter Group Default Description
deltaT PARM03 0.0 default value used for model time step parameters (s)
deltaTClock PARM03 deltaT timestep used for model clock (s): used for I/O frequency and

tagging output and checkpoints
deltaTmom PARM03 deltaT momentum equation timestep (s)
deltaTtracer PARM03 deltaT tracer equation timestep (s)
dTtracerLev PARM03 deltaTtracer tracer equation timestep specified at each vertical level (s)
deltaTfreesurf PARM03 deltaTmom free-surface equation timestep (s)
baseTime PARM03 0.0 model base time corresponding to iteration 0 (s)
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3.8.2 Parameters: Main Algorithmic Parameters

3.8.2.1 Pressure Solver

By default, a hydrostatic simulation is assumed and a 2-D elliptic equation is used to invert the pressure field. If using
a non-hydrostatic configuration, the pressure field is inverted through a 3-D elliptic equation (note this capability is
not yet available for the atmosphere). The parameters controlling the behavior of the elliptic solvers are the variables
cg2dMaxIters and cg2dTargetResidual for the 2-D case and cg3dMaxIters and cg3dTargetResidual for the 3-D case.

Parameter Group Default Description
cg2dMaxIters PARM02 150 upper limit on 2D conjugate gradient solver iterations
cg2dTargetResidual PARM02 1.0E-07 2D conjugate gradient target residual (non-dim. due to

RHS normalization )
cg2dTargetResWunit PARM02 -1.0E+00 2D conjugate gradient target residual (𝑟̇ units); <0: use

RHS normalization, i.e., cg2dTargetResidual instead
cg2dPreCondFreq PARM02 1 frequency (in number of iterations) for updating cg2d pre-

conditioner; for non-linear free surface only, see parameter
nonlinFreeSurf

cg2dUseMinResSol PARM02 0 unless flat-bottom,
Cartesian • 0: use last-iteration/converged cg2d solution

• 1: use solver minimum-residual solution

cg3dMaxIters PARM02 150 upper limit on 3D conjugate gradient solver iterations; re-
quires #define ALLOW_NONHYDROSTATIC

cg3dTargetResidual PARM02 1.0E-07 3D conjugate gradient target residual (non-dim.
due to RHS normalization ); requires #define AL-
LOW_NONHYDROSTATIC

useSRCGSolver PARM02 FALSE use conjugate gradient solver with single reduction (single
call of mpi_allreduce)

printResidualFreq PARM02 1 unless debugLevel
>4

frequency (in number of iterations) of printing conjugate
gradient residual

integr_GeoPot PARM01 2 select method to integrate geopotential
• 1: finite volume
• ̸=1: finite difference

uniformLin_PhiSurf PARM01 TRUE use uniform 𝑏𝑠 relation for 𝜑𝑠 on/off flag
deepAtmosphere PARM04 FALSE don’t make the thin shell/shallow water approximation
nh_Am2 PARM01 1.0E+00 non-hydrostatic terms scaling factor; requires #define AL-

LOW_NONHYDROSTATIC

3.8.2.2 Time-Stepping Algorithm

The Adams-Bashforth stabilizing parameter is set through the variable abEps (dimensionless). The stagger baroclinic
time stepping algorithm can be activated by setting the logical variable staggerTimeStep to .TRUE..
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Parameter Group Default Description
abEps PARM03 1.0E-02 Adams-Bashforth-2 stabilizing weight (non-dim.)
alph_AB PARM03 0.5E+00 Adams-Bashforth-3 primary factor (non-dim.); requires #define

ALLOW_ADAMSBASHFORTH_3
beta_AB PARM03 5/12 Adams-Bashforth-3 secondary factor (non-dim.); requires #de-

fine ALLOW_ADAMSBASHFORTH_3
staggerTimeStep PARM01 FALSE use staggered time stepping (thermodynamic vs. flow variables)

on/off flag
multiDimAdvection PARM01 TRUE use multi-dim. advection algorithm in schemes where non multi-

dim. is possible on/off flag
implicitIntGravWave PARM01 FALSE treat internal gravity waves implicitly on/off flag; requires #de-

fine ALLOW_NONHYDROSTATIC

3.8.3 Parameters: Equation of State

The form of the equation of state is controlled by the model configuration and eosType.

For the atmosphere, eosType must be set to IDEALGAS.

For the ocean, several forms of the equation of state are available:

• For a linear approximation, set eosType to LINEAR), and you will need to specify the thermal and haline
expansion coefficients, represented by the variables tAlpha (in K–1) and sBeta (in psu–1). Because the model
equations are written in terms of perturbations, a reference thermodynamic state needs to be specified. This is
done through the 1-D arrays tRef and sRef. tRef specifies the reference potential temperature profile (in oC for
the ocean and K for the atmosphere) starting from the level k=1. Similarly, sRef specifies the reference salinity
profile (in psu or g/kg) for the ocean or the reference specific humidity profile (in g/kg) for the atmosphere.

• MITgcm offers several approximations to the full (oceanic) non-linear equation of state that can be selected as
eosType:

'POLYNOMIAL': This approximation is based on the Knudsen formula (see Bryan and Cox 1972
[BC72]). For this option you need to generate a file of polynomial coefficients called POLY3.
COEFFS. To do this, use the program utils/knudsen2/knudsen2.f under the model tree (a
Makefile is available in the same directory; you will need to edit the number and the val-
ues of the vertical levels in knudsen2.f so that they match those of your configuration).

’UNESCO’: The UNESCO equation of state formula (IES80) of Fofonoff and Millard (1983)
[FRM83]. This equation of state assumes in-situ temperature, which is not a model variable;
its use is therefore discouraged.

’JMD95Z’: A modified UNESCO formula by Jackett and McDougall (1995) [JM95], which uses
the model variable potential temperature as input. The ’Z’ indicates that this equation of state
uses a horizontally and temporally constant pressure 𝑝0 = −𝑔𝜌0𝑧.

’JMD95P’: A modified UNESCO formula by Jackett and McDougall (1995) [JM95], which uses
the model variable potential temperature as input. The ’P’ indicates that this equation of state
uses the actual hydrostatic pressure of the last time step. Lagging the pressure in this way
requires an additional pickup file for restarts.

’MDJWF’: A more accurate and less expensive equation of state than UNESCO by McDougall et al.
(2003) [MJWF03], also using the model variable potential temperature as input. It also requires
lagging the pressure and therefore an additional pickup file for restarts.

’TEOS10’: TEOS-10 is based on a Gibbs function formulation from which all thermodynamic
properties of seawater (density, enthalpy, entropy sound speed, etc.) can be derived in a ther-
modynamically consistent manner; see http://www.teos-10.org. See IOC et al. (2010) [ISI10],
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McDougall and Parker (2011) [MB11], and Roquet et al. (2015) [RMMB15] for implemen-
tation details. It also requires lagging the pressure and therefore an additional pickup file for
restarts. Note at this time a full implementation of TEOS10 (i.e. ocean variables of conserva-
tive temperature and practical salinity, including consideration of surface forcings) has not been
implemented; also note the original 48-term polynomial term is used, not the newer, preferred
75-term polynomial.

For these non-linear approximations, neither a reference profile of temperature or salinity is required,
except for a setup where implicitIntGravWave is set to .TRUE. or selectP_inEOS_Zc=1.

Note that salinity can can be expressed in either practical salinity units (psu, i.e., unit-less) or g/kg, depending on the
choice of equation of state. See Millero (2010) [Mil10] for a detailed discussion of salinity measurements, and why
use of the latter is preferred, in the context of the ocean equation of state.

Parameter Group Default Description
eosType PARM01 LINEAR equation of state form
tRef PARM01 20.0 oC (ocn) or

300.0 K (atm)
1D vertical reference temperature profile (oC or K)

tRefFile PARM01 ' ' filename for reference temperature profile (oC or K)
thetaConst PARM01 tRef(k=1) vertically constant reference temp. for atmosphere 𝑝* coor-

dinates (oK); for ocean, specify instead of tRef or tRefFile
for vertically constant reference temp. (oC )

sRef PARM01 30.0 psu (ocn) or 0.0
(atm)

1D vertical reference salinity profile (psu or g/kg)

sRefFile PARM01 ' ' filename for reference salinity profile (psu or g/kg)
selectP_inEOS_Zc PARM01 depends on eosType select which pressure to use in EOS for 𝑧-coor.

• 0: use −𝑔𝜌𝑐𝑧
• 1: use 𝑝𝑟𝑒𝑓 = −

∫︀
−𝑔𝜌(𝑇𝑟𝑒𝑓 , 𝑆𝑟𝑒𝑓 , 𝑝𝑟𝑒𝑓 )𝑑𝑧

• 2: hydrostatic dynamical pressure
• 3: use full hyd.+non-hyd. pressure

for JMD95P, UNESCO, MDJWF, TEOS10 default=2, oth-
erwise default =0

rhonil PARM01 9.998E+02 reference density for linear EOS (kg/m3)
tAlpha PARM01 2.0E-04 linear EOS thermal expansion coefficient (1/oC)
sBeta PARM01 7.4E-04 linear EOS haline contraction coefficient (1/psu)

3.8.3.1 Thermodynamic Constants

Parameter Group Default Description
HeatCapacity_Cp PARM01 3.994E+03 specific heat capacity Cp (ocean) (J/kg/K)
celsius2K PARM01 2.7315E+02 conversion constant oC to Kelvin
atm_Cp PARM01 1.004E+03 specific heat capacity Cp dry air at const. press. (J/kg/K)
atm_Rd PARM01 atm_Cp*(2/7) gas constant for dry air (J/kg/K)
atm_Rq PARM01 0.0 water vapor specific volume anomaly relative to dry air (g/kg)
atm_Po PARM01 1.0E+05 atmosphere standard reference pressure (for potential temp.

defn.) (Pa)
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3.8.4 Parameters: Momentum Equations

3.8.4.1 Configuration

There are a few logical variables that allow you to turn on/off various terms in the momentum equation. These variables
are called momViscosity, momAdvection, useCoriolis, momStepping, metricTerms, and momPressureForcing and by
default are set to .TRUE.. Vertical diffusive fluxes of momentum can be computed implicitly by setting the logical
variable implicitViscosity to .TRUE.. The details relevant to both the momentum flux-form and the vector-invariant
form of the equations and the various (momentum) advection schemes are covered in Section 2.

Parameter Group Default Description
momStepping PARM01 TRUE momentum equation time-stepping on/off flag
momViscosity PARM01 TRUE momentum friction terms on/off flag
momAdvection PARM01 TRUE advection of momentum on/off flag
momPressureForcing PARM01 TRUE pressure term in momentum equation on/off flag
metricTerms PARM01 TRUE include metric terms (spherical polar, momentum flux-

form) on/off flag
useNHMTerms PARM01 FALSE use “non-hydrostatic form” of metric terms on/off flag;

(see Section 2.14.4; note these terms are non-zero in many
model configurations beside non-hydrostatic)

momImplVertAdv PARM01 FALSE momentum implicit vertical advection on/off flag; requires
#define INCLUDE_IMPLVERTADV_CODE

implicitViscosity PARM01 FALSE implicit vertical viscosity on/off flag
interViscAr_pCell PARM04 FALSE account for partial-cell in interior vertical viscosity on/off

flag
momDissip_In_AB PARM03 TRUE use Adams-Bashforth time stepping for dissipation ten-

dency
useCoriolis PARM01 TRUE include Coriolis terms on/off flag
use3dCoriolis PARM01 TRUE include cos𝜙 Coriolis terms on/off flag
selectCoriScheme PARM01 0 Coriolis scheme selector

• 0: original scheme
• 1: wet-point averaging method
• 2: Flux-Form: energy conserving; Vector-Inv: hFac

weighted average
• 3: Flux-Form: energy conserving using wet-point

method; Vector-Inv: energy conserving with hFac
weight

vectorInvariantMomentum PARM01 FALSE use vector-invariant form of momentum equations flag
useJamartMomAdv PARM01 FALSE use Jamart wetpoints method for relative vorticity advec-

tion (vector invariant form) on/off flag
selectVortScheme PARM01 1 vorticity scheme (vector invariant form) options

• 0,1: enstrophy conserving forms
• 2: energy conserving form
• 3: energy and enstrophy conserving form

see Sadourny 1975 [Sad75] and Burridge & Haseler 1977
[BH77]

upwindVorticity PARM01 FALSE bias interpolation of vorticity in the Coriolis term (vector
invariant form) on/off flag

useAbsVorticity PARM01 FALSE use 𝑓 + 𝜁 in Coriolis terms (vector invariant form) on/off
flag

continues on next page
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Table 3.7 – continued from previous page
Parameter Group Default Description
highOrderVorticity PARM01 FALSE use 3rd/4th order interpolation of vorticity (vector invariant

form) on/off flag
upwindShear PARM01 FALSE use 1st order upwind for vertical advection (vector invari-

ant form) on/off flag
selectKEscheme PARM01 0 kinetic energy computation in Bernoulli function (vector

invariant form) options
• 0: standard form
• 1: area-weighted standard form
• 2: as 0 but account for partial cells
• 3: as 1 w/partial cells

see mom_calc_ke.F

3.8.4.2 Initialization

The initial horizontal velocity components can be specified from binary files uVelInitFile and vVelInitFile. These
files should contain 3-D data ordered in an (𝑥, 𝑦, 𝑟) fashion with k=1 as the first vertical level (surface level). If no file
names are provided, the velocity is initialized to zero. The initial vertical velocity is always derived from the horizontal
velocity using the continuity equation. In the case of a restart (from the end of a previous simulation), the velocity
field is read from a pickup file (see Section 3.8.7) and the initial velocity files are ignored.

Parameter Group Default Description
uVelInitFile PARM05 ' ' filename for 3D specification of initial zonal velocity field (m/s)
vVelInitFile PARM05 ' ' filename for 3D specification of initial meridional velocity field

(m/s)
pSurfInitFile PARM05 ' ' filename for 2D specification of initial free surface position ([𝑟]

unit)

3.8.4.3 General Dissipation Scheme

The lateral eddy viscosity coefficient is specified through the variable viscAh (in m2s–1). The vertical eddy viscosity
coefficient is specified through the variable viscAr (in [𝑟]2s–1, where [𝑟] is the dimension of the vertical coordinate).
In addition, biharmonic mixing can be added as well through the variable viscA4 (in m4s–1).

Parameter Group Default Description
viscAh PARM01 0.0 lateral eddy viscosity (m2/s)
viscAhD PARM01 viscAh lateral eddy viscosity acts on divergence part (m2/s)
viscAhZ PARM01 viscAh lateral eddy viscosity acts on vorticity part (𝜁 points) (m2/s)
viscAhW PARM01 viscAhD lateral eddy viscosity for mixing vertical momentum (non-

hydrostatic form) (m2/s); for non-hydrostatic only, see parameter
nonHydrostatic

viscAhDfile PARM05 ' ' filename for 3D specification of lateral eddy viscosity (diver-
gence part) (m2/s); requires #define ALLOW_3D_VISCAH in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscAhZfile PARM05 ' ' filename for 3D specification of lateral eddy viscosity (vortic-
ity part, 𝜁 points); requires #define ALLOW_3D_VISCAH in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscAhGrid PARM01 0.0 grid-dependent lateral eddy viscosity (non-dim.)
viscAhMax PARM01 1.0E+21 maximum lateral eddy viscosity (m2/s)

continues on next page
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Table 3.8 – continued from previous page
Parameter Group Default Description
viscAhGridMax PARM01 1.0E+21 maximum lateral eddy (grid-dependent) viscosity (non-dim.)
viscAhGridMin PARM01 0.0 minimum lateral eddy (grid-dependent) viscosity (non-dim.)
viscAhReMax PARM01 0.0 minimum lateral eddy viscosity based on Reynolds number (non-

dim.)
viscC2leith PARM01 0.0 Leith harmonic viscosity factor (vorticity part, 𝜁 points) (non-dim.)
viscC2leithD PARM01 0.0 Leith harmonic viscosity factor (divergence part) (non-dim.)
viscC2LeithQG PARM01 0.0 Quasi-geostrophic Leith viscosity factor (non-dim.)
viscC2smag PARM01 0.0 Smagorinsky harmonic viscosity factor (non-dim.)
viscA4 PARM01 0.0 lateral biharmonic viscosity (m4/s)
viscA4D PARM01 viscA4 lateral biharmonic viscosity (divergence part) (m4/s)
viscA4Z PARM01 viscA4 lateral biharmonic viscosity (vorticity part, 𝜁 points) (m4/s)
viscA4W PARM01 viscA4D lateral biharmonic viscosity for mixing vertical momentum (non-

hydrostatic form) (m4/s); for non-hydrostatic only, see parameter
nonHydrostatic

viscA4Dfile PARM05 ' ' filename for 3D specification of lateral biharmonic viscosity (di-
vergence part) (m4/s); requires #define ALLOW_3D_VISCA4 in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscA4Zfile PARM05 ' ' filename for 3D specification of lateral biharmonic viscosity (vor-
ticity part, 𝜁 points); requires #define ALLOW_3D_VISCA4 in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscA4Grid PARM01 0.0 grid dependent biharmonic viscosity (non-dim.)
viscA4Max PARM01 1.0E+21 maximum biharmonic viscosity (m4/s)
viscA4GridMax PARM01 1.0E+21 maximum biharmonic (grid-dependent) viscosity (non-dim.)
viscA4GridMin PARM01 0.0 minimum biharmonic (grid-dependent) viscosity (mon-dim.)
viscA4ReMax PARM01 0.0 minimum biharmonic viscosity based on Reynolds number (non-

dim.)
viscC4leith PARM01 0.0 Leith biharmonic viscosity factor (vorticity part, 𝜁 points) (non-

dim.)
viscC4leithD PARM01 0.0 Leith biharmonic viscosity factor (divergence part) (non-dim.)
viscC4smag PARM01 0.0 Smagorinsky biharmonic viscosity factor (non-dim.)
useFullLeith PARM01 FALSE use full form of Leith viscosities on/off flag
useSmag3D PARM01 FALSE use isotropic 3D Smagorinsky harmonic viscosi-

ties flag; requires #define ALLOW_SMAG_3D in
pkg/mom_common/MOM_COMMON_OPTIONS.h

smag3D_coeff PARM01 1.0E-02 isotropic 3D Smagorinsky coefficient (non-
dim.); requires #define ALLOW_SMAG_3D in
pkg/mom_common/MOM_COMMON_OPTIONS.h

useStrainTensionVisc PARM01 FALSE flag to use strain-tension form of viscous operator
useAreaViscLength PARM01 FALSE flag to use area for viscous 𝐿2 instead of harmonic mean of

𝐿𝑥
2, 𝐿𝑦

2

viscAr PARM01 0.0 vertical eddy viscosity ([𝑟]2/s)
viscArNr PARM01 0.0 vertical profile of vertical eddy viscosity ([𝑟]2/s)
pCellMix_viscAr PARM04 viscArNr vertical viscosity for too thin partial-cell ([𝑟]2/s)
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3.8.4.4 Sidewall/Bottom Dissipation

Slip or no-slip conditions at lateral and bottom boundaries are specified through the logical variables no_slip_sides
and no_slip_bottom. If set to .FALSE., free-slip boundary conditions are applied. If no-slip boundary conditions
are applied at the bottom, a bottom drag can be applied as well. Two forms are available: linear (set the variable
bottomDragLinear in [𝑟]/s, ) and quadratic (set the variable bottomDragQuadratic, [𝑟]/m).

Parameter Group Default Description
no_slip_sides PARM01 TRUE viscous BCs: no-slip sides on/off flag
sideDragFactor PARM01 2.0E+00 side-drag scaling factor (2.0: full drag) (non-dim.)
no_slip_bottom PARM01 TRUE viscous BCs: no-slip bottom on/off flag
bottomDragLinear PARM01 0.0 linear bottom-drag coefficient ([𝑟]/s)
bottomDragQuadratic PARM01 0.0 quadratic bottom-drag coefficient ([𝑟]/m)
selectBotDragQuadr PARM01 -1 select quadratic bottom drag discretization option

• -1: not used
• 0: average KE from grid center to 𝑢, 𝑣 location
• 1: use local velocity norm @ 𝑢, 𝑣 location
• 2: as 1 with wet-point averaging of other velocity compo-

nent
if bottomDragQuadratic ̸= 0. then default is 0

selectImplicitDrag PARM01 0 top/bottom drag implicit treatment options
• 0: fully explicit
• 1: implicit on provisional velocity, i.e., before ∇𝜂 incre-

ment
• 2: fully implicit

if =2, requires #define ALLOW_SOLVE4_PS_AND_DRAG
bottomVisc_pCell PARM01 FALSE account for partial-cell in bottom viscosity (using

no_slip_bottom = .TRUE.) on/off flag

3.8.5 Parameters: Tracer Equations

This section covers the tracer equations, i.e., the potential temperature equation and the salinity (for the ocean) or
specific humidity (for the atmosphere) equation.

3.8.5.1 Configuration

The logical variables tempAdvection, and tempStepping allow you to turn on/off terms in the temperature equation
(similarly for salinity or specific humidity with variables saltAdvection etc.). These variables all default to a value of
.TRUE.. The vertical diffusive fluxes can be computed implicitly by setting the logical variable implicitDiffusion to
.TRUE..

Parameter Group Default Description
tempStepping PARM01 TRUE temperature equation time-stepping on/off flag
tempAdvection PARM01 TRUE advection of temperature on/off flag
tempAdvScheme PARM01 2 temperature horizontal advection scheme selector (see Ta-

ble 2.2)
tempVertAdvScheme PARM01 tempAdvScheme temperature vertical advection scheme selector (see Table

2.2)
tempImplVertAdv PARM01 FALSE temperature implicit vertical advection on/off flag

continues on next page
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Table 3.9 – continued from previous page
Parameter Group Default Description
addFrictionHeating PARM01 FALSE include frictional heating in temperature equation on/off

flag; requires #define ALLOW_FRICTION_HEATING
temp_stayPositive PARM01 FALSE use Smolarkiewicz hack to ensure tempera-

ture stays positive on/off flag; requires #de-
fine GAD_SMOLARKIEWICZ_HACK in
pkg/generic_advdiff/GAD_OPTIONS.h

saltStepping PARM01 TRUE salinity equation time-stepping on/off flag
saltAdvection PARM01 TRUE advection of salinity on/off flag
saltAdvScheme PARM01 2 salinity horizontal advection scheme selector (see Table

2.2)
saltVertAdvScheme PARM01 saltAdvScheme salinity vertical advection scheme selector (see Table 2.2)
saltImplVertAdv PARM01 FALSE salinity implicit vertical advection on/off flag
salt_stayPositive PARM01 FALSE use Smolarkiewicz hack to ensure salin-

ity stays positive on/off flag; requires #de-
fine GAD_SMOLARKIEWICZ_HACK in
pkg/generic_advdiff/GAD_OPTIONS.h

implicitDiffusion PARM01 FALSE implicit vertical diffusion on/off flag
interDiffKr_pCell PARM04 FALSE account for partial-cell in interior vertical diffusion on/off

flag
linFSConserveTr PARM01 TRUE correct source/sink of tracer due to use of linear free sur-

face on/off flag
doAB_onGtGs PARM03 TRUE apply Adams-Bashforth on tendencies (rather than on T,S)

on/off flag

3.8.5.2 Initialization

The initial tracer data can be contained in the binary files hydrogThetaFile and hydrogSaltFile. These files should
contain 3-D data ordered in an (𝑥, 𝑦, 𝑟) fashion with k=1 as the first vertical level. If no file names are provided, the
tracers are then initialized with the values of tRef and sRef discussed in Section 3.8.3. In this case, the initial tracer
data are uniform in 𝑥 and 𝑦 for each depth level.

Parameter Group Default Description
hydrogThetaFile PARM05 ' ' filename for 3D specification of initial potential temperature (oC)
hydrogSaltFile PARM05 ' ' filename for 3D specification of initial salinity (psu or g/kg)
maskIniTemp PARM05 TRUE apply (center-point) mask to initial hydrographic theta data

on/off flag
maskIniSalt PARM05 TRUE apply (center-point) mask to initial hydrographic salinity on/off

flag
checkIniTemp PARM05 TRUE check if initial theta (at wet-point) identically zero on/off flag
checkIniSalt PARM05 TRUE check if initial salinity (at wet-point) identically zero on/off flag
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3.8.5.3 Tracer Diffusivities

Lateral eddy diffusivities for temperature and salinity/specific humidity are specified through the variables diffKhT
and diffKhS (in m2/s). Vertical eddy diffusivities are specified through the variables diffKrT and diffKrS.In addition,
biharmonic diffusivities can be specified as well through the coefficients diffK4T and diffK4S (in m4/s). The Gent and
McWilliams parameterization for advection and mixing of oceanic tracers is described in Section 8.4.1.

Parameter Group Default Description
diffKhT PARM01 0.0 Laplacian diffusivity of heat laterally (m2/s)
diffK4T PARM01 0.0 biharmonic diffusivity of heat laterally (m4/s)
diffKrT PARM01 0.0 Laplacian diffusivity of heat vertically (m2/s)
diffKr4T PARM01 0.0 biharmonic diffusivity of heat vertically (m2/s)
diffKrNrT PARM01 0.0 at k=top vertical profile of vertical diffusivity of temperature (m2/s)
pCellMix_diffKr PARM04 diffKrNr vertical diffusivity for too thin partial-cell ([r]2/s)
diffKhS PARM01 0.0 Laplacian diffusivity of salt laterally (m2/s)
diffK4S PARM01 0.0 biharmonic diffusivity of salt laterally (m4/s)
diffKrS PARM01 0.0 Laplacian diffusivity of salt vertically (m2/s)
diffKr4S PARM01 0.0 biharmonic diffusivity of salt vertically (m2/s)
diffKrNrS PARM01 0.0 at k=top vertical profile of vertical diffusivity of salt (m2/s)
diffKrFile PARM05 ' ' filename for 3D specification of vertical diffusivity (m2/s); re-

quires #define ALLOW_3D_DIFFKR
diffKrBL79surf PARM01 0.0 surface diffusivity for Bryan & Lewis 1979 [BL79] (m2/s)
diffKrBL79deep PARM01 0.0 deep diffusivity for Bryan & Lewis 1979 [BL79] (m2/s)
diffKrBL79scl PARM01 2.0E+02 depth scale for Bryan & Lewis 1979 [BL79] (m)
diffKrBL79Ho PARM01 -2.0E+03 turning depth for Bryan & Lewis 1979 [BL79] (m)
diffKrBLEQsurf PARM01 0.0 same as diffKrBL79surf but at equator; requires #define AL-

LOW_BL79_LAT_VARY
diffKrBLEQdeep PARM01 0.0 same as diffKrBL79deep but at equator; requires #define AL-

LOW_BL79_LAT_VARY
diffKrBLEQscl PARM01 2.0E+02 same as diffKrBL79scl but at equator; requires #define AL-

LOW_BL79_LAT_VARY
diffKrBLEQHo PARM01 -2.0E+03 same as diffKrBL79Ho but at equator; requires #define AL-

LOW_BL79_LAT_VARY
BL79LatVary PARM01 3.0E+01 transition from diffKrBLEQ to diffKrBL79 parms at this latitude;

requires #define ALLOW_BL79_LAT_VARY

3.8.5.4 Ocean Convection

In addition to specific packages that parameterize ocean convection, two main model options are available. To use
the first option, a convective adjustment scheme, you need to set the variable cadjFreq, the frequency (in seconds)
with which the adjustment algorithm is called, to a non-zero value (note, if cadjFreq set to a negative value by the
user, the model will set it to the model clock time step). The second option is to parameterize convection with implicit
vertical diffusion. To do this, set the logical variable implicitDiffusion to .TRUE. and the real variable ivdc_kappa (in
m2/s) to an appropriate tracer vertical diffusivity value for mixing due to static instabilities (typically, several orders of
magnitude above the background vertical diffusivity). Note that cadjFreq and ivdc_kappa cannot both have non-zero
value.
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Parameter Group Default Description
ivdc_kappa PARM01 0.0 implicit vertical diffusivity for convection (m2/s)
cAdjFreq PARM03 0 frequency of convective adj. scheme; <0: sets value to deltaTclock

(s)
hMixCriteria PARM01 -0.8E+00

• <0: specifies ∆𝑇 (oC) to define ML depth where ∆𝜌 = ∆𝑇 *
𝑑𝜌/𝑑𝑇 occurs

• >1: define ML depth where local strat. exceeds mean strat.
by this factor (non-dim.)

hMixSmooth PARM01 0.0 use this fraction of neighboring points (for smoothing) in ML cal-
culation (0-1; 0: no smoothing)

3.8.6 Parameters: Model Forcing

The forcing options that can be prescribed through runtime parameters in data are easy to use but somewhat limited
in scope. More complex forcing setups are possible with optional packages such as pkg/exf or pkg/rbcs, in which case
most or all of the parameters in this section can simply be left at their default value.

3.8.6.1 Momentum Forcing

This section only applies to the ocean. You need to generate wind-stress data into two files zonalWindFile and merid-
WindFile corresponding to the zonal and meridional components of the wind stress, respectively (if you want the stress
to be along the direction of only one of the model horizontal axes, you only need to generate one file). The format of
the files is similar to the bathymetry file. The zonal (meridional) stress data are assumed to be in pascals and located
at U-points (V-points). See the MATLAB program gendata.m in the input directories of verification for
several tutorial example (e.g. gendata.m in the barotropic gyre tutorial) to see how simple analytical wind forcing data
are generated for the case study experiments.

Parameter Group Default Description
momForcing PARM01 TRUE included external forcing of momentum on/off flag
zonalWindFile PARM05 ' ' filename for 2D specification of zonal component of wind forc-

ing (N/m2)
meridWindFile PARM05 ' ' filename for 2D specification of meridional component of wind

forcing (N/m2)
momForcingOutAB PARM03 0 1: take momentum forcing out of Adams-Bashforth time step-

ping
momTidalForcing PARM01 TRUE tidal forcing of momentum equation on/off flag (requires tidal

forcing files)
ploadFile PARM05 ' ' filename for 2D specification of atmospheric pressure loading

(ocean 𝑧-coor. only) (Pa)
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3.8.6.2 Tracer Forcing

A combination of flux data and relaxation terms can be used for driving the tracer equations. For potential temperature,
heat flux data (in W/m2) can be stored in the 2-D binary file surfQnetfile. Alternatively or in addition, the forcing
can be specified through a relaxation term. The SST data to which the model surface temperatures are restored
are stored in the 2-D binary file thetaClimFile. The corresponding relaxation time scale coefficient is set through the
variable tauThetaClimRelax (in seconds). The same procedure applies for salinity with the variable names EmPmRfile,
saltClimFile, and tauSaltClimRelax for freshwater flux (in m/s) and surface salinity (in psu or g/kg) data files and
relaxation timescale coefficient (in seconds), respectively.

Parameter Group Default Description
tempForcing PARM01 TRUE external forcing of temperature forcing on/off flag
surfQnetFile PARM05 ' ' filename for 2D specification of net total heat flux (W/m2)
surfQswFile PARM05 ' ' filename for 2D specification of net shortwave flux (W/m2);

requires #define SHORTWAVE_HEATING
tauThetaClimRelax PARM03 0.0 temperature (surface) relaxation time scale (s)
lambdaThetaFile PARM05 ' ' filename for 2D specification of inverse temperature (sur-

face) relaxation time scale (1/s)
ThetaClimFile PARM05 ' ' filename for specification of (surface) temperature relax-

ation values (oC)
balanceThetaClimRelax PARM01 FALSE subtract global mean heat flux due to temp. relaxation

flux every time step on/off flag; requires #define AL-
LOW_BALANCE_RELAX

balanceQnet PARM01 FALSE subtract global mean Qnet every time step on/off flag; re-
quires #define ALLOW_BALANCE_FLUXES

geothermalFile PARM05 ' ' filename for 2D specification of geothermal heating
flux through bottom (W/m2); requires #define AL-
LOW_GEOTHERMAL_FLUX

temp_EvPrRn PARM01 UNSET temperature of rain and evaporated water (unset, use local
temp.) (oC)

allowFreezing PARM01 FALSE limit (ocean) temperature at surface to >= -1.9oC
saltForcing PARM01 TRUE external forcing of salinity forcing on/off flag
convertFW2Salt PARM01 3.5E+01 salinity used to convert freshwater flux to salt flux (-1: use

local S) (psu or g/kg) (note default is -1 if useRealFreshWa-
terFlux= .TRUE.)

rhoConstFresh PARM01 rhoConst constant reference density for fresh water (rain) (kg/m3)
EmPmRFile PARM05 ' ' filename for 2D specification of net freshwater flux (m/s)
saltFluxFile PARM05 ' ' filename for 2D specification of salt flux (from seaice)

(psu.kg/m2/s)
tauSaltClimRelax PARM03 0.0 salinity (surface) relaxation time scale (s)
lambdaSaltFile PARM05 ' ' filename for 2D specification of inverse salinity (surface) re-

laxation time scale (1/s)
saltClimFile PARM05 ' ' filename for specification of (surface) salinity relaxation val-

ues (psu or g/kg)
balanceSaltClimRelax PARM01 FALSE subtract global mean flux due to salt relaxation every time

step on/off flag
balanceEmPmR PARM01 FALSE subtract global mean EmPmR every time step on/off flag;

requires #define ALLOW_BALANCE_FLUXES
salt_EvPrRn PARM01 0.0 salinity of rain and evaporated water (psu or g/kg)
selectAddFluid PARM01 0 add fluid to ocean interior options (-1, 0: off, or 1); requires

#define ALLOW_ADDFLUID
continues on next page
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Table 3.11 – continued from previous page
Parameter Group Default Description
temp_addMass PARM01 temp_EvPrRn temp. of added or removed (interior) water (oC); requires

#define ALLOW_ADDFLUID
salt_addMass PARM01 salt_EvPrRn salinity of added or removed (interior) water (oC); requires

#define ALLOW_ADDFLUID
addMassFile PARM05 ' ' filename for 3D specification of mass source/sink

(+=source, kg/s); requires #define ALLOW_ADDFLUID
balancePrintMean PARM01 FALSE print subtracted balancing means to STDOUT on/off flag;

requires #define ALLOW_BALANCE_FLUXES and/or
#define ALLOW_BALANCE_RELAX

latBandClimRelax PARM03 whole domain relaxation to (T,S) climatology equatorward of this latitude
band is applied

tracForcingOutAB PARM03 0 1: take T, S, and pTracer forcing out of Adams-Bashforth
time stepping

3.8.6.3 Periodic Forcing

To prescribe time-dependent periodic forcing, concatenate successive time records into a single file ordered in a
(𝑥, 𝑦,time) fashion and set the following variables: periodicExternalForcing to .TRUE., externForcingPeriod to the
period (in seconds between two records in input files) with which the forcing varies (e.g., 1 month), and externForc-
ingCycle to the repeat time (in seconds) of the forcing (e.g., 1 year; note externForcingCycle must be a multiple of
externForcingPeriod). With these variables specified, the model will interpolate the forcing linearly at each iteration.

Parameter Group Default Description
periodicExternalForcing PARM03 FALSE allow time-dependent periodic forcing on/off flag
externForcingPeriod PARM03 0.0 period over which forcing varies (e.g. monthly) (s)
externForcingCycle PARM03 0.0 period over which the forcing cycle repeats (e.g. one year) (s)

3.8.7 Parameters: Simulation Controls

3.8.7.1 Run Start and Duration

The beginning of a simulation is set by specifying a start time (in seconds) through the real variable startTime or by
specifying an initial iteration number through the integer variable nIter0. If these variables are set to non-zero values,
the model will look for a ”pickup” file (by default, pickup.0000nIter0) to restart the integration. The end of a
simulation is set through the real variable endTime (in seconds). Alternatively, one can instead specify the number
of time steps to execute through the integer variable nTimeSteps. Iterations are referenced to deltaTClock, i.e., each
iteration is deltaTClock seconds of model time.

Parameter Group Default Description
nIter0 PARM03 0 starting timestep iteration number for this integration
nTimeSteps PARM03 0 number of (model clock) timesteps to execute
nEndIter PARM03 0 run ending timestep iteration number (alternate way to prescribe

nTimeSteps)
startTime PARM03 baseTime run start time for this integration (s) (alternate way to prescribe

nIter0)
endTime PARM03 0.0 run ending time (s) (with startTime, alternate way to prescribe

nTimeSteps)
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3.8.7.2 Input/Output Files

The precision with which to read binary data is controlled by the integer variable readBinaryPrec, which can take
the value 32 (single precision) or 64 (double precision). Similarly, the precision with which to write binary data is
controlled by the integer variable writeBinaryPrec. By default, MITgcm writes output (snapshots, diagnostics, and
pickups) separately for individual tiles, leaving it to the user to reassemble these into global files, if needed (scripts are
available in utils/). There are two options however to have the model do this for you. Setting globalFiles to .TRUE.
should always work in a single process setup (including multi-threaded processes), but for MPI runs this will depend
on the platform – it requires simultaneous write access to a common file (permissible in typical Lustre setups, but
not on all file systems). Alternatively, one can set useSingleCpuIO to .TRUE. to generate global files, which should
always work, but requires additional mpi-passing of data and may result in slower execution.

Parameter Group Default Description
globalFiles PARM01 FALSE write output “global” (i.e. not per tile) files on/off flag
useSingleCpuIO PARM01 FALSE only master MPI process does I/O (producing global output files)
the_run_name PARM05 ' ' string identifying the name of the model “run” for meta files
readBinaryPrec PARM01 32 precision used for reading binary files (32 or 64)
writeBinaryPrec PARM01 32 precision used for writing binary files (32 or 64)
outputTypesInclusive PARM03 FALSE allows writing of output files in multiple formats (i.e. pkg/mdsio

and pkg/mnc)
rwSuffixType PARM03 0 controls the format of the pkg/mdsio binary file “suffix”

• 0: use iteration number (myIter, I10.10)
• 1: 100*myTime
• 2: myTime
• 3: myTime/360
• 4: myTime/3600

where myTime is model time in seconds
mdsioLocalDir PARM05 ' ' if not blank, read-write output tiled files from/to this directory

name (+four-digit processor-rank code)

3.8.7.3 Frequency/Amount of Output

The frequency (in seconds) with which output is written to disk needs to be specified. dumpFreq controls the frequency
with which the instantaneous state of the model is written. monitorFreq controls the frequency with which monitor
output is dumped to the standard output file(s). The frequency of output is referenced to deltaTClock.

Parameter Group Default Description
dumpFreq PARM03 0.0 interval to write model state/snapshot data (s)
dumpInitAndLast PARM03 TRUE write out initial and last iteration model state on/off flag
diagFreq PARM03 0.0 interval to write additional intermediate (debugging cg2d/3d)

output (s)
monitorFreq PARM03 lowest of other out-

put *Freq parms
interval to write monitor output (s)

monitorSelect PARM03 2 (3 if fluid is water) select group of monitor variables to output
• 1: dynamic variables only
• 2: add vorticity variables
• 3: add surface variables

debugLevel PARM01 depends on debug-
Mode

level of printing of MITgcm activity messages/statistics (1-5,
higher -> more activity messages)

plotLevel PARM01 debugLevel controls printing of field maps (1-5, higher -> more fields)
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3.8.7.4 Restart/Pickup Files

chkPtFreq and pchkPtFreq control the output frequency of rolling and permanent pickup (a.k.a. checkpoint) files,
respectively. These frequencies are referenced to deltaTClock.

Parameter Group Default Description
pChkPtFreq PARM03 0.0 permanent restart/pickup checkpoint file write interval ( s )
chkPtFreq PARM03 0.0 rolling restart/pickup checkpoint file write interval ( s )
pickupSuff PARM03 ' ' force run to use pickups (even if nIter0 =0) and read files with

this suffix (10 char. max)
pickupStrictlyMatch PARM03 TRUE force pickup (meta) file formats to exactly match (or terminate

with error) on/off flag
writePickupAtEnd PARM03 FALSE write a (rolling) pickup file at run completion on/off flag
usePickupBeforeC54 PARM01 FALSE initialize run using old pickup format from code prior to check-

point54a
startFromPickupAB2 PARM03 FALSE using Adams-Bashforth-3, start using Adams-

Bashforth-2 pickup format; requires #define AL-
LOW_ADAMSBASHFORTH_3

3.8.8 Parameters Used In Optional Packages

Some optional packages were not written with package-specific namelist parameters in a data.${pkg} file; or for
historical and/or other reasons, several package-specific namelist parameters remain in data.

3.8.8.1 C-D Scheme

(package pkg/cd_code)

If you run at a sufficiently coarse resolution, you might choose to enable the C-D scheme for the computation of the
Coriolis terms. The variable tauCD, which represents the C-D scheme coupling timescale (in seconds) needs to be set.

Parameter Group Default Description
useCDscheme PARM01 FALSE use C-D scheme for Coriolis terms on/off flag
tauCD PARM03 deltaTMom C-D scheme coupling timescale (s)
rCD PARM03 1 - deltaTMom/tauCD C-D scheme normalized coupling parameter (non-dim.)
epsAB_CD PARM03 abEps Adams-Bashforth-2 stabilizing weight used in C-D scheme

3.8.8.2 Automatic Differentiation

(package pkg/autodiff; see Section 7)

Parameter Group Default Description
nTimeSteps_l2 PARM03 4 number of inner timesteps to execute per timestep
adjdumpFreq PARM03 0.0 interval to write model state/snapshot data adjoint run (s)
adjMonitorFreq PARM03 0.0 interval to write monitor output adjoint run (s)
adTapeDir PARM05 ' ' if not blank, read-write checkpointing files from/to this directory

name

136 Chapter 3. Getting Started with MITgcm

http://mitgcm.org/lxr/ident/MITgcm?_i=chkPtFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=pchkPtFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTClock
http://mitgcm.org/lxr/ident/MITgcm?_i=pChkPtFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=chkPtFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=pickupSuff
http://mitgcm.org/lxr/ident/MITgcm?_i=nIter0
http://mitgcm.org/lxr/ident/MITgcm?_i=pickupStrictlyMatch
http://mitgcm.org/lxr/ident/MITgcm?_i=writePickupAtEnd
http://mitgcm.org/lxr/ident/MITgcm?_i=usePickupBeforeC54
http://mitgcm.org/lxr/ident/MITgcm?_i=startFromPickupAB2
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_ADAMSBASHFORTH_3
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_ADAMSBASHFORTH_3
https://github.com/MITgcm/MITgcm/blob/master/pkg/cd_code
http://mitgcm.org/lxr/ident/MITgcm?_i=tauCD
http://mitgcm.org/lxr/ident/MITgcm?_i=useCDscheme
http://mitgcm.org/lxr/ident/MITgcm?_i=tauCD
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTMom
http://mitgcm.org/lxr/ident/MITgcm?_i=rCD
http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTMom
http://mitgcm.org/lxr/ident/MITgcm?_i=tauCD
http://mitgcm.org/lxr/ident/MITgcm?_i=epsAB_CD
http://mitgcm.org/lxr/ident/MITgcm?_i=abEps
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff
http://mitgcm.org/lxr/ident/MITgcm?_i=nTimeSteps_l2
http://mitgcm.org/lxr/ident/MITgcm?_i=adjdumpFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=adjMonitorFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=adTapeDir


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

3.8.9 Execution Environment Parameters

If running multi-threaded (i.e., using shared memory/OpenMP), you will need to set nTx and/or nTy so that nTx*nTy
is the total number of threads (per process).

The parameter useCubedSphereExchange needs to be changed to .TRUE. if you are using any type of grid composed
of interconnected individual faces, including the cubed sphere topology or a lat-lon cap grid. See (needs section to be
written).

Note that setting flag debugMode to .TRUE. activates a separate set of debugging print statements than parameter
debugLevel (see Section 3.8.7.3). The latter controls print statements that monitor model activity (such as opening
files, etc.), whereas the former produces a more coding-oriented set of print statements (e.g., entering and exiting
subroutines, etc.)

Parameter Group Default Description
useCubedSphereExchange EEPARMS FALSE use cubed-sphere topology domain on/off flag
nTx EEPARMS 1 number of threads in the 𝑥 direction
nTy EEPARMS 1 number of threads in the 𝑦 direction
useCoupler EEPARMS FALSE communicate with other model components through a cou-

pler on/off flag
useSETRLSTK EEPARMS FALSE call C routine to set environment stacksize to ‘unlimited’
useSIGREG EEPARMS FALSE enable signal handler to receive signal to terminate run

cleanly on/off flag
debugMode EEPARMS FALSE print additional debugging messages; also “flush” STD-

OUT file unit after each print
printMapIncludesZeros EEPARMS FALSE text map plots of fields should ignore exact zero values

on/off flag
maxLengthPrt1D EEPARMS 65 maximum number of 1D array elements to print to standard

output

3.9 MITgcm Input Data File Format

MITgcm input files for grid-related data (e.g., delXFile), forcing fields (e.g., tauThetaClimRelax), parameter fields
(e.g., viscAhZfile), etc. are assumed to be in “flat” or “unblocked” binary format . For historical reasons, MITgcm
files use big-endian byte ordering, NOT little-endian which is the more common default for today’s computers. Thus,
some care is required to create MITgcm-readable input files.

• Using MATLAB: When writing binary files, MATLAB’s fopen command includes a MACHINEFORMAT op-
tion \’b\’ which instructs MATLAB to read or write using big-endian byte ordering. 2-D arrays should be
index-ordered in MATLAB as (𝑥, 𝑦) and 3-D arrays as (𝑥, 𝑦, 𝑧); data is ordered from low to high in each index,
with 𝑥 varying most rapidly.

An example to create a bathymetry file (from tutorial Barotropic Ocean Gyre, a simple enclosed, flat-bottom
domain) is as follows:

ieee='b'; % big endian format
accuracy='real*4'; % this is single precision

Ho=5000; % ocean depth in meters
nx=62; % number of gridpoints in x-direction
ny=62; % number of gridpoints in y-direction

% Flat bottom at z=-Ho

(continues on next page)
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(continued from previous page)

h=-Ho*ones(nx,ny);

% Walls (surrounding domain) - generate bathymetry file
h([1 end],:)=0;
h(:,[1 end])=0;
fid=fopen('bathy.bin','w',ieee); fwrite(fid,h,accuracy); fclose(fid);

• Using Python: Any Python script used to generate MITgcm input files must manually swap the byte ordering
before writing. This can be accomplished with the command:

if sys.byteorder == 'little': data.byteswap(True)

or, convert as follows while writing an array to a file:

data.astype('>f4').tofile('data.bin')

Note that 2-D and 3-D arrays should be index-ordered as (𝑦, 𝑥) and (𝑧, 𝑦, 𝑥), respectively, to be written in proper
ordering for MITgcm.

The above MATLAB example translated to Python is as follows:

import numpy as np
import sys
Ho=5000; # ocean depth in meters
nx=62; # number of gridpoints in x-direction
ny=62; # number of gridpoints in y-direction

# Flat bottom at z=-Ho
h=-Ho*np.ones((ny,nx));

# Walls (surrounding domain) - generate bathymetry file
h[:,(0,-1)]=0;
h[(0,-1),:]=0;
# save as single precision with big-endian byte-ordering
h.astype('>f4').tofile('bathy.bin')

A more complicated example of using Python to generate input date is provided in verifica-
tion/seaice_itd/input/gendata.py.

• Using Fortran: To create flat binary files in Fortran, open with syntax OPEN(..., ACCESS='DIRECT',
...) (i.e., NOT ACCESS='SEQUENTIAL' which includes additional metadata). By default Fortran will use
the local computer system’s native byte ordering for reading and writing binary files, which for most systems
will be little-endian. One therefore has two options: after creating a binary file in Fortran, use MATLAB or
Python (or some other utility) to read in and swap the bytes in the process of writing a new file; or, determine
if your local Fortran has a compiler flag to control byte-ordering of binary files. Similar to MATLAB, 2-D and
3-D arrays in Fortran should be index-ordered as (𝑥, 𝑦) and (𝑥, 𝑦, 𝑧), respectively.

Using NetCDF format for input files is only partially implemented at present in MITgcm, and use is thus discouraged.

Input files are by default single-precision real numbers (32-bit, real*4), but can be switched to double precision by
setting namelist parameter readBinaryPrec (PARM01 in file data) to a value of 64.
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CHAPTER

FOUR

MITGCM TUTORIAL EXAMPLE EXPERIMENTS

The full MITgcm distribution comes with a set of pre-configured numerical experiments. Some of these example
experiments are tests of individual parts of the model code, but many are fully fledged numerical simulations. Full
tutorials exist for a few of the examples, and are documented in sections Section 4.1 - Section 4.14. The other
examples follow the same general structure as the tutorial examples, see below. All example experiments are located
in subdirectories under the directory verification. A list of additional experiments (i.e, not documented as full tutorials),
with brief description, is provided in Section 4.15 and Section 4.16.

Each example experiment directory has the following subdirectories:

• code: contains code specific to the example. At a minimum, this directory includes the following files:

– code/packages.conf: declares the list of packages or package groups to be used. If not included, the
default set of packages is located in pkg/pkg_groups. Package groups are simply convenient collections
of commonly used packages which are defined in pkg/pkg_groups (see Using MITgcm Packages). Some
packages may require other packages or may require their absence (that is, they are incompatible) and
these package dependencies are listed in pkg/pkg_depend.

– code/SIZE.h: declares the size of underlying computational grid. This file is compiled instead of the
MITgcm repository version model/inc/SIZE.h.

– The code/ directory may include other files and subroutines specific to the experiment, i.e., containing
changes from the standard repository version. For example, some experiments contains CPP header op-
tions files to enable or disable some parts of the code at compile time; the most common ones would be
model/inc/CPP_OPTIONS.h for core model options and «PKG»_OPTIONS.h for individual packages.

• input: contains the input data files required to run the example. At a minimum, the input directory contains
the following files:

– input/data: this file, written as a namelist, specifies the main parameters for the experiment.

– input/data.pkg: contains parameters relative to the packages used in the experiment.

– input/eedata: this file contains “execution environment” data. This consists of a specification of the
number of threads to use in 𝑥 and 𝑦. For multi-threaded execution,these will be set to numbers greater than
1.

– Forcing and topography file(s), as well as files describing the initial state of the experiment and any other
supporting data. Required support files vary from experiment to experiment, depending on the setup.

• results: this directory contains the output file output.txt produced by the simulation example. This file
is useful for comparison with your own output when you run the experiment.

• build: this directory is initially empty and should be used to compile the model and generate the executable.

• run: this directory is initially empty and should be used to run the executable. From the (empty) run direc-
tory, link files from input using the command ln -s ../input/* ., then execute the file ../input/
prepare_run if it exists. If you are running one of the experiment variations, i.e., using input.«OTHER»,
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first link files from input.«OTHER» (running ../input.«OTHER»/prepare_run if it exists) and next
link files from input (and run ../input/prepare_run). Following this procedure, file links from
input.«OTHER» will NOT be overwritten by identically named files in input.

4.1 Barotropic Ocean Gyre

(in directory verification/tutorial_barotropic_gyre/)

This example experiment demonstrates using the MITgcm to simulate a barotropic, wind-forced, ocean gyre circula-
tion. The experiment is a numerical rendition of the gyre circulation problem described analytically by Stommel in
1948 [Sto48] and Munk in 1950 [Mun50], and numerically in Bryan (1963) [Bry63]. Note this tutorial assumes a basic
familiarity with ocean dynamics and geophysical fluid dynamics; readers new to the field may which to consult one of
the standard texts on these subjects, such as Vallis (2017) [Val17] or Cushman-Roisin and Beckers (2011) [CRB11].

In this experiment the model is configured to represent a rectangular enclosed box of fluid, 1200 × 1200 km in lateral
extent. The fluid depth 𝐻 = 5 km. The fluid is forced by a zonal wind stress, 𝜏𝑥, that varies sinusoidally in the north-
south direction and is constant in time. Topologically the grid is Cartesian and the Coriolis parameter 𝑓 is defined
according to a mid-latitude beta-plane equation

𝑓(𝑦) = 𝑓0 + 𝛽𝑦

where 𝑦 is the distance along the ‘north-south’ axis of the simulated domain. For this experiment 𝑓0 is set to 10−4s−1

and 𝛽 = 10−11s−1m−1.

The sinusoidal wind-stress variations are defined according to

𝜏𝑥(𝑦) = −𝜏0 cos(𝜋
𝑦

𝐿𝑦
)

where 𝐿𝑦 is the lateral domain extent and 𝜏0 is set to 0.1N m−2.

Figure 4.1 summarizes the configuration simulated.

4.1.1 Equations Solved

The model is configured in hydrostatic form (the MITgcm default). The implicit free surface form of the pressure
equation described in Marshall et al. (1997) [MHPA97] is employed. A horizontal Laplacian operator ∇2

ℎ provides
viscous dissipation. The wind-stress momentum input is added to the momentum equation for the ‘zonal flow’, 𝑢.
This effectively yields an active set of equations for this configuration as follows:

𝐷𝑢

𝐷𝑡
− 𝑓𝑣 + 𝑔

𝜕𝜂

𝜕𝑥
−𝐴ℎ∇2

ℎ𝑢 =
𝜏𝑥
𝜌𝑐𝐻

(4.1)

𝐷𝑣

𝐷𝑡
+ 𝑓𝑢+ 𝑔

𝜕𝜂

𝜕𝑦
−𝐴ℎ∇2

ℎ𝑣 = 0 (4.2)

𝜕𝜂

𝜕𝑡
+ ∇ℎ ·𝐻𝑢⃗ = 0 (4.3)

where 𝑢 and 𝑣 are the 𝑥 and 𝑦 components of the flow vector 𝑢⃗, 𝜂 is the free surface height,𝐴ℎ the horizontal Laplacian
viscosity, 𝜌𝑐 is the fluid density, and 𝑔 the acceleration due to gravity.
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Figure 4.1: Schematic of simulation domain and wind-stress forcing function for barotropic gyre numerical experi-
ment. The domain is enclosed by solid walls at 𝑥 = 0, 1200 km and at 𝑦 = 0, 1200 km.

4.1.2 Discrete Numerical Configuration

The domain is discretized with a uniform grid spacing in the horizontal set to ∆𝑥 = ∆𝑦 = 20 km, so that there are
sixty ocean grid cells in the 𝑥 and 𝑦 directions. The numerical domain includes a border row of “land” cell surrounding
the ocean cells, so the numerical grid size is 62×62 (if these land cells were not included, the domain would be periodic
in both the 𝑥 and 𝑦 directions).

Vertically the model is configured using a single layer in depth, ∆𝑧, of 5000 m.

4.1.2.1 Numerical Stability Criteria

Let’s start with our choice for the model’s time step. To minimize the amount of required computational resources,
typically one opts for as large a time step as possible while keeping the model solution stable. The advective
Courant–Friedrichs–Lewy (CFL) condition (see Adcroft 1995 [Adc95]) for an extreme maximum horizontal flow
speed is:

𝑆𝑎 = 2

(︂
|𝑢|∆𝑡
∆𝑥

)︂
< 0.5 for stability (4.4)

The 2 factor on the left is because we have a 2-D problem (in contrast with the more familiar 1-D canonical stability
analysis); the right hand side is 0.5 due to our default use of Adams-Bashforth2 (see Section 2.5) rather than the more
familiar value of 1 that one would obtain using a forward Euler scheme. In our configuration, let’s assume our solution
will achieve a maximum |𝑢| = 1 ms–1 (in reality, current speeds in our solution will be much smaller). To keep ∆𝑡
safely below the stability threshold, let’s choose ∆𝑡 = 1200 s (= 20 minutes), which results in 𝑆𝑎 = 0.12.

The numerical stability for inertial oscillations using Adams-Bashforth II (Adcroft 1995 [Adc95])

𝑆𝑖 = 𝑓∆𝑡 < 0.5 for stability (4.5)

evaluates to 0.12 for our choice of ∆𝑡, which is below the stability threshold.

There are two general rules in choosing a horizontal Laplacian eddy viscosity 𝐴ℎ:
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• the resulting Munk layer width should be at least as large (preferably, larger) than the lateral grid spacing;

• the viscosity should be sufficiently small that the model is stable for horizontal friction, given the time step.

Let’s use this first rule to make our choice for 𝐴ℎ, and check this value using the second rule. The theoretical Munk
boundary layer width (as defined by the solution zero-crossing, see Pedlosky 1987 [Ped87]) is given by:

𝑀𝑤 =
2𝜋√

3

(︂
𝐴ℎ

𝛽

)︂ 1
3

(4.6)

For our configuration we will choose to resolve a boundary layer of ≈ 100 km, or roughly across five grid cells, so we
set 𝐴ℎ = 400 m2 s–1 (more precisely, this sets the full width at 𝑀𝑤 = 124 km). This choice ensures that the frictional
boundary layer is well resolved.

Given our choice of ∆𝑡, the stability parameter for the horizontal Laplacian friction (Adcroft 1995 [Adc95])

𝑆𝑙 = 2

(︂
4
𝐴ℎ∆𝑡

∆𝑥2

)︂
< 0.6 for stability (4.7)

evaluates to 0.0096, which is well below the stability threshold. As in (4.4) the above criteria is for a 2D problem
using Adams-Bashforth2 time stepping, with the 0.6 value on the right replacing the more familiar 1 that is obtained
using a forward Euler scheme.

See Section 2.5 for additional details on Adams-Bashforth time-stepping and numerical stability criteria.

4.1.3 Configuration

The model configuration for this experiment resides under the directory verification/tutorial_barotropic_gyre/.

The experiment files

• verification/tutorial_barotropic_gyre/code/SIZE.h

• verification/tutorial_barotropic_gyre/input/data

• verification/tutorial_barotropic_gyre/input/data.pkg

• verification/tutorial_barotropic_gyre/input/eedata

• verification/tutorial_barotropic_gyre/input/bathy.bin

• verification/tutorial_barotropic_gyre/input/windx_cosy.bin

contain the code customizations and parameter settings for this experiment. Below we describe these customizations
in detail.

Note: MITgcm’s defaults are configured to simulate an ocean rather than an atmosphere, with vertical 𝑧-coordinates.
To model the ocean using pressure coordinates using MITgcm, additional parameter changes are required; see tutorial
ocean_in_p. To switch parameters to model an atmosphere, see tutorial Held_Suarez.

4.1.3.1 Compile-time Configuration

File code/SIZE.h
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Listing 4.1: verification/tutorial_barotropic_gyre/code/SIZE.h

1 CBOP
2 C !ROUTINE: SIZE.h
3 C !INTERFACE:
4 C include SIZE.h
5 C !DESCRIPTION: \bv
6 C *==========================================================*
7 C | SIZE.h Declare size of underlying computational grid.
8 C *==========================================================*
9 C | The design here supports a three-dimensional model grid

10 C | with indices I,J and K. The three-dimensional domain
11 C | is comprised of nPx*nSx blocks (or tiles) of size sNx
12 C | along the first (left-most index) axis, nPy*nSy blocks
13 C | of size sNy along the second axis and one block of size
14 C | Nr along the vertical (third) axis.
15 C | Blocks/tiles have overlap regions of size OLx and OLy
16 C | along the dimensions that are subdivided.
17 C *==========================================================*
18 C \ev
19 C
20 C Voodoo numbers controlling data layout:
21 C sNx :: Number of X points in tile.
22 C sNy :: Number of Y points in tile.
23 C OLx :: Tile overlap extent in X.
24 C OLy :: Tile overlap extent in Y.
25 C nSx :: Number of tiles per process in X.
26 C nSy :: Number of tiles per process in Y.
27 C nPx :: Number of processes to use in X.
28 C nPy :: Number of processes to use in Y.
29 C Nx :: Number of points in X for the full domain.
30 C Ny :: Number of points in Y for the full domain.
31 C Nr :: Number of points in vertical direction.
32 CEOP
33 INTEGER sNx
34 INTEGER sNy
35 INTEGER OLx
36 INTEGER OLy
37 INTEGER nSx
38 INTEGER nSy
39 INTEGER nPx
40 INTEGER nPy
41 INTEGER Nx
42 INTEGER Ny
43 INTEGER Nr
44 PARAMETER (
45 & sNx = 62,
46 & sNy = 62,
47 & OLx = 2,
48 & OLy = 2,
49 & nSx = 1,
50 & nSy = 1,
51 & nPx = 1,
52 & nPy = 1,
53 & Nx = sNx*nSx*nPx,
54 & Ny = sNy*nSy*nPy,
55 & Nr = 1)
56

(continues on next page)
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(continued from previous page)

57 C MAX_OLX :: Set to the maximum overlap region size of any array
58 C MAX_OLY that will be exchanged. Controls the sizing of exch
59 C routine buffers.
60 INTEGER MAX_OLX
61 INTEGER MAX_OLY
62 PARAMETER ( MAX_OLX = OLx,
63 & MAX_OLY = OLy )
64

Here we show a modified model/inc source code file, customizing MITgcm’s array sizes to our model domain. This
file must be uniquely configured for any model setup; using the MITgcm default model/inc/SIZE.h will in fact cause
a compilation error. Note that MITgcm’s storage arrays are allocated as static variables (hence their size must be
declared in the source code), in contrast to some model codes which declare array sizes dynamically, i.e., through
runtime (namelist) parameter settings.

For this first tutorial, our setup and run environment is the most simple possible: we run on a single process (i.e., NOT
MPI and NOT multi-threaded) using a single model “tile”. For a more complete explanation of the parameter choices
to use multiple tiles, see the tutorial Baroclinic Gyre.

• These lines set parameters sNx and sNy, the number of grid points in the 𝑥 and 𝑦 directions, respectively.

45 & sNx = 62,
46 & sNy = 62,

• These lines set parameters OLx and OLy in the 𝑥 and 𝑦 directions, respectively. These values are the overlap
extent of a model tile, the purpose of which will be explained in later tutorials. Here, we simply specify the
required minimum value (2) in both 𝑥 and 𝑦.

47 & OLx = 2,
48 & OLy = 2,

• These lines set parameters nSx, nSy, nPx, and nPy, the number of model tiles and the number of processes in
the 𝑥 and 𝑦 directions, respectively. As discussed above, in this tutorial we configure a single model tile on a
single process, so these parameters are all set to the value one.

49 & nSx = 1,
50 & nSy = 1,
51 & nPx = 1,
52 & nPy = 1,

• This line sets parameter Nr, the number of points in the vertical dimension. Here we use just a single vertical
level.

55 & Nr = 1)

• Note these lines summarize the horizontal size of the model domain (NOT to be edited).

53 & Nx = sNx*nSx*nPx,
54 & Ny = sNy*nSy*nPy,

Further information and examples about how to configure model/inc/SIZE.h are given in Section 6.3.1.
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4.1.3.2 Run-time Configuration

File input/data

Listing 4.2: verification/tutorial_barotropic_gyre/input/data

1 # Model parameters
2 # Continuous equation parameters
3 &PARM01
4 viscAh=4.E2,
5 f0=1.E-4,
6 beta=1.E-11,
7 rhoConst=1000.,
8 gBaro=9.81,
9 rigidLid=.FALSE.,

10 implicitFreeSurface=.TRUE.,
11 # momAdvection=.FALSE.,
12 tempStepping=.FALSE.,
13 saltStepping=.FALSE.,
14 &
15

16 # Elliptic solver parameters
17 &PARM02
18 cg2dTargetResidual=1.E-7,
19 cg2dMaxIters=1000,
20 &
21

22 # Time stepping parameters
23 &PARM03
24 nIter0=0,
25 nTimeSteps=10,
26 deltaT=1200.0,
27 pChkptFreq=31104000.0,
28 chkptFreq=15552000.0,
29 dumpFreq=15552000.0,
30 monitorFreq=1200.,
31 monitorSelect=2,
32 #-for longer run (3.0 yr):
33 # nTimeSteps=77760,
34 # monitorFreq=864000.,
35 &
36

37 # Gridding parameters
38 &PARM04
39 usingCartesianGrid=.TRUE.,
40 delX=62*20.E3,
41 delY=62*20.E3,
42 xgOrigin=-20.E3,
43 ygOrigin=-20.E3,
44 delR=5000.,
45 &
46

47 # Input datasets
48 &PARM05
49 bathyFile='bathy.bin'
50 zonalWindFile='windx_cosy.bin',
51 #zonalWindFile='windx_siny.bin',

(continues on next page)
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(continued from previous page)

52 meridWindFile=,
53 &

This file, reproduced completely above, specifies the main parameters for the experiment. The parameters that are
significant for this configuration (shown with line numbers to left) are as follows.

PARM01 - Continuous equation parameters

• This line sets parameter viscAh, the horizontal Laplacian viscosity, to 400 m2 s–1.

4 viscAh=4.E2,

• These lines set 𝑓0 and 𝛽 (the Coriolis parameter f0 and the gradient of the Coriolis parameter beta) for our
beta-plane to 1 × 10−4 s–1 and 1 × 10−11 m–1s–1, respectively.

5 f0=1.E-4,
6 beta=1.E-11,

• This line sets parameter rhoConst, the Boussinesq reference density 𝜌𝑐 in (4.1), to 1000 kg/m3.

7 rhoConst=1000.,

• This line sets parameter gBaro, the acceleration due to gravity 𝑔 (in the free surface terms in (4.1) and (4.2)), to
9.81 m/s2. This is the MITgcm default value, i.e., the value used if this line were not included in data. One
might alter this parameter for a reduced gravity model, or to simulate a different planet, for example.

8 gBaro=9.81,

• These lines set parameters rigidLid and implicitFreeSurface in order to suppress the rigid lid formulation of the
surface pressure inverter and activate the implicit free surface formulation.

9 rigidLid=.FALSE.,
10 implicitFreeSurface=.TRUE.,

• This line sets parameter momAdvection to suppress the (non-linear) momentum of advection terms in the mo-
mentum equations. However, note the # in column 1: this “comments out” the line, so using the above data
file verbatim will in fact include the momentum advection terms (i.e., MITgcm default for this parameter is
TRUE). We’ll explore the linearized solution (i.e., by removing the leading #) in Section 4.1.5. Note the ability
to comment out a line in a namelist file is not part of standard Fortran, but this feature is implemented for all
MITgcm namelist files.

11 # momAdvection=.FALSE.,

• These lines set parameters tempStepping and saltStepping to suppress MITgcm’s forward time integration of
temperature and salt in the tracer equations, as these prognostic variables are not relevant for the model solution
in this configuration. By default, MITgcm solves equations governing these two (active) tracers; later tutorials
will demonstrate how additional passive tracers can be included in the solution. The advantage of NOT solving
the temperature and salinity equations is to eliminate many unnecessary computations. In most typical config-
urations however, one will want the model to compute a solution for 𝑇 and 𝑆, which typically comprises the
majority of MITgcm’s processing time.

12 tempStepping=.FALSE.,
13 saltStepping=.FALSE.,
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PARM02 - Elliptic solver parameters

• The first line sets the tolerance (parameter cg2dTargetResidual) that the 2-D conjugate gradient solver, the
iterative method used in the pressure method algorithm, will use to test for convergence. The second line sets
parameter cg2dMaxIters, the maximum number of iterations. The solver will iterate until the residual falls below
this target value (here, set to 1 × 10−7) or until this maximum number of solver iterations is reached (here, set
to a maximum 1000 iterations). Typically, the solver will converge in far fewer than 1000 iterations, but it does
not hurt to allow for a large number. The chosen value for the target residual happens to be the MITgcm default,
and will serve well in most model configurations.

18 cg2dTargetResidual=1.E-7,
19 cg2dMaxIters=1000,

PARM03 - Time stepping parameters

• This line sets the starting (integer) iteration number for the run. Here we set the value to zero, which starts the
model from a new, initialized state. If nIter0 is non-zero, the model would require appropriate pickup files (i.e.,
restart files) in order to continue integration of an existing run.

24 nIter0=0,

• This line sets parameter nTimeSteps, the (integer) number of timesteps the model will integrate forward. Below,
we have set this to integrate for just 10 time steps, for MITgcm automated testing purposes (Section 5.5). To
integrate the solution to near steady state, uncomment the line further down where we set the value to 77760
time steps. When you make this change, be sure to also uncomment the next line that sets monitorFreq (see
below).

25 nTimeSteps=10,

32 #-for longer run (3.0 yr):
33 # nTimeSteps=77760,
34 # monitorFreq=864000.,

• This line sets parameter deltaT, the timestep used in stepping forward the model, to 1200 seconds. In com-
bination with the larger value of nTimeSteps mentioned above, we have effectively set the model to integrate
forward for 77760 × 1200 s = 3.0 years (based on 360-day years), long enough for the solution to approach
equilibrium.

26 deltaT=1200.0,

• These lines control the frequency at which restart (a.k.a. pickup) files are dumped by MITgcm. Here the value of
pChkptFreq is set to 31,104,000 seconds (=1.0 years) of model time; this controls the frequency of “permanent”
checkpoint pickup files. With permanent files, the model’s iteration number is part of the file name (as the
filename “suffix”; see Section 4.1.4.2) in order to save it as a labelled, permanent, pickup state. The value of
ChkptFreq is set to 15,552,000 seconds (=0.5 years); the pickup files written at this frequency but will NOT
include the iteration number in the filename, instead toggling between ckptA and ckptB in the filename, and
thus these files will be overwritten with new data every 2 × 15,552,000 seconds. Temporary checkpoint files
can be written more frequently without requiring additional disk space, for example to peruse (or re-run) the
model state prior to an instability, or restart following a computer crash, etc. Either type of checkpoint file can
be used to restart the model.

27 pChkptFreq=31104000.0,
28 chkptFreq=15552000.0,
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• This line sets parameter dumpFreq, frequency of writing model state snapshot diagnostics (of relevance in this
setup: variables 𝑢, 𝑣, and 𝜂). Here, we opt for a snapshot of model state every 15,552,000 seconds (=0.5 years),
or after every 12960 time steps of integration.

29 dumpFreq=15552000.0,

• These lines are set to dump monitor output (see Section 9.4) every 1200 seconds (i.e., every time step) to standard
output. While this monitor frequency is needed for MITgcm automated testing, this is too much output for our
tutorial run. Comment out this line and uncomment the line where monitorFreq is set to 864,000 seconds, i.e.,
output every 10 days. Parameter monitorSelect is set to 2 here to reduce output of non-applicable quantities for
this simple example.

30 monitorFreq=1200.,
31 monitorSelect=2,

PARM04 - Gridding parameters

• This line sets parameter usingCartesianGrid, which specifies that the simulation will use a Cartesian coordinate
system.

39 usingCartesianGrid=.TRUE.,

• These lines set the horizontal grid spacing of the model grid, as vectors delX and delY (i.e., ∆𝑥 and ∆𝑦
respectively). This syntax indicates that we specify 62 values in both the 𝑥 and 𝑦 directions, which matches
the domain size as specified in SIZE.h. Grid spacing is set to 20 × 103 m (=20 km).

40 delX=62*20.E3,
41 delY=62*20.E3,

• The cartesian grid default origin is (0,0) so here we set the origin with parameters xgOrigin and ygOrigin to
(-20000,-20000), accounting for the bordering solid wall. The centers of the grid boxes will thus be at -10 km,
10 km, 30 km, 50 km, . . . , in both 𝑥 and 𝑦 directions.

42 xgOrigin=-20.E3,
43 ygOrigin=-20.E3,

• This line sets parameter delR, the vertical grid spacing in the 𝑧-coordinate (i.e., ∆𝑧), to 5000 m.

44 delR=5000.,

PARM05 - Input datasets

• This line sets parameter bathyFile, the name of the bathymetry file. See Section 4.1.3.2 for information about
the file format.

49 bathyFile='bathy.bin'

• These lines specify the names of the files from which the surface wind stress is read. There is a separate file
for the 𝑥-direction (zonalWindFile) and the 𝑦-direction (meridWindFile). Note, here we have left the latter
parameter blank, as there is no meridional wind stress forcing in our example.

50 zonalWindFile='windx_cosy.bin',
51 #zonalWindFile='windx_siny.bin',
52 meridWindFile=,
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File input/data.pkg

Listing 4.3: verification/tutorial_barotropic_gyre/input/data.pkg

1 # Packages
2 &PACKAGES
3 &

This file does not set any namelist parameters, yet is necessary to run – only standard packages (i.e., those compiled
in MITgcm by default) are required for this setup, so no other customization is necessary. We will demonstrate how
to include additional packages in other tutorial experiments.

File input/eedata

Listing 4.4: verification/tutorial_barotropic_gyre/input/eedata

1 # Example "eedata" file
2 # Lines beginning "#" are comments
3 # nTx :: No. threads per process in X
4 # nTy :: No. threads per process in Y
5 # debugMode :: print debug msg (sequence of S/R calls)
6 &EEPARMS
7 nTx=1,
8 nTy=1,
9 &

10 # Note: Some systems use & as the namelist terminator (as shown here).
11 # Other systems use a / character.

This file uses standard default values (i.e., MITgcm default is single-threaded) and does not contain customizations
for this experiment.

File input/bathy.bin

This file is a 2-D(𝑥, 𝑦) map of bottom bathymetry, specified as the 𝑧-coordinate of the solid bottom boundary. Here,
the value is set to -5000 m everywhere except along the N, S, E, and W edges of the array, where the value is set to
0 (i.e., “land”). As discussed in Section 4.1.2, the domain in MITgcm is assumed doubly periodic (i.e., periodic in
both 𝑥- and 𝑦-directions), so boundary walls are necessary to set up our enclosed box domain. The matlab program
verification/tutorial_barotropic_gyre/input/gendata.m was used to generate this bathymetry file. By default, this file is
assumed to contain 32-bit (single precision) binary numbers. See Section 3.9 for additional information on MITgcm
input data file format specifications.

File input/windx_cosy.bin

Similar to file input/bathy.bin, this file is a 2-D(𝑥, 𝑦) map of 𝜏𝑥 wind stress values, formatted in the same
manner. The units are Nm–2. Although 𝜏𝑥 is only a function of 𝑦 in this experiment, this file must still define a
complete 2-D map in order to be compatible with the standard code for loading forcing fields in MITgcm. The matlab
program verification/tutorial_barotropic_gyre/input/gendata.m was used to generate this wind stress file. To run the
barotropic jet variation of this tutorial example (see Figure 4.4), you will in fact need to run this matlab program to
generate the file input/windx_siny.bin.
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4.1.4 Building and running the model

To configure and compile the code (following the procedure described in Section 3.5.1):

cd build
../../../tools/genmake2 -mods ../code ««-of my_platform_optionFile»»
make depend
make
cd ..

To run the model (following the procedure in Section 3.6):

cd run
ln -s ../input/* .
ln -s ../build/mitgcmuv .
./mitgcmuv > output.txt

4.1.4.1 Standard output

Your run’s standard output file should be similar to verification/tutorial_barotropic_gyre/results/output.txt. The stan-
dard output is essentially a log file of the model run. The following information is included (in rough order):

• startup information including MITgcm checkpoint release number and other execution environment information,
and a list of activated packages (including all default packages, as well as optional packages).

• the text from all data.* and other critical files (in our example here, eedata, SIZE.h, data, and data.pkg).

• information about the grid and bathymetry, including dumps of all grid variables (only if Cartesian or spherical
polar coordinates used, as is the case here).

• all runtime parameter choices used by the model, including all model defaults as well as user-specified parame-
ters.

• monitor statistics at regular intervals (as specified by parameter monitorFreq in data. See Section 9.4).

• output from the 2-D conjugate gradient solver. More specifically, statistics from the right-hand side of the
elliptic equation – for our linear free-surface, see eq. (2.15) – are dumped for every model time step. If the
model solution blows up, these statistics will increase to infinity, so one can see exactly when the problem
occurred (i.e., to aid in debugging). Additional solver variables, such as number of iterations and residual, are
included with the monitor statistics.

• a summary of end-of-run execution information, including user-, wall- and system-time elapsed during execu-
tion, and tile communication statistics. These statistics are provided for the overall run, and also broken down
by time spent in various subroutines.

Different setups using non-standard packages and/or different parameter choices will include additional or different
output as part of the standard output. It is also possible to select more or less output by changing the parameter
debugLevel in data; see (missing doc for pkg debug).

STDERR.0000 - if errors (or warnings) occurred during the run, helpful warning and/or error message(s) would
appear in this file.
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4.1.4.2 Other output files

In addition to raw binary data files with .data extension, each binary file has a corresponding .meta file. These
plain-text files include information about the array size, precision (i.e., float32 or float64), and if relevant, time
information and/or a list of these fields included in the binary file. The .meta files are used by MITgcm utils when
binary data are read.

The following output files are generated:

Grid Data: see Section 2.11 for definitions and description of the Arakawa C-grid staggering of model variables.

• XC, YC - grid cell center point locations

• XG, YG - locations of grid cell vertices

• RC, RF - vertical cell center and cell faces positions

• DXC, DYC - grid cell center point separations (Figure 2.8 b)

• DXG, DYG - separation of grid cell vertices (Figure 2.8 a)

• DRC, DRF - separation of vertical cell centers and faces, respectively

• RAC, RAS, RAW, RAZ - areas of the grid “tracer cells”, “southern cells”, “western cells” and “vorticity cells”,
respectively (Figure 2.8)

• hFacC, hFacS, hFacW - fractions of the grid cell in the vertical which are “open” as defined in the center
and on the southern and western boundaries, respectively. These variables effectively contain the configuration
bathymetric (or topographic) information.

• Depth - bathymetry depths

All these files contain 2-D(𝑥, 𝑦) data except RC, RF, DRC, DRF, which are 1-D(𝑧), and hFacC, hFacS, hFacW, which
contain 3D(𝑥, 𝑦, 𝑧) data. Units for the grid files depends on one’s choice of model grid; here, they are all in given in
meters (or m2 for areas).

All the 2-D grid data files contain .001.001 in their filename, e.g., DXC.001.001.data – this is the tile number
in .XXX.YYY format. Here, we have just a single tile in both x and y, so both tile numbers are 001. Using multiple
tiles, the default is that the local tile grid information would be output separately for each tile (as an example, see the
baroclinic gyre tutorial, which is set up using multiple tiles), producing multiple files for each 2-D grid variable.

State Variable Snapshot Data:

Eta.0000000000.001.001.data, Eta.0000000000.001.001.meta - this is a binary data snapshot of
model dynamic variable etaN (the free-surface height) and its meta file, respectively. Note the tile number is included
in the filename, as is the iteration number 0000000000, which is simply the time step (the iteration number here is
referred to as the “suffix” in MITgcm parlance; there are options to change this suffix to something other than iteration
number). In other words, this is a dump of the free-surface height from the initialized state, iteration 0; if you load
up this data file, you will see it is all zeroes. More interesting is the free-surface height after some time steps have
occurred. Snapshots are written according to our parameter choice dumpFreq, here set to 15,552,000 seconds, which
is every 12960 time steps. We will examine the model solutions in Section 4.1.5. The free-surface height is a 2-D(𝑥, 𝑦)
field.

Snapshot files exist for other prognostic model variables, in particular filenames starting with U (uVel), V (uVel), T
(theta), and S (salt); given our setup, these latter two fields remain uniform in space and time, thus not very interesting
until we explore a baroclinic gyre setup in tutorial_baroclinic_gyre. These are all 3-D(𝑥, 𝑦, 𝑧) fields. The format for
the file names is similar to the free-surface height files. Also dumped are snapshots of diagnosed vertical velocity W
(wVel) (note that in non-hydrostatic simulations, W is a fully prognostic model variable).

Checkpoint Files:

The following pickup files are generated:
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• pickup.0000025920.001.001.data, pickup.0000025920.001.001.meta, etc. - written at
frequency set by pChkptFreq

• pickup.ckptA.001.001.data, pickup.ckptA.001.001.meta, pickup.ckptB.001.001.
data, pickup.ckptB.001.001.meta - written at frequency set by ChkptFreq

Other Model Output Data: Model output related to reference density and hydrostatic pressure, in files Rhoref,
PHrefC, PHrefF, PH, and PHL, is discussed in depth here in tutorial Baroclinic Ocean Gyre (as these data are not
terribly interesting in this single-layer setup).

4.1.5 Model Solution

After running the model for 77,760 time steps (3.0 years), the solution is near equilibrium. Given an approximate
timescale of one month for barotropic Rossby waves to cross our model domain, one might expect the solution to
require several years to achieve an equilibrium state. The model solution of free-surface height 𝜂 (proportional to
streamfunction) at 𝑡 = 3.0 years is shown in Figure 4.2. For further details on this solution, particularly examining
the effect of the non-linear terms with increasing Reynolds number, the reader is referred to Pedlosky (1987) [Ped87]
section 5.11.

Figure 4.2: MITgcm solution to the barotropic gyre example after 𝑡 = 3.0 years of model integration. Free surface
height is shown in meters.

Using matlab for example, visualizing output using the utils/matlab/rdmds.m utility to load the binary data in Eta.
0000077760.001.001.data is as simple as:
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addpath ../../../utils/matlab/
XC=rdmds('XC'); YC=rdmds('YC');
Eta=rdmds('Eta',77760);
contourf(XC/1000,YC/1000,Eta,[-.04:.01:.04]); colorbar;
colormap((flipud(hot))); set(gca,'XLim',[0 1200]); set(gca,'YLim',[0 1200])

or using python (you will need to install the MITgcmutils package, see Section 3.6.4.2):

from MITgcmutils import mds
import matplotlib.pyplot as plt
XC = mds.rdmds('XC'); YC = mds.rdmds('YC')
Eta = mds.rdmds('Eta', 77760)
plt.contourf(XC, YC, Eta, np.linspace(-0.02, 0.05,8), cmap='hot_r')
plt.colorbar(); plt.show()

Let’s simplify the example by considering the linear problem where we neglect the advection of momentum terms. In
other words, replace 𝐷𝑢

𝐷𝑡 and 𝐷𝑣
𝐷𝑡 with 𝜕𝑢

𝜕𝑡 and 𝜕𝑣
𝜕𝑡 , respectively, in in (4.1) and (4.2). To do so, we uncomment (i.e.,

remove the leading #) in the line # momAdvection=.FALSE., in file data and re-run the model. Any existing
output files will be overwritten.

For the linearized equations, the Munk layer (equilibrium) analytical solution is given by:

𝜂(𝑥, 𝑦) =
𝜏𝑜
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where 𝛿𝑚 = (𝐴ℎ

𝛽 )
1
3 . Figure 4.3 displays the MITgcm output after switching off momentum advection vs. the analyti-

cal solution to the linearized equations. Success!

Figure 4.3: Comparison of free surface height for the near-equilibrium MITgcm solution (𝑡 = 3.0 years) with momen-
tum advection switched off (left) and the analytical equilibrium solution to the linearized equation (right).

Finally, let’s examine one additional simulation where we change the cosine profile of wind stress forcing to a
sine profile. First, run the matlab script verification/tutorial_barotropic_gyre/input/gendata.m to generate the al-
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ternate sine profile wind stress, and place a copy in your run directory. Then, in file data, replace the line
zonalWindFile='windx_cosy.bin’, with zonalWindFile='windx_siny.bin’,.

Figure 4.4: MITgcm equilibrium solution to the barotropic setup with alternate sine profile of wind stress forcing,
producing a barotropic jet.

The free surface solution given this forcing is shown in Figure 4.4. Two “half gyres” are separated by a strong jet.
We’ll look more at the solution to this “barotropic jet” setup in later tutorial examples.

4.2 Baroclinic Ocean Gyre

(in directory: verification/tutorial_baroclinic_gyre)

This section describes an example experiment using MITgcm to simulate a baroclinic, wind and buoyancy-forced,
double-gyre ocean circulation. Unlike tutorial barotropic gyre, which used a Cartesian grid and a single vertical layer,
here the grid employs spherical polar coordinates with 15 vertical layers. The configuration is similar to the double-
gyre setup first solved numerically in Cox and Bryan (1984) [CB84]: the model is configured to represent an enclosed
sector of fluid on a sphere, spanning the tropics to mid-latitudes, 60∘ × 60∘ in lateral extent. The fluid is 1.8 km deep
and is forced by a zonal wind stress which is constant in time, 𝜏𝜆, varying sinusoidally in the north-south direction.
The Coriolis parameter, 𝑓 , is defined according to latitude 𝜙

𝑓(𝜙) = 2Ω sin(𝜙)

154 Chapter 4. MITgcm Tutorial Example Experiments

https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/input/data
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_baroclinic_gyre


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

with the rotation rate, Ω set to 2𝜋
86164 s−1 (i.e., corresponding the to standard Earth rotation rate). The sinusoidal

wind-stress variations are defined according to

𝜏𝜆(𝜙) = −𝜏0 cos

(︂
2𝜋
𝜙− 𝜙𝑜

𝐿𝜙

)︂
where 𝐿𝜙 is the lateral domain extent (60∘), 𝜙𝑜 is set to 15∘N and 𝜏0 is 0.1 N m−2. Figure 4.5 summarizes the
configuration simulated. As indicated by the axes in the lower left of the figure, the model code works internally
in a locally orthogonal coordinate (𝑥, 𝑦, 𝑧). For this experiment description the local orthogonal model coordinate
(𝑥, 𝑦, 𝑧) is synonymous with the coordinates (𝜆, 𝜙, 𝑟) shown in Figure 1.20. Initially the fluid is stratified with a
reference potential temperature profile that varies from 𝜃 = 30 ∘C in the surface layer to 𝜃 = 2 ∘C in the bottom layer.
The equation of state used in this experiment is linear:

𝜌 = 𝜌0(1 − 𝛼𝜃𝜃
′) (4.8)

which is implemented in the model as a density anomaly equation

𝜌′ = −𝜌0𝛼𝜃𝜃
′ (4.9)

with 𝜌0 = 999.8 kg m−3 and 𝛼𝜃 = 2 × 10−4 K−1. Given the linear equation of state, in this configuration the model
state variable for temperature is equivalent to either in-situ temperature, 𝑇 , or potential temperature, 𝜃. For consistency
with later examples, in which the equation of state is non-linear, here we use the variable 𝜃 to represent temperature.

Figure 4.5: Schematic of simulation domain and wind-stress forcing function for baroclinic gyre numerical experi-
ment. The domain is enclosed by solid walls.

Temperature is restored in the surface layer to a linear profile:

ℱ𝜃 = − 1

𝜏𝜃
(𝜃 − 𝜃*), 𝜃* =

𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛

𝐿𝜙
(𝜙− 𝜙𝑜) (4.10)

where the relaxation timescale 𝜏𝜃 = 30 days and 𝜃𝑚𝑎𝑥 = 30∘ C, 𝜃𝑚𝑖𝑛 = 0∘ C.

4.2. Baroclinic Ocean Gyre 155



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

4.2.1 Equations solved

For this problem the implicit free surface, HPE form of the equations (see Section 1.3.4.2; Section 2.4) described
in Marshall et al. (1997) [MHPA97] are employed. The flow is three-dimensional with just temperature, 𝜃, as an
active tracer. The viscous and diffusive terms provides viscous dissipation and a diffusive sub-grid scale closure for
the momentum and temperature equations, respectively. A wind-stress momentum forcing is added to the momentum
equation for the zonal flow, 𝑢. Other terms in the model are explicitly switched off for this experiment configuration
(see Section 4.2.3). This yields an active set of equations solved in this configuration, written in spherical polar
coordinates as follows:

𝐷𝑢
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𝑎
tan𝜙+
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𝐷𝜃

𝐷𝑡
+ ∇ℎ · (−𝜅ℎ∇ℎ𝜃) +

𝜕

𝜕𝑧

(︂
−𝜅𝑧

𝜕𝜃

𝜕𝑧

)︂
= ℱ𝜃 (4.14)

𝑝′ = 𝑔𝜌𝑐𝜂 +

∫︁ 0

𝑧

𝑔𝜌′𝑑𝑧 (4.15)

where 𝑢 and 𝑣 are the components of the horizontal flow vector 𝑢⃗ on the sphere (𝑢 = 𝜆̇, 𝑣 = 𝜙̇), 𝑎 is the distance from
the center of the Earth, 𝜌𝑐 is a fluid density (which appears in the momentum equations, and can be set differently
than 𝜌0 in (4.9)), 𝐴ℎ and 𝐴𝑣 are horizontal and vertical viscosity, and 𝜅ℎ and 𝜅𝑣 are horizontal and vertical diffusivity,
respectively. The terms 𝐻̂︀𝑢 and 𝐻̂︀𝑣 are the components of the vertical integral term given in equation (1.35) and
explained in more detail in Section 2.4. However, for the problem presented here, the continuity relation (4.13) differs
from the general form given in Section 2.4, equation (2.10) because the source terms 𝒫 − ℰ + ℛ are all zero.

The forcing terms ℱ𝑢, ℱ𝑣 , and ℱ𝜃 are applied as source terms in the model surface layer and are zero in the interior.
The windstress forcing, ℱ𝑢 and ℱ𝑣 , is applied in the zonal and meridional momentum equations, respectively; in this
configuration, ℱ𝑢 = 𝜏𝑥

𝜌𝑐Δ𝑧𝑠
(where ∆𝑧𝑠 is the depth of the surface model gridcell), and ℱ𝑣 = 0. Similarly, ℱ𝜃 is

applied in the temperature equation, as given by (4.10).

In (4.15) the pressure field, 𝑝′, is separated into a barotropic part due to variations in sea-surface height, 𝜂, and a
hydrostatic part due to variations in density, 𝜌′, integrated through the water column. Note the 𝑔 in the first term on the
right hand side is MITgcm parameter gBaro whereas in the seond term 𝑔 is parameter gravity; allowing for different
gravity constants here is useful, for example, if one wanted to slow down external gravity waves.

In the momentum equations, lateral and vertical boundary conditions for the ∇2
ℎ and 𝜕2

𝜕𝑧2 operators are specified in the
runtime configuration - see Section 4.2.3. For temperature, the boundary condition along the bottom and sidewalls is
zero-flux.

4.2.2 Discrete Numerical Configuration

The domain is discretized with a uniform grid spacing in latitude and longitude ∆𝜆 = ∆𝜙 = 1∘, so that there are 60
active ocean grid cells in the zonal and meridional directions. As in tutorial Barotropic Ocean Gyre, a border row of
land cells surrounds the ocean domain, so the full numerical grid size is 62×62 in the horizontal. The domain has 15
levels in the vertical, varying from ∆𝑧 = 50 m deep in the surface layer to 190 m deep in the bottom layer, as shown
by the faint red lines in Figure 4.5. The internal, locally orthogonal, model coordinate variables 𝑥 and 𝑦 are initialized
from the values of 𝜆, 𝜙, ∆𝜆 and ∆𝜙 in radians according to:

𝑥 = 𝑎 cos(𝜙)𝜆, ∆𝑥 = 𝑎 cos(𝜙)∆𝜆

𝑦 = 𝑎𝜙, ∆𝑦 = 𝑎∆𝜙
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See Section 1.6.1 for additional description of spherical coordinates.

As described in Section 2.16, the time evolution of potential temperature 𝜃 in (4.14) is evaluated prognostically. The
centered second-order scheme with Adams-Bashforth II time stepping described in Section 2.16.1 is used to step
forward the temperature equation.

Prognostic terms in the momentum equations are solved using flux form as described in Section 2.14. The pressure

forces that drive the fluid motions, 𝜕𝑝
′

𝜕𝜆 and 𝜕𝑝
′

𝜕𝜙 , are found by summing pressure due to surface elevation 𝜂 and the
hydrostatic pressure, as discussed in Section 4.2.1. The hydrostatic part of the pressure is diagnosed explicitly by
integrating density. The sea-surface height is found by solving implicitly the 2-D (elliptic) surface pressure equation
(see Section 2.4).

4.2.2.1 Numerical Stability Criteria

The analysis in this section is similar to that discussed in tutorial Barotropic Ocean Gyre, albeit with some added
wrinkles. In this experiment, we not only have a larger model domain extent, with greater variation in the Coriolis
parameter between the southernmost and northernmost gridpoints, but also significant variation in the grid ∆𝑥 spacing.

In order to choose an appropriate time step, note that our smallest gridcells (i.e., in the far north) have ∆𝑥 ≈ 29 km,
which is similar to our grid spacing in tutorial Barotropic Ocean Gyre. Thus, using the advective CFL condition, first
assuming our solution will achieve maximum horizontal advection |𝑐𝑚𝑎𝑥| ~ 1 ms-1)

𝑆𝑎 = 2

(︂
|𝑐𝑚𝑎𝑥|∆𝑡

∆𝑥

)︂
< 0.5 for stability (4.16)

we choose the same time step as in tutorial Barotropic Ocean Gyre, ∆𝑡 = 1200 s (= 20 minutes), resulting in 𝑆𝑎 = 0.08.
Also note this time step is stable for propagation of internal gravity waves: approximating the propagation speed as√
𝑔′ℎ where 𝑔′ is reduced gravity (our maximum ∆𝜌 using our linear equation of state is 𝜌0𝛼𝜃∆𝜃 = 6 kg/m3) and ℎ is

the upper layer depth (we’ll assume 150 m), produces an estimated propagation speed generally less than |𝑐𝑚𝑎𝑥| = 3
ms–1 (see Adcroft 1995 [Adc95] or Gill 1982 [Gil82]), thus still comfortably below the threshold.

Using our chosen value of ∆𝑡, numerical stability for inertial oscillations using Adams-Bashforth II

𝑆𝑖 = 𝑓∆𝑡 < 0.5 for stability (4.17)

evaluates to 0.17 for the largest 𝑓 value in our domain (1.4 × 10−4 s–1), below the stability threshold.

To choose a horizontal Laplacian eddy viscosity 𝐴ℎ, note that the largest ∆𝑥 value in our domain (i.e., in the south) is
≈ 110 km. With the Munk boundary width as follows,

𝑀𝑤 =
2𝜋√

3

(︂
𝐴ℎ

𝛽

)︂ 1
3

(4.18)

in order to to have a well resolved boundary current in the subtropical gyre we will set 𝐴ℎ = 5000 m2 s–1. This results
in a boundary current resolved across two to three grid cells in the southern portion of the domain.

Given that our choice for𝐴ℎ in this experiment is an order of magnitude larger than in tutorial Barotropic Ocean Gyre,
let’s re-examine the stability of horizontal Laplacian friction:

𝑆𝑙ℎ = 2

(︂
4
𝐴ℎ∆𝑡

∆𝑥2

)︂
< 0.6 for stability (4.19)

evaluates to 0.057 for our smallest ∆𝑥, which is below the stability threshold. Note this same stability test also applies
to horizontal Laplacian diffusion of tracers, with 𝜅ℎ replacing 𝐴ℎ, but we will choose 𝜅ℎ ≪ 𝐴ℎ so this should not
pose any stability issues.

Finally, stability of vertical diffusion of momentum:

𝑆𝑙𝑣 = 4
𝐴𝑣∆𝑡

∆𝑧2
< 0.6 for stability (4.20)
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Here we will choose 𝐴𝑣 = 1 × 10−2 m2 s–1, so 𝑆𝑙𝑣 evaluates to 0.02 for our minimum ∆𝑧, well below the stability
threshold. Note if we were to use Adams Bashforth II for diffusion of tracers the same check would apply, with 𝜅𝑣
replacing 𝐴𝑣 . However, we will instead choose an implicit scheme for computing vertical diffusion of tracers (see
Section 4.2.3.2), which is unconditionally stable.

4.2.3 Configuration

The model configuration for this experiment resides under the directory verification/tutorial_baroclinic_gyre/.

The experiment files

• verification/tutorial_baroclinic_gyre/code/packages.conf

• verification/tutorial_baroclinic_gyre/code/SIZE.h

• verification/tutorial_baroclinic_gyre/code/DIAGNOSTICS_SIZE.h

• verification/tutorial_baroclinic_gyre/input/data

• verification/tutorial_baroclinic_gyre/input/data.pkg

• verification/tutorial_baroclinic_gyre/input/data.mnc

• verification/tutorial_baroclinic_gyre/input/data.diagnostics

• verification/tutorial_baroclinic_gyre/input/eedata

• verification/tutorial_baroclinic_gyre/input/bathy.bin

• verification/tutorial_baroclinic_gyre/input/windx_cosy.bin

• verification/tutorial_baroclinic_gyre/input/SST_relax.bin

contain the code customizations, parameter settings, and input data files for this experiment. Below we describe these
customizations in detail.

4.2.3.1 Compile-time Configuration

File code/packages.conf

Listing 4.5: verification/tutorial_baroclinic_gyre/code/packages.conf

1 #-- list of packages (or group of packages) to compile for this experiment:
2 gfd
3 diagnostics
4 mnc

Here we specify which MITgcm packages we want to include in our configuration. gfd is a pre-defined “package
group” (see Using MITgcm Packages) of standard packages necessary for most setups; it is also the default compiled
packages setting and the minimum set of packages necessary for GFD-type setups. In addition to package group gfd
we include two additional packages (individual packages, not package groups), mnc and diagnostics. Package mnc is
required for output to be dumped in netCDF format. Package diagnostics allows one to choose output from a extensive
list of model diagnostics, and specify output frequency, with multiple time averaging or snapshot options available.
Without this package enabled, output is limited to a small number of snapshot output fields. Subsequent tutorial
experiments will explore the use of packages which expand the physical and scientific capabilities of MITgcm, e.g.,
such as physical parameterizations or modeling capabilities for tracers, ice, etc., that are not compiled unless specified.
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File code/SIZE.h

Listing 4.6: verification/tutorial_baroclinic_gyre/code/SIZE.h

1 CBOP
2 C !ROUTINE: SIZE.h
3 C !INTERFACE:
4 C include SIZE.h
5 C !DESCRIPTION: \bv
6 C *==========================================================*
7 C | SIZE.h Declare size of underlying computational grid.
8 C *==========================================================*
9 C | The design here supports a three-dimensional model grid

10 C | with indices I,J and K. The three-dimensional domain
11 C | is comprised of nPx*nSx blocks (or tiles) of size sNx
12 C | along the first (left-most index) axis, nPy*nSy blocks
13 C | of size sNy along the second axis and one block of size
14 C | Nr along the vertical (third) axis.
15 C | Blocks/tiles have overlap regions of size OLx and OLy
16 C | along the dimensions that are subdivided.
17 C *==========================================================*
18 C \ev
19 C
20 C Voodoo numbers controlling data layout:
21 C sNx :: Number of X points in tile.
22 C sNy :: Number of Y points in tile.
23 C OLx :: Tile overlap extent in X.
24 C OLy :: Tile overlap extent in Y.
25 C nSx :: Number of tiles per process in X.
26 C nSy :: Number of tiles per process in Y.
27 C nPx :: Number of processes to use in X.
28 C nPy :: Number of processes to use in Y.
29 C Nx :: Number of points in X for the full domain.
30 C Ny :: Number of points in Y for the full domain.
31 C Nr :: Number of points in vertical direction.
32 CEOP
33 INTEGER sNx
34 INTEGER sNy
35 INTEGER OLx
36 INTEGER OLy
37 INTEGER nSx
38 INTEGER nSy
39 INTEGER nPx
40 INTEGER nPy
41 INTEGER Nx
42 INTEGER Ny
43 INTEGER Nr
44 PARAMETER (
45 & sNx = 31,
46 & sNy = 31,
47 & OLx = 2,
48 & OLy = 2,
49 & nSx = 2,
50 & nSy = 2,
51 & nPx = 1,
52 & nPy = 1,
53 & Nx = sNx*nSx*nPx,

(continues on next page)
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(continued from previous page)

54 & Ny = sNy*nSy*nPy,
55 & Nr = 15)
56

57 C MAX_OLX :: Set to the maximum overlap region size of any array
58 C MAX_OLY that will be exchanged. Controls the sizing of exch
59 C routine buffers.
60 INTEGER MAX_OLX
61 INTEGER MAX_OLY
62 PARAMETER ( MAX_OLX = OLx,
63 & MAX_OLY = OLy )

For this second tutorial, we will break the model domain into multiple tiles. Although initially we will run the model
on a single processor, a multi-tiled setup is required when we demonstrate how to run the model using either MPI or
using multiple threads.

The following lines calculate the horizontal size of the global model domain (NOT to be edited). Our values for SIZE.h
parameters below must multiply so that our horizontal model domain is 62×62:

53 & Nx = sNx*nSx*nPx,
54 & Ny = sNy*nSy*nPy,

Now let’s look at all individual SIZE.h parameter settings.

• Although our model domain is 62×62, here we specify the size of a single tile to be one-half that in both 𝑥
and 𝑦. Thus, the model requires four of these tiles to cover the full ocean sector domain (see below, where we
set nSx and nSy). Note that the grid can only be subdivided into tiles in the horizontal dimensions, not in the
vertical.

45 & sNx = 31,
46 & sNy = 31,

• As in tutorial Barotropic Ocean Gyre, here we set the overlap extent of a model tile to the value 2 in both 𝑥 and
𝑦. In other words, although our model tiles are sized 31×31, in MITgcm array storage there are an additional 2
border rows surrounding each tile which contain model data from neighboring tiles. Some horizontal advection
schemes and other parameter and setup choices require a larger overlap setting (see Table 2.2). In our configu-
ration, we are using a second-order center-differences advection scheme (the MITgcm default) which does not
requires setting a overlap beyond the MITgcm minimum 2.

47 & OLx = 2,
48 & OLy = 2,

• These lines set parameters nSx and nSy, the number of model tiles in the 𝑥 and 𝑦 directions, respectively, which
execute on a single process. Initially, we will run the model on a single core, thus both nSx and nSy are set to 2
so that all 2 × 2 = 4 tiles are integrated forward in time.

49 & nSx = 2,
50 & nSy = 2,

• These lines set parameters nPx and nPy, the number of processes to use in the 𝑥 and 𝑦 directions, respectively.
As noted, initially we will run using a single process, so for now these parameters are both set to 1.

51 & nPx = 1,
52 & nPy = 1,

• Here we tell the model we are using 15 vertical levels.
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55 & Nr = 15)

File code/DIAGNOSTICS_SIZE.h

Listing 4.7: verification/tutorial_baroclinic_gyre/code/DIAGNOSTICS_SIZE.h

1 C Diagnostics Array Dimension
2 C ---------------------------
3 C ndiagMax :: maximum total number of available diagnostics
4 C numlists :: maximum number of diagnostics list (in data.diagnostics)
5 C numperlist :: maximum number of active diagnostics per list (data.diagnostics)
6 C numLevels :: maximum number of levels to write (data.diagnostics)
7 C numDiags :: maximum size of the storage array for active 2D/3D diagnostics
8 C nRegions :: maximum number of regions (statistics-diagnostics)
9 C sizRegMsk :: maximum size of the regional-mask (statistics-diagnostics)

10 C nStats :: maximum number of statistics (e.g.: aver,min,max ...)
11 C diagSt_size:: maximum size of the storage array for statistics-diagnostics
12 C Note : may need to increase "numDiags" when using several 2D/3D diagnostics,
13 C and "diagSt_size" (statistics-diags) since values here are deliberately small.
14 INTEGER ndiagMax
15 INTEGER numlists, numperlist, numLevels
16 INTEGER numDiags
17 INTEGER nRegions, sizRegMsk, nStats
18 INTEGER diagSt_size
19 PARAMETER( ndiagMax = 500 )
20 PARAMETER( numlists = 10, numperlist = 50, numLevels=2*Nr )
21 PARAMETER( numDiags = 20*Nr )
22 PARAMETER( nRegions = 0 , sizRegMsk = 1 , nStats = 4 )
23 PARAMETER( diagSt_size = 10*Nr )
24

25

26 CEH3 ;;; Local Variables: ***
27 CEH3 ;;; mode:fortran ***
28 CEH3 ;;; End: ***

In the default version /pkg/diagnostics/DIAGNOSTICS_SIZE.h the storage array for diagnostics is purposely set quite
small, in other words forcing the user to assess how many diagnostics will be computed and thus choose an appropriate
size for a storage array. In the above file we have modified the value of parameter numDiags:

21 PARAMETER( numDiags = 20*Nr )

from its default value 1*Nr, which would only allow a single 3-D diagnostic to be computed and saved, to 20*Nr,
which will permit up to some combination of up to 20 3-D diagnostics or 300 2-D diagnostic fields.
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4.2.3.2 Run-time Configuration

File input/data

Listing 4.8: verification/tutorial_baroclinic_gyre/input/data

1 # Model parameters
2 # Continuous equation parameters
3 &PARM01
4 viscAh=5000.,
5 viscAr=1.E-2,
6 no_slip_sides=.TRUE.,
7 no_slip_bottom=.FALSE.,
8 diffKhT=1000.,
9 diffKrT=1.E-5,

10 ivdc_kappa=1.,
11 implicitDiffusion=.TRUE.,
12 eosType='LINEAR',
13 tRef=30.,27.,24.,21.,18.,15.,13.,11.,9.,7.,6.,5.,4.,3.,2.,
14 tAlpha=2.E-4,
15 sBeta=0.,
16 rhoNil=999.8,
17 gravity=9.81,
18 rigidLid=.FALSE.,
19 implicitFreeSurface=.TRUE.,
20 exactConserv=.TRUE.,
21 saltStepping=.FALSE.,
22 # globalFiles=.TRUE.,
23 &
24

25 # Elliptic solver parameters
26 &PARM02
27 cg2dTargetResidual=1.E-7,
28 cg2dMaxIters=1000,
29 &
30

31 # Time stepping parameters
32 &PARM03
33 startTime=0.,
34 endTime=12000.,
35 deltaT=1200.,
36 pChkptFreq=622080000.,
37 chkptFreq=155520000.,
38 dumpFreq=31104000.,
39 monitorFreq=1200.,
40 monitorSelect=2,
41 tauThetaClimRelax=2592000.,
42 #-for longer run (100 yrs)
43 # endTime = 3110400000.,
44 # monitorFreq=2592000.,
45 &
46

47 # Gridding parameters
48 &PARM04
49 usingSphericalPolarGrid=.TRUE.,
50 delX=62*1.,
51 delY=62*1.,

(continues on next page)
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(continued from previous page)

52 xgOrigin=-1.,
53 ygOrigin=14.,
54 delR=50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180.,190.,
55 &
56

57 &PARM05
58 bathyFile='bathy.bin',
59 zonalWindFile='windx_cosy.bin',
60 thetaClimFile='SST_relax.bin',
61 &

Parameters for this configuration are set as follows.

PARM01 - Continuous equation parameters

• These lines set parameters viscAh and viscAr, the horizontal and vertical Laplacian viscosities respectively, to
5000 m2 s–1 and 1 × 10−2 m2 s–1. Note the subscript 𝑟 is used for the vertical, reflecting MITgcm’s generic 𝑟-
vertical coordinate capability (i.e., the model is capable of using either a 𝑧-coordinate or a 𝑝-coordinate system).

4 viscAh=5000.,
5 viscAr=1.E-2,

• These lines set parameters to specify the boundary conditions for momentum on the model domain sidewalls and
bottom. Parameter no_slip_sides is set to .TRUE., i.e., no-slip lateral boundary conditions (the default), which
will yield a Munk (1950) [Mun50] western boundary solution. Parameter no_slip_bottom is set to .FALSE.,
i.e., free-slip bottom boundary condition (default is true). If instead of a Munk layer we desired a Stommel
(1948) [Sto48] western boundary layer solution, we would opt for free-slip lateral boundary conditions and
no-slip conditions along the bottom.

6 no_slip_sides=.TRUE.,
7 no_slip_bottom=.FALSE.,

• These lines set parameters diffKhT and diffKrT, the horizontal and vertical Laplacian temperature diffusivities
respectively, to 1000 m2 s–1 and 1 × 10−5 m2 s–1.The boundary condition on this operator is zero-flux at all
boundaries.

8 diffKhT=1000.,
9 diffKrT=1.E-5,

• By default, MITgcm does not apply any parameterization to mix statically unstable columns of water. In a
coarse resolution, hydrostatic configuration, typically such a parameterization is desired. We recommend a
scheme which simply applies (presumably, large) vertical diffusivity between statically unstable grid cells in
the vertical. This vertical diffusivity is set by parameter ivdc_kappa, which here we set to 1.0 m2 s–1. This
scheme requires that implicitDiffusion is set to .TRUE. (see Section 2.6; more specifically, applying a large
vertical diffusivity to represent convective mixing requires the use of an implicit time-stepping method for
vertical diffusion, rather than Adams Bashforth II). Alternatively, a traditional convective adjustment scheme is
available; this can be activated through the cAdjFreq parameter, see Section 3.8.5.4.

10 ivdc_kappa=1.,
11 implicitDiffusion=.TRUE.,

• The following parameters tell the model to use a linear equation of state. Note a list of Nr (=15, from SIZE.h)
potential temperature values in oC is specified for parameter tRef, ordered from surface to depth. tRef is used
for two purposes here. First, anomalies in density are computed using this reference 𝜃, 𝜃′(𝑥, 𝑦, 𝑧) = 𝜃(𝑥, 𝑦, 𝑧)−
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𝜃𝑟𝑒𝑓 (𝑧); see use in (4.8) and (4.9). Second, the model will use these reference temperatures for its initial state,
as we are not providing a pickup file nor specifying an initial temperature hydrographic file (in later tutorials
we will demonstrate how to do so). For each depth level the initial and reference profiles will be uniform in 𝑥
and 𝑦. Note when checking static stability or computing 𝑁2, the density gradient resulting from these specified
reference levels is added to 𝜕𝜌′/𝜕𝑧 from (4.9). Finally, we set the thermal expansion coefficient 𝛼𝜃 (tAlpha) as
used in (4.8) and (4.9), while setting the haline contraction coefficient (sBeta) to zero (see (4.8), which omits a
salinity contribution to the linear equation of state; like tutorial Barotropic Ocean Gyre, salinity is not included
as a tracer in this very idealized model setup).

12 eosType='LINEAR',
13 tRef=30.,27.,24.,21.,18.,15.,13.,11.,9.,7.,6.,5.,4.,3.,2.,
14 tAlpha=2.E-4,
15 sBeta=0.,

• This line sets parameter 𝜌0 (rhoNil) to 999.8 kg/m3, the surface reference density for our linear equation of state,
i.e., the density of water at tRef(k=1). This value will also be used as 𝜌𝑐 (parameter rhoConst) in (4.11)-(4.15),
lacking a separate explicit assignment of rhoConst in data. Note this value is the model default value for
rhoNil.

16 rhoNil=999.8,

• This line sets parameter gravity, the acceleration due to gravity 𝑔 in (4.15), and this value will also be used to
set gBaro, the barotopic (i.e., free surface-related) gravity parameter which we set in tutorial Barotropic Ocean
Gyre. This is the MITgcm default value.

17 gravity=9.81,

• These lines set parameters which prescribe the linearized free surface formulation, similar to tutorial Barotropic
Ocean Gyre. Note we have added parameter exactConserv, set to .TRUE.: this instructs the model to recompute
divergence after the pressure solver step, ensuring volume conservation of the free surface solution (the model
default is NOT to recompute divergence, but given the small numerical cost, we typically recommend doing so).

18 rigidLid=.FALSE.,
19 implicitFreeSurface=.TRUE.,
20 exactConserv=.TRUE.,

• As in tutorial Barotropic Ocean Gyre, we suppress MITgcm’s forward time integration of salt in the tracer
equations.

21 saltStepping=.FALSE.,
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PARM02 - Elliptic solver parameters

These parameters are unchanged from tutorial Barotropic Ocean Gyre.

PARM03 - Time stepping parameters

• In tutorial Barotropic Ocean Gyre we specified a starting iteration number nIter0 and a number of time steps to
integrate, nTimeSteps. Here we opt to use another approach to control run start and duration: we set a startTime
and endTime, both in units of seconds. Given a starting time of 0.0, the model starts from rest using specified
initial values of temperature (here, as previously noted, from the tRef parameter) rather than attempting to restart
from a saved checkpoint file. The specified value for endTime, 12000.0 seconds is equivalent to 10 time steps,
set for testing purposes. To integrate over a longer, more physically relevant period of time, uncomment the
endTime and monitorFreq lines located near the end of this parameter block. Note, for simplicity, our units
for these time choices assume a 360-day “year” and 30-day “month” (although lacking a seasonal cycle in
our forcing, defining a “year” is immaterial; we will demonstrate how to apply time-varying forcings in later
tutorials).

33 startTime=0.,
34 endTime=12000.,

42 #-for longer run (100 yrs)
43 # endTime = 3110400000.,
44 # monitorFreq=2592000.,

• Remaining time stepping parameter choices (specifically, ∆𝑡, checkpoint frequency, output frequency, and mon-
itor settings) are described in tutorial Barotropic Ocean Gyre; refer to the description here.

35 deltaT=1200.,
36 pChkptFreq=622080000.,
37 chkptFreq=155520000.,
38 dumpFreq=31104000.,
39 monitorFreq=1200.,
40 monitorSelect=2,

• The parameter tauThetaClimRelax sets the time scale, in seconds, for restoring potential temperature in the
model’s top surface layer (see (4.10)). Our choice here of 2,592,000 seconds is equal to 30 days.

41 tauThetaClimRelax=2592000.,

PARM04 - Gridding parameters

• This line sets parameter usingSphericalPolarGrid, which specifies that the simulation will use spherical polar
coordinates (and affects the interpretation of other grid coordinate parameters).

49 usingSphericalPolarGrid=.TRUE.,

• These lines set the horizontal grid spacing, as vectors delX and delY (i.e., ∆𝑥 and ∆𝑦 respectively), with units
of degrees as dictated by our choice usingSphericalPolarGrid. As before, this syntax indicates that we specify
62 values in both the 𝑥 and 𝑦 directions, which matches the global domain size as specified in SIZE.h. Our
ocean sector domain starts at 0∘ longitude and 15∘ N; accounting for a surrounding land row of cells, we thus
set the origin in longitude to −1.0∘ and in latitude to 14.0∘. Again note that our origin specifies the southern
and western edges of the gridcell, not the cell center location. Setting the origin in latitude is critical given that it
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affects the Coriolis parameter 𝑓 (which appears in (4.11) and (4.12)); the default value for ygOrigin is 0.0∘. Note
that setting xgOrigin is optional, given that absolute longitude does not appear in the equation discretization.

50 delX=62*1.,
51 delY=62*1.,
52 xgOrigin=-1.,
53 ygOrigin=14.,

• This line sets parameter delR, the vertical grid spacing in the 𝑧-coordinate (i.e., ∆𝑧), to a vector of 15 depths
(in meters), from 50 m in the surface layer to a bottom layer depth of 190 m. The sum of these specified depths
equals 1800 m, the full depth 𝐻 of our idealized ocean sector.

54 delR=50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180.,190.,

PARM05 - Input datasets

• Similar to tutorial Barotropic Ocean Gyre, these lines specify filenames for bathymetry and surface wind stress
forcing files.

58 bathyFile='bathy.bin',
59 zonalWindFile='windx_cosy.bin',

• This line specifies parameter thetaClimFile, the filename for the (2-D) restoring temperature field.

60 thetaClimFile='SST_relax.bin',

File input/data.pkg
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Listing 4.9: verification/tutorial_baroclinic_gyre/input/data.pkg

1 # Packages (lines beginning "#" are comments)
2 &PACKAGES
3 useMNC=.TRUE.,
4 useDiagnostics=.TRUE.,
5 &

Here we activate two MITgcm packages that are not included with the model by default: package mnc (see Section
9.3) specifies that model output should be written in netCDF format, and package diagnostics (see Section 9.1) allows
user-selectable diagnostic output. The boolean parameters set are useMNC and useDiagnostics, respectively. Note
these add-on packages also need to be specified when the model is compiled, see Section 4.2.3.1. Apart from these
two additional packages, only standard packages (i.e., those compiled in MITgcm by default) are required for this
setup.

File input/data.mnc

Listing 4.10: verification/tutorial_baroclinic_gyre/input/data.mnc

1 # Example "data.mnc" file
2 &MNC_01
3 monitor_mnc=.FALSE.,
4 mnc_use_outdir=.TRUE.,
5 mnc_outdir_str='mnc_test_',
6 &
7

This file sets parameters which affect package pkg/mnc behavior; in fact, with pkg/mnc enabled, it is required (many
packages look for file data.«PACKAGENAME» and will terminate if not present). By setting the parameter moni-
tor_mnc to .FALSE. we are specifying NOT to create separate netCDF output files for pkg/monitor output, but rather
to include this monitor output in the standard output file (see Section 4.1.4). See Section 9.3.1.2 for a complete listing
of pkg/mnc namelist parameters and their default settings.

Note that unlike raw binary output, which overwrites any existing files, when using mnc output the model will create
new directories if the parameters mnc_use_outdir and mnc_outdir_str are set. However, if those parameters are not set
the model will terminate with an error if one attempts to overwrite an existing file (i.e., if re-running in a previous run
directory, one needs to delete all *.nc files before restarting).

File input/data.diagnostics

Listing 4.11: verification/tutorial_baroclinic_gyre/input/data.diagnostics

1 # Diagnostic Package Choices
2 #--------------------
3 # dumpAtLast (logical): always write output at the end of simulation (default=F)
4 # diag_mnc (logical): write to NetCDF files (default=useMNC)
5 #--for each output-stream:
6 # fileName(n) : prefix of the output file name (max 80c long) for outp.stream n
7 # frequency(n):< 0 : write snap-shot output every |frequency| seconds
8 # > 0 : write time-average output every frequency seconds
9 # timePhase(n) : write at time = timePhase + multiple of |frequency|

10 # averagingFreq : frequency (in s) for periodic averaging interval
11 # averagingPhase : phase (in s) for periodic averaging interval

(continues on next page)
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(continued from previous page)

12 # repeatCycle : number of averaging intervals in 1 cycle
13 # levels(:,n) : list of levels to write to file (Notes: declared as REAL)
14 # when this entry is missing, select all common levels of this list
15 # fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n
16 # (see "available_diagnostics.log" file for the full list of diags)
17 # missing_value(n) : missing value for real-type fields in output file "n"
18 # fileFlags(n) : specific code (8c string) for output file "n"
19 #--------------------
20 &DIAGNOSTICS_LIST
21 fields(1:3,1) = 'ETAN ','TRELAX ','MXLDEPTH',
22 fileName(1) = 'surfDiag',
23 frequency(1) = 31104000.,
24

25 fields(1:5,2) = 'THETA ','PHIHYD ',
26 'UVEL ','VVEL ','WVEL ',
27 # did not specify levels => all levels are selected
28 fileName(2) = 'dynDiag',
29 frequency(2) = 31104000.,
30 &
31

32 #--------------------
33 # Parameter for Diagnostics of per level statistics:
34 #--------------------
35 # diagSt_mnc (logical): write stat-diags to NetCDF files (default=diag_mnc)
36 # diagSt_regMaskFile : file containing the region-mask to read-in
37 # nSetRegMskFile : number of region-mask sets within the region-mask file
38 # set_regMask(i) : region-mask set-index that identifies the region "i"
39 # val_regMask(i) : region "i" identifier value in the region mask
40 #--for each output-stream:
41 # stat_fName(n) : prefix of the output file name (max 80c long) for outp.stream n
42 # stat_freq(n):< 0 : write snap-shot output every |stat_freq| seconds
43 # > 0 : write time-average output every stat_freq seconds
44 # stat_phase(n) : write at time = stat_phase + multiple of |stat_freq|
45 # stat_region(:,n) : list of "regions" (default: 1 region only=global)
46 # stat_fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n
47 # (see "available_diagnostics.log" file for the full list of diags)
48 #--------------------
49 &DIAG_STATIS_PARMS
50 stat_fields(1:2,1) = 'THETA ','TRELAX ',
51 stat_fName(1) = 'dynStDiag',
52 stat_freq(1) = 2592000.,
53 &

DIAGNOSTICS_LIST - Diagnostic Package Choices

In this section we specify what diagnostics we want to compute, how frequently to compute them, and the name
of output files. Multiple diagnostic fields can be grouped into individual files (i.e., an individual output file here is
associated with a ‘list’ of diagnostics).

21 fields(1:3,1) = 'ETAN ','TRELAX ','MXLDEPTH',
22 fileName(1) = 'surfDiag',
23 frequency(1) = 31104000.,

The above lines tell MITgcm that our first list will consist of three diagnostic variables:

• ETAN - the linearized free surface height (m)
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• TRELAX - the heat flux entering the ocean due to surface temperature relaxation (W/m2)

• MXLDEPTH - the depth of the mixed layer (m), as defined here by a given magnitude decrease in density from
the surface (we’ll use the model default for ∆𝜌)

Note that all these diagnostic fields are 2-D output. 2-D and 3-D diagnostics CANNOT be mixed in a diagnostics
list. These variables are specified in parameter fields: the first index is specified as 1:«NUMBER_OF_DIAGS»,
the second index designates this for diagnostics list 1. Next, the output filename for diagnostics list 1 is specified in
variable fileName. Finally, for this list we specify variable frequency to provide time-averaged output every 31,104,000
seconds, i.e., once per year. Had we entered a negative value for frequency, MITgcm would have instead written
snapshot data at this interval. Next, we set up a second diagnostics list for several 3-D diagnostics.

25 fields(1:5,2) = 'THETA ','PHIHYD ',
26 'UVEL ','VVEL ','WVEL ',
27 # did not specify levels => all levels are selected
28 fileName(2) = 'dynDiag',
29 frequency(2) = 31104000.,

The diagnostics in list 2 are:

• THETA - potential temperature (oC )

• PHYHYD - hydrostatic pressure potential anomaly (m2/s2)

• UVEL, VVEL, WVEL - the zonal, meridional, and vertical velocity components respectively (m/s)

Here we did not specify parameter levels, so all depth levels will be included in the output. An example of syntax
to limit which depths are output is levels(1:5,2) = 1.,2.,3.,, which would dump just the top three levels.
We again specify an output file name via parameter fileName, and specify a time-average period of one year through
parameter frequency.

DIAG_STATIS_PARMS - Diagnostic Per Level Statistics

It is also possible to request output statistics averaged for global mean and by level average (for 3-D diagnostics) over
the full domain, and/or for a pre-defined (𝑥, 𝑦) region of the model grid. The statistics computed for each diagnostic
are as follows:

• (area weighted) mean (in both space and time, if time-averaged frequency is selected)

• (area weighted) standard deviation

• minimum value

• maximum value

• volume of the area used in the calculation (multiplied by the number of time steps if time-averaged).

While these statistics could in theory also be calculated (by the user) from 2-D and 3-D DIAGNOSTICS_LIST output,
the advantage is that much higher frequency statistical output can be achieved without filling up copious amounts of
disk space.

Options for namelist DIAG_STATIS_PARMS are set as follows:

50 stat_fields(1:2,1) = 'THETA ','TRELAX ',
51 stat_fName(1) = 'dynStDiag',
52 stat_freq(1) = 2592000.,

The syntax here is analogous with DIAGNOSTICS_LIST namelist parameters, except the parameter names begin
with stat (here, stat_fields, stat_fName, stat_freq). Frequency can be set to snapshot or time-averaged output, and
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multiple lists of diagnostics (i.e., separate output files) can be specified. The only major difference from DIAGNOS-
TICS_LIST syntax is that 2-D and 3-D diagnostics can be mixed in a list. As noted, it is possible to select limited
horizontal regions of interest, in addition to the full domain calculation.

File input/eedata

Listing 4.12: verification/tutorial_baroclinic_gyre/input/eedata

1 # Example "eedata" file
2 # Lines beginning "#" are comments
3 # nTx :: No. threads per process in X
4 # nTy :: No. threads per process in Y
5 # debugMode :: print debug msg (sequence of S/R calls)
6 &EEPARMS
7 nTx=1,
8 nTy=1,
9 &

10 # Note: Some systems use & as the namelist terminator (as shown here).
11 # Other systems use a / character.

As shown, this file is configured for a single-threaded run, but will be modified later in this tutorial for a multi-threaded
setup (Section 4.2.6).

Files input/bathy.bin, input/windx_cosy.bin

The purpose and format of these files is similar to tutorial Barotropic Ocean Gyre, and were generated by matlab
script verification/tutorial_baroclinic_gyre/input/gendata.m. See Section 3.9 for additional information on MITgcm
input data file format specifications.

File input/SST_relax.bin

This file specifies a 2-D(𝑥, 𝑦) map of surface relaxation temperature values, as generated by verifica-
tion/tutorial_baroclinic_gyre/input/gendata.m.

4.2.4 Building and running the model

To build and run the model on a single processor, follow the procedure outlined in Section 4.1.4. To run the model
for a longer period (i.e., to obtain a reasonable solution; for testing purposes, by default the model is set to run only a
few time steps) uncomment the lines in data which specify larger numbers for parameters endTime and monitorFreq.
This will run the model for 100 years, which will likely take several hours on a single processor (depending on your
computer specs); below we also give instructions for running the model in parallel either using MPI or multi-threaded
(OpenMP), which will cut down run time significantly.
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4.2.4.1 Output Files

As in tutorial Barotropic Ocean Gyre, standard output is produced (redirected into file output.txt as specified
in Section 4.1.4); like before, this file includes model startup information, parameters, etc. (see Section 4.1.4.1).
And because we set monitor_mnc =.FALSE. in data.mnc, our standard output file will include all monitor statistics
output. Note monitor statistics and cg2d information are evaluated over the global domain, despite the bifurcation of
the grid into four separate tiles. As before, the file STDERR.0000 will contain a log of any run-time errors.

With pkg/mnc compiled and activated in data.pkg, other output is in netCDF format: grid information, snapshot
output specified in data, diagnostics output specified in data.diagnostics and separate files containing hy-
drostatic pressure data (see below). There are two notable differences from standard binary output. Recall that we
specified that the grid was subdivided into four separate tiles (in SIZE.h); instead of a .XXX.YYY. file naming scheme
for different tiles (as discussed here), with pkg/nmc the file names contain .t«nnn». where «nnn» is the tile number.
Secondly, model data from multiple time snapshots (or periods) is included in a single file. Although an iteration
number is still part of the file name (here, 0000000000), this is the iteration number at the start of the run (instead
of marking the specific iteration number for the data contained in the file, as the case for standard binary output). Note
that if you dump data frequently, standard binary can produce huge quantities of separate files, whereas using netCDF
will greatly reduce the number of files. On the other hand, the netCDF files created can instead become quite large.

To more easily process and plot our results as a single array over the full domain, we will first reassemble the in-
dividual tiles into a new netCDF format global data file. To accomplish this, we will make use of utility script
utils/python/MITgcmutils/scripts/gluemncbig. From the output run directory, type:

% ln -s ../../../utils/python/MITgcmutils/scripts/gluemncbig .
% ./gluemncbig -o grid.nc mnc_test_*/grid.t*.nc
% ./gluemncbig -o state.nc mnc_test_*/state*.t*.nc
% ./gluemncbig -o dynDiag.nc mnc_test_*/dynDiag*.t*.nc
% ./gluemncbig -o surfDiag.nc mnc_test_*/surfDiag*.t*.nc
% ./gluemncbig -o phiHyd.nc mnc_test_*/phiHyd*.t*.nc
% ./gluemncbig -o phiHydLow.nc mnc_test_*/phiHydLow*.t*.nc

For help using this utility, type gluemncbig --help; note a python installation must for available for this script
to work. The files grid.nc, state.nc, etc. are concatenated from the separate t001, t002, t003, t004 files
into global grid files of horizontal dimension 62×62.

Let’s proceed through the netcdf output that is produced.

• grid.nc - includes all the model grid variables used by MITgcm. This includes the grid cell center points
and separation (XC, YC, dxC, dyC), corner point locations and separation (XG, YG, dxG, dyG), the separation
between velocity points (dyU, dxV), vertical coordinate location and separation (RC, RF, drC, drF), grid cell
areas (rA, rAw, rAs, rAz), and bathymetry information (Depth, HFacC, HFacW, HFacS). See Section 2.11 for
definitions and description of the C grid staggering of these variables. There are also grid variables in vector
form that are not used in the MITgcm source code (X, Y, Xp1, Yp1, Z, Zp1, Zu, Zl); see description in grid.
nc. The variables named p1 include an additional data point and are dimensioned +1 larger than the standard
array size; for example, Xp1 is the longitude of the gridcell left corner, and includes an extra data point for the
last gridcell’s right corner longitude.

• state.nc - includes snapshots of state variables U, V, W, Temp, S, and Eta at model times T in seconds
(variable iter(T) stores the model iteration corresponding with these model times). Also included are vector
forms of grid variables X, Y, Z, Xp1, Yp1, and Zl. As mentioned, in model output-by-tile files, e.g., state.
0000000000.t001.nc, the iteration number 0000000000 is the parameter nIter0 for the model run (recall,
we initialized our model with nIter0 =0). Snapshots of model state are written for model iterations 0, 25920,
51840, . . . according to our data file parameter choice dumpFreq (dumpFreq/deltaT = 25920).

• surfDiag.nc - includes output diagnostics as specified from list 1 in data.diagnostics. Here we specified
that list 1 include 2-D diagnostics ETAN, TRELAX, and MXLDEPTH. Also includes an array of model times
corresponding to the end of the time-average period, the iteration number corresponding to these model times,
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and vector forms of grid variables which describe these data. A Z index is included in the output arrays, even
though its dimension is one (given that this list contains only 2-D fields).

• dynDiag.nc - similar to surfDiag.nc except this file contains the time-averaged 3-D diagnostics we spec-
ified in list 2 of data.diagnostics: THETA, PHIHYD, UVEL, VVEL, WVEL.

• phiHyd.nc, phiHydLow.nc - these files contain a snapshot 3-D field of hydrostatic pressure potential
anomaly (𝑝′/𝜌𝑐, see Section 1.3.6) and a snapshot 2-D field of bottom hydrostatic pressure potential anomaly,
respectively. These are technically not MITgcm state variables, as they are computed during the time step (nor-
mal snapshot state variables are dumped after the time step), ergo they are not included in file state.nc. Like
state.nc output however these fields are written at interval according to dumpFreq, except are not written
out at time nIter0 (i.e., have one time record fewer than state.nc). Also note when writing standard binary
output, these filenames begin as PH and PHL respectively.

The hydrostatic pressure potential anomaly 𝜑′ is computed as follows:

𝜑′ =
1

𝜌𝑐

(︂
𝜌𝑐𝑔𝜂 +

∫︁ 0

𝑧

(𝜌− 𝜌0)𝑔𝑑𝑧

)︂
following (4.8), (4.9) and (4.15). Note that with the linear free surface approximation, the contribution of the free
surface position 𝜂 to 𝜑′ involves the constant density 𝜌𝑐 and not the density anomaly 𝜌′, in contrast with contributions
from below 𝑧 = 0.

Several additional files are output in standard binary format. These are:

RhoRef.data, RhoRef.meta - this is a 1-D (k=1. . . Nr) array of reference density, defined as:

𝜌𝑟𝑒𝑓 (𝑘) = 𝜌0 (1 − 𝛼𝜃(𝜃𝑟𝑒𝑓 (𝑘) − 𝜃𝑟𝑒𝑓 (1)))

PHrefC.data, PHrefC.meta, PHrefF.data, PHrefF.meta - these are 1-D (k=1. . . Nr for PHrefC and
k=1. . . Nr+1 for PHrefF) arrays containing a reference hydrostatic “pressure potential” 𝜑 = 𝑝/𝜌𝑐 (see Section 1.3.6).
Using a linear equation of state, PHrefC is simply 𝜌𝑐𝑔|𝑧|

𝜌𝑐
, with output computed at the midpoint of each vertical

cell, whereas PHrefF is computed at the surface and bottom of each vertical cell. Note that these quantities are not
especially useful when using a linear equation of state (to compute the full hydrostatic pressure potential, one would
use RhoRef and integrate downward, and add phiHyd, rather than use these fields), but are of greater utility using a
non-linear equation of state.

pickup.ckptA.001.001.data, pickup.ckptA.001.001.meta, pickup.0000518400.001.001.
data, pickup.0000518400.001.001.meta etc. - as described in detail in tutorial Barotropic Gyre, these
are temporary and permanent checkpoint files, output in binary format. Note that separate checkpoint files are written
for each model tile.

And finally, because we are using the diagnostics package, upon startup the file available_diagnostics.log
will be generated. This (plain text) file contains a list of all diagnostics available for output in this setup, including a
description of each diagnostic and its units, and the number of levels for which the diagnostic is available (i.e., 2-D or
3-D field). This list of available diagnostics will change based on what packages are included in the setup. For example,
if your setup includes a seaice package, many seaice diagnostics will be listed in available_diagnostics.log
that are not available for our tutorial Baroclinic Gyre setup.

172 Chapter 4. MITgcm Tutorial Example Experiments

http://mitgcm.org/lxr/ident/MITgcm?_i=dumpFreq
http://mitgcm.org/lxr/ident/MITgcm?_i=nIter0
http://mitgcm.org/lxr/ident/MITgcm?_i=Nr
http://mitgcm.org/lxr/ident/MITgcm?_i=Nr
http://mitgcm.org/lxr/ident/MITgcm?_i=Nr


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

4.2.5 Running with MPI

In the verification/tutorial_baroclinic_gyre/code directory there is a alternate file verifica-
tion/tutorial_baroclinic_gyre/code/SIZE.h_mpi. Overwrite verification/tutorial_baroclinic_gyre/code/SIZE.h
with this file and re-compile the model from scratch (the most simple approach is to create a new build directory
build_mpi; if instead you wanted to re-compile in your existing build directory, you should make CLEAN first,
which will delete any existing files and dependencies you had created previously):

% ../../../tools/genmake2 -mods ../code -mpi -of=«/PATH/TO/OPTFILE»
% make depend
% make

Note we have added the option -mpi to the genmake2 command that generates the makefile. A successful build
requires MPI libraries installed on your system, and you may need to add to your $PATH environment variable and/or
set environment variable $MPI_INC_DIR (for more details, see Section 3.5.4). If there is a problem finding MPI
libraries, genmake2 output will complain.

Several lines in verification/tutorial_barotropic_gyre/code/SIZE.h_mpi are different from the standard version. First,
we change nSx and nSy to 1, so that each process integrates the model for a single tile.

49 & nSx = 1,
50 & nSy = 1,

Next, we we change nPx and nPy so that we use two processes in each dimension, for a total of 2 * 2 = 4 processes.
Effectively, we have subdivided the model grid into four separate tiles, and the model equations are solved in parallel
on four separate processes (presumably, on a unique physical processor or core). Because of the overlap regions (i.e.,
gridpoints along the tile edges are duplicated in two or more tiles), and limitations in the transfer speed of data between
processes, the model will not run 4× faster, but should be at least 2-3× faster than running on a single process.

51 & nPx = 2,
52 & nPy = 2,

Finally, to run the model (from your run directory), using four processes running in parallel:

% mpirun -np 4 ../build_mpi/mitgcmuv

On some systems the MPI run command (and the subsequent command-line option -np) might be something other
than mpirun; ask your local system administrator. When using a large HPC cluster, prior steps might be required to
allocate four processors to your job, and/or it might be necessary to write this command within a batch scheduler script;
again, check with your local system documentation or system administrator. If four processors are not available when
you execute the above mpirun command, an error will occur. It is no longer necessary to redirect standard output to
a file such as output.txt; rather, separate STDOUT.xxxx and STDERR.xxxx files are created by each process,
where xxxx is the process number (starting from 0000). Other than some additional MPI-related information, the
standard output content is identical to that from the single-process run.

4.2.6 Running with OpenMP

To run multi-threaded (using shared memory, OpenMP), the original SIZE.h file is used. In our example, for com-
patibility with MITgcm testing protocols, we will run using two separate threads, but the user should feel free to
experiment using four threads if their local machine contains four cores. Like the previous section we must first re-
compile the executable from scratch, using a special command line option (for this configuration, -omp). However
it is not necessary to specify how many threads at compile-time (unlike MPI, which requires specific processor count
information to be set in SIZE.h). Create and navigate into a new build directory build_openmp and type:
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% ../../../tools/genmake2 -mods ../code -omp -of=«/PATH/TO/OPTFILE»
% make depend
% make

In a run directory, overwrite the contents of eedata with file verification/tutorial_baroclinic_gyre/input/eedata.mth.
The parameter nTy is changed; we now specify to use two threads across the 𝑦-domain. Since our model domain
is subdivided into four tiles, each thread will now integrate two tiles in the 𝑥-domain. Alternatively, to run a multi-
threaded example using four threads, both lines should be set to 2.

8 nTx=1,
9 nTy=2,

To run the model, we first need to set two environment variables, before invoking the executable:

% export OMP_STACKSIZE=400M
% export OMP_NUM_THREADS=2
% ../build_openmp/mitgcmuv >output.txt

Your system’s environment variables may differ from above; see Section 3.6.2 and/or ask your system administrator
(also note, above is bash shell syntax; different syntax is required for C shell). The important point to note is that we
must tell the operating system environment how many threads will be used, prior to running the executable. The total
number of threads set in OMP_NUM_THREADS must match nTx * nTy as specified in file eedata. Moreover, the
model domain must be subdivided into sufficient number of tiles in SIZE.h through the choices of nSx and nSy: the
number of tiles (nSx * nSy) must be equal to or greater than the number of threads. More specifically, nSx must be
equal to or an integer multiple of nTx, and nSy must be equal to or an integer multiple of nTy.

Also note that at this time, pkg/mnc is automatically disabled for multi-threaded setups, so output is dumped in
standard binary format (i.e., using pkg/msdio). You will receive a gentle warning message if you run this multi-
threaded setup and keep useMNC set to .TRUE. in data.pkg. The full filenames for grid variables (e.g., XC, YC,
etc.), snapshot output (e.g., Eta, T, PHL) and pkg/diagnostics output (e.g., surfDiag, oceStDiag, etc.) include
a suffix that contains the time iteration number and tile identification (tile 001 includes .001.001 in the filename,
tile 002 .002.001, tile 003 .001.002, and tile 004 .002.002). Unfortunately there is no analogous script to
utils/python/MITgcmutils/scripts/gluemncbig to concatenate raw binary files, but it is relatively straightforward to do
so in matlab (reading in files using utils/matlab/rdmds.m), or equally simple in python – or, one could simply set
globalFiles to .TRUE. and the model will output global files for you (note, this global option is not available for
pkg/mnc output). One additional difference between pkg/msdio and pkg/mnc is that Diagnostics Per Level Statistics
are written in plain text, not binary, with pkg/msdio.

4.2.7 Model solution

In this section, we will examine details of the model solution, using annual mean time average data provided in
diagnostics files dynStDiag.nc, dynDiag.nc, and surfDiag.nc. See companion matlab file or python file
which shows example code to create figures plotted in this section.

Our ocean sector model is forced mechanically by wind stress and thermodynamically though temperature relaxation
at the surface. As such, we expect our solution to not only exhibit wind-driven gyres in the upper layers, but also
include a deep, overturning circulation. Our focus in this section will be on the former; this component of the solution
equilibrates on a time scale of decades, more or less, whereas the deep cell depends on a slower, diffusive timescale.
We will begin by examining some of our Diagnostics Per Level Statistics output, to assess how close we are to
equilibration at different ocean model levels. Recall we’ve requested these statistics to be computed monthly.

Load diagnostics TRELAX_ave, THETA_lv_avg, and THETA_lv_std from file dynStDiag.nc. In Figure
4.6a we plot the global model surface mean heat flux (TRELAX_ave) as a function of time. At the beginning of the
run, we observe that the ocean is cooling dramatically; this is mainly because our ocean surface layer is initialized to
a uniform 30∘ C (as specified here), which results in very strong relaxation initially in the northern portion of ocean
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model, where the restoring temperature is just above 0∘ C. (As an aside comment, such large initialization shocks are
often best avoided if possible, as they may cause model instability, which may necessitate smaller time steps at model
onset and/or more realistic initial conditions.) However, this initial burst of cooling quickly diminishes over the first
decade of integration, as the surface layer approaches temperature values close to the specified profile; see Figure 4.6b
where the mean temperature at surface, thermocline, and abyssal depth are plotted as a function of time. Note that
while the total heat flux shows that the global heat content is slowly decreasing, even after 100 years, the temperature
of the deepest water is slowly warming. In Figure 4.6c we plot standard deviation of temperature (by level) over time.
Given that each level is initialized at uniform temperature, initially the standard deviation is zero, but should tend to
level off at some non-zero value over time, as the solution at each depth equilibrates. Not surprisingly, the largest
gradients in temperature exist at the surface, whereas in the abyss the differences in temperature are quite small. In
summary, we conclude that while the surface appears to approach equilibrium rapidly, even after 100 years there are
changes occurring in deep circulation, presumably related to the meridional overturning circulation. We leave it as
an exercise to the reader to integrate the solution further and/or examine and calculate the meridional overturning
circulation strength over time.

Next, let’s examine the effect of wind stress on the ocean’s upper layers. Given the orientation of the wind stress and
its variation over a full sine wave as shown in Figure 4.5 (crudely mimicking easterlies in the tropics, mid-latitude
westerlies, and polar easterlies), we anticipate a double-gyre solution, with a subtropical gyre and a subpolar gyre.
Let’s begin by examining the free surface solution (load diagnostics ETAN and TRELAX from file surfDiag.nc).
In Figure 4.7 we show contours of free surface height (ETAN; this is what we plotted in our barotropic gyre tutorial
solution) overlaying a 2-D color plot of TRELAX (red is where heat is released from the ocean, blue where heat
enters the ocean), averaged over year 100. Note that a subtropical gyre is readily apparent, as suggested by geostropic
currents in balance with the free surface elevation (not shown, but the reader is encouraged to load diagnostics UVEL
and VVEL and plot the circulation at various levels). Heat is entering the ocean mainly along the southern boundary,
where upwelling of cold water is occurring, but also along the boundary current between 50∘N and 65∘N, where we
would expect southward flow (i.e., advecting water that is colder than the local restoring temperature). Heat is exiting
the ocean where the western boundary current transports warm water northward, before turning eastward into the
basin at 40∘N, and also weakly throughout the higher latitude bands, where deeper mixed layers occur (not shown, but
variations in mixed layer depth can be easily visualized by loading diagnostic MXLDEPTH).

So what happened to our model solution subpolar gyre? Let’s compute depth-integrated velocity 𝑈𝑏𝑡, 𝑉𝑏𝑡 (units: m2

s-1) and use it calculate the barotropic transport streamfunction:

𝑈𝑏𝑡 = −𝜕Ψ

𝜕𝑦
, 𝑉𝑏𝑡 =

𝜕Ψ

𝜕𝑥

Compute 𝑈𝑏𝑡 by summing the diagnostic UVEL multiplied by gridcell depth (grid.nc variable drF, i.e., the sep-
aration between gridcell faces in the vertical). Now do a cumulative sum of −𝑈𝑏𝑡 times the gridcell spacing the in
the 𝑦 direction (you will need to load grid.nc variable dyG, the separation between gridcell faces in 𝑦). A plot of
the resulting Ψ field is shown in Figure 4.8. Note one could also cumulative sum 𝑉𝑏𝑡 times the grid spacing in the
𝑥-direction and obtain a similar result.

When velocities are integrated over depth, the subpolar gyre is readily apparent, as might be expected given our wind
stress forcing profile. The pattern in Figure 4.8 in fact resembles the double-gyre free surface solution we observed in
Figure 4.4 from tutorial Barotropic Ocean Gyre, when our model grid was only a single layer in the vertical.

Is the magnitude of Ψ we obtain in our solution reasonable? To check this, consider the Sverdrup transport:

𝜌𝑣𝑏𝑡 = 𝑘 · ∇ × 𝜏⃗

𝛽

If we plug in a typical mid-latitude value for 𝛽 (2×10−11 m-1 s-1) and note that 𝜏 varies by 0.1 Nm-2 over 15∘ latitude,
and multiply by the width of our ocean sector, we obtain an estimate of approximately 20 Sv. This estimate agrees
reasonably well with the strength of the circulation in Figure 4.8.
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Figure 4.6: a) Surface heat flux due to temperature restoring, negative values indicate heat flux out of the ocean; b)
and c) potential temperature mean and standard deviation by level, respectively.
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Figure 4.7: Contours of free surface height (m) averaged over year 100; shading is surface heat flux due to temperature
restoring (W/m2), blue indicating cooling.
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Figure 4.8: Barotropic streamfunction (Sv) as computed over year 100.

Finally, let’s examine the model solution potential temperature field averaged over year 100. Read in diagnostic
THETA from the file dynDiag.nc. Figure 4.9a shows a plan view of temperature at 220 m depth (vertical level
k=4). Figure 4.9b shows a slice in the 𝑥𝑧 plane at 28.5∘N (𝑦-dimension j=15), through the center of the subtropical
gyre.

The dynamics of the subtropical gyre are governed by Ventilated Thermocline Theory (see, for example, Pedlosky
(1996) [Ped96] or Vallis (2017) [Val17]). Note the presence of warm “mode water” on the western side of the basin;
the contours of the warm water in the southern half of the sector crudely align with the free surface heights we observed
in Figure 4.8. In Figure 4.9b note the presence of a thermocline, i.e., the bunching up of the contours between 200 m
and 400 m depth, with weak stratification below the thermocline. What sets the penetration depth of the subtropical
gyre? Following a simple advective scaling argument (see Vallis (2017) [Val17] or Cushman-Roisin and Beckers
(2011) [CRB11]; this is obtained via thermal wind and the linearized barotropic vorticity equation), the depth of the
thermocline ℎ should scale as:

ℎ =

(︂
𝑤𝑒𝑓

2𝐿𝑥

𝛽∆𝑏

)︂2

=

(︂
(𝜏/𝐿𝑦)𝑓𝐿𝑥

𝛽𝜌′

)︂2

where 𝑤𝑒 is a representive value for Ekman pumping, ∆𝑏 = 𝑔𝜌′/𝜌0 is the variation in buoyancy across the gyre, and
𝐿𝑥 and 𝐿𝑦 are length scales in the 𝑥 and 𝑦 directions, respectively. Plugging in applicable values at 30∘N, we obtain
an estimate for ℎ of 200 m, which agrees quite well with that observed in Figure 4.9b.
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Figure 4.9: Contour plot of potential temperature at year 100 a) at a depth of 220 m and b) through a section at 28.5∘N.
Contour interval is 2K.

4.3 Southern Ocean Reentrant Channel Example

(in directory verification/tutorial_reentrant_channel/)

This example experiment simulates flow through a reentrant channel, crudely mimicking the Antartic Circumpolar
Current. The fluid is forced by a zonal wind stress, 𝜏𝑥, that varies sinusoidally in the north-south direction and is
constant in time, and by temperature relaxation at the surface and northern boundary. The grid is Cartesian and the
Coriolis parameter 𝑓 is defined according to a mid-latitude beta-plane equation 𝑓(𝑦) = 𝑓0 + 𝛽𝑦 ; here we choose
𝑓0 < 0 to place our domain in the Southern Hemisphere. A linear EOS is used with density only depending on T, and
there is no sea ice.

Although important aspects of the of the Southern Ocean and Antarctic Circumpolar Current were realized in the
early 20th Century (e.g., Sverdrup 1933 [Sve33]), understanding this system has been a major research focus in recent
decades. Many significant breakthroughs in understanding its dynamics, role in the global ocean circulation, and role
in the climate system have been achieved (e.g., Marshall and Radko 2003 [MR03]; Olbers and Visbeck 2004 [OV04];
Marshall and Speer 2012 [MS12]; Nikurashin and Vallis 2012 [NV12]; Armour et al. 2016 [AMS+16];Sallée 2018
[Sal18]). Much of this understanding came about using simple, idealized reentrant channel models in the spirit of the
model described in this tutorial. The configuration here is fairly close to that employed in Abernathy et al. (2011)
[AMF11] (using the MITgcm) with some important differences, such as our introduction of a deep north-south ridge.

We assume the reader is familiar with a basic MITgcm setup, as introduced in tutorial Barotropic Ocean Gyre and
tutorial Baroclinic Ocean Gyre. Although the setup here is again quite idealized, we introduce many new features
and capabilities of MITgcm. Novel aspects include using MITgcm packages to augment the physical modeling ca-
pabilities, discussion of partial cells to represent topography, and an introduction to the layers diagnostics package
(/pkg/layers). Our initial focus is on running and comparing coarse-resolution solutions with and without activating
the Gent-McWilliams (“GM”) (1990) [GM90] mesoscale eddy parameterization (/pkg/gmredi). As first noted in Dan-
abashoglu et al. (1994) [DMG94], use of GM in coarse resolution models improves global temperature distribution,
poleward and surface heat fluxes, and locations of deep-water formation (see also the Gent 2011 [Gen11] perspective
on two decades GM usage in ocean models). At the end of this tutorial, we will describe how to increase resolution
to an eddy-permitting regime, detailing the few necessary changes in code and parameters, and examine this high-
resolution solution. In our discussion, our focus will be on highlighting how the representation of mesoscale eddies
plays a significant role in governing the equilibrium state.

Below we describe the idealized configuration in detail (see Figure 4.10). The sinusoidal wind-stress variations are
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defined thus:

𝜏𝑥(𝑦) = 𝜏0 sin

(︂
𝑦

2𝐿𝑦
𝜋

)︂
,

where 𝐿𝑦 is the lateral domain extent and 𝜏0 is set to 0.2 N m−2. Surface temperature restoring varies linearly from
10 oC at the northern boundary to -2 oC at the southern end. A wall is placed at the southern boundary of our domain,
thus our setup is only reentrant in the east-west direction. Because MITgcm assumes a periodic domain in both the
east-west and north-south directions, our southern wall effectively functions as a wall at the northern boundary as
well. The full water column in the northern boundary is a “sponge layer”; relaxing temperature though the full water
column will partially constrain the stratification, and in the eddy-permitting solution will absorb any eddies reaching
the northern boundary (truly acting as a “sponge”). As shown in Figure 4.10, a north-south ridge runs through the
bottom topography, which is otherwise flat with a depth 𝐻 of 3980 m. A sloping notch cuts through the middle of
the ridge; in the latitude band where the notch exists, potential vorticity 𝑓/𝐻 contours are unblocked, which permits
a vigorous zonal barotropic jet. Shaved cells are used to represent the topography.

Figure 4.10: Schematic of simulation domain, bottom topography, and wind-stress forcing function for the idealized
reentrant channel numerical setup. A full-depth solid wall at 𝑦 = 0 is not shown; because MITgcm is also periodic in
the north-south direction, this acts as a wall on the north boundary.

Similar to both tutorial Barotropic Ocean Gyre and tutorial Baroclinic Ocean Gyre, we use a linear equation of state
which is a function of temperature only (temperature is our only model tracer field). Figure 4.11 shows initial con-
ditions in temperature at the northern and southern end of the domain. Initial temperature decreases exponentially
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from the relaxation SST profile to -2 oC at depth 𝐻 . Note that this same northern boundary profile is used to restore
temperature in the model’s sponge layer, as discussed above.

Figure 4.11: Initial conditions in temperature at the northern and southern boundaries. Note this same northern
boundary profile is used as relaxation temperature in the model’s sponge layer.

4.3.1 Equations Solved

The active set of equations solved is identical to those employed in tutorial Baroclinic Ocean Gyre (i.e., hydrostatic
with an implicit linearized free surface), except here we use standard Cartesian geometry rather than spherical polar
coordinates:

𝐷𝑢

𝐷𝑡
− 𝑓𝑣 +

1

𝜌𝑐

𝜕𝑝′

𝜕𝑥
+ ∇ℎ · (−𝐴ℎ∇ℎ𝑢) +

𝜕

𝜕𝑧

(︂
−𝐴𝑧

𝜕𝑢

𝜕𝑧

)︂
= ℱ𝑢

𝐷𝑣

𝐷𝑡
+ 𝑓𝑢+

1

𝜌𝑐

𝜕𝑝′

𝜕𝑦
+ ∇ℎ · (−𝐴ℎ∇ℎ𝑣) +

𝜕

𝜕𝑧

(︂
−𝐴𝑧

𝜕𝑣

𝜕𝑧

)︂
= ℱ𝑣

(4.21)

𝜕𝜂

𝜕𝑡
+ ∇ℎ ·

(︁
𝐻 ̂⃗︀𝑢)︁ = 0

𝐷𝜃

𝐷𝑡
+ ∇ℎ · (−𝜅ℎ∇ℎ𝜃) +

𝜕

𝜕𝑧

(︂
−𝜅𝑧

𝜕𝜃

𝜕𝑧

)︂
= ℱ𝜃 (4.22)

𝑝′ = 𝑔𝜌𝑐𝜂 +

∫︁ 0

𝑧

𝑔𝜌′𝑑𝑧 (4.23)

Forcing term ℱ𝑢 is applied as a source term in the model surface layer and zero in the interior, and source term ℱ𝑣 is
zero everywhere. The forcing term ℱ𝜃 is applied as temperature relaxation in the surface layer and throughout the full
depth in the two northern-most rows (in the coarse resolution setup) of the model domain.
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4.3.2 Discrete Numerical Configuration

The coarse-resolution domain is discretized with a uniform Cartesian grid spacing in the horizontal set to ∆𝑥 =
∆𝑦 = 50 km, so that there are 20 grid cells in the 𝑥 direction and 40 in the 𝑦 direction. There are 49 levels in
the vertical, ranging from 5.5 m depth at the surface to 149 m at depth. An “optimal grid” vertical spacing here
was generated using the hyperbolic tangent method of Stewart et al. (2017) [SHG+17], implemented in Python at
https://github.com/kialstewart/vertical_grid_for_ocean_models, based on input parameters of ocean depth (4000 m),
minimum (surface) depth (5 m), and maximum depth (150 m). In ocean modeling, it is generally advantageous to
have finer resolution in the upper ocean (as was also done previously in tutorial Baroclinic Ocean Gyre), but note that
the transition to deeper layers should be done gradually, in the interests of solution fidelity and stability. Although our
topography is idealized, the topography is not a priori discretized to levels matching the vertical grid, and we make
use of MITgcm’s ability to represent “partial cells” (see Section 2.11.6).

Otherwise, the numerical configuration is similar to that of tutorial Baroclinic Ocean Gyre), with an important dif-
ference: we use a high-order advection scheme (“7th order one-step method w/limiter”, tempAdvScheme parameter
code 7) for potential temperature instead of center second-ordered differences (which is used in tutorials Barotropic
Ocean Gyre and Baroclinic Ocean Gyre and is the model default). This will enable us to use the same numerical
scheme in both coarse-resolution and eddy-permitting simulations. Note that this advection scheme does NOT use
Adams-Bashforth time stepping for potential temperature, instead using its own time stepping scheme. The fixed flux
form of the momentum equations are solved, as described in Section 2.14, with an implicit linear free surface (Section
2.4). Laplacian diffusion of tracers and momentum is employed. The pressure forces that drive the fluid motions,
𝜕𝑝

′

𝜕𝑥 and 𝜕𝑝
′

𝜕𝑦 , are found by summing pressure due to surface elevation 𝜂 and the hydrostatic pressure, as discussed in
Section 4.2.1. The sea-surface height is found by solving implicitly the 2-D (elliptic) surface pressure equation (see
Section 2.4).

Additional changes in the numerical configuration for the eddy-permitting simulation are discussed in Section 4.3.5.2.

4.3.2.1 Numerical Stability Criteria

The numerical considerations behind our setup are not trivial. We do not wish the thermocline to be diffused away by
numerics. Accordingly, we employ a vertical diffusivity acting on temperature typical of background values observed
in the ocean, 1 × 10−5 m2 s–1). We now examine numerical stability criteria to help choose and assess parameters for
our coarse resolution study: parameters used in the eddy-permitting setup are discussed in Section 4.3.5.2.

We anticipate development of a large barotropic flow through the notch in the topographic ridge which will have
implications for the length of the timestep we will be able to use. Let us consider the advective CFL condition (4.24)
and the stability of inertial oscillations (4.25):

𝑆𝑎 = 2

(︂
|𝑐𝑚𝑎𝑥|∆𝑡

∆𝑥

)︂
< 0.5 for stability (4.24)

𝑆𝑖 = 𝑓∆𝑡 < 0.5 for stability (4.25)

where |𝑐𝑚𝑎𝑥| is the maximum horizontal velocity. We anticipate |𝑐𝑚𝑎𝑥| of order ~ 1 ms-1. Note that barotropic currents
of this speed over a jet of order ~ 100 km in lateral scale will result in a barotropic flow of the order of hundreds of
Sverdups. At a resolution of 50 km, (4.24) then implies that the timestep must be less than 12000 s and (4.25) implies
a timestep less than 3500 s. Here we make a conservative choice of ∆𝑡 = 1000 s to keep 𝑓∆𝑡 under 0.20.

How shall we set the horizontal viscosity? From the numerical stability criteria:

𝑆𝑙 = 4𝐴ℎ∆𝑡

(︂
1

∆𝑥2
+

1

∆𝑦2

)︂
< 1.0 for stability (4.26)

Note that the threshold in (4.26) is < 1.0 instead of < 0.6 due to our specification (in input/data) that momentum
dissipation NOT be solved using Adams-Bashforth, as discussed below. With ∆𝑡 = 1000 s, we can choose 𝐴ℎ to
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be as large as order 1 × 105 m2 s–1. However, such a value would result in a very viscous solution. We anticipate a
boundary current along the deep ridge and sloping notch on a scale given by Munk scaling:

𝑀𝑤 =
2𝜋√

3
(
𝐴ℎ

𝛽
)

1
3 . (4.27)

We can set 𝐴ℎ to as low as 100 m2 s–1 and still comfortably resolve the Munk boundary layer on our grid. However,
guided by an ensemble of runs exploring parameter space, we found the solution with 𝐴ℎ = 100 s–1, while stable,
was rather noisy. As a compromise, a value of 𝐴ℎ = 2000 m2 s–1 reduced solution noise whilst also controlling the
strength of the barotropic current. This is the value used here. Also note with this choice 𝐴ℎ/∆𝑥 gives a velocity
scaling of 4 cm/s, a reasonable value.

Regarding the vertical viscosity, we choose to solve this term implicitly (Euler backward time-stepping) by setting
implicitViscosity to .TRUE. in input/data, which results in no additional stability constraint on the model timestep
(see Section 2.6). Otherwise, given that our vertical resolution is quite fine near the surface (approximately 5 m), the
following stability criteria would have applied:

𝑆𝑙𝑣 = 4
𝐴𝑣∆𝑡

∆𝑧2
< 1.0 for stability (4.28)

which effectively would limit our choice for 𝐴𝑣 to very small values. For simplicity, and given that away from the
equator coarse resolution models are typically not very sensitive to the value of vertical viscosity, we pick a constant
value of 𝐴𝑣 = 3× 10−3 m2 s–1 over the full domain, somewhere in between (in geometric mean sense) typical values
found in the mixed layer (∼ 10−2) and in the deep ocean (∼ 10−4) (Roach et al. 2015 [RPBR15]) Note this implicit
scheme is also used for vertical diffusion of tracers, for which it can also be used to represent convective adjustment
(again, because it is unconditionally stable regardless of diffusivity value).

4.3.3 Configuration

The model configuration for this experiment resides under the directory verification/tutorial_reentrant_channel/.

The experiment files

• verification/tutorial_reentrant_channel/code/SIZE.h

• verification/tutorial_reentrant_channel/code/LAYERS_SIZE.h

• verification/tutorial_reentrant_channel/code/DIAGNOSTICS_SIZE.h

• verification/tutorial_reentrant_channel/input/data

• verification/tutorial_reentrant_channel/input/data.pkg

• verification/tutorial_reentrant_channel/input/data.gmredi

• verification/tutorial_reentrant_channel/input/data.rbcs

• verification/tutorial_reentrant_channel/input/data.layers

• verification/tutorial_reentrant_channel/input/data.diagnostics

• verification/tutorial_reentrant_channel/input/eedata

• verification/tutorial_reentrant_channel/input/bathy.50km.bin

• verification/tutorial_reentrant_channel/input/zonal_wind.50km.bin

• verification/tutorial_reentrant_channel/input/T_surf.50km.bin

• verification/tutorial_reentrant_channel/input/temperature.50km.bin

• verification/tutorial_reentrant_channel/input/T_relax_mask.50km.bin

contain the code customizations and parameter settings for this experiment. Below we describe these customizations
in detail.
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4.3.3.1 Compile-time Configuration

File code/packages.conf

Listing 4.13: verification/tutorial_reentrant_channel/code/packages.conf

1 #-- list of packages (or group of packages) to compile for this experiment:
2 gfd
3 gmredi
4 rbcs
5 layers
6 diagnostics

In addition to the pre-defined standard package group gfd, we define four additional packages.

• Package pkg/gmredi (see GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization): This implements
the Gent and McWilliams parameterization (as first described in Gent and McWilliams 1990 [GM90]) of
geostrophic eddies. This mixes along sloping neutral surfaces (here, just 𝑇 surfaces). It is used instead of
large prescribed diffusivities aligned in the horizontal plane (parameter diffKh). In Section 4.3.5.1 we will
illustrate the marked improvement in the solution resulting from the use of this parameterization.

• Package pkg/rbcs (see RBCS Package): The default MITgcm code library permits relaxation boundary condi-
tions only at the ocean surface; in the setup here, we relax temperature over the full-depth 𝑥𝑧 plane along our
domain’s northern border. By including the pkg/rbcs code library in our model build, we can relax selected
fields (tracers or horizontal velocities) in any 3-D location.

We also include two packages which augment MITgcm’s diagnostic capabilities.

• Package pkg/layers: This calculates the thickness and transport of layers of specified density (or temperature, or
salinity; here, temperature and density are aligned because of our simple equation of state). Further explanation
of pkg/layers parameter options and output is given below.

• Package pkg/diagnostics: This selects which fields to output, and at what frequencies. This was introduced in
tutorial Baroclinic Ocean Gyre.

File code/SIZE.h

Listing 4.14: verification/tutorial_reentrant_channel/code/SIZE.h

1 CBOP
2 C !ROUTINE: SIZE.h
3 C !INTERFACE:
4 C include SIZE.h
5 C !DESCRIPTION: \bv
6 C *==========================================================*
7 C | SIZE.h Declare size of underlying computational grid.
8 C *==========================================================*
9 C | The design here supports a three-dimensional model grid

10 C | with indices I,J and K. The three-dimensional domain
11 C | is comprised of nPx*nSx blocks (or tiles) of size sNx
12 C | along the first (left-most index) axis, nPy*nSy blocks
13 C | of size sNy along the second axis and one block of size
14 C | Nr along the vertical (third) axis.
15 C | Blocks/tiles have overlap regions of size OLx and OLy
16 C | along the dimensions that are subdivided.
17 C *==========================================================*

(continues on next page)
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(continued from previous page)

18 C \ev
19 C
20 C Voodoo numbers controlling data layout:
21 C sNx :: Number of X points in tile.
22 C sNy :: Number of Y points in tile.
23 C OLx :: Tile overlap extent in X.
24 C OLy :: Tile overlap extent in Y.
25 C nSx :: Number of tiles per process in X.
26 C nSy :: Number of tiles per process in Y.
27 C nPx :: Number of processes to use in X.
28 C nPy :: Number of processes to use in Y.
29 C Nx :: Number of points in X for the full domain.
30 C Ny :: Number of points in Y for the full domain.
31 C Nr :: Number of points in vertical direction.
32 CEOP
33 INTEGER sNx
34 INTEGER sNy
35 INTEGER OLx
36 INTEGER OLy
37 INTEGER nSx
38 INTEGER nSy
39 INTEGER nPx
40 INTEGER nPy
41 INTEGER Nx
42 INTEGER Ny
43 INTEGER Nr
44 PARAMETER (
45 & sNx = 20,
46 & sNy = 10,
47 & OLx = 4,
48 & OLy = 4,
49 & nSx = 1,
50 & nSy = 4,
51 & nPx = 1,
52 & nPy = 1,
53 & Nx = sNx*nSx*nPx,
54 & Ny = sNy*nSy*nPy,
55 & Nr = 49)
56

57 C MAX_OLX :: Set to the maximum overlap region size of any array
58 C MAX_OLY that will be exchanged. Controls the sizing of exch
59 C routine buffers.
60 INTEGER MAX_OLX
61 INTEGER MAX_OLY
62 PARAMETER ( MAX_OLX = OLx,
63 & MAX_OLY = OLy )

Our model tile size is defined above to be 20 × 10 gridpoints, so four tiles (i.e., nSy =4) are required to span the
full domain in 𝑦. Note that our overlap sizes (OLx, OLy) are set to 4 in this tutorial, as required by our choice of
advection scheme (see discussion in Section 4.3.2.1 and Table 2.2 from which this required overlap can be obtained);
in tutorial Baroclinic Ocean Gyre this was set to 2, which is the mimimum required for the default center second-
ordered differences scheme. For this setup we will specify a reasonably high resolution in the vertical, using 49 levels.
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File code/LAYERS_SIZE.h

Listing 4.15: verification/tutorial_reentrant_channel/code/LAYERS_SIZE.h

1 C ======================================================================
2 C * Compiled-in size options for the LAYERS package *
3 C
4 C - Just as you have to define Nr in SIZE.h, you must define the number
5 C of vertical layers for isopycnal averaging so that the proper array
6 C sizes can be declared in the LAYERS.h header file.
7 C
8 C - Variables -
9 C NLayers :: the number of isopycnal layers (must match data.layers)

10 C FineGridFact :: how many fine-grid cells per dF cell
11 C FineGridMax :: the number of points in the finer vertical grid
12 C used for interpolation
13 C layers_maxNum :: max number of tracer fields used for layer averaging
14 INTEGER Nlayers, FineGridFact, FineGridMax, layers_maxNum
15 PARAMETER( Nlayers = 37 )
16 PARAMETER( FineGridFact = 10 )
17 PARAMETER( FineGridMax = Nr * FineGridFact )
18 PARAMETER( layers_maxNum = 1 )

As noted above in this file’s comments, we must set the discrete number of layers to use in our diagnostic calculations.
The model default is 20 layers. Here we set PARAMETER( Nlayers = 37 ) and so choose 37 layers. In making this
choice, one needs to ensure sufficiently fine layer bounds in the density (or temperature) range of interest, while also
possible to specify fairly coarse bounds in other density ranges. The specific temperatures defining layer bounds will
be prescribed in input/data.layers

File code/DIAGNOSTICS_SIZE.h

Listing 4.16: verification/tutorial_reentrant_channel/code/DIAGNOSTICS_SIZE.h

1 C Diagnostics Array Dimension
2 C ---------------------------
3 C ndiagMax :: maximum total number of available diagnostics
4 C numlists :: maximum number of diagnostics list (in data.diagnostics)
5 C numperlist :: maximum number of active diagnostics per list (data.diagnostics)
6 C numLevels :: maximum number of levels to write (data.diagnostics)
7 C numDiags :: maximum size of the storage array for active 2D/3D diagnostics
8 C nRegions :: maximum number of regions (statistics-diagnostics)
9 C sizRegMsk :: maximum size of the regional-mask (statistics-diagnostics)

10 C nStats :: maximum number of statistics (e.g.: aver,min,max ...)
11 C diagSt_size:: maximum size of the storage array for statistics-diagnostics
12 C Note : may need to increase "numDiags" when using several 2D/3D diagnostics,
13 C and "diagSt_size" (statistics-diags) since values here are deliberately small.
14 INTEGER ndiagMax
15 INTEGER numlists, numperlist, numLevels
16 INTEGER numDiags
17 INTEGER nRegions, sizRegMsk, nStats
18 INTEGER diagSt_size
19 PARAMETER( ndiagMax = 500 )
20 PARAMETER( numlists = 10, numperlist = 50, numLevels=2*Nr )
21 PARAMETER( numDiags = 35*Nr )
22 PARAMETER( nRegions = 0 , sizRegMsk = 1 , nStats = 4 )

(continues on next page)
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(continued from previous page)

23 PARAMETER( diagSt_size = 10*Nr )

Here the parameter numDiags has been changed to allow a combination of up to 35 3-D diagnostic fields or 1715
(=35*49) 2-D fields.

4.3.3.2 Run-time Configuration

File input/data

Listing 4.17: verification/tutorial_reentrant_channel/input/data

1 # Model parameters
2 # Continuous equation parameters
3 &PARM01
4 # Viscosity
5 viscAh=2000.,
6 viscAr=3.E-3,
7 implicitViscosity=.TRUE.,
8 # Diffusivity and convection
9 diffKhT=0.,

10 diffKrT=1.E-5,
11 ivdc_kappa=1.,
12 implicitDiffusion=.TRUE.,
13 # Coriolis parameter
14 f0=-1.363e-4,
15 beta=1.313e-11,
16 selectCoriScheme=1,
17 # Density and equation of state
18 # Temp only active tracer, no salinity
19 rhoConst=1035.,
20 rhoNil=1035.,
21 eosType='LINEAR',
22 tAlpha=2.E-4,
23 sBeta =0.E-4,
24 tRef= 49*5.,
25 saltStepping=.FALSE.,
26 # activate partial cells
27 hFacMinDr=5.,
28 hFacMin=0.1,
29 # free surface parameters
30 rigidLid=.FALSE.,
31 implicitFreeSurface=.TRUE.,
32 exactConserv=.TRUE.,
33 # advection scheme
34 tempAdvScheme=7,
35 staggerTimeStep=.TRUE.,
36 #---------------------------------------
37 #- for non-GM coarse run, set horizontal diffusivity non-zero:
38 # diffKhT=1000.,
39 #
40 #- for eddy-permitting run, uncomment the following:
41 # viscC2Leith = 1.,
42 # useFullLeith=.TRUE.,
43 # viscAhGridMax = 0.5,

(continues on next page)
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(continued from previous page)

44 # useSingleCpuIO=.TRUE.,
45 #- and comment out above statement viscAh=2000.,
46 &
47

48 # Elliptic solver parameters
49 &PARM02
50 cg2dTargetResidual=1.E-7,
51 cg2dMaxIters=1000,
52 &
53

54 # Time stepping parameters
55 &PARM03
56 nIter0=0,
57 nTimeSteps=10,
58 deltaT=1000.0,
59 pChkptFreq=31104000.0,
60 chkptFreq=15552000.0,
61 dumpFreq=0,
62 monitorFreq=1200.,
63 monitorSelect=2,
64 tauThetaClimRelax=864000.,
65 momDissip_In_AB=.FALSE.,
66 #---------------------------------------
67 #- change monitor frequency for longer run:
68 # monitorFreq=864000.,
69 #
70 #- nTimesteps for 30 yrs, coarse:
71 # nTimeSteps=933120,
72 #
73 #- nTimesteps for 30 yrs, eddy-permitting:
74 # nTimeSteps=3732480,
75 #
76 #- for eddy-permitting run, also need to change timestep:
77 # deltaT=250.0,
78 &
79

80 # Gridding parameters
81 &PARM04
82 usingCartesianGrid=.TRUE.,
83 delX=20*50.E3,
84 delY=40*50.E3,
85 delR= 5.48716549, 6.19462098, 6.99291201, 7.89353689,
86 8.90937723, 10.05483267, 11.34595414, 12.80056778,
87 14.43837763, 16.28102917, 18.35210877, 20.67704362,
88 23.28285446, 26.1976981 , 29.45012046, 33.06792588,
89 37.07656002, 41.496912 , 46.34247864, 51.61592052,
90 57.30518684, 63.37960847, 69.78661289, 76.44996107,
91 83.27047568, 90.13003112, 96.89898027, 103.44631852,
92 109.65099217, 115.4122275 , 120.65692923, 125.34295968,
93 129.45821977, 133.01641219, 136.05088105, 138.60793752,
94 140.74074276, 142.50436556, 143.95220912, 145.133724 ,
95 146.09317287, 146.86917206, 147.49475454, 147.99774783,
96 148.40131516, 148.72455653, 148.98310489, 149.18968055,
97 149.35458582,
98 #---------------------------------------
99 #- for eddy-permitting run, change delX and delY 50->5 km:

100 # delX=200*5.E3,
(continues on next page)
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(continued from previous page)

101 # delY=400*5.E3,
102 &
103

104 # Input datasets
105 &PARM05
106 bathyFile='bathy.50km.bin'
107 zonalWindFile='zonal_wind.50km.bin',
108 thetaClimFile='SST_relax.50km.bin',
109 hydrogThetaFile='temperature.50km.bin',
110 #---------------------------------------
111 #- for eddy-permitting run, use files generated by gendata_5km.m:
112 # bathyFile='bathy.5km.bin'
113 # zonalWindFile='zonal_wind.5km.bin',
114 # thetaClimFile='SST_relax.5km.bin',
115 # hydrogThetaFile='temperature.5km.bin',
116 &

This file, reproduced in its entirety above, specifies the main parameters for the experiment. Parameters for this
configuration (shown with line numbers to left) are as follows.

PARM01 - Continuous equation parameters

• These lines set the horizontal and vertical Laplacian viscosities. As in earlier tutorials, we use a spatially
uniform value for viscosity in both the horizontal and vertical. We set viscosity to be solved implicitly, using
the backward method, as discussed in Section 4.3.2.1.

5 viscAh=2000.,
6 viscAr=3.E-3,
7 implicitViscosity=.TRUE.,

• These lines set the horizontal and vertical diffusivities. In the standard (coarse resolution) configuration the
Gent-McWilliams parameterization (pkg/gmredi) is activated, and we set the horizontal diffusivity to zero
(which is the default value). Similar to tutorial Baroclinic Ocean Gyre, we set a large vertical diffusivity
(ivdc_kappa) for mixing unstable water columns, which requires implicit numerical treatment of vertical diffu-
sion.

9 diffKhT=0.,
10 diffKrT=1.E-5,
11 ivdc_kappa=1.,
12 implicitDiffusion=.TRUE.,

• The first two lines below set the model’s Coriolis parameters (f0 and beta) to values representative of the lati-
tude band encompassing the Antarctic Circumpolar Current. In the last line we set the model to use the Jamart
and Ozer (1986) [JO86] wet-points averaging method, in lieu of the model default (see Section 2.14.2; param-
eter options here are given in Section 3.8.4). The method affects the discretization of the Coriolis terms in
the momentum equations. In this setup – as we will show, the jet is dominated by barotropic potential vor-
ticity conservation – it turns out the solution is rather sensitive to this discretization (particularly adjacent to
topography). We tested both the default and wet-points methods, and found the wet-points method closer to the
eddy-permitting solution, where obviously the discretization of the Coriolis term is better resolved.

14 f0=-1.363e-4,
15 beta=1.313e-11,
16 selectCoriScheme=1,
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• These lines set parameters related to the density and equation of state. Here we choose the same value for the
Boussinesq reference density rhoConst as our value rhoNil, for the linear equation of state. To keep things
simple, as well as speed up model run-time, we limit ourselves to a single tracer, temperature, and tell the model
not to step salinity forward in time or include salinity in the equation of state. Also note we use a uniform
reference temperature (tRef) throughout the water column. We will be specifying a file for initial conditions
of temperature in our simulation, and so tRef will not be used for this purpose (as it was in tutorial Baroclinic
Ocean Gyre). Thus, tRef is only employed here as a reference to compute density anomalies. In principle, one
could define tRef to a more representative array of values at each level, but for most applications any gain in
numerical accuracy is small, and a single representative value suffices.

19 rhoConst=1035.,
20 rhoNil=1035.,
21 eosType='LINEAR',
22 tAlpha=2.E-4,
23 sBeta =0.E-4,
24 tRef= 49*5.,
25 saltStepping=.FALSE.,

• These lines activate the use of partial cells, as described in Section 2.11.6. hFacMin=0.1 permits partial cells that
are as small as 10% of the full cell depth, but with hFacMinDr=5.0 m this partial cell must also be at least 5 m in
depth. Note that the model default of hFacMin=1.0 disables partial cells, i.e., values from a specified bathymetry
file are rounded up or down to match grid depth interface levels (model variable rF). See also Section 3.8.1.3 for
general information on using these parameters and below for additional information about partial cells in this
setup.

27 hFacMinDr=5.,
28 hFacMin=0.1,

• These lines activate the implicit free surface formulation (Section 2.4) with the exact conservation option en-
abled, similar to tutorial Baroclinic Ocean Gyre.

30 rigidLid=.FALSE.,
31 implicitFreeSurface=.TRUE.,
32 exactConserv=.TRUE.,

• This instructs the model to use a 7th order monotonicity-preserving advection scheme (code 7) – basically, a
higher-order, more accurate, less noisy advection scheme – instead of the center-differences, 2nd order model
default scheme (code 2). The downside here is additional computations, costly if running with many tracers,
and a larger necessary overlap size in SIZE.h, which may get costly if one parallelizes the model into many
small tiles. We will use the same scheme for both coarse and eddy-permitting resolutions; using the higher-
order scheme is particularly helpful in the high resolution setup. When using non-Adams-Bashforth advection
schemes (see Table 2.2), the flag staggerTimeStep should be set to .TRUE..

34 tempAdvScheme=7,
35 staggerTimeStep=.TRUE.,
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PARM02 - Elliptic solver parameters

These parameters are unchanged from tutorials Barotropic Ocean Gyre and Baroclinic Ocean Gyre.

PARM03 - Time stepping parameters

• For testing purposes the tutorial is set to integrate 10 time steps, but uncomment the line futher down in the file
setting nTimeSteps to integrate the solution for 30 years.

56 nIter0=0,
57 nTimeSteps=10,

71 # nTimeSteps=933120,

• Remaining time stepping parameters are as described in earlier tutorials. See Section 4.3.2.1 for a discussion on
our choice of deltaT.

58 deltaT=1000.0,
59 pChkptFreq=31104000.0,
60 chkptFreq=15552000.0,
61 dumpFreq=0,
62 monitorFreq=1200.,
63 monitorSelect=2,

• As in tutorial Baroclinic Ocean Gyre we set the timescale, in seconds, for relaxing potential temperature in the
model’s top layer (note: relaxation timescale for the northern boundary sidewalls is set in data.rbcs, not here).
Our choice of 864,000 seconds is equal to 10 days.

64 tauThetaClimRelax=864000.,

• This instructs the model to NOT apply Adams-Bashforth scheme to the viscosity tendency and other dissipation
terms (such as side grad and bottom drag) in the momentum equations (the default is to use Adams-Bashforth
for all terms); instead, dissipation is computed using a explicit, forward, first-order scheme. For our coarse
resolution setup with uniform harmonic viscosity, this setting is not strictly necessary (and does not noticeably
change results). However, for our eddy-permitting run we will use a difference scheme for setting viscosity, and
for stability requires this setting.

65 momDissip_In_AB=.FALSE.,

PARM04 - Gridding parameters

• We specify a Cartesian coordinate system with 20 gridpoints in 𝑥 and 40 gridpoints in 𝑦, with (default) origin
(0,0).

82 usingCartesianGrid=.TRUE.,
83 delX=20*50.E3,
84 delY=40*50.E3,

• We set the vertical grid spacing for 49 vertical levels, ranging from thickness of approximately 5.5 m at the
surface to 149 m at depth. When varying cell thickness in this manner, one must be careful that vertical grid
spacing varies smoothly with depth; see Section 4.3.2 for details on how this specific grid spacing was generated.
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85 delR= 5.48716549, 6.19462098, 6.99291201, 7.89353689,
86 8.90937723, 10.05483267, 11.34595414, 12.80056778,
87 14.43837763, 16.28102917, 18.35210877, 20.67704362,
88 23.28285446, 26.1976981 , 29.45012046, 33.06792588,
89 37.07656002, 41.496912 , 46.34247864, 51.61592052,
90 57.30518684, 63.37960847, 69.78661289, 76.44996107,
91 83.27047568, 90.13003112, 96.89898027, 103.44631852,
92 109.65099217, 115.4122275 , 120.65692923, 125.34295968,
93 129.45821977, 133.01641219, 136.05088105, 138.60793752,
94 140.74074276, 142.50436556, 143.95220912, 145.133724 ,
95 146.09317287, 146.86917206, 147.49475454, 147.99774783,
96 148.40131516, 148.72455653, 148.98310489, 149.18968055,
97 149.35458582,

PARM05 - Input datasets

• The following lines set file names for the bathymetry, zonal wind forcing, and climatological surface temperature
relaxation files (these files are all 2-D fields, see below)

106 bathyFile='bathy.50km.bin'
107 zonalWindFile='zonal_wind.50km.bin',
108 thetaClimFile='SST_relax.50km.bin',

• This last line specifies the name of the 3-D file containing initial conditions for temperature (as noted above,
tRef values specified in namelist PARM01 are NOT used for the initial state).

109 hydrogThetaFile='temperature.50km.bin',

File input/data.pkg

Listing 4.18: verification/tutorial_reentrant_channel/input/data.pkg

1 # Packages
2 &PACKAGES
3 useGMRedi=.TRUE.,
4 useRBCS=.TRUE.,
5 useLayers=.TRUE.,
6 useDiagnostics=.TRUE.,
7 #---------------------------------------
8 #- for non-GM or eddy-permitting run, deactivate GMRedi package:
9 # useGMRedi=.FALSE.,

10 &

• These first two lines affect the model physics packages we’ve included in our build, pkg/gmredi and pkg/rbcs. In
our standard configuration, we will activate both (but in an second run, we will opt to NOT activate pkg/gmredi).

3 useGMRedi=.TRUE.,
4 useRBCS=.TRUE.,

• These lines instruct the model to activate both diagnostics packages we’ve included in our build, pkg/layers and
pkg/diagnostics.
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5 useLayers=.TRUE.,
6 useDiagnostics=.TRUE.,

File input/data.gmredi

Listing 4.19: verification/tutorial_reentrant_channel/input.GM/data.gmredi

1 # GM-Redi package parameters:
2

3 # GM_background_K: GM diffusion coefficient
4 # GM_taper_scheme: slope clipping or one of the tapering schemes
5

6 &GM_PARM01
7 GM_background_K = 1000.,
8 GM_taper_scheme = 'dm95',
9 GM_AdvForm =.TRUE.,

10 &

Note that this file is ignored with pkg/gmredi disabled (in input/data.pkg, useGMRedi=.FALSE.), but must be
present when enabled. Parameter choices are as follows.

• Parameter background_K sets the Gent-McWilliams “thickness diffusivity”, which determines the strength of
the parameterized geostrophic eddies in flattening sloping isopycnal surfaces. By default, this parameter is
also used as diffusivity for the Redi component of the parameterization, which diffuses tracers along isoneutral
surfaces. It is possible to set the Redi diffusivity to a separate value from the thickness diffusivity by setting
parameter GM_isopycK in the above list. However, in this setup with a single tracer determining density, it
would not serve any purpose because diffusion of temperature along surfaces of constant temperature has no
impact.

7 GM_background_K = 1000.,

• By default, pkg/gmredi does not select a tapering scheme (see Section 8.4.1.5); however, for best results, one
should be selected. Here we choose the tapering approach described in Danabasoglu and McWilliams (1995)
[DJCM95]. Additional choices for the tapering scheme (or alternatively, the more simple slope clipping ap-
proach), and why such a scheme is necessary, are described in the GMRedi package documentation.

8 GM_taper_scheme = 'dm95',

• We select the advective or “bolus” form of the parameterization, which specifies that GM fluxes are parame-
terized into a bolus advective transport, rather than implemented as a “skewflux” transport via added terms
in the diffusion tensor (see Griffies 1998 [Gri98]). The skewflux form is the package default. Analytically,
these forms are identical, but in practice are discretized differently. For instance, the bolus form will, by de-
fault, advect tracers with combined eulerian and bolus transport (i.e, residual transport) which then inherits the
higher order precision of the selected advection scheme 7. This can lead to noticeably different solutions in
some setups (anecdotally, particularly where you have steeply sloping isopycnals near boundaries). For diag-
nostic purposes, the bolus form permits a straightforward calculation of the actual advective transport (from the
GM part), whereas obtaining this transport using the skewflux form is less straightforward due to discretization
issues.

9 GM_AdvForm =.TRUE.,
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File input/data.rbcs

Listing 4.20: verification/tutorial_reentrant_channel/input/data.rbcs

1 # RBCS package parameters:
2 &RBCS_PARM01
3 useRBCtemp=.TRUE.,
4 tauRelaxT=864000.,
5 relaxMaskFile='T_relax_mask.50km.bin'
6 relaxTFile='temperature.50km.bin',
7 #---------------------------------------
8 #- for eddy-permitting run, use files generated by gendata_5km.m:
9 # relaxMaskFile='T_relax_mask.5km.bin'

10 # relaxTFile='temperature.5km.bin',
11 &
12

13 # RBCS for pTracers (read this namelist only when ptracers pkg is compiled)
14 &RBCS_PARM02
15 &

Setting parameter useRBCtemp to .TRUE. instructs pkg/rbcs that we will be restoring temperature (and by default,
it will not restore salinity, nor velocity, nor any other passive tracers). tauRelaxT sets the relaxation timescale for 3-D
temperature restoring to 864,000 s or 10 days. The remaining two parameters are a filename for a 3-D mask of gridpoint
locations to restore (relaxMaskFile), and a filename for a 3-D field of restoring temperature values (relaxTFile). See
below for further description of these fields.

File input/data.layers

Listing 4.21: verification/tutorial_reentrant_channel/input/data.layers

1 &LAYERS_PARM01
2 layers_name(1) ='TH',
3 layers_bounds(1:38,1)= -2.00, -1.75, -1.50, -1.25,
4 -1.00, -0.75, -0.50, -0.25,
5 0.00, 0.25, 0.50, 0.75,
6 1.00, 1.25, 1.50, 1.75,
7 2.00, 2.25, 2.50, 2.75,
8 3.00, 3.25, 3.50, 3.75,
9 4.00, 4.25, 4.50, 5.0,

10 5.5, 6.0, 6.5, 7.0,
11 7.5, 8.0, 8.5, 9.0,
12 9.5, 10.0,
13 &

pkg/layers consists of online calculations which separate water masses into

specified layers, either by temperature, salinity, or density. Note that parameters here include an array index of 1; it is
possible to diagnose layers in both temperature and salinity simultaneously, for example, in which case one would add
a second set of parameters with array index 2. Even though layers_maxNum is set to 1 (i.e, only allows a for single
layers coordinate) in LAYERS_SIZE.h, the index is still required.

• The parameter layers_name is set to 'TH' which specifies temperature as our layers coordinate.

2 layers_name(1) ='TH',

• Parameter layers_bounds specifies the discretization of the layers coordinate system; we span from the lowest
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possible model temperature (i.e., the coldest restoring temperature at the surface or northern boundary, -2 oC)
to the warmest model temperature (i.e., the warmest restoring temperature, 10 oC). The number of values here
must be Nlayers +1, as specified in LAYERS_SIZE.h. Here, Nlayers is set to 37, so we have 38 discrete
layers_bounds). pkg/layers will not complain if the discretization does not span the full range of existing water
in the model ocean; it will simply ignore water masses (and their transport) that fall outside the specified range
in layers_bounds (this will make it impossible however to close the layer volume budget). Also note that the
range must be monotonically increasing, even if this results in a layers coordinate k=1:Nlayers that proceeds in
the opposite sense as the depth coordinate (i.e., the k=1 layers coordinate is at the ocean bottom, whereas the
k=1 depth coordinate refers to the ocean surface layer).

3 layers_bounds(1:38,1)= -2.00, -1.75, -1.50, -1.25,
4 -1.00, -0.75, -0.50, -0.25,
5 0.00, 0.25, 0.50, 0.75,
6 1.00, 1.25, 1.50, 1.75,
7 2.00, 2.25, 2.50, 2.75,
8 3.00, 3.25, 3.50, 3.75,
9 4.00, 4.25, 4.50, 5.0,

10 5.5, 6.0, 6.5, 7.0,
11 7.5, 8.0, 8.5, 9.0,
12 9.5, 10.0,

File input/data.diagnostics

Listing 4.22: verification/tutorial_reentrant_channel/input/data.diagnostics

1 # Diagnostic Package Choices
2 #--------------------
3 # dumpAtLast (logical): always write output at the end of simulation (default=F)
4 # diag_mnc (logical): write to NetCDF files (default=useMNC)
5 #--for each output-stream:
6 # fileName(n) : prefix of the output file name (max 80c long) for outp.stream n
7 # frequency(n):< 0 : write snap-shot output every |frequency| seconds
8 # > 0 : write time-average output every frequency seconds
9 # timePhase(n) : write at time = timePhase + multiple of |frequency|

10 # averagingFreq : frequency (in s) for periodic averaging interval
11 # averagingPhase : phase (in s) for periodic averaging interval
12 # repeatCycle : number of averaging intervals in 1 cycle
13 # levels(:,n) : list of levels to write to file (Notes: declared as REAL)
14 # when this entry is missing, select all common levels of this list
15 # fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n
16 # (see "available_diagnostics.log" file for the full list of diags)
17 # missing_value(n) : missing value for real-type fields in output file "n"
18 # fileFlags(n) : specific code (8c string) for output file "n"
19 #--------------------
20 &DIAGNOSTICS_LIST
21 # write pkg diagnostics output to separate subdirectory
22 diagMdsDir = 'Diags'
23

24 # 2D diagnostics
25 fields(1:3,1) = 'TRELAX ','MXLDEPTH', 'ETAN ',
26 frequency(1) = 31104000.,
27 filename(1) = '2D_diags',
28

29 # 3D state variables
30 fields(1:5,2) = 'THETA ', 'VVEL ', 'UVEL ',
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(continued from previous page)

31 'WVEL ', 'CONVADJ ',
32 frequency(2) = 31104000.,
33 filename(2) = 'state',
34

35 # Heat budget terms
36 fields(1:7,3) = 'ADVx_TH ', 'ADVy_TH ', 'ADVr_TH ',
37 'DFxE_TH ', 'DFyE_TH ', 'DFrI_TH ',
38 'DFrE_TH ',
39 frequency(3) = 31104000.,
40 filename(3) = 'heat_3D',
41

42 # Residual mean flow - Layers Package
43 fields(1:3,4) = 'LaVH1TH ', 'LaHs1TH ', 'LaVa1TH '
44 frequency(4) = 31104000.,
45 fileName(4) = 'layDiag',
46

47 # GM diagnostics
48 #- Note: comment out this diagnostics list below if useGMRedi=.FALSE.
49 # or you will get warnings messages in STDERR
50 fields(1:2,5) = 'GM_PsiX ', 'GM_PsiY ',
51 frequency(5) = 31104000.,
52 filename(5) = 'GM_diags',
53

54 #---------------------------------------
55 #- Eddy-permitting run, diagnose vorticity (not computed when using uniform Ah)
56 # fields(1:2,6) = 'momVort3', 'momHDiv ',
57 # frequency(6) = 31104000.,
58 # filename(6) = 'state_vort',
59 &
60

61 #--------------------
62 # Parameter for Diagnostics of per level statistics:
63 #--------------------
64 # diagSt_mnc (logical): write stat-diags to NetCDF files (default=diag_mnc)
65 # diagSt_regMaskFile : file containing the region-mask to read-in
66 # nSetRegMskFile : number of region-mask sets within the region-mask file
67 # set_regMask(i) : region-mask set-index that identifies the region "i"
68 # val_regMask(i) : region "i" identifier value in the region mask
69 #--for each output-stream:
70 # stat_fName(n) : prefix of the output file name (max 80c long) for outp.stream n
71 # stat_freq(n):< 0 : write snap-shot output every |stat_freq| seconds
72 # > 0 : write time-average output every stat_freq seconds
73 # stat_phase(n) : write at time = stat_phase + multiple of |stat_freq|
74 # stat_region(:,n) : list of "regions" (default: 1 region only=global)
75 # stat_fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n
76 # (see "available_diagnostics.log" file for the full list of diags)
77 #--------------------
78 &DIAG_STATIS_PARMS
79 stat_fields(1:2,1) = 'THETA ','TRELAX ',
80 stat_freq(1) = 864000.,
81 stat_fName(1) = 'dynStDiag',
82 &
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DIAGNOSTICS_LIST - Diagnostic Package Choices

See tutorial Baroclinic Ocean Gyre for a detailed explanation of parameter settings to customize data.diagnostics to a
desired set of output diagnostics.

We have divided the output diagnostics into several separate lists (recall, 2-D output fields cannot be mixed with 3-D
fields!!!) The first two lists are quite similar to what used in tutorial Baroclinic Ocean Gyre: specifically, several key
2-D diagnostics are in one file (surface restoring heat flux, mixed layer depth, and free surface height), and several 3-D
diagnostics and state variables in another (theta, velocity components, convective adjustment index).

In diagnostics list 3, we specify horizontal advective heat fluxes (ADVx_TH and ADVy_TH in 𝑥 and 𝑦 directions,
respectively), vertical advective heat flux (ADVr_TH), horizontal diffusive heat fluxes (DFxE_TH and DFyE_TH),
and vertical diffusive heat flux (DFrI_TH and DFrE_TH). Note the latter is broken into separate implicit and explicit
components, respectively, the latter of which will only be non-zero if pkg/gmredi activated. Although we will not
examine these 3-D diagnostics below when describing the model solution, the zonal terms are needed to compute
zonally-averaged meridional heat transport, and all terms needed for a diagnostic attempt at reconciling a heat budget
of the model solution.

36 fields(1:7,3) = 'ADVx_TH ', 'ADVy_TH ', 'ADVr_TH ',
37 'DFxE_TH ', 'DFyE_TH ', 'DFrI_TH ',
38 'DFrE_TH ',
39 frequency(3) = 31104000.,
40 filename(3) = 'heat_3D',

In diagnostics list 4, we specify several pkg/layers diagnostics. In our setup we use a linear equation of state based
solely on temperature, so we will diagnose layers of temperature in the model solution, as shown in Figure 4.12.

Figure 4.12: Schematic of pkg/layers diagnostics.

43 fields(1:3,4) = 'LaVH1TH ', 'LaHs1TH ', 'LaVa1TH '
44 frequency(4) = 31104000.,
45 fileName(4) = 'layDiag',

Diagnostic LaVH1TH is the integrated meridional mass transport in the layer; here we request an annual mean time
average (via the frequency parameter setting), which will effectively output the quantity 𝑣ℎ (m2 s-1). LaHs1TH
is the layer thickness ℎ (m) calculated at “v” points (see Section 2.11.4). LaVa1TH is the layer average meridional
velocity 𝑣 (m/s). These diagnostics are all 3-D fields, albeit the vertical dimension here is the layer discretization
in temperature space, which was defined in data.layers. See Section 4.3.5.1 for examples using these diagnostics to
calculate the residual circulation and the meridional overturning circulation in density coordinates.
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DIAG_STATIS_PARMS - Diagnostic Per Level Statistics

Here we specify statistical diagnostics of potential temperature and surface relaxation heat flux, output every ten days,
to assess how well the model has equilibrated. See tutorial Baroclinic Ocean Gyre for a more complete description of
syntax and output produced by these diagnostics.

File input/eedata

This file uses standard default values (single-threaded) and does not contain customizations for this experiment.

File input/bathy.50km.bin

This is a 2-D(𝑥, 𝑦) map of bottom bathymetry, as generated by the MATLAB program verifica-
tion/tutorial_reentrant_channel/input/gendata.50km.m (input files are 32-bit single precision, by default). Our
bathymetry file has active ocean grid cells along both the eastern and western boundaries (i.e., no land points or walls
are present along either boundary), and thus our model will be fully zonally reentrant. While our northern boundary
also consists entirely of active ocean points, we prescribe a wall along the southern end of our model domain, therefore
the model is NOT meridionally reentrant.

Unlike in previous examples, where the bathymetry was discretized to match depths of defined vertical grid faces (rF,
see Figure 2.9), we have a more complicated bottom bathymetry as defined using a sine function for our bottom ridge.
The model default in such case is to round the bathymetry up or down to the nearest allowed vertical cell face level.
However, the model permits the use of “partial cells” (sometimes also referred to as “shaved” or “lopped” cells),
which can provide dramatic improvements in model solution (see Adcroft et al. 1997 [AHM97]). Here, we activate
partial cells though parameter choices hFacMin and hFacMinDr in input/data, as discussed above. The fraction of a
vertical cell that contains fluid is represented in the 3-D output variable hFacC, which will have a value of 0.0 beneath
the ocean floor (and at land points), 1.0 at an active full-depth ocean cell, and a number between hFacMin and 1.0 for
a partial ocean cell. As such, hFacC is often quite useful as a “mask” when computing diagnostics using model output.

As an example, consider horizontal location (10,15) in out setup here, located in our bottom ridge along the sloping
notch. In our bathymetry file, the vertical level is specified as -2382.3 m. This falls between vertical faces located
at -2360.1 and -2504.0 [these are grid variable rF(39:40)]. Thus, this grid cell will be included in the active ocean
domain as a thin, yet legal, partial cell: hFacC(10,15,39)=0.154.

File input/zonal_wind.50km.bin, input/SST_relax.50km.bin

These files are 2-D(𝑥, 𝑦) maps of zonal wind stress 𝜏𝑥 (Nm–2) and surface relaxation temperature (oC), as generated
by program verification/tutorial_reentrant_channel/input/gendata_50km.m. Note that a 2-D(𝑥, 𝑦) file is expected even
though as specified, both 𝜏𝑥 and SST field are only 𝑓(𝑦).

File input/temperature.50km.bin

This file specifies a 3-D(𝑥, 𝑦, 𝑧) map of temperature (oC), as generated by verifica-
tion/tutorial_reentrant_channel/input/gendata_50km.m (see Figure 4.11). Note again a 3-D(𝑥, 𝑦, 𝑧) file is expected
despite temperature begin only 𝑓(𝑦, 𝑧). This file is used here for two purposes: first, as specified in input/data, these
values are used for temperature initial conditions; secondly, this file was also specified in input/data.rbcs as a 3-D field
used for temperature relaxation purposes.
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File input/T_relax_mask.50km.bin

This file specifies a 3-D(𝑥, 𝑦, 𝑧) mask, as required by /pkg/rbcs to inform the model which gridpoints to relax. These
values should be between 0.0 and 1.0, with 0.0 for no restoring, 1.0 for full restoring, with fractional values as a multi-
plicative factor to effectively weaken restoring at that location (see Section 8.3.2). Here, we select a value of 1.0 along
the model northern wall for all sub-surface depths (relaxation at the surface is specified using input/SST_relax.
50km.bin, otherwise you would be restoring the surface layer twice), and use a fractional value for the 𝑥𝑧 plane of
grid cells just south of the northern border (see verification/tutorial_reentrant_channel/input/gendata_50km.m).

4.3.4 Building and running the model

This model can be built and run using the standard procedure described in Section 3.5 and Section 3.6. (see also
README).

For testing purposes the model is set to run 10 time steps. For a reasonable solution, we suggest running for 30 years,
which requires changing nTimeSteps to 933120. When making this edit, also change monitorFreq to something more
reasonable, say 10 days (=864000.). Using a single processor core, it should take 12 hours or so to run 30 years;
to speed this up using MPI, re-compile using nPy=4, and nSy=1, in SIZE.h and recompile with the -mpi flag (see
Section 3.6.1 for instructions how to run using MPI, here you will be using 4 cores). As an exercise, see if you can
speed it up further using additional processor cores, e.g., by decreasing the tile size in 𝑥 and increasing nPx.

As configured, the model runs with pkg/gmredi activated, i.e., useGMRedi=.TRUE. in data.pkg. In Section 4.3.5.1
we will also examine a model solution using old-fashioned large horizontal diffusion with pkg/gmredi deactivated.
The same executable can be used for the non-GM run. Set useGMRedi=.FALSE. in data.pkg, and also set dif-
fKhT=1000. in data namelist PARM01. Also, comment out the lines for diagnostics list 5 in data.diagnostics or you
will get (non-fatal) warning messages in STDERR.

In Section 4.3.5.2 we will present results with the resolution increased by an order of magnitude, eddy-permitting.
Additional required changes to the code and parameters are discussed.

4.3.5 Model Solution

See verification/tutorial_reentrant_channel/analysis/matlab_plots.m for MATLAB analysis code to compute and plot
Figure 4.14 through Figure 4.23.

4.3.5.1 Coarse Resolution Solution

Before examining the circulation and temperature structure of the solution, let’s first assess whether the solution is
approaching a quasi-equilibrium state after 30 years of integration. Typically, one might expect a solution given this
setup to equilibrate over a timescale of a hundred years or more, given the depth of the domain and the prescribed weak
vertical diffusivity. As in tutorial Baroclinic Ocean Gyre, we will make use of the ‘Diagnostic Per Level Statistics’
to assess equilibrium; specifically, we will look at the change in surface (restoring) heat flux over time, as well as the
potential temperature field. In this tutorial we use standard native Fortan (binary) output files (using pkg/mdsio) rather
than netCDF output (as done in tutorial Baroclinic Ocean Gyre). Important note: when using pkg/mdsio, the statistical
diagnostics output is written in plain text, NOT binary format. An advantage is that this permits a simple unix cat or
more command to display the file to the terminal window as integration proceeds, i.e., for a quick check that results
look reasonable. The disadvantage however is that some additional parsing is required to generate some plots using
these data. Making use of MITgcm shell script utils/scripts/extract_StD, in a terminal window (in the run directory)
type

% ../../../utils/scripts/extract_StD dynStDiag.0000000000.txt STATDIAGS dat
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where dynStDiag.0000000000.txt is the name of our statistical diagnostics output file, STATDIAGS is a name
we chose for files generated by running the script, with extension dat. This shell script extracts data into the following
(plain text) files:

• STATDIAGS_head.dat - header file containing metadata

• STATDIAGS_Iter.dat - list of iteration numbers for which statdiags dumped

• STATDIAGS_THETA.dat - statdiags for field THETA (diagnostic field specified in input/data.diagnostics)

• STATDIAGS_TRELAX.dat - statdiags for field TRELAX (diagnostic field specified in input/data.diagnostics)

The files STATDIAGS_Iter.dat and STATDIAGS_«DIAGNAME».dat are simple column(s) of data that can be
loaded or read in as an array of numbers using any basic analysis tool. Here we will make use of another MITgcm
utility, utils/matlab/Read_StD.m, which uses MATLAB to make life a bit more simple for reading in all statistical
diagnostic data. In a MATLAB session type

>> [nIter,regList,time,stdiagout,listFlds,listK]=read_StD('STATDIAGS','dat','all_flds
→˓');

where

• nIter = number of iterations (i.e., time records) dumped

• regList = list of region numbers (=0 here, as we did not define any regions, by default global output only)

• time(:,1) = iteration numbers ; time(:,2) = time in simulation (seconds)

• listFlds = list of fields dumped

• listK = for each field, lists number of k levels dumped

• stdiagout = 5 dimensional output array ( kLev, time_rec, region_rec, [ave,std,min,max,vol], fld_rec ) where
kLev=1 is depth-average, kLev=2:50 is for depths rC(1:49)

On the left side of Figure 4.13 we show time series of global surface heat flux. In the first decade there is rapid
adjustment, with a much slower trend in both mean and standard deviation in years 10-30. In the mean there remains
a significant heat flux into the ocean in the run without GM (solid), whereas with GM (dashed) the net heat uptake is
also positive, but smaller. The panels on the right show potential temperature at the surface, mid-level (270 m) and
at depth. Note in particular the warming trend at depth in the run without GM. The SST series display a much less
obvious trend (as might be expected given rapid restoring of SST). Examining these results, we see that after 30 years
our run is not at full equilibrium, presumably due to the long timescale for vertical diffusion. And, we infer that less
surface heating is penetrating to depth in the GM solution. This difference is also obvious in Figure 4.14 where we
plot zonal mean temperature: note the deeper thermocline in the left panel (without GM), in addition to the deeper
mixed layer (and warmer surface) in the southern half of the model domain. The differences in convective adjustment
are remarkable, as shown in Figure 4.15; here we plot a plan view of diagnostic CONVADJ, which is the fraction of the
time steps a grid cell is convectively unstable, at 92 m depth. Note that at this depth, convection is limited to grid cells
near the southern boundary in the GM run, whereas a significant portion of the domain is convecting in the non-GM
run: as discussed in Gent (2011) [Gen11], the Deacon cell advects cold water northward at the surface, resulting in
unstable water columns and excessively deep mixed layers. Clearly, the temperature structure of the model solution is
sensitive to our mesoscale eddy parameterization (we will explore this further).

Figure 4.16 shows the barotropic streamfunction without GM (left) and with GM (right). The pattern is quite similar in
both simulations, characterized by a jet centered in the latitude bands with the deep notch, with some deflection to the
south after the jet squeezes through the notch. There is a balance between negative relative vorticity, as the jet curves
northward through the notch and then southward again, and increasing 𝑓 to the north (from the beta-plane) such that
barotropic potential vorticity is conserved. North of the notch, we see in Figure 4.14 the ocean is much more stratified,
with dynamics presumably more baroclinic.
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Figure 4.13: Left: time series of area-integrated heat flux into the surface ocean (blue) and its standard deviation
(magenta). Right: area-mean temperature at the surface (top, cyan), in the thermocline (middle, green), and at depth
(bottom, red). In all panels, solid curves show non-GM run, dashed curves include GM.

Figure 4.14: Zonal-mean temperature (shaded) and zonal-mean mixed layer depth (black line) averaged over simula-
tion year 30. Left plot is from non-GM run, right using GM.
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Figure 4.15: Convective adjustment index: 0= never convectively unstable during year 30, 1= always convectively
unstable. Left plot is from non-GM run, right using GM.
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Figure 4.16: Barotropic streamfunction averaged over over simulation year 30. Left plot is from non-GM run, right
using GM. Contour interval is 20 Sv.
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Figure 4.17 shows the Eulerian meridional overturning circulation for the non-GM run (left) and GM run (right).
Again, they appear quite similar; what we are observing here is known as a “Deacon Cell” (Deacon 1937 [Dea37];
Bryan 1991 [Bry91]) forced by surface Ekman transport to the north (see also Döös and Webb 1994 [DW94], Speer et
al. 2000 [SS00]), with downwelling in the northern half of the basin and upwelling in the south. The magnitude of this
cell, on the order of 1-2 Sverdrups, may not seem very impressive, but it is important to consider our zonal domain
spans only about 1/20th of the 60th parallel south; scaled up, the magnitude of this cell is quite large. Some local
recirculation occurs in the latitude bands where the ridge slopes down to the center of the deep notch. The centers of
these recirculations occur in the bottom 2000 m, where stratification is quite weak, so much of water recirculated here
falls within a very narrow density class. The deep ridge effectively creates east-west sidewalls at depth, thus able to
support an overturning in thermal wind balance, whereas no sidewalls exist in the upper portion of the water column.
There is little overturning associated with the deep jet flowing through the flat bottom of the notch.

Also worth noting is that we see some evidence of noise (jaggedy contours) in Figure 4.17, despite our rather large
choice of 𝐴ℎ=2000 m2 s–1 for (uniform) horizontal viscosity and our higher-order advective scheme. These noise
artifacts increase fairly dramatically for smaller choices of 𝐴ℎ, although we tested the solution remains stable for 𝐴ℎ

decreased by an order of magnitude.

Figure 4.17: Eulerian meridional overturning circulation (shaded) averaged over simulation year 30. Left plot is from
non-GM run, right using GM. Contour interval is 0.5 Sv.

When using pkg/gmredi, it is often desirable to diagnose an eddy bolus velocity, or a bolus transport, in order to
compute the residual circulation (Ferrari 2003 [FP03]), the Lagrangian transport in the ocean (i.e., which effects
tracer transport; see, for example, Wolfe 2014 [Wol14]). Unfortunately the bolus velocity is not directly available
from MITgcm, but must be computed from other GM diagnostics, which differ if the skew flux or bolus/advective
form of GM is selected. Here we choose the later form in data.gmredi (GM_AdvForm =.TRUE.), for which a bolus
streamfunction diagnostic is available, thus the bolus velocity can be readily computed (see matlab_plots.m; obtaining
the bolus velocity, for reasons of gridding, is a bit more straightforward using the advective form). In Figure 4.18 we’ve
computed and added the bolus velocity to the Eulerian velocity. We see that the upper meridional overturning cell has
weakened in magnitude, particularly in the northern half of the domain. The eddy parameterization will attempt
to flatten sloping isopycnals seen in Figure 4.14, creating a bolus overturning circulation in the opposite sense to the
Deacon Cell. The magnitude of the GM thickness diffusion effectively controls the strength of the eddy transport; here
we observed only partial cancellation of the Deacon Cell shown in Figure 4.17. In global ocean general circulation
models, an observation of near-cancellation in the Southern Ocean Deacon Cell when the GM parameterization was
used was first reported in Danabasoglu et al. (1994) [DMG94].
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Figure 4.18: Meridional overturning circulation (shaded) from GM simulation including bolus advective transport,
averaged over simulation year 30. Contour interval is 0.5 Sv.

Now let’s use pkg/layers output to examine the residual meridional overturning circulation, shown in Figure 4.19. We
integrate the time- and zonal-mean transport in isopycnal layers (see Figure 4.12) to obtain a streamfunction in density
coordinates. See Abernathy et al. (2011) [AMF11] for a more detailed explanation of this calculation; this approach
is the tried-and-true method to diagnose the residual circulation in an eddy-permitting regime, as required when we
run this setup at higher resolution (Section 4.3.5.2). Note that pkg/layers automatically includes bolus transport from
pkg/gmredi in its calculations, assuming GM is used. With temperature as the ordinate in Figure 4.19, vertical flows
reflect diabatic processes. The green dashed lines represent the maximum and minimum SST for a given latitude band,
thus representing upper layer circulation within this band. On the left side, without GM, we again see a robust Deacon
cell, with a strong diabatic component, presumably due to horizontal diffusion occurring across sloping isopycnals
(i.e. the so-called “Veronis effect”, see Veronis (1975) [Ver75] as well as other numerous papers prior to the wide-
spread adoption of the GM parameterization in ocean models). [As an aside, it is for lack of a better name that we
label this left plot of Figure 4.19, lacking either eddies or GM, as the residual circulation, as indeed it is identical to
the Eulerian circulation in density coordinates]. On the right side, with GM, the Deacon cell is much weaker due to
partial cancellation from the bolus circulation, as noted earlier, but also note that interior contours of streamfunction
run roughly horizontal in the plot. We see some evidence of a deep cell in the lowest temperature classes, less obvious
in the Eulerian MOC Figure 4.17. One might ask: what happened to the deep recirculating cells seen in Figure 4.18?
Recall that our discretization of temperature layers is fairly crude, 0.25 K in the coldest temperatures, and presumably
much of this recirculation is “lost” as recirculation within a single density class. If this deep circulation were of
interest, one could simply re-run the model with finer resolution at depth (perhaps increasing the number of layers
used, which requires changing LAYERS_SIZE.h and recompiling).

Finally, let’s convert the residual circulatiom shown in Figure 4.19 back into depth coordinates, see Figure 4.20. Solid
lines now display contours of zonal mean temperature. On the left, consistent with previous analyses, we see a small,
upper ocean counter-clockwise circulation in the southern sector, where deep mixed layers occur (Figure 4.14), with
the dominant feature again being the (clockwise) Deacon cell. In contrast, using GM, we see a weak residual clockwise
cell aligned along temperature surfaces in the thermocline, with a weak deep counter-clockwise cell aligned with the
coldest temperature contour (i.e., the deep cell seen in Figure 4.19).
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Figure 4.19: Residual meridional overturning circulation (shaded) as computed in density (i.e., temperature) coor-
dinates, averaged over simulation year 30. Contour interval is 0.5 Sv. Green dashed curves show maximum and
minimum SST in each latitude band. Left plot is from non-GM run, right using GM.

Figure 4.20: Residual meridional overturning circulation (shaded) as computed in density coordinates and converted
back into (zonal mean) depth coordinates, averaged over simulation year 30. Black lines show zonal mean temperature,
contour interval 1 oC. Left plot is from non-GM run, right using GM.
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4.3.5.2 Eddy Permitting Solution

In this section we discuss a model solution with the horizontal grid space reduced from 50 km to 5 km, which is
sufficiently resolved to permit eddies to form (see above, which shows SST, surface relative vorticity, and surface
current speed, left to right, toward the end of the 30-year simulation). Vertical resolution is unchanged. While we
provide instructions on how to compile and run in this new configuration, it will require parallelizing (using MPI) on
at least a hundred processor cores or else a 30-year integration will take on the order of a month or longer – in other
words, this requires a large cluster or high-performance computing (HPC) facility to run efficiently.

Running with higher resolution requires re-compiling the code after changing the tile size and number of processors,
see code/SIZE.h_eddy (as configured here, for 100 processors; for faster results change the tile size and use 200 or
even 400 processors). Note we will NOT enable pkg/gmredi in our eddy run, so it can be eliminated from the list in
packages.conf1 (make sure to set useGMRedi=.FALSE. in data.pkg).

In conjunction with the change in code/SIZE.h_eddy, uncomment these lines in PARM04 in data:

delX=200*5.E3,
delY=400*5.E3,

to specify 5 km resolution in 200 × 400 grid cells in 𝑥 and 𝑦. New files for bathymetry, forcing fields, and initial tem-
perature can be generated using the MATLAB program verification/tutorial_reentrant_channel/input/gendata_5km.m
(don’t forget to change the filenames in data.rbcs and PARM05 in data).

Running at higher resolution requires a smaller time step for stability. Revisiting Section 4.3.2.1, to maintain advective
stability (CFL condition, (4.24)) one could simply decrease the time step by the same factor of 10 decrease as ∆𝑥 –
stability of inertial oscillations is no longer a limiting factor, given a smaller ∆𝑡 in (4.25) – but to speed things up
we’d like to keep ∆𝑡 as large as possible. With a rich eddying solution, however, is it clear that horizontal velocity
will remain order ~1 ms-1? As a compromise, we suggest setting parameter DeltaT=250. (seconds) in data, which
we found to be stable. For this choice, a 30-year integration requires setting nTimeSteps=3732480.

While it would be possible to decrease (spatially uniform) harmonic viscosity to a more appropriate value for this res-
olution, or perhaps use bi-harmonic viscosity (see Section 2.14.5), we will make use of one of the nonlinear viscosity
schemes described in Section 2.19, geared toward large eddy simulations, where viscosity is a function of the resolved
motion. Here, we employ the Leith viscosity (Leith 1968, Leith 1996 [Lei68] [Lei96]). Set the following parameters
in PARM01 of data:

1 Note it is not stricly necessary to remove pkg/gmredi from your high-resolution build – however, if kept in the list of packages included in
packages.conf, it then becomes necessary to deactivate in data.pkg for this run by setting useGMRedi=.FALSE.. If by chance you set a use«PKG»
flag to .TRUE. in data.pkg but have not included the package in the build, the model will terminate with error on startup. But you can alway set a
use«PKG» flag to .FALSE. whether or not the package is included in the build.
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viscC2Leith = 1.,
useFullLeith=.TRUE.,
viscAhGridMax = 0.5,

(and comment out the line viscAh =2000. ). viscC2Leith is a scaling coefficient which we set to 1.0, useFullLeith
=.TRUE. uses unapproximated gradients in the Leith formulation (see Section 2.19.1.4). Parameter viscAhGridMax
places a maximum limit on the Leith viscosity so that the CFL condition is obeyed (see Section 2.19.1.7 and (4.26)
in discussion of Numerical Stability Criteria). The values of viscAh that the Leith scheme generates in this solution
generally range from order 1 m2 s–1 in regions of weak flow to over 100 m2 s–1 in jets. Note that while it would have
been possible to use the Leith scheme in the 50 km resolution setup, the scheme was not really designed to be used at
such a large ∆𝑥, and the 𝐴ℎ it generates about an order of magnitude below the constant 𝐴ℎ = 2000 m2 s–1 employed
in the coarse model runs, resulting in a very noisy solution.

Finally, we suggest adding the parameter useSingleCpuIO =.TRUE. in PARM01 of data. This will produce global
output files generated by the master MPI processor, rather than a copious amount of single-tile files (each processor
dumping output for its specific sub-domain).

To compare the eddying solution with the coarse-resolution simulations, we need to take a fairly long time average;
even in annual means there is noticeably variability in the solution. Figure 4.21 through Figure 4.23 plot similar figures
as Figure 4.14-Figure 4.20, showing a time mean over the last five years of the simulation.

Figure 4.21: Left: Zonal-mean temperature (shaded) and zonal-mean mixed layer depth (black line) from eddying
simulation averaged over years 26-30. Right: Eulerian meridional overturning circulation (shaded) from eddying
simulation averaged over years 26-30. Contour interval is 0.5 Sv.

In general, our coarse resolution solutions are not a bad likeness of the (time mean) eddying solution, particularly
when we use pkg/gmredi to parameterize mesoscale eddies. More detailed comments comparing these solutions are
as follows:

• The superiority of the GM solution is clear in the plot of zonal mean temperature (Figure 4.21 left panel vs.
Figure 4.14) and the residual overturning circulation (Figure 4.23 vs. Figure 4.19 and Figure 4.20). Differences
among the Eulerian MOC plots (Figure 4.21 right panel vs. Figure 4.17) are less obvious, but note that in the
more stratified northern section of the domain, the eddying MOC looks more like the coarse “Eulerian + Bolus”
GM solution (Figure 4.18). However, these two fields are not expected to be equal, since the eddying MOC
calculated by layers also includes a stationary eddy component (Viebahn and Eden 2012 [VE12]; Dufour et al.
2012 [DSZ+12]).
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Figure 4.22: Barotropic streamfunction from eddying simulation averaged over years 26-30. Contour interval is 20
Sv.
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Figure 4.23: Left: Residual meridional overturning circulation (shaded) as computed in density (i.e., temperature)
coordinates, from eddying simulation averaged over years 26-30. Contour interval is 0.5 Sv. Green dashed curve
shows maximum and minimum (instantaneous) SST in each latitude band. Right: Residual meridional overturning
circulation (shaded) as computed in density coordinates and converted back into depth coordinates, from eddying
simulation averaged over years 26-30. Black lines show zonal mean temperature, contour interval 1 oC.

• A large anticyclonic barotropic vortex is present away from the topographic ridge as shown in a plot of the
barotropic streamfunction (Figure 4.22; recall, our domain is located in the Southern Hemisphere, so anticy-
clonic is counter-clockwise). As such, the flow passing through the deep notch is somewhat less than obtained
in the coarse solution (Figure 4.16). Yet, similar constraints on barotropic potential vorticity conservation lead
to a similar overall pattern.

• Examining the residual circulation generated from pkg/layers diagnostics (see Figure 4.23 vs. Figure 4.19, Fig-
ure 4.20), the non-GM solution seems quite poor, which would certainly have implications on tracer transport
had any additional tracers been included in the simulation. In the GM solution, eddies seem to only partially
cancel the cell forced by northward Ekman transport (Deacon Cell). In the eddying solution, the residual cir-
culation is oriented in the opposite sense: eddy fluxes resulting from baroclinic instability due to the northern
sponge layer (stratification) overwhelms the Deacon Cell. This would seem to suggest than our parameterization
of eddies by GM, or more specifically, our choice for parameter GM_background_K of 1000 m2 s–1, may be too
low, at least for this idealized setup! Parameterizing eddies in the Southern Ocean is a topical research question,
but some studies suggest this value of GM thickness diffusivity may indeed be low for values in the Southern
Ocean (e.g., Ferriera et al. 2005 [FMH05]). A weak residual deep cell, oriented with rising flow along the
sponge layer, is also present. Note that the area enclosed by the dashed green lines in Figure 4.23 is quite large,
due to episodic large deviations in SST associated with eddies.

• As might be suggested by the orientation of the residual MOC, in the eddying solution temperature relaxation
in the sponge layer is associated with heat gain in the thermocline. In the coarse runs, however, the sponge layer
is effectively cooling, particularly in the non-GM run. Although at present there is no diagnostic available in
pkg/rbcs which directly tabulates these fluxes, computing them is quite simple: the heat flux (in watts) into a grid
cell in the sponge layer is computed as 𝜌C𝑝𝒱𝜃 * 𝜃(𝑖,𝑗,𝑘)−𝜃𝑟𝑏𝑐(𝑖,𝑗,𝑘)

𝜏𝑇
*𝑀𝑟𝑏𝑐 where C𝑝 is HeatCapacity_Cp (3994.0

J kg-1K-1 by default), 𝒱𝜃 is the grid cell volume (rA(i,j) * drF(k) * hFacC(i,j,k); see Section 4.3.3.2 for definition
of hFacC), 𝜃(𝑖, 𝑗, 𝑘) is gridpoint potential temperature (oC), 𝜃(𝑖, 𝑗, 𝑘)𝑟𝑏𝑐 is gridpoint relaxation potential temper-
ature (oC, as prescribed in file input/temperature.5km.bin or input/temperature.50km.bin),
𝜏𝑇 is the restoring timescale tauRelaxT (as set in data.rbcs to 864,000 seconds or 10 days), and 𝑀𝑟𝑏𝑐 is a 3-D
restoring mask (values between 0.0 and 1.0 as discussed above) as specified in file T_relax_mask.5km.bin
or T_relax_mask.50km.bin.
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4.4 Ocean Gyre Advection Schemes

(in directory: verification/tutorial_advection_in_gyre/)

This set of examples is based on the barotropic and baroclinic gyre MITgcm configurations, that are described in
Section 4.1 and Section 4.2. The examples in this section explain how to introduce a passive tracer into the flow field
of the barotropic and baroclinic gyre setups and looks at how the time evolution of the passive tracer depends on the
advection or transport scheme that is selected for the tracer.

Passive tracers are useful in many numerical experiments. In some cases tracers are used to track flow pathways, for
example in Dutay et al. (2002) [DBD+02] a passive tracer is used to track pathways of CFC-11 in 13 global ocean
models, using a numerical configuration similar to the example described in Section 4.13). In other cases tracers
are used as a way to infer bulk mixing coefficients for a turbulent flow field, for example in Marshall et al. (2006)
[MSJH06] a tracer is used to infer eddy mixing coefficients in the Antarctic Circumpolar Current region. Typically, in
biogeochemical and ecological simulations large numbers of tracers are used that carry the concentrations of biological
nutrients and concentrations of biological species. When using tracers for these and other purposes it is useful to have
a feel for the role that the advection scheme employed plays in determining properties of the tracer distribution. In
particular, in a discrete numerical model, tracer advection only approximates the continuum behavior in space and
time and different advection schemes introduce different approximations so that the resulting tracer distributions vary.
In the following text we illustrate how to use the different advection schemes available in MITgcm, and discuss which
properties are well represented by each scheme. The advection schemes selections also apply to active tracers (e.g., 𝑇
and 𝑆) and the character of the schemes also affects their distributions and behavior.

4.4.1 Advection and tracer transport

In general, the tracer problem we want to solve can be written

𝜕𝐶

𝜕𝑡
= −𝑈 · ∇𝐶 + 𝑆 (4.29)

where 𝐶 is the tracer concentration in a model cell, 𝑈 = (𝑢, 𝑣, 𝑤) is the model 3-D flow field. In (4.29), 𝑆 represents
source, sink and tendency terms not associated with advective transport. Example of terms in 𝑆 include (i) air-sea
fluxes for a dissolved gas, (ii) biological grazing and growth terms (for a biogeochemical problem) or (iii) convective
mixing and other sub-grid parameterizations of mixing. In this section we are primarily concerned with

1. how to introduce the tracer term, 𝐶, into an integration

2. the different discretized forms of the −𝑈 · ∇𝐶 term that are available

4.4.2 Introducing a tracer into the flow

The MITgcm ptracers package (see section Section 8.3.3 for a more complete discussion of the ptracers package and
section Section 8.1.1 for a general introduction to MITgcm packages) provides pre-coded support for a simple passive
tracer with an initial distribution at simulation time 𝑡 = 0 of 𝐶0(𝑥, 𝑦, 𝑧). The steps required to use this capability are

1. Activating the ptracers package. This simply requires adding the line ptracers to the file
code/packages.conf.

2. Setting an initial tracer distribution.

Once the two steps above are complete we can proceed to examine how the tracer we have created is carried by the
flow field and what properties of the tracer distribution are preserved under different advection schemes.
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4.4.3 Selecting an advection scheme

• flags in input/data and input/data.ptracers

• overlap width

• #define CPP option PTRACERS_ALLOW_DYN_STATE in code/PTRACERS_OPTIONS.h as required for
SOM case

4.4.4 Comparison of different advection schemes

1. Conservation

2. Dispersion

3. Diffusion

4. Positive definite

Figure 4.24: Dye evolving in a double gyre with different advection schemes. The figure shows the dye concentration
one year after injection into a single grid cell near the left boundary.

4.5 Global Ocean Simulation

(in directory: verification/tutorial_global_oce_latlon/)

This example experiment demonstrates using the MITgcm to simulate the planetary ocean circulation. The simulation
is configured with realistic geography and bathymetry on a 4∘ × 4∘ spherical polar grid. Fifteen levels are used in the
vertical, ranging in thickness from 50 m at the surface to 690 m at depth, giving a maximum model depth of 5200 m.
Different time-steps are used to accelerate the convergence to equilibrium (see Bryan 1984 [Bry84]) so that, at this
resolution, the configuration can be integrated forward for thousands of years on a single processor desktop computer.
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Figure 4.25: Maxima, minima and standard deviation (from left) as a function of time (in months) for the gyre
circulation experiment from Figure 4.24.

4.5.1 Overview

The model is forced with climatological wind stress data from Trenberth (1990) [TOL90] and NCEP surface flux data
from Kalnay et al. (1996) [KKK+96]. Climatological data (Levitus and Boyer 1994a,b [LB94a][LB94b]) is used to
initialize the model hydrography. Levitus and Boyer seasonal climatology data is also used throughout the calculation
to provide additional air-sea fluxes. These fluxes are combined with the NCEP climatological estimates of surface heat
flux, resulting in a mixed boundary condition of the style described in Haney (1971) [Han71]. Altogether, this yields
the following forcing applied in the model surface layer.

ℱ𝑢 =
𝜏𝑥

𝜌0∆𝑧𝑠
(4.30)

ℱ𝑣 =
𝜏𝑦

𝜌0∆𝑧𝑠
(4.31)

ℱ𝜃 = −𝜆𝜃(𝜃 − 𝜃*) − 1

𝐶𝑝𝜌0∆𝑧𝑠
𝒬 (4.32)

ℱ𝑠 = −𝜆𝑠(𝑆 − 𝑆*) +
𝑆0

∆𝑧𝑠
(ℰ − 𝒫 −ℛ) (4.33)

where ℱ𝑢, ℱ𝑣 , ℱ𝜃, ℱ𝑠 are the forcing terms in the zonal and meridional momentum and in the potential temperature
and salinity equations respectively. The term ∆𝑧𝑠 represents the top ocean layer thickness in meters. It is used in
conjunction with a reference density, 𝜌0 (here set to 999.8 kg m-3), a reference salinity, 𝑆0 (here set to 35 ppt), and a
specific heat capacity, 𝐶𝑝 (here set to 4000 J kg-1 K-1), to convert input dataset values into time tendencies of potential
temperature (with units of oC s-1), salinity (with units ppt s-1) and velocity (with units m s-2). The externally supplied
forcing fields used in this experiment are 𝜏𝑥, 𝜏𝑦 , 𝜃*, 𝑆*, 𝒬 and ℰ −𝒫−ℛ. The wind stress fields (𝜏𝑥, 𝜏𝑦) have units of
N m-2. The temperature forcing fields (𝜃* and 𝑄) have units of oC and W m-2 respectively. The salinity forcing fields
(𝑆* and ℰ − 𝒫 − ℛ) have units of ppt and m s-1 respectively. The source files and procedures for ingesting this data
into the simulation are described in the experiment configuration discussion in section Section 4.5.3.
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4.5.2 Discrete Numerical Configuration

The model is configured in hydrostatic form. The domain is discretized with a uniform grid spacing in latitude and
longitude on the sphere ∆𝜑 = ∆𝜆 = 4∘, so that there are 90 grid cells in the zonal and 40 in the meridional direction.
The internal model coordinate variables 𝑥 and 𝑦 are initialized according to

𝑥 = 𝑟 cos(𝜑), ∆𝑥 = 𝑟 cos(∆𝜑)

𝑦 = 𝑟𝜆, ∆𝑦 = 𝑟∆𝜆

Arctic polar regions are not included in this experiment. Meridionally the model extends from 80oS to 80oN. Vertically
the model is configured with fifteen layers with the following thicknesses:

∆𝑧1 = 50 m
∆𝑧2 = 70 m
∆𝑧3 = 100 m
∆𝑧4 = 140 m
∆𝑧5 = 190 m
∆𝑧6 = 240 m
∆𝑧7 = 290 m
∆𝑧8 = 340 m
∆𝑧9 = 390 m
∆𝑧10 = 440 m
∆𝑧11 = 490 m
∆𝑧12 = 540 m
∆𝑧13 = 590 m
∆𝑧14 = 640 m
∆𝑧15 = 690 m

(here the numeric subscript indicates the model level index number, k) to give a total depth, 𝐻 , of -5200 m. The
implicit free surface form of the pressure equation described in Marshall et al. (1997) [MHPA97] is employed. A
Laplacian operator, ∇2, provides viscous dissipation. Thermal and haline diffusion is also represented by a Laplacian
operator.

Wind-stress forcing is added to the momentum equations in (4.34) for both the zonal flow 𝑢 and the meridional flow
𝑣, according to equations (4.30) and (4.31). Thermodynamic forcing inputs are added to the equations in (4.35) for
potential temperature, 𝜃, and salinity, 𝑆, according to equations (4.32) and (4.33). This produces a set of equations
solved in this configuration as follows:

𝐷𝑢

𝐷𝑡
− 𝑓𝑣 +

1

𝜌

𝜕𝑝′

𝜕𝑥
−∇ℎ ·𝐴ℎ∇ℎ𝑢− 𝜕

𝜕𝑧
𝐴𝑧

𝜕𝑢

𝜕𝑧
=

{︃
ℱ𝑢 (surface)
0 (interior)

𝐷𝑣

𝐷𝑡
+ 𝑓𝑢+

1

𝜌

𝜕𝑝′

𝜕𝑦
−∇ℎ ·𝐴ℎ∇ℎ𝑣 −

𝜕

𝜕𝑧
𝐴𝑧

𝜕𝑣

𝜕𝑧
=

{︃
ℱ𝑣 (surface)
0 (interior)

(4.34)

𝜕𝜂

𝜕𝑡
+ ∇ℎ · 𝑢⃗ = 0

𝐷𝜃

𝐷𝑡
−∇ℎ ·𝐾ℎ∇ℎ𝜃 −

𝜕

𝜕𝑧
Γ(𝐾𝑧)

𝜕𝜃

𝜕𝑧
=

{︃
ℱ𝜃 (surface)
0 (interior)

𝐷𝑠

𝐷𝑡
−∇ℎ ·𝐾ℎ∇ℎ𝑠−

𝜕

𝜕𝑧
Γ(𝐾𝑧)

𝜕𝑠

𝜕𝑧
=

{︃
ℱ𝑠 (surface)
0 (interior)

(4.35)

𝑔𝜌0𝜂 +

∫︁ 0

−𝑧

𝜌′𝑑𝑧 = 𝑝′
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where 𝑢 = 𝐷𝑥
𝐷𝑡 = 𝑟 cos(𝜑)𝐷𝜆

𝐷𝑡 and 𝑣 = 𝐷𝑦
𝐷𝑡 = 𝑟𝐷𝜑

𝐷𝑡 are the zonal and meridional components of the flow vector, 𝑢⃗, on
the sphere. As described in Section 2, the time evolution of potential temperature 𝜃 equation is solved prognostically.
The total pressure 𝑝 is diagnosed by summing pressure due to surface elevation 𝜂 and the hydrostatic pressure.

4.5.2.1 Numerical Stability Criteria

The Laplacian dissipation coefficient, 𝐴ℎ, is set to 5 × 105 m s-1. This value is chosen to yield a Munk layer width
(see Adcroft 1995 [Adc95]),

𝑀𝑤 = 𝜋(
𝐴ℎ

𝛽
)

1
3 (4.36)

of ~600 km. This is greater than the model resolution in low-latitudes, ∆𝑥 ≈ 400 km, ensuring that the frictional
boundary layer is adequately resolved.

The model is stepped forward with a time step ∆𝑡𝜃 = 24 hours for thermodynamic variables and ∆𝑡𝑣 = 30 minutes
for momentum terms. With this time step, the stability parameter to the horizontal Laplacian friction (Adcroft 1995
[Adc95])

𝑆𝑙 = 4
𝐴ℎ∆𝑡𝑣

∆𝑥2
(4.37)

evaluates to 0.6 at a latitude of 𝜑 = 80o, which is above the 0.3 upper limit for stability, but the zonal grid spacing
∆𝑥 is smallest at 𝜑 = 80o where ∆𝑥 = 𝑟 cos(𝜑)∆𝜑 ≈ 77 km and the stability criterion is already met one grid cell
equatorwards (at 𝜑 = 76o).

The vertical dissipation coefficient, 𝐴𝑧 , is set to 1 × 10−3 m2 s-1. The associated stability limit

𝑆𝑙 = 4
𝐴𝑧∆𝑡𝑣

∆𝑧2
(4.38)

evaluates to 0.0029 for the smallest model level spacing (∆𝑧1 = 50 m) which is well below the upper stability limit.

The numerical stability for inertial oscillations (Adcroft 1995 [Adc95])

𝑆𝑖 = 𝑓2∆𝑡𝑣
2 (4.39)

evaluates to 0.07 for 𝑓 = 2𝜔 sin(80∘) = 1.43 × 10−4 s-1, which is below the 𝑆𝑖 < 1 upper limit for stability.

The advective CFL (Adcroft 1995 [Adc95]) for a extreme maximum horizontal flow speed of |𝑢⃗| = 2 m s-1

𝑆𝑎 =
|𝑢⃗|∆𝑡𝑣

∆𝑥
(4.40)

evaluates to 5 × 10−2. This is well below the stability limit of 0.5.

The stability parameter for internal gravity waves propagating with a maximum speed of 𝑐𝑔 = 10 m s-1 (Adcroft 1995
[Adc95])

𝑆𝑐 =
𝑐𝑔∆𝑡𝑣

∆𝑥
(4.41)

evaluates to 2.3 × 10−1. This is close to the linear stability limit of 0.5.
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4.5.3 Experiment Configuration

The experiment files

• verification/tutorial_global_oce_latlon/input/data

• verification/tutorial_global_oce_latlon/input/data.pkg

• verification/tutorial_global_oce_latlon/input/eedata

• verification/tutorial_global_oce_latlon/input/trenberth_taux.bin

• verification/tutorial_global_oce_latlon/input/trenberth_tauy.bin

• verification/tutorial_global_oce_latlon/input/lev_s.bin

• verification/tutorial_global_oce_latlon/input/lev_t.bin

• verification/tutorial_global_oce_latlon/input/lev_sss.bin

• verification/tutorial_global_oce_latlon/input/lev_sst.bin

• verification/tutorial_global_oce_latlon/input/bathymetry.bin

• verification/tutorial_global_oce_latlon/code/SIZE.h

contain the code customizations and parameter settings for these experiments. Below we describe the customizations
to these files associated with this experiment.

4.5.3.1 Driving Datasets

Figure 4.26-Figure 4.31 show the relaxation temperature (𝜃*) and salinity (𝑆*) fields, the wind stress components (𝜏𝑥
and 𝜏𝑦), the heat flux (𝑄) and the net fresh water flux (ℰ − 𝒫 − ℛ) used in equations (4.30)-(4.33). The figures also
indicate the lateral extent and coastline used in the experiment. Figure (— missing figure — ) shows the depth contours
of the model domain.

4.5.3.2 File input/data

Listing 4.23: verification/tutorial_global_oce_latlon/input/data

1 # ====================
2 # | Model parameters |
3 # ====================
4 #
5 # Continuous equation parameters
6 &PARM01
7 tRef = 15*20.,
8 sRef = 15*35.,
9 viscAr=1.E-3,

10 viscAh=5.E5,
11 diffKhT=0.,
12 diffKrT=3.E-5,
13 diffKhS=0.,
14 diffKrS=3.E-5,
15 rhoConst=1035.,
16 rhoConstFresh=1000.,
17 eosType = 'JMD95Z',
18 ivdc_kappa=100.,

(continues on next page)
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Figure 4.26: Annual mean of relaxation temperature (oC)

Figure 4.27: Annual mean of relaxation salinity (psu)
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Figure 4.28: Annual mean of zonal wind stress component (N m-2)

Figure 4.29: Annual mean of meridional wind stress component (N m-2)
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Figure 4.30: Annual mean heat flux (W m-2)

Figure 4.31: Annual mean freshwater flux (Evaporation-Precipitation) (m s-1)
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(continued from previous page)

19 implicitDiffusion=.TRUE.,
20 allowFreezing=.TRUE.,
21 exactConserv=.TRUE.,
22 useRealFreshWaterFlux=.TRUE.,
23 useCDscheme=.TRUE.,
24 # turn on looped cells
25 hFacMin=.05,
26 hFacMindr=50.,
27 # set precision of data files
28 readBinaryPrec=32,
29 &
30

31 # Elliptic solver parameters
32 &PARM02
33 cg2dMaxIters=500,
34 cg2dTargetResidual=1.E-13,
35 &
36

37 # Time stepping parameters
38 &PARM03
39 nIter0= 0,
40 nTimeSteps = 20,
41 # 100 years of integration will yield a reasonable flow field
42 # startTime = 0.,
43 # endTime = 3110400000.,
44 deltaTmom = 1800.,
45 tauCD = 321428.,
46 deltaTtracer= 86400.,
47 deltaTClock = 86400.,
48 deltaTfreesurf= 86400.,
49 abEps = 0.1,
50 pChkptFreq= 1728000.,
51 dumpFreq= 864000.,
52 taveFreq= 864000.,
53 monitorFreq=1.,
54 # 2 months restoring timescale for temperature
55 tauThetaClimRelax= 5184000.,
56 # 6 months restoring timescale for salinity
57 tauSaltClimRelax = 15552000.,
58 periodicExternalForcing=.TRUE.,
59 externForcingPeriod=2592000.,
60 externForcingCycle=31104000.,
61 &
62

63 # Gridding parameters
64 &PARM04
65 usingSphericalPolarGrid=.TRUE.,
66 delR= 50., 70., 100., 140., 190.,
67 240., 290., 340., 390., 440.,
68 490., 540., 590., 640., 690.,
69 ygOrigin=-80.,
70 dySpacing=4.,
71 dxSpacing=4.,
72 &
73

74 # Input datasets
75 &PARM05

(continues on next page)
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(continued from previous page)

76 bathyFile= 'bathymetry.bin',
77 hydrogThetaFile='lev_t.bin',
78 hydrogSaltFile= 'lev_s.bin',
79 zonalWindFile= 'trenberth_taux.bin',
80 meridWindFile= 'trenberth_tauy.bin',
81 thetaClimFile= 'lev_sst.bin',
82 saltClimFile= 'lev_sss.bin',
83 surfQnetFile= 'ncep_qnet.bin',
84 the_run_name= 'global_oce_latlon',
85 # fresh water flux is turned on, comment next line to it turn off
86 # (maybe better with surface salinity restoring)
87 EmPmRFile= 'ncep_emp.bin',
88 &

This file specifies the main parameters for the experiment. The parameters that are significant for this configuration
are

• Lines 7-8,

tRef= 15*20.,
sRef= 15*35.,

set reference values for potential temperature and salinity at each model level in units of oC and ppt. The entries
are ordered from surface to depth. Density is calculated from anomalies at each level evaluated with respect to
the reference values set here.

• Line 9,

viscAr=1.E-3,

this line sets the vertical Laplacian dissipation coefficient to 1 × 10−3 m2 s-1. Boundary conditions for this
operator are specified later.

• Line 10,

viscAh=5.E5,

this line sets the horizontal Laplacian frictional dissipation coefficient to 5 × 105 m2 s-1. Boundary conditions
for this operator are specified later.

• Lines 11, 13,

diffKhT=0.,
diffKhS=0.,

set the horizontal diffusion coefficient for temperature and salinity to 0, since pkg/gmredi is used.

• Lines 12, 14,

diffKrT=3.E-5,
diffKrS=3.E-5,

set the vertical diffusion coefficient for temperature and salinity to 3 × 10−5 m2 s-1. The boundary condition on
this operator is 𝜕

𝜕𝑧 = 0 at both the upper and lower boundaries.

• Lines 15-17,
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rhoConst=1035.,
rhoConstFresh=1000.,
eosType = 'JMD95Z',

set the reference densities for sea water and fresh water, and selects the equation of state (Jackett and McDougall
1995 [JM95])

• Lines 18-19,

ivdc_kappa=100.,
implicitDiffusion=.TRUE.,

specify an “implicit diffusion” scheme with increased vertical diffusivity of 100 m2/s in case of instable stratifi-
cation.

• Line 28,

readBinaryPrec=32,

Sets format for reading binary input datasets containing model fields to use 32-bit representation for floating-
point numbers.

• Line 33,

cg2dMaxIters=500,

Sets maximum number of iterations the two-dimensional, conjugate gradient solver will use, irrespective of
convergence criteria being met.

• Line 34,

cg2dTargetResidual=1.E-13,

Sets the tolerance which the 2-D conjugate gradient solver will use to test for convergence in (2.15) to 1×10−13.
Solver will iterate until tolerance falls below this value or until the maximum number of solver iterations is
reached.

• Line 39,

nIter0=0,

Sets the starting time for the model internal time counter. When set to non-zero this option implicitly requests a
checkpoint file be read for initial state. By default the checkpoint file is named according to the integer number
of time step value nIter0. The internal time counter works in seconds. Alternatively, startTime can be set.

• Line 40,

nTimeSteps=20,

Sets the time step number at which this simulation will terminate. At the end of a simulation a checkpoint file is
automatically written so that a numerical experiment can consist of multiple stages. Alternatively endTime can
be set.

• Line 44,

deltaTmom=1800.,

Sets the timestep ∆𝑡𝑣 used in the momentum equations to 30 minutes. See Section 2.2.

• Line 45,
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tauCD=321428.,

Sets the D-grid to C-grid coupling time scale 𝜏𝐶𝐷 used in the momentum equations.

• Lines 46-48,

deltaTtracer=86400.,
deltaTClock = 86400.,
deltaTfreesurf= 86400.,

Sets the default timestep, ∆𝑡𝜃, for tracer equations and implicit free surface equations to 24 hours. See Section
2.2.

• Line 76,

bathyFile='bathymetry.bin'

This line specifies the name of the file from which the domain bathymetry is read. This file is a 2-D (𝑥, 𝑦) map
of depths. This file is assumed to contain 32-bit binary numbers giving the depth of the model at each grid cell,
ordered with the 𝑥 coordinate varying fastest. The points are ordered from low coordinate to high coordinate for
both axes. The units and orientation of the depths in this file are the same as used in the MITgcm code. In this
experiment, a depth of 0 m indicates a solid wall and a depth of <0 m indicates open ocean.

• Lines 79-80,

zonalWindFile='trenberth_taux.bin'
meridWindFile='trenberth_tauy.bin'

These lines specify the names of the files from which the 𝑥- and 𝑦- direction surface wind stress is read. These
files are also 3-D (𝑥, 𝑦, 𝑡𝑖𝑚𝑒) maps and are enumerated and formatted in the same manner as the bathymetry
file.

Other lines in the file input/data are standard values that are described in the Section 3.8.

4.5.3.3 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

4.5.3.4 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.5.3.5 Files input/trenberth_taux.bin and input/trenberth_tauy.bin

The input/trenberth_taux.bin and input/trenberth_tauy.bin files specify 3-D (𝑥, 𝑦, 𝑡𝑖𝑚𝑒) maps
of wind stress (𝜏𝑥, 𝜏𝑦), based on values from Treberth et al. (1990) [TOL90]. The units are N m-2.
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4.5.3.6 File input/bathymetry.bin

The input/bathymetry.bin file specifies a 2-D (𝑥, 𝑦) map of depth values. For this experiment values range
between 0 and -5200 m, and have been derived from ETOPO5. The file contains a raw binary stream of data that is
enumerated in the same way as standard MITgcm 2-D horizontal arrays.

4.5.3.7 File code/SIZE.h

Listing 4.24: verification/tutorial_global_oce_latlon/code/SIZE.h

1 CBOP
2 C !ROUTINE: SIZE.h
3 C !INTERFACE:
4 C include SIZE.h
5 C !DESCRIPTION: \bv
6 C *==========================================================*
7 C | SIZE.h Declare size of underlying computational grid.
8 C *==========================================================*
9 C | The design here supports a three-dimensional model grid

10 C | with indices I,J and K. The three-dimensional domain
11 C | is comprised of nPx*nSx blocks (or tiles) of size sNx
12 C | along the first (left-most index) axis, nPy*nSy blocks
13 C | of size sNy along the second axis and one block of size
14 C | Nr along the vertical (third) axis.
15 C | Blocks/tiles have overlap regions of size OLx and OLy
16 C | along the dimensions that are subdivided.
17 C *==========================================================*
18 C \ev
19 C
20 C Voodoo numbers controlling data layout:
21 C sNx :: Number of X points in tile.
22 C sNy :: Number of Y points in tile.
23 C OLx :: Tile overlap extent in X.
24 C OLy :: Tile overlap extent in Y.
25 C nSx :: Number of tiles per process in X.
26 C nSy :: Number of tiles per process in Y.
27 C nPx :: Number of processes to use in X.
28 C nPy :: Number of processes to use in Y.
29 C Nx :: Number of points in X for the full domain.
30 C Ny :: Number of points in Y for the full domain.
31 C Nr :: Number of points in vertical direction.
32 CEOP
33 INTEGER sNx
34 INTEGER sNy
35 INTEGER OLx
36 INTEGER OLy
37 INTEGER nSx
38 INTEGER nSy
39 INTEGER nPx
40 INTEGER nPy
41 INTEGER Nx
42 INTEGER Ny
43 INTEGER Nr
44 PARAMETER (
45 & sNx = 45,
46 & sNy = 40,

(continues on next page)
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(continued from previous page)

47 & OLx = 2,
48 & OLy = 2,
49 & nSx = 2,
50 & nSy = 1,
51 & nPx = 1,
52 & nPy = 1,
53 & Nx = sNx*nSx*nPx,
54 & Ny = sNy*nSy*nPy,
55 & Nr = 15)
56

57 C MAX_OLX :: Set to the maximum overlap region size of any array
58 C MAX_OLY that will be exchanged. Controls the sizing of exch
59 C routine buffers.
60 INTEGER MAX_OLX
61 INTEGER MAX_OLY
62 PARAMETER ( MAX_OLX = OLx,
63 & MAX_OLY = OLy )
64

Four lines are customized in this file for the current experiment

• Line 45,

sNx=45,

this line sets the number of grid points of each tile (or sub-domain) along the 𝑥-coordinate axis.

• Line 46,

sNy=40,

this line sets the number of grid points of each tile (or sub-domain) along the 𝑦-coordinate axis.

• Lines 49,51,

nSx=2,
nPx=1,

these lines set, respectively, the number of tiles per process and the number of processes along the 𝑥-coordinate
axis. Therefore, the total number of grid points along the 𝑥-coordinate axis corresponding to the full domain
extent is 𝑁𝑥 = 𝑠𝑁𝑥 * 𝑛𝑆𝑥 * 𝑛𝑃𝑥 = 90.

• Line 55,

Nr=15

this line sets the vertical domain extent in grid points.
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4.6 Global Ocean Simulation in Pressure Coordinates

(in directory: verification/tutorial_global_oce_in_p/)

This example experiment demonstrates using MITgcm to simulate the planetary ocean circulation in pressure co-
ordinates, that is, without making the Boussinesq approximations. The simulation is configured as a near copy of
tutorial_global_oce_latlon (Section 4.5). with realistic geography and bathymetry on a 4∘ × 4∘ spherical polar grid.
Fifteen levels are used in the vertical, ranging in thickness from 50.4089 dbar ≈ 50 m at the surface to 710.33 dbar ≈
690 m at depth, giving a maximum model depth of 5302.3122 dbar ≈ 5200 m. At this resolution, the configuration
can be integrated forward for thousands of years on a single processor desktop computer.

4.6.1 Overview

The model is forced with climatological wind stress data from Trenberth (1990) [TOL90] and surface flux data from
Jiang et al. (1999) [JSMR99]. Climatological data (Levitus and Boyer 1994a,b [LB94a][LB94b]) is used to initialize
the model hydrography. Levitus and Boyer seasonal climatology data is also used throughout the calculation to provide
additional air-sea fluxes. These fluxes are combined with the Jiang et al. climatological estimates of surface heat flux,
resulting in a mixed boundary condition of the style described in Haney (1971) [Han71]. Altogether, this yields the
following forcing applied in the model surface layer.

ℱ𝑢 = 𝑔
𝜏𝑥

∆𝑝𝑠
(4.42)

ℱ𝑣 = 𝑔
𝜏𝑦

∆𝑝𝑠
(4.43)

ℱ𝜃 = −𝑔𝜆𝜃(𝜃 − 𝜃*) − 1

𝐶𝑝∆𝑝𝑠
𝒬 (4.44)

ℱ𝑠 = +𝑔𝜌𝐹𝑊
𝑆

𝜌∆𝑝𝑠
(ℰ − 𝒫 −ℛ) (4.45)

where ℱ𝑢, ℱ𝑣 , ℱ𝜃, ℱ𝑠 are the forcing terms in the zonal and meridional momentum and in the potential temperature
and salinity equations respectively. The term ∆𝑝𝑠 represents the top ocean layer thickness in Pa. It is used in conjunc-
tion with a reference density, 𝜌𝐹𝑊 (here set to 999.8 kg m-3), the surface salinity, 𝑆, and a specific heat capacity, 𝐶𝑝

(here set to 4000 J kg-1 K-1), to convert input dataset values into time tendencies of potential temperature (with units
of oC s-1), salinity (with units ppt s-1) and velocity (with units m s-2). The externally supplied forcing fields used in
this experiment are 𝜏𝑥, 𝜏𝑦 , 𝜃*, 𝒬 and ℰ −𝒫 −ℛ. The wind stress fields (𝜏𝑥, 𝜏𝑦) have units of N m-2. The temperature
forcing fields (𝜃* and 𝑄) have units of oC and W m-2 respectively. The salinity forcing fields (ℰ − 𝒫 − ℛ) has units
of m s-1 respectively. The source files and procedures for ingesting these data into the simulation are described in the
experiment configuration discussion in section Section 4.5.3.

4.6.2 Discrete Numerical Configuration

Due to the pressure coordinate, the model can only be hydrostatic (de Szoeke and Samelson 2002 [dSS02]). The
domain is discretized with a uniform grid spacing in latitude and longitude on the sphere ∆𝜑 = ∆𝜆 = 4∘, so that
there are 90 grid cells in the zonal and 40 in the meridional direction. The internal model coordinate variables 𝑥 and 𝑦
are initialized according to

𝑥 = 𝑟 cos(𝜑), ∆𝑥 = 𝑟 cos(∆𝜑)

𝑦 = 𝑟𝜆, ∆𝑦 = 𝑟∆𝜆

Arctic polar regions are not included in this experiment. Meridionally the model extends from 80oS to 80oN. Vertically
the model is configured with fifteen layers with the following thicknesses

∆𝑝1 = 7103300.720021 Pa
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∆𝑝2 = 6570548.440790 Pa
∆𝑝3 = 6041670.010249 Pa
∆𝑝4 = 5516436.666057 Pa
∆𝑝5 = 4994602.034410 Pa
∆𝑝6 = 4475903.435290 Pa
∆𝑝7 = 3960063.245801 Pa
∆𝑝8 = 3446790.312651 Pa
∆𝑝9 = 2935781.405664 Pa
∆𝑝10 = 2426722.705046 Pa
∆𝑝11 = 1919291.315988 Pa
∆𝑝12 = 1413156.804970 Pa
∆𝑝13 = 1008846.750166 Pa
∆𝑝14 = 705919.025481 Pa
∆𝑝15 = 504089.693499 Pa

(here the numeric subscript indicates the model level index number, k; note that the surface layer has the highest index
number 15) to give a total depth, 𝐻 , of -5200 m. In pressure, this is 𝑝0𝑏 = 53023122.566084 Pa. The implicit free
surface form of the pressure equation described in Marshall et al. (1997) [MHPA97] with the nonlinear extension by
Campin et al. (2004) [CAHM04] is employed. A Laplacian operator, ∇2, provides viscous dissipation. Thermal and
haline diffusion is also represented by a Laplacian operator.

Wind-stress forcing is added to the momentum equations in (4.46) for both the zonal flow, 𝑢 and the meridional flow
𝑣, according to equations (4.42) and (4.43). Thermodynamic forcing inputs are added to the equations in (4.47) for
potential temperature, 𝜃, and salinity, 𝑆, according to equations (4.44) and (4.45). This produces a set of equations
solved in this configuration as follows:

𝐷𝑢

𝐷𝑡
− 𝑓𝑣 +

1

𝜌

𝜕Φ
′

𝜕𝑥
−∇ℎ ·𝐴ℎ∇ℎ𝑢− (𝑔𝜌0)2

𝜕

𝜕𝑝
𝐴𝑟

𝜕𝑢

𝜕𝑝
=

{︃
ℱ𝑢 (surface)
0 (interior)

𝐷𝑣

𝐷𝑡
+ 𝑓𝑢+

1

𝜌

𝜕Φ
′

𝜕𝑦
−∇ℎ ·𝐴ℎ∇ℎ𝑣 − (𝑔𝜌0)2

𝜕

𝜕𝑝
𝐴𝑟

𝜕𝑣

𝜕𝑝
=

{︃
ℱ𝑣 (surface)
0 (interior)

(4.46)

𝜕𝑝𝑏
𝜕𝑡

+ ∇ℎ · 𝑢⃗ = 0

𝐷𝜃

𝐷𝑡
−∇ℎ ·𝐾ℎ∇ℎ𝜃 − (𝑔𝜌0)2

𝜕

𝜕𝑝
Γ(𝐾𝑟)

𝜕𝜃

𝜕𝑝
=

{︃
ℱ𝜃 (surface)
0 (interior)

𝐷𝑠

𝐷𝑡
−∇ℎ ·𝐾ℎ∇ℎ𝑠− (𝑔𝜌0)2

𝜕

𝜕𝑝
Γ(𝐾𝑟)

𝜕𝑆

𝜕𝑝
=

{︃
ℱ𝑠 (surface)
0 (interior)

(4.47)

Φ
′(0)
−𝐻 + 𝛼0𝑝𝑏 +

∫︁ 𝑝

0

𝛼′𝑑𝑝 = Φ′

where 𝑢 = 𝐷𝑥
𝐷𝑡 = 𝑟 cos(𝜑)𝐷𝜆

𝐷𝑡 and 𝑣 = 𝐷𝑦
𝐷𝑡 = 𝑟𝐷𝜑

𝐷𝑡 are the zonal and meridional components of the flow vector, 𝑢⃗, on
the sphere. As described in Section 2, the time evolution of potential temperature 𝜃 equation is solved prognostically.
The full geopotential height Φ is diagnosed by summing the geopotential height anomalies Φ′ due to bottom pressure
𝑝𝑏 and density variations. The integration of the hydrostatic equation is started at the bottom of the domain. The
condition of 𝑝 = 0 at the sea surface requires a time-independent integration constant for the height anomaly due to
density variations Φ

′(0)
−𝐻 , which is provided as an input field.
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4.6.3 Experiment Configuration

The experiment files

• verification/tutorial_global_oce_in_p/input/data

• verification/tutorial_global_oce_in_p/input/data.pkg

• verification/tutorial_global_oce_in_p/input/eedata

• verification/tutorial_global_oce_in_p/input/topog.bin

• verification/tutorial_global_oce_in_p/input/deltageopotjmd95.bin

• verification/tutorial_global_oce_in_p/input/lev_s.bin

• verification/tutorial_global_oce_in_p/input/lev_t.bin

• verification/tutorial_global_oce_in_p/input/trenberth_taux.bin

• verification/tutorial_global_oce_in_p/input/trenberth_tauy.bin

• verification/tutorial_global_oce_in_p/input/lev_sst.bin

• verification/tutorial_global_oce_in_p/input/shi_qnet.bin

• verification/tutorial_global_oce_in_p/input/shi_empmr.bin

• verification/tutorial_global_oce_in_p/code/CPP_OPTIONS.h

• verification/tutorial_global_oce_in_p/code/SIZE.h

contain the code customizations and parameter settings for these experiments. Below we describe the customizations
to these files associated with this experiment.

4.6.3.1 Driving Datasets

Figure 4.32-Figure 4.37 show the relaxation temperature (𝜃*) and salinity (𝑆*) fields, the wind stress components (𝜏𝑥
and 𝜏𝑦), the heat flux (𝑄) and the net fresh water flux (ℰ − 𝒫 −ℛ) used in equations (4.42) - (4.45). The figures also
indicate the lateral extent and coastline used in the experiment. Figure 4.38 shows the depth contours of the model
domain.

4.6.3.2 File input/data

Listing 4.25: verification/tutorial_global_oce_oce_in_p/input/data

1 # ====================
2 # | Model parameters |
3 # ====================
4 #
5 # Continuous equation parameters
6 &PARM01
7 tRef = 15*20.,
8 sRef = 15*35.,
9 viscAh =3.E5,

10 no_slip_sides=.TRUE.,
11 viscAr =1.721611620915750e5,
12 #viscAz =1.67E-3,
13 no_slip_bottom=.FALSE.,

(continues on next page)
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Figure 4.32: Annual mean of relaxation temperature (oC)

Figure 4.33: Annual mean of relaxation salinity (psu)
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Figure 4.34: Annual mean of zonal wind stress component (N m-2)

Figure 4.35: Annual mean of meridional wind stress component (N m-2)

230 Chapter 4. MITgcm Tutorial Example Experiments



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

Figure 4.36: Annual mean heat flux (W m-2)

Figure 4.37: Annual mean freshwater flux (Evaporation-Precipitation) (m s-1)
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Figure 4.38: Model bathymetry in pressure units (Pa)

(continued from previous page)

14 diffKhT=1.E3,
15 diffKrT=5.154525811125000e3,
16 #diffKzT=0.5E-4,
17 diffKhS=1.E3,
18 diffKrS=5.154525811125000e3,
19 #diffKzS=0.5E-4,
20 cosPower=0.5,
21 implicitDiffusion=.TRUE.,
22 ivdc_kappa=1.030905162225000e9,
23 #ivdc_kappa=10.0,
24 gravity=9.81,
25 rhoConst=1035.,
26 rhoConstFresh=1000.,
27 buoyancyRelation='OCEANICP',
28 integr_GeoPot=1,
29 eosType='JMD95P',
30 useNHMTerms=.TRUE.,
31 implicitFreeSurface=.TRUE.,
32 exactConserv=.TRUE.,
33 nonlinFreeSurf=4,
34 hFacInf=0.2,
35 hFacSup=2.0,
36 #- to check that it has no impact:
37 doResetHFactors=.TRUE.,
38 #useRealFreshWaterFlux=.TRUE.,
39 readBinaryPrec=64,
40 writeBinaryPrec=64,

(continues on next page)
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(continued from previous page)

41 &
42

43 # Elliptic solver parameters
44 &PARM02
45 cg2dMaxIters=200,
46 cg2dTargetResidual=1.E-9,
47 &
48

49 # Time stepping parameters
50 &PARM03
51 startTime = 0.,
52 endTime = 3456000.,
53 # after 100 years of intergration, one gets a reasonable flow field
54 #endTime = 3110400000.,
55 deltaTMom = 1200.0,
56 deltaTtracer = 172800.0,
57 deltaTFreeSurf = 172800.0,
58 deltaTClock = 172800.0,
59 abEps = 0.1,
60 pChkptFreq = 3110400000.,
61 dumpFreq = 3110400000.,
62 taveFreq = 3110400000.,
63 monitorFreq = 1.,
64 periodicExternalForcing=.TRUE.,
65 externForcingPeriod=2592000.,
66 externForcingCycle=31104000.,
67 tauThetaClimRelax=5184000.0,
68 &
69

70 # Gridding parameters
71 &PARM04
72 usingSphericalPolarGrid=.TRUE.,
73 dxSpacing=4.,
74 dySpacing=4.,
75 #Ro_SeaLevel=53023122.566084,
76 top_Pres=1.E-6,
77 delR=7103300.720021, 6570548.440790, 6041670.010249,
78 5516436.666057, 4994602.034410, 4475903.435290,
79 3960063.245801, 3446790.312651, 2935781.405664,
80 2426722.705046, 1919291.315988, 1413156.804970,
81 1008846.750166, 705919.025481, 504089.693499,
82 ygOrigin=-80.,
83 &
84

85 # Input datasets
86 &PARM05
87 bathyFile ='topog.bin',
88 pLoadFile ='deltageopotjmd95.bin',
89 hydrogThetaFile='lev_t.bin',
90 hydrogSaltFile ='lev_s.bin',
91 zonalWindFile ='trenberth_taux.bin',
92 meridWindFile ='trenberth_tauy.bin',
93 thetaClimFile ='lev_sst.bin',
94 #saltClimFile ='lev_sss.bin',
95 surfQnetFile ='shi_qnet.bin',
96 EmPmRFile ='shi_empmr.bin',
97 &
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This file specifies the main parameters for the experiment. The parameters that are significant for this configuration
are

• Line 9–10,

viscAh=3.E5,
no_slip_sides=.TRUE.

these lines set the horizontal Laplacian frictional dissipation coefficient to 3 × 105 m2 s-1 and specify a no-slip
boundary condition for this operator, i.e., 𝑢 = 0 along boundaries in 𝑦 and 𝑣 = 0 along boundaries in 𝑥.

• Lines 11-13,

viscAr =1.721611620915750e5,
#viscAz =1.67E-3,
no_slip_bottom=.FALSE.,

These lines set the vertical Laplacian frictional dissipation coefficient to 1.721611620915750 × 105 Pa2 s-1,
which corresponds to 1.67 × 10−3 m2 s-1 in the commented line, and specify a free slip boundary condition for
this operator, i.e., 𝜕𝑢

𝜕𝑝 = 𝜕𝑣
𝜕𝑝 = 0 at 𝑝 = 𝑝0𝑏 , where 𝑝0𝑏 is the local bottom pressure of the domain at rest. Note that

the factor (𝑔𝜌)2 needs to be included in this value.

• Line 14,

diffKhT=1.E3,

this line sets the horizontal diffusion coefficient for temperature to 1000 m2 s-1. The boundary condition on this
operator is 𝜕

𝜕𝑥 = 𝜕
𝜕𝑦 = 0 on all boundaries.

• Line 15–16,

diffKrT=5.154525811125000e3,
#diffKzT=0.5E-4,

this line sets the vertical diffusion coefficient for temperature to 5.154525811125 × 103 Pa2 s-1, which corre-
sponds to 5 × 10−4 m2 s-1 in the commented line. Note that the factor (𝑔𝜌)2 needs to be included in this value.
The boundary condition on this operator is 𝜕

𝜕𝑝 = 0 at both the upper and lower boundaries.

• Line 17–19,

diffKhS=1.E3,
diffKrS=5.154525811125000e3,
#diffKzS=0.5E-4,

These lines set the diffusion coefficients for salinity to the same value as for temperature.

• Line 21–23,

implicitDiffusion=.TRUE.,
ivdc_kappa=1.030905162225000E9,
#ivdc_kappa=10.0,

Select implicit diffusion as a convection scheme and set coefficient for implicit vertical diffusion to
1.030905162225 × 109 Pa2 s-1, which corresponds to 10 m2 s-1.

• Line 24,

gravity=9.81,

This line sets the gravitational acceleration coefficient to 9.81 m s-1.
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• Line 25,

rhoConst=1035.,

sets the reference density of sea water to 1035 kg m-3.

• Line 29,

eosType='JMD95P',

Selects the full equation of state according to Jackett and McDougall (1995) [JM95]. Note that the only other
sensible choice here could be the equation of state by McDougall et al. (2003) [MJWF03], MDJFW. Other model
choices for equations of state do not make sense in this configuration.

• Line 28-29,

implicitFreeSurface=.TRUE.,

Selects the barotropic pressure equation to be the implicit free surface formulation.

• Line 32,

exactConserv=.TRUE.,

Select a more accurate conservation of properties at the surface layer by including the horizontal velocity diver-
gence to update the free surface.

• Line 33–35

nonlinFreeSurf=3,
hFacInf=0.2,
hFacSup=2.0,

Select the nonlinear free surface formulation and set lower and upper limits for the free surface excursions.

• Line 39-40,

readBinaryPrec=64,
writeBinaryPrec=64,

Sets format for reading binary input datasets and writing binary output datasets containing model fields to use
64-bit representation for floating-point numbers.

• Line 45,

cg2dMaxIters=200,

Sets maximum number of iterations the 2-D conjugate gradient solver will use, irrespective of convergence
criteria being met.

• Line 46,

cg2dTargetResidual=1.E-13,

Sets the tolerance which the 2-D conjugate gradient solver will use to test for convergence in (2.15) to 1×10−9.
Solver will iterate until tolerance falls below this value or until the maximum number of solver iterations is
reached.

• Line 51,
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startTime=0,

Sets the starting time for the model internal time counter. When set to non-zero, this option implicitly requests a
checkpoint file be read for initial state. By default the checkpoint file is named according to the integer number
of time steps in the startTime value. The internal time counter works in seconds.

• Line 52–54,

endTime=8640000.,
# after 100 years of intergration, one gets a reasonable flow field
#endTime=3110400000.,

Sets the time (in seconds) at which this simulation will terminate. At the end of a simulation a checkpoint file is
automatically written so that a numerical experiment can consist of multiple stages. The commented out setting
for endTime is for a 100 year simulation.

• Line 55–57,

deltaTmom = 1200.0,
deltaTtracer = 172800.0,
deltaTfreesurf = 172800.0,

Sets the timestep 𝛿𝑡𝑣 used in the momentum equations to 20 minutes and the timesteps 𝛿𝑡𝜃 in the tracer equations
and 𝛿𝑡𝜂 in the implicit free surface equation to 48 hours. See Section 2.2.

• Line 60,

pChkptFreq =3110400000.,

write a pickup file every 100 years of integration.

• Line 61-63,

dumpFreq = 3110400000.,
taveFreq = 3110400000.,
monitorFreq = 1.,

write model output and time-averaged model output every 100 years, and monitor statistics every model time
step (this is set for testing purposes; change to a larger number for long integrations).

• Line 64–66,

periodicExternalForcing=.TRUE.,
externForcingPeriod=2592000.,
externForcingCycle=31104000.,

Allow periodic external forcing: set one month forcing period during which a single time slice of data is valid,
and the repeat cycle to one year. Thus, external forcing files will contain twelve periods of forcing data.

• Line 67,

tauThetaClimRelax=5184000.0,

Set the restoring timescale to 2 months.

• Line 59,

abEps=0.1,

Adams-Bashforth factor (see Section 2.5).
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• Line 72,

usingSphericalPolarGrid=.TRUE.,

Select spherical grid.

• Line 73–74,

dXspacing=4.,
dYspacing=4.,

Set the horizontal grid spacing in degrees spherical distance.

• Line 77–81,

delR=7103300.720021, ...

set the layer thickness in pressure units, starting with the bottom layer.

• Line 87–96,

bathyFile='topog.box'
ploadFile='deltageopotjmd95.bin'
hydrogThetaFile='lev_t.bin',
hydrogSaltFile ='lev_s.bin',
zonalWindFile ='trenberth_taux.bin',
meridWindFile ='trenberth_tauy.bin',
thetaClimFile ='lev_sst.bin',
surfQFile ='shi_qnet.bin',
EmPmRFile ='shi_empmr.bin',

These lines specify the names of the files holding the bathymetry data set, the time-independent geopotential
height anomaly at the bottom, initial conditions of temperature and salinity, wind stress forcing fields, sea surface
temperature climatology, heat flux, and fresh water flux (evaporation minus precipitation minus runoff) at the
surface. See file descriptions in section Section 4.6.3.

Other lines in the file input/data are standard values that are described in the Section 3.8.

4.6.3.3 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

4.6.3.4 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.6.3.5 File input/topog.bin

This file is a 2-D (𝑥, 𝑦) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth of the
model at each grid cell, ordered with the 𝑥 coordinate varying fastest. The points are ordered from low coordinate to
high coordinate for both axes. The units and orientation of the depths in this file are the same as used in the MITgcm
code (Pa for this experiment). In this experiment, a depth of 0 Pa indicates a land point (wall) and a depth of >0 Pa
indicates open ocean.
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4.6.3.6 File input/deltageopotjmd95.box

The file contains twelve identical 2-D maps (𝑥, 𝑦) of geopotential height anomaly at the bottom at rest. The values have
been obtained by vertically integrating the hydrostatic equation with the initial density field (using input/lev_t.
bin and input/lev_s.bin). This file has to be consistent with the temperature and salinity field at rest and the
choice of equation of state!

4.6.3.7 Files input/lev_t.bin and input/lev_s.bin

The files input/lev_t.bin and input/lev_s.bin specify the initial conditions for temperature and salinity
for every grid point in a 3-D array (𝑥, 𝑦, 𝑧). The data are obtain by interpolating monthly mean values using Levitus
and Boyer (1994a,b) [LB94a][LB94b] for January onto the model grid. Keep in mind that the first index corresponds
to the bottom layer and highest index to the surface layer.

4.6.3.8 Files input/trenberth_taux.bin and input/trenberth_tauy.bin

The files input/trenberth_taux.bin and input/trenberth_tauy.bin contain twelve 2-D (𝑥, 𝑦) maps
of zonal and meridional wind stress values, 𝜏𝑥 and 𝜏𝑦 , respectively, in 3-D arrays (𝑥, 𝑦, 𝑡). These are monthly mean
values from Trenberth et al. (1990) [TOL90], units of N m-2.

4.6.3.9 File input/lev_sst.bin

The file input/lev_sst.bin contains twelve monthly surface temperature climatologies from Levitus and Boyer
(1994b) [LB94b] in a 3-D arrays (𝑥, 𝑦, 𝑡).

4.6.3.10 Files input/shi_qnet.bin and input/shi_empmr.bin

The files input/shi_qnet.bin and input/shi_empmr.bin contain twelve monthly surface fluxes of heat
(qnet) and freshwater (empmr) from Jiang et al. (1999) [JSMR99] in 3-D arrays (𝑥, 𝑦, 𝑡). Both fluxes are normalized
so that the total forcing over one year results in no net flux into the ocean (note, the freshwater flux is actually constant
in time).

4.6.3.11 File code/SIZE.h

The file code/SIZE.h is identical to that described in tutorial global ocean simulation, for more specifics see Section
4.5.3.7.

4.6.3.12 File code/CPP_OPTIONS.h

This file uses standard default values except for:

• #define ATMOSPHERIC_LOADING

enables pressure loading which is abused to include the initial geopotential height anomaly.

• #define EXACT_CONSERV

enables more accurate conservation properties to include the horizontal mass divergence in the free surface.

• #define NONLIN_FRSURF

enables the nonlinear free surface.
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4.7 Held-Suarez Atmosphere

(in directory: verification/tutorial_held_suarez_cs/)

This example illustrates the use of the MITgcm as an atmospheric GCM, using simple Held and Suarez (1994) [HS94]
forcing to simulate atmospheric dynamics on global scale. The set-up uses the rescaled pressure coordinate (𝑝*) of
Adcroft and Campin (2004) [AC04] in the vertical direction, with 20 equally-spaced levels, and the conformal cube-
sphere grid (C32) described in Adcroft et al. (2004) [ACHM04].

4.7.1 Overview

This example demonstrates using the MITgcm to simulate the planetary atmospheric circulation, with flat orography
and simplified forcing. In particular, only dry air processes are considered and radiation effects are represented by a
simple Newtonian cooling, Thus, this example does not rely on any particular atmospheric physics package. This kind
of simplified atmospheric simulation has been widely used in GFD-type experiments and in intercomparison projects
of AGCM dynamical cores (Held and Suarez 1994 [HS94]).

The horizontal grid is obtain from the projection of a uniform gridded cube to the sphere. Each of the 6 faces has the
same resolution, with 32 × 32 grid points. The equator coincides with a grid line and crosses through the middle in
4 of the 6 faces, leaving 2 faces for the northern and southern polar regions. This curvilinear grid requires the use of
the 2nd generation exchange topology (pkg/exch2) to connect tile and face edges, but without any limitation on the
number of processors.

The use of the 𝑝* coordinate with 20 equally spaced levels (20 × 50 mb, from 𝑝* = 1000 mb to 0 at the top of the
atmosphere) follows the choice of Held and Suarez (1994) [HS94]. Note that without topography, the 𝑝* coordinate
and the normalized pressure coordinate (𝜎𝑝) coincide exactly. Both viscosity and diffusivity are set to zero here, but an
8th order Shapiro (1970) [Sha70] filter is applied to both momentum and potential temperature, to remove selectively
grid scale noise. Apart from the horizontal grid, this experiment is made very similar to the grid-point model case used
in the Held and Suarez (1994) [HS94] study.

At this resolution, the configuration can be integrated forward for many years on a single processor desktop computer.

4.7.2 Forcing

The model is forced by relaxation to a radiative equilibrium temperature from Held and Suarez (1994) [HS94]. A
linear frictional drag (Rayleigh damping) is applied in the lower part of the atmosphere and accounts for surface
friction and momentum dissipation in the boundary layer. Altogether, this yields the following forcing from Held and
Suarez (1994) [HS94] that is applied to the fluid:

ℱ⃗v = −𝑘v(𝑝)v⃗ℎ (4.48)

ℱ𝜃 = −𝑘𝜃(𝜙, 𝑝)[𝜃 − 𝜃𝑒𝑞(𝜙, 𝑝)] (4.49)

where ℱ⃗v, ℱ𝜃, are the forcing terms in the zonal and meridional momentum and in the potential temperature equations,
respectively. The term 𝑘v in (4.48) applies a Rayleigh damping that is active within the planetary boundary layer. It is
defined so as to decay as pressure decreases according to

𝑘v = 𝑘𝑓 max[0, (𝑝*/𝑃 0
𝑠 − 𝜎𝑏)/(1 − 𝜎𝑏)]

𝜎𝑏 = 0.7 and 𝑘𝑓 = 1/86400 s−1

where 𝑝* is the pressure level of the cell center and 𝑃 0
𝑠 is the pressure at the base of the atmospheric column, which is

constant and uniform here (= 105Pa), in the absence of topography.

The equilibrium temperature 𝜃𝑒𝑞 and relaxation time scale 𝑘𝜃 are set to:

𝜃𝑒𝑞(𝜙, 𝑝*) = max{200(𝑃 0
𝑠 /𝑝

*)𝜅, 315 − ∆𝑇𝑦 sin2(𝜙) − ∆𝜃𝑧 cos2(𝜙) log(𝑝*/𝑃 0
𝑠 )}
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𝑘𝜃(𝜙, 𝑝*) = 𝑘𝑎 + (𝑘𝑠 − 𝑘𝑎) cos4(𝜙) max{0, (𝑝*/𝑃 0
𝑠 − 𝜎𝑏)/(1 − 𝜎𝑏)}

with:

∆𝑇𝑦 = 60 K, 𝑘𝑎 = 1/(40 · 86400) s−1

∆𝜃𝑧 = 10 K, 𝑘𝑠 = 1/(4 · 86400) s−1

Initial conditions correspond to a resting state with horizontally uniform stratified fluid. The initial temperature profile
is simply the horizontal average of the radiative equilibrium temperature.

4.7.3 Set-up description

The model is configured in hydrostatic form, using non-Boussinesq 𝑝* coordinate. The vertical resolution is uniform,
∆𝑝* = 50 × 102 Pa, with 20 levels, from 𝑝* = 105 Pa to 0 at the top. The domain is discretized using the C32
cube-sphere grid (see Adcroft et al. 2004 [ACHM04]) that covers the whole sphere with a relatively uniform grid
spacing. The resolution at the equator or along the Greenwich meridian is similar to a 128 × 64 equally spaced
longitude-latitude grid, but requires 25% less grid points. Grid spacing and grid-point location are not computed by
the model, but instead read from files.

The vector-invariant form of the momentum equation (see Section 2.15) is used so that no explicit metrics are neces-
sary.

Applying the vector-invariant discretization to the atmospheric equations (1.59), and adding the forcing terms (4.48),
(4.49) on the right-hand-side, leads to the set of equations that are solved in this configuration:

𝜕v⃗ℎ

𝜕𝑡
+ (𝑓 + 𝜁)k̂× v⃗ℎ + ∇𝑝(KE) + 𝜔

𝜕ṽh

𝜕p
+ ∇pΦ′ = −kvṽh (4.50)

𝜕Φ′

𝜕𝑝
+
𝜕Π

𝜕𝑝
𝜃′ = 0

∇𝑝 · v⃗ℎ +
𝜕𝜔

𝜕𝑝
= 0

𝜕𝜃

𝜕𝑡
+ ∇𝑝 · (𝜃v⃗ℎ) +

𝜕(𝜃𝜔)

𝜕𝑝
= −𝑘𝜃[𝜃 − 𝜃𝑒𝑞]

where v⃗ℎ and 𝜔 = 𝐷𝑝
𝐷𝑡 are the horizontal velocity vector and the vertical velocity in pressure coordinate, 𝜁 is the relative

vorticity and 𝑓 the Coriolis parameter, k̂ is the vertical unity vector, KE is the kinetic energy, Φ is the geopotential,
and Π the Exner function (Π = 𝐶𝑝(𝑝/𝑝𝑐)

𝜅 with 𝑝𝑐 = 105 Pa). Primed variables correspond to anomaly from the
resting, uniformly stratified state.

As described in Section 2, the continuity equation is integrated vertically, to give a prognostic equation for the surface
pressure 𝑝𝑠:

𝜕𝑝𝑠
𝜕𝑡

+ ∇ℎ ·
∫︁ 𝑝𝑠

0

v⃗ℎ𝑑𝑝 = 0

The implicit free surface form of the pressure equation described in Marshall et al. (1997) [MHPA97] is employed to
solve for 𝑝𝑠; Vertically integrating the hydrostatic balance gives the geopotential Φ′ and allows one to step forward the
momentum equation (4.50). The potential temperature, 𝜃, is stepped forward using the new velocity field (see Section
2.8).
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4.7.3.1 Numerical Stability Criteria

The numerical stability for inertial oscillations (see Adcroft 1995 [Adc95]):

𝑆𝑖 = 𝑓2∆𝑡2 (4.51)

evaluates to 4 × 10−3 at the poles, for 𝑓 = 2Ω sin(𝜋/2) = 1.45 × 10−4 s−1, which is well below the 𝑆𝑖 < 1
upper limit for stability. The advective CFL (Adcroft 1995 [Adc95]) for a extreme maximum horizontal flow speed of
|𝑢⃗| = 90m/s and the smallest horizontal grid spacing ∆𝑥 = 1.1 × 105m:

𝑆𝑎 =
|𝑢⃗|∆𝑡
∆𝑥

(4.52)

evaluates to 0.37, which is close to the stability limit of 0.5. The stability parameter for internal gravity waves propa-
gating with a maximum speed of 𝑐𝑔 = 100 m/s (Adcroft 1995 [Adc95])

𝑆𝑐 =
𝑐𝑔∆𝑡

∆𝑥
(4.53)

evaluates to 4 × 10−1. This is close to the linear stability limit of 0.5.

4.7.4 Experiment Configuration

The model configuration for this experiment resides under the directory verification/tutorial_held_suarez_cs/. The
experiment files

• verification/tutorial_held_suarez_cs/input/data

• verification/tutorial_held_suarez_cs/input/data.pkg

• verification/tutorial_held_suarez_cs/input/data.shap

• verification/tutorial_held_suarez_cs/input/eedata

• verification/tutorial_held_suarez_cs/code/packages.conf

• verification/tutorial_held_suarez_cs/code/CPP_OPTIONS.h

• verification/tutorial_held_suarez_cs/code/SIZE.h

• verification/tutorial_held_suarez_cs/code/DIAGNOSTICS_SIZE.h

• verification/tutorial_held_suarez_cs/code/apply_forcing.F,

contain the code customizations and parameter settings for these experiments. Below we describe the customizations
to these files associated with this experiment.

4.7.4.1 File input/data

Listing 4.26: verification/tutorial_held_suarez_cs/input/data

1 # ====================
2 # | Model parameters |
3 # ====================
4 #
5 # Continuous equation parameters
6 &PARM01
7 tRef=295.2, 295.5, 295.9, 296.3, 296.7, 297.1, 297.6, 298.1, 298.7, 299.3,
8 300.0, 300.7, 301.9, 304.1, 308.0, 315.1, 329.5, 362.3, 419.2, 573.8,

(continues on next page)
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(continued from previous page)

9 sRef=20*0.0,
10 no_slip_sides=.FALSE.,
11 no_slip_bottom=.FALSE.,
12 buoyancyRelation='ATMOSPHERIC',
13 eosType='IDEALG',
14 rotationPeriod=86400.,
15 implicitFreeSurface=.TRUE.,
16 exactConserv=.TRUE.,
17 nonlinFreeSurf=4,
18 select_rStar=2,
19 hFacInf=0.2,
20 hFacSup=2.0,
21 uniformLin_PhiSurf=.FALSE.,
22 #hFacMin=0.2,
23 saltStepping=.FALSE.,
24 momViscosity=.FALSE.,
25 vectorInvariantMomentum=.TRUE.,
26 staggerTimeStep=.TRUE.,
27 readBinaryPrec=64,
28 writeBinaryPrec=64,
29 &
30

31 # Elliptic solver parameters
32 &PARM02
33 cg2dMaxIters=200,
34 #cg2dTargetResidual=1.E-12,
35 cg2dTargetResWunit=1.E-17,
36 &
37

38 # Time stepping parameters
39 &PARM03
40 deltaT=450.,
41 #nIter0=276480,
42 startTime=124416000.,
43 #- run for 1 year (192.iterations x 450.s = 1.day, 360*192=69120):
44 #nTimeSteps=69120,
45 #forcing_In_AB=.FALSE.,
46 tracForcingOutAB=1,
47 abEps=0.1,
48 pChkptFreq=31104000.,
49 chkptFreq=2592000.,
50 dumpFreq=2592000.,
51 #monitorFreq=43200.,
52 taveFreq=0.,
53 #- to run a short test (2.h):
54 nTimeSteps=16,
55 monitorFreq=1.,
56 &
57

58 # Gridding parameters
59 &PARM04
60 usingCurvilinearGrid=.TRUE.,
61 horizGridFile='grid_cs32',
62 radius_fromHorizGrid=6370.E3,
63 delR=20*50.E2,
64 &
65

(continues on next page)
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(continued from previous page)

66 # Input datasets
67 &PARM05
68 #topoFile='topo.cs.bin',
69 &

This file specifies the main parameters for the experiment. The parameters that are significant for this configuration
are:

• Lines 7-8,

tRef=295.2, 295.5, 295.9, 296.3, 296.7, 297.1, 297.6, 298.1, 298.7, 299.3,
300.0, 300.7, 301.9, 304.1, 308.0, 315.1, 329.5, 362.3, 419.2, 573.8,

set reference values for potential temperature (in kelvins) at each model level. The entries are ordered like model
level, from surface up to the top. Density is calculated from anomalies at each level evaluated with respect to
the reference values set here.

• Line 10,

no_slip_sides=.FALSE.,

this line selects a free-slip lateral boundary condition for the horizontal Laplacian friction operator, e.g., 𝜕𝑢
𝜕𝑦 =0

along boundaries in 𝑦 and 𝜕𝑣
𝜕𝑥=0 along boundaries in 𝑥.

• Line 11,

no_slip_bottom=.FALSE.,

this line selects a free-slip boundary condition at the top, in the vertical Laplacian friction operator, e.g., 𝜕𝑢
𝜕𝑝 =

𝜕𝑣
𝜕𝑝 = 0.

• Line 12,

buoyancyRelation='ATMOSPHERIC',

this line sets the type of fluid and the type of vertical coordinate to use, which, in this case, is air with a pressure-
like coordinate (𝑝 or 𝑝*).

• Line 13,

eosType='IDEALG',

Selects the ideal gas equation of state.

• Line 15,

implicitFreeSurface=.TRUE.,

Selects the way the barotropic equation is solved, here using the implicit free-surface formulation.

• Line 16,

exactConserv=.TRUE.,

Explicitly calculate (again) the surface pressure changes from the divergence of the vertically integrated hori-
zontal flow, after the implicit free surface solver and filters are applied.

• Lines 17-18,
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nonlinFreeSurf=4,
select_rStar=2,

Select the non-linear free surface formulation, using 𝑟* vertical coordinate (here 𝑝*). Note that, except for the
default (= 0), other values of those two parameters are only permitted for testing/debugging purpose.

• Line 21,

uniformLin_PhiSurf=.FALSE.,

Select the linear relation between surface geopotential anomaly and surface pressure anomaly to be evaluated
from 𝜕Φ𝑠

𝜕𝑝𝑠
= 1/𝜌(𝜃𝑅𝑒𝑓 ) (see Section 2.10.2). Note that using the default (=.TRUE.), the constant 1/𝜌0 is used

instead, and is not necessarily consistent with other parts of the geopotential that rely on 𝜃𝑅𝑒𝑓 .

• Line 23-24,

saltStepping=.FALSE.,
momViscosity=.FALSE.,

Do not step forward water vapor and do not compute viscous terms. This saves computer time.

• Line 25,

vectorInvariantMomentum=.TRUE.,

Select the vector-invariant form to solve the momentum equation.

• Line 26,

staggerTimeStep=.TRUE.,

Select the staggered time-stepping (rather than synchronous time stepping).

• Lines 27-28,

readBinaryPrec=64,
writeBinaryPrec=64,

Sets format for reading binary input datasets and writing output fields to use 64-bit representation for floating-
point numbers.

• Line 33,

cg2dMaxIters=200,

Sets maximum number of iterations the 2-D conjugate gradient solver will use, irrespective of convergence
criteria being met.

• Line 35,

cg2dTargetResWunit=1.E-17,

Sets the tolerance (in units of 𝜔) which the 2-D conjugate gradient solver will use to test for convergence in
equation (2.15) to 1× 10−17 Pa/s. Solver will iterate until tolerance falls below this value or until the maximum
number of solver iterations is reached.

• Line 40,

deltaT=450.,
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Sets the timestep ∆𝑡 used in the model to 450 seconds (= 1/8 hour).

• Line 42,

startTime=124416000.,

Sets the starting time, in seconds, for the model time counter. A non-zero starting time requires the initial state
read from a pickup file. By default the pickup file is named according to the integer number (nIter0) of time
steps in the startTime value (nIter0 = startTime / deltaT).

• Line 44,

#nTimeSteps=69120,

A commented out setting for the length of the simulation (in number of timesteps) that corresponds to 1-year
simulation.

• Lines 54-55,

nTimeSteps=16,
monitorFreq=1.,

Sets the length of the simulation (in number of timesteps) and the frequency (in seconds) for “monitor” output
to 16 iterations and 1 seconds respectively. This choice corresponds to a short simulation test.

• Line 48,

pChkptFreq=31104000.,

Sets the time interval, in seconds, between 2 consecutive “permanent” pickups (“permanent checkpoint fre-
quency”) that are used to restart the simulation, to 1 year.

• Line 48,

chkptFreq=2592000.,

Sets the time interval, in seconds, between two consecutive “temporary” pickups (“checkpoint frequency”) to
one month. The “temporary” pickup file name is alternatively “ckptA” and “ckptB”; these pickups (as opposed
to the permanent ones) are designed to be over-written by the model as the simulation progresses.

• Line 50,

dumpFreq=2592000.,

Set the frequency (in seconds) for the snapshot output to 1 month.

• Line 51,

#monitorFreq=43200.,

A commented out line setting the frequency (in seconds) for the “monitor” output to 12 h. This frequency fits
better with the longer simulation of one year.

• Line 60,

usingCurvilinearGrid=.TRUE.,

Set the horizontal type of grid to curvilinear grid.

• Line 61,
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horizGridFile='grid_cs32',

Set the root for the grid file name to grid_cs32. The grid-file names are derived from the root, adding a suffix
with the face number (e.g., .face001.bin, .face002.bin · · · )

• Lines 63,

delR=20*50.E2,

This line sets the increments in pressure units to 20 equally thick levels of 50 × 102 Pa each. This defines the
origin (interface 𝑘 = 1) of the vertical pressure axis, with decreasing pressure as the level index 𝑘 increases.

• Line 68,

#topoFile='topo.cs.bin'

This commented out line would set the file name of a 2-D orography file, in units of meters, to topo.cs.bin.

Other lines in the file input/data are standard values that are described in Section 3..

4.7.4.2 File input/data.pkg

Listing 4.27: verification/tutorial_held_suarez_cs/input/data.pkg

1 # Packages
2 &PACKAGES
3 useSHAP_FILT=.TRUE.,
4 useDiagnostics=.TRUE.,
5 #useMNC=.TRUE.,
6 &

This file specifies the additional packages that the model uses for the experiment. Note that some packages are used
by default (e.g., pkg/generic_advdiff) and some others are selected according to parameter in input/data.pkg (e.g.,
pkg/mom_vecinv). The additional packages that are used for this configuration are

• Line 3,

useSHAP_FILT=.TRUE.,

This line selects the Shapiro filter (Shapiro 1970 [Sha70]) (pkg/shap_filt) to be used in this experiment.

• Line 4,

useDiagnostics=.TRUE.,

This line selects pkg/diagnostics to be used in this experiment.

• Line 5,

#useMNC=.TRUE.,

This line would select pkg/mnc for I/O but is commented out.
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4.7.4.3 File input/data.shap

Listing 4.28: verification/tutorial_held_suarez_cs/input/data.shap

1 # Shapiro Filter parameters
2 &SHAP_PARM01
3 shap_filt_uvStar=.FALSE.,
4 shap_filt_TrStagg=.TRUE.,
5 Shap_funct=2,
6 nShapT=0,
7 nShapUV=4,
8 #nShapTrPhys=0,
9 nShapUVPhys=4,

10 #Shap_TrLength=140000.,
11 #Shap_uvLength=110000.,
12 #Shap_Trtau=5400.,
13 #Shap_uvtau=1800.,
14 #Shap_diagFreq=2592000.,
15 &

This file specifies the parameters that the model uses for the Shapiro filter package (Shapiro 1970 [Sha70]), see Section
2.18. The parameters that are significant for this configuration are:

• Line 5,

Shap_funct=2,

This line selects which Shapiro filter function to use, here S2, for this experiment (see Section 2.18).

• Lines 6-7,

nShapT=0,
nShapUV=4,

These lines select the order of the Shapiro filter for active tracers (𝜃 and 𝑞) and momentum (𝑢, 𝑣) respectively.
In this case, no filter is applied to active tracers. Regarding the momentum, this sets the integer parameter 𝑛 to
4, in the equations of Section 2.18, which corresponds to a 8th order filter.

• Line 9,

nShapUVPhys=4,

This line selects the order of the physical space filter (filter function S2g, see Section 2.18) that applies to 𝑢, 𝑣.
The difference nShapUV - nShapUVPhys corresponds to the order of the computational filter (filter function
S2c, see Section 2.18).

• Lines 12-13,

#Shap_Trtau=5400.,
#Shap_uvtau=1800.,

These commented lines would have set the time scale of the filter (in seconds), for 𝜃, 𝑞 and for 𝑢, 𝑣 respectively,
to 5400 s (90 min) and 1800 s (30 min). Without explicitly setting those timescales, the default is used, which
corresponds to the model timestep.
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4.7.4.4 File input/eedata

Listing 4.29: verification/tutorial_held_suarez_cs/input/eedata

1 # Example "eedata" file
2 # Lines beginning "#" are comments
3 # nTx - No. threads per process in X
4 # nTy - No. threads per process in Y
5 &EEPARMS
6 useCubedSphereExchange=.TRUE.,
7 # Activate one line below to support 2, 3 or 6 way multi-threading
8 #nTx=2,
9 #nTx=3,

10 #nTx=6,
11 &
12 # Note: Some systems use & as the
13 # namelist terminator. Other systems
14 # use a / character (as shown here).

This file uses standard default values except line 6:

useCubedSphereExchange=.TRUE.,

This line selects the cubed-sphere specific exchanges to to connect tiles and faces edges.

4.7.4.5 File code/SIZE.h

Listing 4.30: verification/tutorial_held_suarez_cs/code/SIZE.h

1 CBOP
2 C !ROUTINE: SIZE.h
3 C !INTERFACE:
4 C include SIZE.h
5 C !DESCRIPTION: \bv
6 C *==========================================================*
7 C | SIZE.h Declare size of underlying computational grid.
8 C *==========================================================*
9 C | The design here supports a three-dimensional model grid

10 C | with indices I,J and K. The three-dimensional domain
11 C | is comprised of nPx*nSx blocks (or tiles) of size sNx
12 C | along the first (left-most index) axis, nPy*nSy blocks
13 C | of size sNy along the second axis and one block of size
14 C | Nr along the vertical (third) axis.
15 C | Blocks/tiles have overlap regions of size OLx and OLy
16 C | along the dimensions that are subdivided.
17 C *==========================================================*
18 C \ev
19 C
20 C Voodoo numbers controlling data layout:
21 C sNx :: Number of X points in tile.
22 C sNy :: Number of Y points in tile.
23 C OLx :: Tile overlap extent in X.
24 C OLy :: Tile overlap extent in Y.
25 C nSx :: Number of tiles per process in X.
26 C nSy :: Number of tiles per process in Y.
27 C nPx :: Number of processes to use in X.

(continues on next page)
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(continued from previous page)

28 C nPy :: Number of processes to use in Y.
29 C Nx :: Number of points in X for the full domain.
30 C Ny :: Number of points in Y for the full domain.
31 C Nr :: Number of points in vertical direction.
32 CEOP
33 INTEGER sNx
34 INTEGER sNy
35 INTEGER OLx
36 INTEGER OLy
37 INTEGER nSx
38 INTEGER nSy
39 INTEGER nPx
40 INTEGER nPy
41 INTEGER Nx
42 INTEGER Ny
43 INTEGER Nr
44 PARAMETER (
45 & sNx = 32,
46 & sNy = 32,
47 & OLx = 2,
48 & OLy = 2,
49 & nSx = 6,
50 & nSy = 1,
51 & nPx = 1,
52 & nPy = 1,
53 & Nx = sNx*nSx*nPx,
54 & Ny = sNy*nSy*nPy,
55 & Nr = 20)
56

57 C MAX_OLX :: Set to the maximum overlap region size of any array
58 C MAX_OLY that will be exchanged. Controls the sizing of exch
59 C routine buffers.
60 INTEGER MAX_OLX
61 INTEGER MAX_OLY
62 PARAMETER ( MAX_OLX = OLx,
63 & MAX_OLY = OLy )
64

Four lines are customized in this file for the current experiment

• Line 45,

sNx=32,

sets the lateral domain extent in grid points along the 𝑥-direction, for one face.

• Line 46,

sNy=32,

sets the lateral domain extent in grid points along the 𝑦-direction, for one face.

• Line 49,

nSx=6,

sets the number of tiles in the 𝑥-direction, for the model domain decomposition. In this simple case (single
processor, with one tile per face), this number corresponds to the total number of faces.
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• Line 55,

Nr=20,

sets the vertical domain extent in grid points.

4.7.4.6 File code/packages.conf

Listing 4.31: verification/tutorial_held_suarez_cs/input/code/packages.conf

1 #-- list of packages (or group of packages) to compile for this experiment:
2 exch2
3 gfd
4 shap_filt
5 diagnostics
6 mnc

This file specifies the packages that are compiled and made available for this experiment. The additional packages that
are used for this configuration are

• Line 1,

gfd

This line selects the standard set of packages that are used by default.

• Line 2,

shap_filt

This line makes the Shapiro filter package available for this experiment.

• Line 3,

exch2

This line selects pkg/exch2 to be compiled and used in this experiment. Note that at present, no such parameter
useEXCH2 exists and therefore this package is always used when it is compiled.

• Line 4,

diagnostics

This line selects pkg/diagnostics to be compiled, and makes it available for this experiment.

• Line 5,

mnc

This line selects the pkg/mnc to be compiled, and makes it available for this experiment.
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4.7.4.7 File code/CPP_OPTIONS.h

This file uses the standard default except for:

#define NONLIN_FRSURF

This line enables the non-linear free-surface part of the code, which is required for the 𝑝* coordinate formulation.

4.7.4.8 Other Files

Other files relevant to this experiment are

• code/apply_forcing.F

• input/grid_cs32.face00[n].bin, with 𝑛 = 1, 2, 3, 4, 5, 6

contain the code customizations and binary input files for this experiment. The file apply_forcing.F contains four
subroutines that calculate the forcing terms (i.e., right-hand side terms) in the momentum equation (4.48), EX-
TERNAL_FORCING_U and EXTERNAL_FORCING_V and in the potential temperature equation (4.49), EXTER-
NAL_FORCING_T. The water-vapor forcing subroutine (EXTERNAL_FORCING_S) is left empty for this exper-
iment. The grid-files input/grid_cs32.face00[n].bin, with 𝑛 = 1, 2, 3, 4, 5, 6, are binary files (direct-
access, big-endian 64 bit reals) that contains all the cubed-sphere grid lengths, areas and grid-point positions, with one
file per face. Each file contains 18 2-D arrays (dimension 33 × 33) that correspond to the model variables: XC YC
DXF DYF RA XG YG DXV DYU RAZ DXC DYC RAW RAS DXG DYG AngleCS AngleSN (see model/inc/GRID.h)

4.8 Deep Convection

(in directory: verification/tutorial_deep_convection/)

This experiment, Figure 4.39, showcasing MITgcm’s non-hydrostatic capability, was designed to explore the temporal
and spatial characteristics of convection plumes as they might exist during a period of oceanic deep convection. It is

• non-hydrostatic

• doubly-periodic with cubic geometry

• discretized with 50 m resolution in 𝑥, 𝑦, 𝑧

• Cartesian

• on an 𝑓 -plane

• using a linear equation of state

4.8.1 Overview

The model domain consists of an approximately 3 km square by 1 km deep box of initially unstratified, resting fluid.
The domain is doubly periodic.

The experiment has 20 levels in the vertical, each of equal thickness ∆𝑧 = 50 m (the horizontal resolution is also 50
m). The fluid is initially unstratified with a uniform reference potential temperature 𝜃 = 20 oC. The equation of state
used in this experiment is linear

𝜌 = 𝜌0(1 − 𝛼𝜃𝜃
′
) (4.54)
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Figure 4.39: Schematic of simulation domain for the surface driven convection experiment. The domain is doubly
periodic with an initially uniform temperature of 20 oC.

which is implemented in the model as a density anomaly equation

𝜌
′

= −𝜌0𝛼𝜃𝜃
′

(4.55)

with 𝜌0 = 1000 kg m−3 and 𝛼𝜃 = 2 × 10−4 degrees−1. Integrated forward in this configuration, the model state
variable theta is equivalent to either in-situ temperature, 𝑇 , or potential temperature, 𝜃. For consistency with other
examples, in which the equation of state is non-linear, we use 𝜃 to represent temperature here. This is the quantity that
is carried in the model core equations.

As the fluid in the surface layer is cooled (at a mean rate of 800 Wm2), it becomes convectively unstable and overturns,
at first close to the grid-scale, but, as the flow matures, on larger scales (Figure 4.40 and Figure 4.41), under the
influence of rotation (𝑓𝑜 = 10−4 s−1).

Model parameters are specified in file input/data. The grid dimensions are prescribed in code/SIZE.h. The forcing (file
input/Qsurf.bin) is specified in a binary data file generated using the Matlab script input/gendata.m.

4.8.2 Equations solved

The model is configured in non-hydrostatic form, that is, all terms in the Navier Stokes equations are retained and the
pressure field is found, subject to appropriate boundary conditions, through inversion of a 3-D elliptic equation.

The implicit free surface form of the pressure equation described in Marshall et. al (1997) [MHPA97] is employed. A
horizontal Laplacian operator ∇2

ℎ provides viscous dissipation. The thermodynamic forcing appears as a sink in the
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Figure 4.40: Vertical section

Figure 4.41: Surface section
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equation for potential temperature 𝜃. This produces a set of equations solved in this configuration as follows:

𝐷𝑢

𝐷𝑡
− 𝑓𝑣 +

1

𝜌

𝜕𝑝
′

𝜕𝑥
−∇ℎ ·𝐴ℎ∇ℎ𝑢− 𝜕

𝜕𝑧
𝐴𝑧

𝜕𝑢

𝜕𝑧
=

{︃
0 (surface)
0 (interior)

𝐷𝑣

𝐷𝑡
+ 𝑓𝑢+

1

𝜌

𝜕𝑝
′

𝜕𝑦
−∇ℎ ·𝐴ℎ∇ℎ𝑣 −

𝜕

𝜕𝑧
𝐴𝑧

𝜕𝑣

𝜕𝑧
=

{︃
0 (surface)
0 (interior)

𝐷𝑤

𝐷𝑡
+ 𝑔

𝜌
′

𝜌
+

1

𝜌

𝜕𝑝
′

𝜕𝑧
−∇ℎ ·𝐴ℎ∇ℎ𝑤 − 𝜕

𝜕𝑧
𝐴𝑧

𝜕𝑤

𝜕𝑧
=

{︃
0 (surface)
0 (interior)

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
+ = 0

𝐷𝜃

𝐷𝑡
−∇ℎ ·𝐾ℎ∇ℎ𝜃 −

𝜕

𝜕𝑧
𝐾𝑧

𝜕𝜃

𝜕𝑧
=

{︃
ℱ𝜃 (surface)
0 (interior)

where 𝑢 = 𝐷𝑥
𝐷𝑡 , 𝑣 = 𝐷𝑦

𝐷𝑡 and 𝑤 = 𝐷𝑧
𝐷𝑡 are the components of the flow vector in directions 𝑥, 𝑦 and 𝑧. The pressure is

diagnosed through inversion (subject to appropriate boundary conditions) of a 3-D elliptic equation derived from the
divergence of the momentum equations and continuity (see Section 1.3.6).

4.8.3 Discrete numerical configuration

The domain is discretized with a uniform grid spacing in each direction. There are 64 grid cells in directions 𝑥 and 𝑦
and 20 vertical levels thus the domain comprises a total of just over 80,000 gridpoints.

4.8.4 Numerical stability criteria and other considerations

For a heat flux of 800 Wm2 and a rotation rate of 10−4 s−1 the plume-scale can be expected to be a few hundred
meters guiding our choice of grid resolution. This in turn restricts the timestep we can take. It is also desirable to
minimize the level of diffusion and viscosity we apply.

For this class of problem it is generally the advective time-scale which restricts the timestep.

For an extreme maximum flow speed of |𝑢⃗| = 1𝑚𝑠−1, at a resolution of 50 m, the implied maximum timestep for
stability, 𝛿𝑡𝑢 is

𝛿𝑡𝑢 =
∆𝑥

|𝑢⃗|
= 50𝑠

The choice of 𝛿𝑡 = 10 s is a safe 20 percent of this maximum.

Interpreted in terms of a mixing-length hypothesis, a magnitude of Laplacian diffusion coefficient 𝜅ℎ(= 𝜅𝑣) = 0.1
m2s−1 is consistent with an eddy velocity of 2 mm s−1 correlated over 50 m.

4.8.5 Experiment configuration

The model configuration for this experiment resides under the directory verification/convection/. The experiment files

• code/CPP_OPTIONS.h

• code/SIZE.h

• input/data

• input/data.pkg
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• input/eedata

• input/Qsurf.bin,

contain the code customizations and parameter settings for this experiment. Below we describe these experiment-
specific customizations.

4.8.5.1 File code/CPP_OPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

4.8.5.2 File code/SIZE.h

Listing 4.32: verification/tutorial_deep_convection/code/SIZE.h

1 CBOP
2 C !ROUTINE: SIZE.h
3 C !INTERFACE:
4 C include SIZE.h
5 C !DESCRIPTION: \bv
6 C *==========================================================*
7 C | SIZE.h Declare size of underlying computational grid.
8 C *==========================================================*
9 C | The design here supports a three-dimensional model grid

10 C | with indices I,J and K. The three-dimensional domain
11 C | is comprised of nPx*nSx blocks (or tiles) of size sNx
12 C | along the first (left-most index) axis, nPy*nSy blocks
13 C | of size sNy along the second axis and one block of size
14 C | Nr along the vertical (third) axis.
15 C | Blocks/tiles have overlap regions of size OLx and OLy
16 C | along the dimensions that are subdivided.
17 C *==========================================================*
18 C \ev
19 C
20 C Voodoo numbers controlling data layout:
21 C sNx :: Number of X points in tile.
22 C sNy :: Number of Y points in tile.
23 C OLx :: Tile overlap extent in X.
24 C OLy :: Tile overlap extent in Y.
25 C nSx :: Number of tiles per process in X.
26 C nSy :: Number of tiles per process in Y.
27 C nPx :: Number of processes to use in X.
28 C nPy :: Number of processes to use in Y.
29 C Nx :: Number of points in X for the full domain.
30 C Ny :: Number of points in Y for the full domain.
31 C Nr :: Number of points in vertical direction.
32 CEOP
33 INTEGER sNx
34 INTEGER sNy
35 INTEGER OLx
36 INTEGER OLy
37 INTEGER nSx
38 INTEGER nSy
39 INTEGER nPx
40 INTEGER nPy
41 INTEGER Nx

(continues on next page)
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(continued from previous page)

42 INTEGER Ny
43 INTEGER Nr
44 PARAMETER (
45 & sNx = 50,
46 & sNy = 50,
47 & OLx = 2,
48 & OLy = 2,
49 & nSx = 2,
50 & nSy = 2,
51 & nPx = 1,
52 & nPy = 1,
53 & Nx = sNx*nSx*nPx,
54 & Ny = sNy*nSy*nPy,
55 & Nr = 50)
56

57 C MAX_OLX :: Set to the maximum overlap region size of any array
58 C MAX_OLY that will be exchanged. Controls the sizing of exch
59 C routine buffers.
60 INTEGER MAX_OLX
61 INTEGER MAX_OLY
62 PARAMETER ( MAX_OLX = OLx,
63 & MAX_OLY = OLy )
64

Three lines are customized in this file. These prescribe the domain grid dimensions.

• Line 45,

sNx=50,

this line sets the lateral domain extent in grid points for the axis aligned with the 𝑥-coordinate.

• Line 46,

sNy=50,

this line sets the lateral domain extent in grid points for the axis aligned with the 𝑦-coordinate.

• Line 55,

Nr=50,

this line sets the vertical domain extent in grid points.

4.8.5.3 File input/data

Listing 4.33: verification/tutorial_deep_convection/input/data

1 # ====================
2 # | Model parameters |
3 # ====================
4 #
5 # Continuous equation parameters
6 &PARM01
7 tRef=20*20.,
8 sRef=20*35.,

(continues on next page)
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(continued from previous page)

9 viscAh=4.E-2,
10 viscAz=4.E-2,
11 no_slip_sides=.FALSE.,
12 no_slip_bottom=.FALSE.,
13 diffKhT=4.E-2,
14 diffKzT=4.E-2,
15 f0=1.E-4,
16 beta=0.E-11,
17 tAlpha=2.0E-4,
18 sBeta =0.,
19 gravity=10.,
20 rhoConst=1000.,
21 rhoNil=1000.,
22 heatCapacity_Cp=4000.,
23 #rigidLid=.TRUE.,
24 implicitFreeSurface=.TRUE.,
25 #exactConserv=.TRUE.,
26 eosType='LINEAR',
27 nonHydrostatic=.TRUE.,
28 saltStepping=.FALSE.,
29 &
30

31 # Elliptic solver parameters
32 &PARM02
33 cg2dMaxIters=1000,
34 cg2dTargetResidual=1.E-9,
35 cg3dMaxIters=100,
36 cg3dTargetResidual=1.E-9,
37 &
38

39 # Time stepping parameters
40 &PARM03
41 nIter0=0,
42 #endTime=43200.,
43 nTimeSteps=3,
44 deltaT=20.,
45 abEps=0.1,
46 pChkptFreq=43200.,
47 chkptFreq=7200.,
48 dumpFreq=1800.,
49 monitorFreq=600.,
50 monitorSelect=1,
51 monitorFreq=1.,
52 &
53

54 # Gridding parameters
55 &PARM04
56 usingCartesianGrid=.TRUE.,
57 dXspacing=20.,
58 dYspacing=20.,
59 delZ=50*20.,
60 &
61

62 # Input datasets
63 &PARM05
64 surfQnetFile= 'Qnet_p32.bin',
65 hydrogThetaFile='T.120mn.bin',

(continues on next page)
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(continued from previous page)

66 pSurfInitFile='Eta.120mn.bin',
67 uVelInitFile = 'U.120mn.bin',
68 vVelInitFile = 'V.120mn.bin',
69 &

This file specifies the main parameters for the experiment. The parameters that are significant for this configuration
are

• Line 7,

tRef=20*20.0,

this line sets the initial and reference values of potential temperature at each model level in units of ∘C. Here the
value is arbitrary since, in this case, the flow evolves independently of the absolute magnitude of the reference
temperature. For each depth level the initial and reference profiles will be uniform in 𝑥 and 𝑦.

• Line 8,

sRef=20*35.0,

this line sets the initial and reference values of salinity at each model level in units of ppt. In this case salinity
is set to an (arbitrary) uniform value of 35.0 ppt. However since, in this example, density is independent of
salinity, an appropriately defined initial salinity could provide a useful passive tracer. For each depth level the
initial and reference profiles will be uniform in 𝑥 and 𝑦.

• Line 9,

viscAh=0.1,

this line sets the horizontal Laplacian dissipation coefficient to 0.1 m2s−1. Boundary conditions for this operator
are specified later.

• Line 10,

viscAz=0.1,

this line sets the vertical Laplacian frictional dissipation coefficient to 0.1 m2s−1. Boundary conditions for this
operator are specified later.

• Line 11,

no_slip_sides=.FALSE.

this line selects a free-slip lateral boundary condition for the horizontal Laplacian friction operator e.g. 𝜕𝑢
𝜕𝑦 =0

along boundaries in 𝑦 and 𝜕𝑣
𝜕𝑥=0 along boundaries in 𝑥.

• Lines 12,

no_slip_bottom=.TRUE.

this line selects a no-slip boundary condition for the bottom boundary condition in the vertical Laplacian friction
operator e.g., 𝑢 = 𝑣 = 0 at 𝑧 = −𝐻 , where 𝐻 is the local depth of the domain.

• Line 13,

diffKhT=0.1,

this line sets the horizontal diffusion coefficient for temperature to 0.1 m2s−1. The boundary condition on this
operator is 𝜕

𝜕𝑥 = 𝜕
𝜕𝑦 = 0 at all boundaries.
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• Line 14,

diffKzT=0.1,

this line sets the vertical diffusion coefficient for temperature to 0.1 m2s−1. The boundary condition on this
operator is 𝜕

𝜕𝑧 = 0 on all boundaries.

• Line 15,

f0=1E-4,

this line sets the Coriolis parameter to 1 × 10−4 s−1. Since 𝛽 = 0.0 this value is then adopted throughout the
domain.

• Line 16,

beta=0.E-11,

this line sets the the variation of Coriolis parameter with latitude to 0.

• Line 17,

tAlpha=2.E-4,

This line sets the thermal expansion coefficient for the fluid to 2 × 10−4 oC−1.

• Line 18,

sBeta=0,

This line sets the saline expansion coefficient for the fluid to 0, consistent with salt’s passive role in this example.

• Line 23-24,

rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,

Selects the barotropic pressure equation to be the implicit free surface formulation.

• Line 26,

eosType='LINEAR',

Selects the linear form of the equation of state.

• Line 27,

nonHydrostatic=.TRUE.,

Selects for non-hydrostatic code.

• Line 33,

cg2dMaxIters=1000,

Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3-D elliptic equation.

• Line 34,

cg2dTargetResidual=1.E-9,

4.8. Deep Convection 259



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3-D elliptic equation.

• Line 35,

cg3dMaxIters=40,

This line sets the maximum number of iterations the 3-D conjugate gradient solver will use to 40, irrespective
of the convergence criteria being met.

• Line 36,

cg3dTargetResidual=1.E-9,

Sets the tolerance which the 3-D conjugate gradient solver will use to test for convergence in equation (2.61)
to 1 × 10−9. The solver will iterate until the tolerance falls below this value or until the maximum number of
solver iterations is reached.

• Line43,

nTimeSteps=8640.,

Sets the number of timesteps at which this simulation will terminate (in this case 8640 timesteps or 1 day or
𝛿𝑡 = 10 s). At the end of a simulation a checkpoint file is automatically written so that a numerical experiment
can consist of multiple stages.

• Line 44,

deltaT=10,

Sets the timestep 𝛿𝑡 to 10 s.

• Line 57,

dXspacing=50.0,

Sets horizontal (𝑥-direction) grid interval to 50 m.

• Line 58,

dYspacing=50.0,

Sets horizontal (𝑦-direction) grid interval to 50 m.

• Line 59,

delZ=20*50.0,

Sets vertical grid spacing to 50 m. Must be consistent with code/SIZE.h. Here, 20 corresponds to the number of
vertical levels.

• Line64,

surfQfile='Qsurf.bin'

This line specifies the name of the file from which the surface heat flux is read. This file is a 2-D (𝑥, 𝑦) map. It is
assumed to contain 64-bit binary numbers giving the value of 𝑄 (W m2) to be applied in each surface grid cell,
ordered with the 𝑥 coordinate varying fastest. The points are ordered from low coordinate to high coordinate
for both axes. The matlab program input/gendata.m shows how to generate the surface heat flux file used in the
example.

260 Chapter 4. MITgcm Tutorial Example Experiments

https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_deep_convection/code/SIZE.h
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_deep_convection/input/gendata.m


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

4.8.5.4 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

4.8.5.5 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.8.5.6 File input/Qsurf.bin

The file input/Qsurf.bin specifies a 2-D (𝑥, 𝑦) map of heat flux values where 𝑄 = 𝑄𝑜 × (0.5 +
random number between 0 and 1).

In the example𝑄𝑜 = 800 W m−2 so that values of𝑄 lie in the range 400 to 1200 W m−2 with a mean of𝑄𝑜. Although
the flux models a loss, because it is directed upwards, according to the model’s sign convention, 𝑄 is positive.

4.9 Gravity Plume On a Continental Slope

(in directory: verification/tutorial_plume_on_slope/)

Figure 4.42: Temperature after 23 hours of cooling. The cold dense water is mixed with ambient water as it accelerates
down the slope and hence is warmer than the unmixed plume.

An important test of any ocean model is the ability to represent the flow of dense fluid down a slope. One example of
such a flow is a non-rotating gravity plume on a continental slope, forced by a limited area of surface cooling above a
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continental shelf. Because the flow is non-rotating, a two dimensional model can be used in the across slope direction.
The experiment is non-hydrostatic and uses open-boundaries to radiate transients at the deep water end. (Dense flow
down a slope can also be forced by a dense inflow prescribed on the continental shelf; this configuration is being
implemented by the DOME (Dynamics of Overflow Mixing and Entrainment) collaboration to compare solutions in
different models).

The fluid is initially unstratified. The surface buoyancy loss 𝐵0 (dimensions of L2T−3) over a cross-shelf distance 𝑅
causes vertical convective mixing and modifies the density of the fluid by an amount

∆𝜌 =
𝐵0𝜌0𝑡

𝑔𝐻

where 𝐻 is the depth of the shelf, 𝑔 is the acceleration due to gravity, 𝑡 is time since onset of cooling and 𝜌0 is the
reference density. Dense fluid slumps under gravity, with a flow speed close to the gravity wave speed:

𝑈 ∼
√︀
𝑔′𝐻 ∼

√︃
𝑔∆𝜌𝐻

𝜌0
∼
√︀
𝐵0𝑡

A steady state is rapidly established in which the buoyancy flux out of the cooling region is balanced by the surface
buoyancy loss. Then

𝑈 ∼ (𝐵0𝑅)1/3 ; ∆𝜌 ∼ 𝜌0
𝑔𝐻

(𝐵0𝑅)2/3

The Froude number of the flow on the shelf is close to unity (but in practice slightly less than unity, giving subcritical
flow). When the flow reaches the slope, it accelerates, so that it may become supercritical (provided the slope angle
𝛼 is steep enough). In this case, a hydraulic control is established at the shelf break. On the slope, where the Froude
number is greater than one, and gradient Richardson number (defined as 𝑅𝑖 ∼ 𝑔′ℎ*/𝑈2 where ℎ* is the thickness
of the interface between dense and ambient fluid) is reduced below 1/4, Kelvin-Helmholtz instability is possible, and
leads to entrainment of ambient fluid into the plume, modifying the density, and hence the acceleration down the slope.
Kelvin-Helmholtz instability is suppressed at low Reynolds and Peclet numbers given by

𝑅𝑒 ∼ 𝑈ℎ

𝜈
∼ (𝐵0𝑅)1/3ℎ

𝜈
; 𝑃𝑒 = 𝑅𝑒𝑃𝑟

where ℎ is the depth of the dense fluid on the slope. Hence this experiment is carried out in the high Re, Pe regime.
A further constraint is that the convective heat flux must be much greater than the diffusive heat flux (Nusselt number
>> 1). Then

𝑁𝑢 =
𝑈ℎ*

𝜅
>> 1

Finally, since we have assumed that the convective mixing on the shelf occurs in a much shorter time than the horizontal
equilibration, this implies 𝐻/𝑅 << 1.

Hence to summarize the important non-dimensional parameters, and the limits we are considering:

𝐻

𝑅
<< 1 ; 𝑅𝑒 >> 1 ; 𝑃𝑒 >> 1 ; 𝑁𝑢 >> 1 ; ; 𝑅𝑖 < 1/4

In addition we are assuming that the slope is steep enough to provide sufficient acceleration to the gravity plume, but
nonetheless much less that 1:1, since many Kelvin-Helmholtz billows appear on the slope, implying horizontal length
scale of the slope >> the depth of the dense fluid.
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4.9.1 Configuration

The topography, spatial grid, forcing and initial conditions are all specified in binary data files generated using matlab
script verification/tutorial_plume_on_slope/input/gendata.m and detailed in Section 4.9.2. Other model parameters
are specified in input/data and input/data.obcs and detailed in Section 4.9.4.

4.9.2 Binary input data

Figure 4.43: Horizontal grid spacing, ∆𝑥, in the across-slope direction for the gravity plume experiment.

The domain is 200 m deep and 6.4 km across. Uniform resolution of 60 × 31/3 m is used in the vertical and variable
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Figure 4.44: Topography, ℎ(𝑥), used for the gravity plume experiment.
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Figure 4.45: Upward surface heat flux, 𝑄(𝑥), used as forcing in the gravity plume experiment.
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resolution of the form shown in Figure 4.43 with 320 points is used in the horizontal. The formula for ∆𝑥 is:

∆𝑥(𝑖) = ∆𝑥1 + (∆𝑥2 − ∆𝑥1)(1 + tanh

(︂
𝑖− 𝑖𝑠
𝑤

)︂
)/2

where

𝑁𝑥 = 320

𝐿𝑥 = 6400 (m)

∆𝑥1 =
2

3

𝐿𝑥

𝑁𝑥
(m)

∆𝑥2 =
𝐿𝑥/2

𝑁𝑥− 𝐿𝑥/(2∆𝑥1)
(m)

𝑖𝑠 = 𝐿𝑥/(2∆𝑥1)

𝑤 = 40

Here, ∆𝑥1 is the resolution on the shelf, ∆𝑥2 is the resolution in deep water and 𝑁𝑥 is the number of points in the
horizontal.

The topography, shown in Figure 4.44, is given by:

𝐻(𝑥) = −𝐻𝑜 + (𝐻𝑜 − ℎ𝑠)(1 + tanh

(︂
𝑥− 𝑥𝑠
𝐿𝑠

)︂
)/2

where

𝐻𝑜 = 200 (m)
ℎ𝑠 = 40 (m)
𝑥𝑠 = 1500 + 𝐿𝑥/2 (m)

𝐿𝑠 =
(𝐻𝑜 − ℎ𝑠)

2𝑠
(m)

𝑠 = 0.15

Here, 𝑠 is the maximum slope, 𝐻𝑜 is the maximum depth, ℎ𝑠 is the shelf depth, 𝑥𝑠 is the lateral position of the
shelf-break and 𝐿𝑠 is the length-scale of the slope.

The forcing is through heat loss over the shelf, shown in Figure 4.45 and takes the form of a fixed flux with profile:

𝑄(𝑥) = 𝑄𝑜(1 + tanh

(︂
𝑥− 𝑥𝑞
𝐿𝑞

)︂
)/2

where

𝑄𝑜 = 200 (W m−2)
𝑥𝑞 = 2500 + 𝐿𝑥/2 (m)
𝐿𝑞 = 100 (m)

Here, 𝑄𝑜 is the maximum heat flux, 𝑥𝑞 is the position of the cut-off, and 𝐿𝑞 is the width of the cut-off.

The initial temperature field is unstratified but with random perturbations, to induce convection early on in the run.
The random perturbation are calculated in computational space and because of the variable resolution introduce some
spatial correlations, but this does not matter for this experiment. The perturbations have range 0 − 0.01 ∘K.

266 Chapter 4. MITgcm Tutorial Example Experiments



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

4.9.3 Code configuration

The computational domain (number of gridpoints) is specified in code/SIZE.h and is configured as a single tile of
dimensions 320 × 1 × 60.

To compile the model code for this experiment, the non-hydrostatic algorithm needs to be enabled, and the open-
boundaries package (pkg/obcs) is required:

• Non-hydrostatic terms and algorithm are enabled with #define ALLOW_NONHYDROSTATIC in
code/CPP_OPTIONS.h and activated with nonHydrostatic =.TRUE, in namelist PARM01 of input/data.

• Open boundaries are enabled by adding line obcs to package configuration file code/packages.conf and acti-
vated via useOBCS =.TRUE, in namelist PACKAGES of input/data.pkg.

4.9.4 Model parameters

Table 4.1: Model parameters used in the gravity plume experiment.
Parameter Value Description
𝑔 9.81 m s-2 acceleration due to gravity
𝜌𝑜 999.8 kg m-3 reference density
𝛼 2 × 10-4 K-1 expansion coefficient
𝐴ℎ 1 × 10-2 m2 s-1 horizontal viscosity
𝐴𝑣 1 × 10-3 m2 s-1 vertical viscosity
𝜅ℎ 0 m2 s-1 (explicit) horizontal diffusion
𝜅𝑣 0 m2 s-1 (explicit) vertical diffusion
∆𝑡 20 s time step
∆𝑧 3.33333 m vertical grid spacing
∆𝑥 13.3333 - 39.5 m horizontal grid spacing

The model parameters (Table 4.1) are specified in input/data and if not assume the default values as defined in Section
3.8. A linear equation of state is used, eosType =’LINEAR’, but only temperature is active, sBeta =0.E-11. For
the given heat flux, 𝑄𝑜, the buoyancy forcing is 𝐵𝑜 = 𝑔𝛼𝑄

𝜌𝑜𝑐𝑝
∼ 10−7 m2 s-3. Using 𝑅 = 103 m, the shelf width, this

gives a velocity scale of 𝑈 ∼ 5 × 10−2 m s-1 for the initial front but will accelerate by an order of magnitude over the
slope. The temperature anomaly will be of order ∆𝜃 ∼ 3 × 10−2 K. The viscosity is constant and gives a Reynolds
number of 100, using ℎ = 20 m for the initial front and will be an order magnitude bigger over the slope. There is no
explicit diffusion but a non-linear advection scheme is used for temperature which adds enough diffusion so as to keep
the model stable. The time-step is set to 20 s and gives Courant number order one when the flow reaches the bottom
of the slope.

4.10 Biogeochemistry Simulation

(in directory: verification/tutorial_global_oce_biogeo/)
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4.10.1 Overview

This model overlays the dissolved inorganic carbon biogeochemistry model (pkg/dic) over a 2.8o global physical
model. The physical model has 15 levels, and is forced with a climatological annual cycle of surface wind stresses
(Trenberth et al. 1989 [TOL89], surface heat and freshwater fluxes (Jiang et al. 1999 [JSMR99]) with additional
relaxation toward climatological sea surface temperature and salinity (Levitus and Boyer (1994a,b) [LB94a][LB94b]).
It uses the Gent and McWilliams (1990) [GM90] eddy parameterization scheme, has an implicit free-surface, implicit
vertical diffusion and uses the convective adjustment scheme.

The biogeochemical model considers the coupled cycles of carbon, oxygen, phosphorus and alkalinity. A simplified
parameterization of biological production is used, limited by the availability of light and phosphate. A fraction of this
productivity enters the dissolved organic pool pool, which has an e-folding timescale for remineralization of 6 months
(following Yamanaka and Tajika 1997 [YT97]). The remaining fraction of this productivity is instantaneously exported
as particulate to depth (Yamanaka and Tajika 1997 [YT97]) where it is remineralized according to the empirical power
law relationship determined by Martin et al. (1987]) [MKKB87]. The fate of carbon is linked to that of phosphorus by
the Redfield ratio. Carbonate chemistry is explicitly solved (see Follow et al. 2006) [FID06]) and the air-sea exchange
of CO2 is parameterized with a uniform gas transfer coefficient following Wanninkhof (1992) [Wan92]. Oxygen is also
linked to phosphorus by the Redfield ratio, and oxygen air-sea exchange also follows Wanninkhof (1992) [Wan92].
For more details see Dutkiewicz et al. (2005) [DSSaPS05].

The example setup described here shows the physical model after 5900 years of spin-up and the biogeochemistry after
2900 years of spin-up. The biogeochemistry is at a pre-industrial steady-state (atmospheric ppmv is kept at 278).
Five tracers are resolved: dissolved inorganic carbon (𝐷𝐼𝐶), alkalinity (𝐴𝐿𝐾), phosphate (𝑃𝑂4), dissolved organic
phosphorus (𝐷𝑂𝑃 ) and dissolved oxygen (𝑂2).

Figure 4.46: Modeled annual mean air-sea CO2 flux (mol C m-2 y-1) for pre-industrial steady-state. Positive indicates
flux of CO2 from ocean to the atmosphere (out-gassing), contour interval is 1 mol C m-2 y-1.
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4.10.2 Equations Solved

The physical ocean model velocity and diffusivities are used to redistribute the 5 tracers within the ocean. Additional
redistribution comes from chemical and biological sources and sinks. For any tracer 𝐴:

𝜕𝐴

𝜕𝑡
= −∇ · (𝑢*𝐴) + ∇ · (K∇𝐴) + 𝑆𝐴

where 𝑢* is the transformed Eulerian mean circulation (which includes Eulerian and eddy-induced advection), K is
the mixing tensor, and 𝑆𝐴 are the sources and sinks due to biological and chemical processes.

The sources and sinks are:

𝑆𝐷𝐼𝐶 = 𝐹𝐶𝑂2
+ 𝑉𝐶𝑂2

+ 𝑟𝐶:𝑃𝑆𝑃𝑂4
+ 𝐽𝐶𝑎

𝑆𝐴𝐿𝐾 = 𝑉𝐴𝐿𝐾 − 𝑟𝑁 :𝑃𝑆𝑃𝑂4
+ 2𝐽𝐶𝑎

𝑆𝑃𝑂4
= −𝑓𝐷𝑂𝑃𝐽𝑝𝑟𝑜𝑑 −

𝜕𝐹𝑃

𝜕𝑧
+ 𝜅𝑟𝑒𝑚𝑖𝑛[𝐷𝑂𝑃 ]

𝑆𝐷𝑂𝑃 = 𝑓𝐷𝑂𝑃𝐽𝑝𝑟𝑜𝑑 − 𝜅𝑟𝑒𝑚𝑖𝑛[𝐷𝑂𝑃 ]

𝑆𝑂2
=

{︂
−𝑟𝑂:𝑃𝑆𝑃𝑂4

if 𝑂2 > 𝑂2𝑐𝑟𝑖𝑡

0 if 𝑂2 < 𝑂2𝑐𝑟𝑖𝑡

where:

• 𝐹𝐶𝑂2
is the flux of CO2 from the ocean to the atmosphere

• 𝑉𝐶𝑂2 is “virtual flux” due to changes in 𝐷𝐼𝐶 due to the surface freshwater fluxes

• 𝑟𝐶:𝑃 is Redfield ratio of carbon to phosphorus

• 𝐽𝐶𝑎 includes carbon removed from surface due to calcium carbonate formation and subsequent cumulation of
the downward flux of CaCO3

• 𝑉𝐴𝐿𝐾 is “virtual flux” due to changes in alkalinity due to the surface freshwater fluxes

• 𝑟𝑁 :𝑃 Redfield ratio is nitrogen to phosphorus

• 𝑓𝐷𝑂𝑃 is fraction of productivity that remains suspended in the water column as dissolved organic phosphorus

• 𝐽𝑝𝑟𝑜𝑑 is the net community productivity

• 𝜕𝐹𝑃

𝜕𝑧 is the accumulation of remineralized phosphorus with depth

• 𝜅𝑟𝑒𝑚𝑖𝑛 is rate with which 𝐷𝑂𝑃 remineralizes back to 𝑃𝑂4

• 𝐹𝑂2 is air-sea flux of oxygen

• 𝑟𝑂:𝑃 is Redfield ratio of oxygen to phosphorus

• 𝑂2𝑐𝑟𝑖𝑡 is a critical level below which oxygen consumption if halted

These terms (for the first four tracers) are described more in Dutkiewicz et al. (2005) [DSSaPS05] and by McKinley
et al. (2004) [MFM04] for the terms relating to oxygen.
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4.10.3 Code configuration

The modifications to the code (in verification/tutorial_global_oce_biogeo/code) are:

• code/SIZE.h: which dictates the size of the model domain (128x64x15).

• code/PTRACERS_SIZE.h: which dictates how many tracers to assign how many tracers will be used (here, 5).

• code/DIAGNOSTICS_SIZE.h: assigns size information for the diagnostics package.

• code/packages.conf: which dictates which packages will be compiled in this version of the model - among the
many that are used for the physical part of the model, this also includes pkg/ptracers, pkg/gchem, and pkg/dic
which allow the biogeochemical part of this setup to function.

The input fields needed for this run (in verification/tutorial_global_oce_biogeo/input) are:

• input/data: specifies the main parameters for the experiment. Some parameters that may be useful to know:
nTimeSteps number timesteps model will run, change to 720 to run for a year taveFreq frequency with which
time averages are done, change to 31104000 for annual averages.

• input/data.diagnostics: specifies details of diagnostic pkg output

• input/data.gchem: specifies details needed in the biogeochemistry model run

• input/data.gmredi: specifies details for the GM parameterization

• input/data.pkg: set true or false for various packages to be used

• input/data.ptracers: details of the tracers to be used, including makes, diffusivity information and (if needed)
initial files. Of particular importance is the PTRACERS_numInUse which states how many tracers are used,
and PTRACERS_Iter0 which states at which timestep the biogeochemistry model tracers were initialized.

• depth_g77.bin: bathymetry data file

• input/eedata: This file uses standard default values and does not contain customizations for this experiment.

• fice.bin: ice data file, needed for the biogeochemistry

• lev_monthly_salt.bin: SSS values which model relaxes toward

• lev_monthly_temp.bin: SST values which model relaxes toward

• pickup.0005184000.data: variable and tendency values need to restart the physical part of the model

• pickup_cd.0005184000.data: variable and tendency values need to restart the cd pkg

• pickup_ptracers.0005184000.data: variable and tendency values need to restart the the biogeo-
chemistry part of the model

• shi_empmr_year.bin: freshwater forcing data file

• shi_qnet.bin: heat flux forcing data file

• sillev1.bin: silica data file, need for the biogeochemistry

• tren_speed.bin: wind speed data file, needed for the biogeochemistry

• tren_taux.bin: meridional wind stress data file

• tren_tauy.bin: zonal wind stress data file
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4.10.4 Running the example

As the model is set up to run in the verification experiment, it only runs for 4 timesteps (2 days) and outputs data at
the end of this short run. For a more informative run, you will need to run longer. As set up, this model starts from a
pre-spun up state and initializes physical fields and the biogeochemical tracers from the pickup files.

Physical data (e.g., S,T, velocities etc) will be output as for any regular ocean run. The biogeochemical output are:

• tracer snapshots: look in input/data.ptracers to see which number matches which type of tracer (e.g., ptracer01
is DIC).

• tracer time averages

• specific DIC diagnostics: these are averaged over taveFreq (set in input/data) and are specific to pkg/dic (cur-
rently are only available in binary format):

– DIC_Biotave: 3-D biological community productivity (mol P m-3 s-1)

– DIC_Cartave: 3-D tendencies due to calcium carbonate cycle (mol C m-3 s-1)

– DIC_fluxCO2ave: 2-D air-sea flux of CO2 (mol C m-2 s-1)

– DIC_pCO2tave: 2-D partial pressure of CO2 in surface layer

– DIC_pHtave: 2-D pH in surface layer

– DIC_SurOtave: 2-D tendency due to air-sea flux of O2 (mol O m-3 s-1)

– DIC_Surtave: 2-D surface tendency of DIC due to air-sea flux and virtual flux (mol C m-3 s-1)

4.11 Global Ocean State Estimation

(in directory: verification/tutorial_global_oce_optim/)

4.11.1 Overview

This experiment illustrates the optimization capacity of the MITgcm: here, a high level description.

In this tutorial, a very simple case is used to illustrate the optimization capacity of the MITgcm. Using an ocean
configuration with realistic geography and bathymetry on a 4×4∘ spherical polar grid, we estimate a time-independent
surface heat flux adjustment 𝑄netm that attempts to bring the model climatology into consistency with observations
(Levitus and Boyer (1994a,b) [LB94a][LB94b]).

This adjustment 𝑄netm (a 2-D field only function of longitude and latitude) is the control variable of an optimization
problem. It is inferred by an iterative procedure using an ‘adjoint technique’ and a least-squares method (see, for
example, Stammer et al. (2002) [SWG+02] and Ferriera et a. (2005) [FMH05].

The ocean model is run forward in time and the quality of the solution is determined by a cost function, 𝐽1, a measure
of the departure of the model climatology from observations:

𝐽1 =
1

𝑁

𝑁∑︁
𝑖=1

[︃
𝑇 𝑖 − 𝑇

𝑙𝑒𝑣

𝑖

𝜎𝑇
𝑖

]︃2
(4.56)

where 𝑇 𝑖 and 𝑇
𝑙𝑒𝑣

𝑖 are, respectively, the model and observed potential temperature at each grid point 𝑖. The differences
are weighted by an a priori uncertainty 𝜎𝑇

𝑖 on observations (as provided by Levitus and Boyer (1994a) [LB94a]). The
error 𝜎𝑇

𝑖 is only a function of depth and varies from 0.5 K at the surface to 0.05 K at the bottom of the ocean, mainly
reflecting the decreasing temperature variance with depth (see Figure 4.47a). A value of 𝐽1 of order 1 means that the
model is, on average, within observational uncertainties.
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Figure 4.47: A priori errors on potential temperature (left, in oC) and surface heat flux (right, in W m-2) used to
compute the cost terms 𝐽1 and 𝐽2, respectively.

The cost function also places constraints on the adjustment to insure it is “reasonable”, i.e., of order of the uncertainties
on the observed surface heat flux:

𝐽2 =
1

𝑁

𝑁∑︁
𝑖=1

[︃
𝑄netm

𝜎𝑄
𝑖

]︃2

where 𝜎𝑄
𝑖 are the a priori errors on the observed heat flux as estimated by Stammer et al. (2002) [SWG+02] from

30% of local root-mean-square variability of the NCEP forcing field (see Figure 4.47b).

The total cost function is defined as 𝐽 = 𝜆1𝐽1+𝜆2𝐽2 where 𝜆1 and 𝜆2 are weights controlling the relative contribution
of the two components. The adjoint model then yields the sensitivities 𝜕𝐽/𝜕𝑄netm of 𝐽 relative to the 2-D fields
𝑄netm. Using a line-searching algorithm (Gilbert and Lemaréchal 1989 [GLemarechal89]), 𝑄netm is adjusted then in
the sense to reduce 𝐽 — the procedure is repeated until convergence.

Figure 4.48 shows the results of such an optimization. The model is started from rest and from January-mean tem-
perature and salinity initial conditions taken from the Levitus dataset. The experiment is run a year and the averaged
temperature over the whole run (i.e., annual mean) is used in the cost function (4.56) to evaluate the model1. Only the
top 2 levels are used. The first guess𝑄netm is chosen to be zero. The weights 𝜆1 and 𝜆2 are set to 1 and 2, respectively.
The total cost function converges after 15 iterations, decreasing from 6.1 to 2.7 (the temperature contribution decreases
from 6.1 to 1.8 while the heat flux one increases from 0 to 0.42). The right panels of Figure 4.48 illustrate the evolution
of the temperature error at the surface from iteration 0 to iteration 15. Unsurprisingly, the largest errors at iteration
0 (up to 6 oC, top left panels) are found in the Western boundary currents. After optimization, the departure of the
model temperature from observations is reduced to 1 oC or less almost everywhere except in the Pacific equatorial
cold tongue. Comparison of the initial temperature error (top, right) and heat flux adjustment (bottom, left) shows

1 Because of the daily automatic testing, the experiment as found in the repository is set-up with a very small number of time-steps. To reproduce
the results shown here, one needs to set nTimeSteps = 360 and lastinterval =31104000 (both corresponding to a year, see Section 4.11.3.2 for further
details).
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that the system basically increased the heat flux out of the ocean where temperatures were too warm and vice-versa.
Obviously, heat flux uncertainties are not solely responsible for temperature errors, and the heat flux adjustment partly
compensates the poor representation of narrow currents (Western boundary currents, equatorial currents) at 4 × 4∘

resolution. This is allowed by the large a priori error on the heat flux Figure 4.47. The Pacific cold tongue is a counter
example: there, heat fluxes uncertainties are fairly small (about 20 W m-2), and a large temperature errors remains
after optimization.

Figure 4.48: Initial annual mean surface heat flux (top right in W m-2) and adjustment obtained at iteration 15 (bottom
right). Averaged difference between model and observed potential temperatures at the surface (in ∘C) before opti-
mization (iteration 0, top right) and after optimization (iteration 15, bottom right). Contour intervals for heat flux and
temperature are 25 W m-2 and 1 oC, respectively. A positive flux is out of the ocean.
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4.11.2 Implementation of the control variable and the cost function

One of the goals of this tutorial is to illustrate how to implement a new control variable. Most of this is
fairly generic and is done in pkg/ctrl and pkg/cost. The modifications can be tracked by the CPP option AL-
LOW_HFLUXM_CONTROL or the comment cHFLUXM_CONTROL. The more specific modifications required for
the experiment are found in verification/tutorial_global_oce_optim/code_ad. Here follows a brief description of the
implementation.

4.11.2.1 The control variable

The adjustment 𝑄netm is activated by setting #define ALLOW_HFLUXM_CONTROL in
code_ad/CTRL_OPTIONS.h.

It is first implemented as a “normal” forcing variable. It is defined in model/inc/FFIELDS.h, initialized to zero in
model/src/ini_forcing.F, and then used in model/src/external_forcing_surf.F. 𝑄netm is made a control variable in
pkg/ctrl by modifying the following subroutines:

• pkg/ctrl/ctrl_init.F where 𝑄netm is defined as the control variable number 24,

• pkg/ctrl/ctrl_pack.F which writes, at the end of each iteration, the sensitivity of the cost function 𝜕𝐽/𝜕𝑄netm in
to a file to be used by the line-search algorithm,

• pkg/ctrl/ctrl_unpack.F which reads, at the start of each iteration, the updated adjustment as provided by the
line-search algorithm,

• pkg/ctrl/ctrl_map_forcing.F in which the updated adjustment is added to the first guess 𝑄netm.

Note also some minor changes in pkg/ctrl/ctrl.h, pkg/ctrl/ctrl_readparms.F, and pkg/ctrl/ctrl_dummy.h
(xx_hfluxm_file, fname_hfluxm, xx_hfluxm_dummy).

4.11.2.2 Cost functions

The cost functions are implemented using pkg/cost.

• The temperature cost function 𝐽1 which measures the drift of the mean model temperature from the Levitus
climatology is implemented in /verification/tutorial_global_oce_optim/code_ad/cost_temp.F. It is activated by
#define ALLOW_COST_TEMP in code_ad/COST_OPTIONS.h. It requires the mean temperature of the
model which is obtained by accumulating the temperature in pkg/cost/cost_tile.F (called at each time step). The
value of the cost function is stored in objf_temp and its weight 𝜆1 in mult_temp.

• The heat flux cost function, penalizing the departure of the surface heat flux from observations is im-
plemented in /verification/tutorial_global_oce_optim/code_ad/cost_hflux.F, and activated by #define AL-
LOW_COST_HFLUXM in code_ad/COST_OPTIONS.h. The value of the cost function is stored in
objf_hfluxm and its weight 𝜆2 in mult_hflux.

• The subroutine pkg/cost/cost_final.F calls the cost function subroutines and makes the (weighted) sum of the
various contributions.

• The various weights used in the cost functions are read in /verifica-
tion/tutorial_global_oce_optim/code_ad/cost_weights.F. The weight of the cost functions are read in
pkg/cost/cost_readparms.F from the input file verification/tutorial_global_oce_optim/input_ad/data.cost.
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4.11.3 Code Configuration

The experiment files in verification/tutorial_global_oce_optim/code_ad/ and verifica-
tion/tutorial_global_oce_optim/input_ad/ contain the code customizations and parameter settings. Most of
them are identical to those used in the Global Ocean ( experiment verification/tutorial_global_oce_latlon/). Below,
we describe some of the customizations required for this experiment.

4.11.3.1 Compilation-time customizations in code_ad

In code_ad/CTRL_OPTIONS.h:

• #define ALLOW_ECCO_OPTIMIZATION

4.11.3.2 Running-time customizations in input_ad

• input_ad/data: note the smaller cg2dTargetResidual than in the forward-only experiment,

• input_ad/data.optim specifies the iteration number,

• input_ad/data.ctrl is used, in particular, to specify the name of the sensitivity and adjustment files associated to
a control variable,

• input_ad/data.cost: parameters of the cost functions, in particular lastinterval specifies the length of time-
averaging for the model temperature to be used in the cost function (4.56),

• input_ad/data.pkg: note that the Gradient Check package is turned on by default (useGrdchk =.TRUE.),

• Err_hflux.bin and Err_levitus_15layer.bin are the files containing the heat flux and potential
temperature uncertainties, respectively.

4.11.4 Compiling

The optimization experiment requires two executables: 1) the MITgcm and its adjoint (mitgcmuv_ad) and 2) the
line-search algorithm (optim.x).

4.11.4.1 Compilation of MITgcm and its adjoint: mitcgmuv_ad

Before compiling, first note that in the directory code_ad, two files must be updated:

• code_ad/code_ad_diff.list which lists new subroutines to be compiled by the TAF software
(code_ad/cost_temp.F and code_ad/cost_hflux.F),

• the file code_ad/ad_optfile.local provides a list of the control variables and the name of cost function to the TAF
software.

Then, in the directory build, type:

% ../../../tools/genmake2 -mods=../code_ad -adof=../code_ad/ad_optfile.local
% make depend
% make adall

to generate the MITgcm executable mitgcmuv_ad.
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4.11.4.2 Compilation of the line-search algorithm: optim.x

This is done from the directories lsopt/ and optim/ (found in the top MITgcm directory). In lsopt/, unzip the blash1
library adapted to your platform (see lsopt/README), and change the Makefile accordingly. Compile with:

% make all

(more details in lsopt/lsopt_doc.txt)

In optim/, the path of the directory where mitgcm_ad was compiled must be specified in the Makefile in the
variable INCLUDEDIRS. The file name of the control variable (here, xx_hfluxm_file) must be added to the namelist
read by optim/optim_numbmod.F. Then use

% make depend

and

% make

to generate the line-search executable optim.x.

4.11.5 Running the estimation

Make a new subdirectory input_ad/OPTIM. Copy the mitgcmuv_ad executable to input_ad and optim.x to
this subdirectory. cd into input_ad/. The first iteration is somewhat particular and is best done “by hand” while
the following iterations can be run automatically (see below). Check that the iteration number is set to 0 in in-
put_ad/data.optim and run MITgcm:

% ./mitgcmuv_ad

The output files adxx_hfluxm.0000000000.* and xx_hfluxm.0000000000.* contain the sensitivity of
the cost function to 𝑄netm and the adjustment to 𝑄netm (zero at the first iteration), respectively. Two other files called
costhflux_tut_MITgcm.opt0000 and ctrlhflux_tut_MITgcm.opt0000 are also generated. They es-
sentially contain the same information as the adxx_.hfluxm* and xx_hfluxm* files, but in a compressed format.
These two files are the only ones involved in the communication between the adjoint model mitgcmuv_ad and the
line-search algorithm optim.x. Only at the first iteration, are they both generated by mitgcmuv_ad. Subsequently,
costhflux_tut_MITgcm.opt 𝑛 is an output of the adjoint model at iteration 𝑛 and an input of the line-search.
The latter returns an updated adjustment in ctrlhflux_tut_MITgcm.opt 𝑛 + 1 to be used as an input of the
adjoint model at iteration 𝑛+ 1.

At the first iteration, move costhflux_tut_MITgcm.opt0000 and ctrlhflux_tut_MITgcm.opt0000
to input_ad/OPTIM, move into this directory and link input_ad/data.optim and input_ad/data.ctrl locally:

% cd OPTIM/
% ln -s ../data.optim .
% ln -s ../data.ctrl .

The target cost function fmin needs to be specified in input_ad/data.optim: as a rule of thumb, it should be about
0.95-0.90 times the value of the cost function at the first iteration. This value is only used at the first iteration and does
not need to be updated afterward. However, it implicitly specifies the “pace” at which the cost function is going down
(if you are lucky and it does indeed diminish!).

Once this is done, run the line-search algorithm:

% ./optim.x
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which computes the updated adjustment for iteration 1, ctrlhflux_tut_MITgcm.opt0001.

The following iterations can be executed automatically using the shell script input_ad/cycsh. This script will take
care of changing the iteration numbers in input_ad/data.optim, launch the adjoint model, clean and store the outputs,
move the costhflux* and ctrlhflux* files, and run the line-search algorithm. Edit input_ad/cycsh to specify
the prefix of the directories used to store the outputs and the maximum number of iteration.

4.12 Adjoint Sensitivity Analysis for Tracer Injection

(in directory: verification/tutorial_tracer_adjsens/)

MITgcm has been adapted to enable AD using TAMC or TAF. The present description is specific to the use of TAMC
or TAF as AD tool. The following sections describe the steps which are necessary to generate a tangent linear or adjoint
model of MITgcm. We take as an example the sensitivity of carbon sequestration in the ocean. The AD-relevant hooks
in the code are outlined in Section 7.2 and Section 7.2.4.4.

4.12.1 Overview of the experiment

We describe an adjoint sensitivity analysis of out-gassing from the ocean into the atmosphere of a carbon-like tracer
injected into the ocean interior (see Hill et al. 2004 [HBFM04]).

4.12.1.1 Passive tracer equation

For this work, MITgcm was augmented with a thermodynamically inactive tracer, 𝐶. Tracer residing in the ocean
model surface layer is out-gassed according to a relaxation time scale, 𝜇. Within the ocean interior, the tracer is
passively advected by the ocean model currents. The full equation for the time evolution

𝜕𝐶

𝜕𝑡
= −𝑈 · ∇𝐶 − 𝜇𝐶 + Γ(𝐶) + 𝑆 (4.57)

also includes a source term 𝑆. This term represents interior sources of 𝐶 such as would arise due to direct injection.
The velocity term, 𝑈 , is the sum of the model Eulerian circulation and an eddy-induced velocity, the latter parame-
terized according to Gent/McWilliams (Gent and McWilliams 1990 [GM90]; Gent et al. (1995) [GWMM95]). The
convection function, Γ, mixes 𝐶 vertically wherever the fluid is locally statically unstable.

The out-gassing time scale, 𝜇, in (4.57) is set so that 1/𝜇 ∼ 1 year for the surface ocean and 𝜇 = 0 elsewhere.
With this value, (4.57) is valid as a prognostic equation for small perturbations in oceanic carbon concentrations. This
configuration provides a powerful tool for examining the impact of large-scale ocean circulation on CO2 out-gassing
due to interior injections. As source we choose a constant in time injection of 𝑆 = 1 mol s-1.

4.12.1.2 Model configuration

The model configuration employed has a constant 4∘ × 4∘ resolution horizontal grid and realistic geography and
bathymetry. Twenty vertical layers are used with vertical spacing ranging from 50 m near the surface to 815 m at
depth. Driven to steady-state by climatological wind-stress, heat and fresh-water forcing, the model reproduces well
known large-scale features of the ocean general circulation.
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4.12.1.3 Out-gassing cost function

To quantify and understand out-gassing due to injections of 𝐶 in (4.57), we define a cost function 𝒥 that measures the
total amount of tracer out-gassed at each timestep:

𝒥 (𝑡 = 𝑇 ) =

∫︁ 𝑡=𝑇

𝑡=0

∫︁
𝐴

𝜇𝐶 𝑑𝐴𝑑𝑡 (4.58)

(4.58) integrates the out-gassing term, 𝜇𝐶, from (4.57) over the entire ocean surface area, 𝐴, and accumulates it up
to time 𝑇 . Physically, 𝒥 can be thought of as representing the amount of CO2 that our model predicts would be
out-gassed following an injection at rate 𝑆. The sensitivity of 𝒥 to the spatial location of 𝑆, 𝜕𝒥

𝜕𝑆 , can be used to
identify regions from which circulation would cause CO2 to rapidly out-gas following injection and regions in which
CO2 injections would remain effectively sequestered within the ocean.

4.12.2 Code configuration

The code customization routines are in verification/tutorial_tracer_adjsens/code_ad:

• verification/tutorial_tracer_adjsens/code_ad/COST_OPTIONS.h

• verification/tutorial_tracer_adjsens/code_ad/CTRL_OPTIONS.h

• verification/tutorial_tracer_adjsens/code_ad/CPP_OPTIONS.h

• verification/tutorial_tracer_adjsens/code_ad/AUTODIFF_OPTIONS.h

• verification/tutorial_tracer_adjsens/code_ad/CTRL_SIZE.h

• verification/tutorial_tracer_adjsens/code_ad/GAD_OPTIONS.h

• verification/tutorial_tracer_adjsens/code_ad/GMREDI_OPTIONS.h

• verification/tutorial_tracer_adjsens/code_ad/SIZE.h

• verification/tutorial_tracer_adjsens/code_ad/tamc.h

• verification/tutorial_tracer_adjsens/code_ad/ctrl_map_ini_genarr.F

• verification/tutorial_tracer_adjsens/code_ad/ptracers_forcing_surf.F

• verification/tutorial_tracer_adjsens/code_ad/packages.conf

The runtime flag and parameters settings are contained in verification/tutorial_tracer_adjsens/input/ and verifica-
tion/tutorial_tracer_adjsens/input_ad/, together with the forcing fields and and restart files:

• verification/tutorial_tracer_adjsens/input_ad/data

• verification/tutorial_tracer_adjsens/input_ad/data.cost

• verification/tutorial_tracer_adjsens/input_ad/data.ctrl

• verification/tutorial_tracer_adjsens/input_ad/data.gmredi

• verification/tutorial_tracer_adjsens/input_ad/data.grdchk

• verification/tutorial_tracer_adjsens/input_ad/data.optim

• verification/tutorial_tracer_adjsens/input_ad/data.pkg

• verification/tutorial_tracer_adjsens/input_ad/data.ptracers

• verification/tutorial_tracer_adjsens/input_ad/eedata

• verification/tutorial_tracer_adjsens/input/topog.bin
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• verification/tutorial_tracer_adjsens/input/windx.bin, verification/
tutorial_tracer_adjsens/inputwindy.bin

• verification/tutorial_tracer_adjsens/input/salt.bin, verification/
tutorial_tracer_adjsens/input/theta.bin

• verification/tutorial_tracer_adjsens/input/SSS.bin, verification/
tutorial_tracer_adjsens/input/SST.bin

Below we describe the customizations of this files which are specific to this experiment.

4.12.2.1 File code_ad/COST_OPTIONS.h /

This file contains package-specific CPP-options (see Section 7.2.4).

4.12.2.2 File code_ad/CTRL_OPTIONS.h /

This file contains package-specific CPP-options (see Section 10.3).

4.12.2.3 File code_ad/CPP_OPTIONS.h /

This file contains model-specific CPP options (see Section 3.7). Most options are related to the forward model setup.
They are identical to the global steady circulation setup of verification/global_ocean.90x40x15/. The three options
specific to this experiment are as follows. #define ALLOW_PASSIVE_TRACER enables the code to carry through
the advection/diffusion of a passive tracer along the model integration. #define ALLOW_MIT_ADJOINT_RUN
enables the inclusion of some AD-related fields concerning initialization, link between control variables and for-
ward model variables, and the call to the top-level forward/adjoint subroutine adthe_main_loop.F instead of
model/src/the_main_loop.F. #define ALLOW_GRADIENT_CHECK enables the gradient check package. After
computing the unperturbed cost function and its gradient, a series of computations are performed for which:

• an element of the control vector is perturbed

• the cost function w.r.t. the perturbed element is computed

• the difference between the perturbed and unperturbed cost function is computed to compute the finite difference
gradient

• the finite difference gradient is compared with the adjoint-generated gradient.

The gradient check package is further described in Section 7.3.

4.12.2.4 File ECCO_OPTIONS.h

The CPP options of several AD-related packages are grouped in this file:

• Overall ECCO-related execution modus:
These determine whether a pure forward run, a sensitivity run or an iteration of optimization is performed.
These options are not needed in the present context.

• Adjoint support package: pkg/autodiff/
This package contains hand-written adjoint code such as active file handling, flow directives for files which
must not be differentiated, and TAMC-specific header files. #define ALLOW_AUTODIFF_TAMC defines
TAMC-related features in the code. #define ALLOW_TAMC_CHECKPOINTING enables the
checkpointing feature of TAMC (see Section 7.1.3). In the present example a 3-level checkpointing is
implemented. The code contains the relevant store directives, common block and tape initializations, storing
key computation, and loop index handling. The checkpointing length at each level is defined in file
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code_ad/tamc.h, see below. The out and intermediate loop directives are contained in the files
pkg/autodiff/checkpoint_lev3_directives.h, pkg/autodiff/checkpoint_lev2_directives.h. #define
ALLOW_AUTODIFF_MONITOR enables the monitoring of intermediate adjoint variables (see Section
7.2.5.4). #define ALLOW_DIVIDED_ADJOINT enables adjoint dump and restart (see Section 7.4).

• Cost function package: pkg/cost/
This package contains all relevant routines for initializing, accumulating and finalizing the cost function (see
Section 7.2.4). #define ALLOW_COST enables all general aspects of the cost function handling, in
particular the hooks in the forward code for initializing, accumulating and finalizing the cost function.
#define ALLOW_COST_TRACER includes the call to the cost function for this particular experiment, eqn.
(4.58).

• Control variable package: pkg/ctrl/
This package contains all relevant routines for the handling of the control vector. Each control variable can be
enabled/disabled with its own flag:

#define ALLOW_THETA0_CONTROL initial temperature
#define ALLOW_SALT0_CONTROL initial salinity
#define ALLOW_TR10_CONTROL initial passive tracer concentration
#define ALLOW_TAUU0_CONTROL zonal wind stress
#define ALLOW_TAUV0_CONTROL meridional wind stress
#define ALLOW_SFLUX0_CONTROL freshwater flux
#define ALLOW_HFLUX0_CONTROL heat flux
#define ALLOW_DIFFKR_CONTROL diapycnal diffusivity
#undef ALLOW_KAPGM_CONTROL isopycnal diffusivity

4.12.2.5 File SIZE.h

Listing 4.34: verification/tutorial_global_oce_latlon/code/SIZE.h

1 CBOP
2 C !ROUTINE: SIZE.h
3 C !INTERFACE:
4 C include SIZE.h
5 C !DESCRIPTION: \bv
6 C *==========================================================*
7 C | SIZE.h Declare size of underlying computational grid.
8 C *==========================================================*
9 C | The design here supports a three-dimensional model grid

10 C | with indices I,J and K. The three-dimensional domain
11 C | is comprised of nPx*nSx blocks (or tiles) of size sNx
12 C | along the first (left-most index) axis, nPy*nSy blocks
13 C | of size sNy along the second axis and one block of size
14 C | Nr along the vertical (third) axis.
15 C | Blocks/tiles have overlap regions of size OLx and OLy
16 C | along the dimensions that are subdivided.
17 C *==========================================================*
18 C \ev
19 C
20 C Voodoo numbers controlling data layout:
21 C sNx :: Number of X points in tile.
22 C sNy :: Number of Y points in tile.
23 C OLx :: Tile overlap extent in X.
24 C OLy :: Tile overlap extent in Y.

(continues on next page)
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(continued from previous page)

25 C nSx :: Number of tiles per process in X.
26 C nSy :: Number of tiles per process in Y.
27 C nPx :: Number of processes to use in X.
28 C nPy :: Number of processes to use in Y.
29 C Nx :: Number of points in X for the full domain.
30 C Ny :: Number of points in Y for the full domain.
31 C Nr :: Number of points in vertical direction.
32 CEOP
33 INTEGER sNx
34 INTEGER sNy
35 INTEGER OLx
36 INTEGER OLy
37 INTEGER nSx
38 INTEGER nSy
39 INTEGER nPx
40 INTEGER nPy
41 INTEGER Nx
42 INTEGER Ny
43 INTEGER Nr
44 PARAMETER (
45 & sNx = 45,
46 & sNy = 20,
47 & OLx = 3,
48 & OLy = 3,
49 & nSx = 2,
50 & nSy = 2,
51 & nPx = 1,
52 & nPy = 1,
53 & Nx = sNx*nSx*nPx,
54 & Ny = sNy*nSy*nPy,
55 & Nr = 20)
56

57 C MAX_OLX :: Set to the maximum overlap region size of any array
58 C MAX_OLY that will be exchanged. Controls the sizing of exch
59 C routine buffers.
60 INTEGER MAX_OLX
61 INTEGER MAX_OLY
62 PARAMETER ( MAX_OLX = OLx,
63 & MAX_OLY = OLy )
64

65 C for pkg/ctrl:
66 INTEGER nobcs
67 PARAMETER ( nobcs = 4 )
68

The file contains the grid point dimensions of the forward model. It is identical to the verification/exp2/.
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4.12.2.6 File /pkg/autodiff/adcommon.h

This file contains common blocks of some adjoint variables that are generated by TAMC. The common blocks are
used by the adjoint support routine /pkg/autodiff/addummy_in_stepping.F which needs to access those variables:

common /addynvars_r/ is related to model/inc/DYNVARS.h
common /addynvars_cd/ is related to model/inc/DYNVARS.h
common /addynvars_diffkr/ is related to model/inc/DYNVARS.h
common /addynvars_kapgm/ is related to model/inc/DYNVARS.h
common /adtr1_r/ is related to TR1.h
common /adffields/ is related to model/inc/FFIELDS.h

Note that if the structure of the common block changes in the above header files of the forward code, the structure of the
adjoint common blocks will change accordingly. Thus, one must make sure that the structure of the adjoint common
block in the hand-written file /pkg/autodiff/adcommon.h complies with the automatically generated adjoint common
blocks in adjoint_model.F. The header file is enabled via the CPP-option ALLOW_AUTODIFF_MONITOR.

4.12.2.7 File code_ad/tamc.h

This routine contains the dimensions for TAMC checkpointing and some indices relevant for storing ky computations.

• #ifdef ALLOW_TAMC_CHECKPOINTING
3-level checkpointing is enabled, i.e., the timestepping is divided into three different levels (see Section 7.1.3).
The model state of the outermost (nchklev_3) and the intermediate (nchklev_2) timestepping loop are stored to
file (handled in model/src/the_main_loop.F). The innermost loop (nchklev_1) avoids I/O by storing all required
variables to common blocks. This storing may also be necessary if no checkpointing is chosen (nonlinear
functions, if-statements, iterative loops, . . . ). In the present example the dimensions are chosen as follows:

nchklev_1 = 36
nchklev_2 = 30
nchklev_3 = 60

To guarantee that the checkpointing intervals span the entire integration period the following relation must be
satisfied:

nchklev_1 * nchklev_2 * nchklev_3 ≥ nTimeSteps

where nTimeSteps is either specified in input_ad/data or computed via:

nTimeSteps = (endTime - startTime )/ deltaTClock.

• #undef ALLOW_TAMC_CHECKPOINTING
No checkpointing is enabled. In this case the relevant counter is nchklev_0. Similar to above, the following
relation has to be satisfied:

nchklev_0 ≥ nTimeSteps
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The following parameters may be worth describing: isbyte, maxpass.

4.12.2.8 File makefile

This file contains all relevant parameter flags and lists to run TAMC or TAF. It is assumed that TAMC is available to
you, either locally, being installed on your network, or remotely through the ’TAMC Utility’. TAMC is called with the
command tamc followed by a number of options. They are described in detail in the TAMC manual (Giering 1999
[Gie99]). Here we briefly discuss the main flags used in the makefile. The standard output for TAF is written to
file taf.log.

TAMC:

-input «variable names» -output «variable name» -i4 -r4 ...
-toplevel «S/R name» -reverse «file names»

TAF:

-input «variable names» -output «variable name» -i4 -r4 ...
-toplevel «S/R name» -reverse «file names»
-flow taf_flow.log -nonew_arg

• -toplevel «S/R name»

Name of the toplevel routine, with respect to which the control flow analysis is performed.

• input «variable names»

List of independent variables 𝑢 with respect to which the dependent variable 𝐽 is differentiated.

• -output «variable name»

Dependent variable 𝐽 which is to be differentiated.

• -reverse «file names»

Adjoint code is generated to compute the sensitivity of an independent variable w.r.t. many dependent variables.
In the discussion of Section 7 the generated adjoint top-level routine computes the product of the transposed
Jacobian matrix 𝑀𝑇 times the gradient vector ∇𝑣𝐽 . «file names» refers to the list of files .f which are to
be analyzed by TAMC. This list is generally smaller than the full list of code to be compiled. The files not
contained are either above the top-level routine (some initializations), or are deliberately hidden from TAMC,
either because hand-written adjoint routines exist, or the routines must not (or don’t have to) be differentiated.
For each routine which is part of the flow tree of the top-level routine, but deliberately hidden from TAMC (or
for each package which contains such routines), a corresponding file .flow exists containing flow directives
for TAMC.

• -i4 -r4

• -flow taf_flow.log

Will cause TAF to produce a flow listing file named taf_flow.log in which the set of active and passive
variables are identified for each subroutine.

• -nonew_arg

The default in the order of the parameter list of adjoint routines has changed. Before TAF 1.3 the default was
compatible with the TAMC-generated list. As of TAF 1.3 the order of adjoint routine parameter lists is no longer
compatible with TAMC. To restore compatibility when using TAF 1.3 and higher, this argument is needed. It is
currently crucial to use since all hand-written adjoint routines refer to the TAMC default.
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File input/topog.bin

Contains 2-D bathymetry information.

Files input/windx.bin, input/windy.bin, input/salt.bin, input/theta.bin, input/SSS.
bin, input/SST.bin

These contain the initial values of salnity and potential temperature (salt.bin, theta.bin), surface boundary
values (surface wind stresses windx.bin, windy.bin), and surface restoring fields (SSS.bin, SST.bin).

4.12.3 Compiling the model and its adjoint

The build process of the adjoint model is slightly more complex than that of compiling the forward code. The main
reason is that the adjoint code generation requires a specific list of routines that are to be differentiated (as opposed
to the automatic generation of a list of files to be compiled by genmake2). This list excludes routines that don’t have
to be or must not be differentiated. For some of the latter routines flow directives may be necessary, a list of which
has to be given as well. For this reason, a separate makefile is currently maintained in the directory adjoint/. This
makefile is responsible for the adjoint code generation.

In the following we describe the build process step by step, assuming you are in the directory bin/. A summary of
steps to follow is given at the end.

4.12.3.1 Adjoint code generation and compilation – step by step

1. ln -s ../verification/???/code/.genmakerc .

ln -s ../verification/???/code/*.[Fh] .

Link your customized genmake options, header files, and modified code to the compile directory.

2. ../tools/genmake -makefile

Generate your Makefile (see Section 3.5.2).

3. make depend

Dependency analysis for the CPP pre-compiler (see Section 3.5.1).

4. cd ../adjoint

make adtaf or make adtamc

Depending on whether you have TAF or TAMC at your disposal, you’ll choose adtaf or adtamc as your make
target for the makefile in the directory adjoint/. Several things happen at this stage.

• make adrestore

make ftlrestore

The initial template files adjoint_model.F and tangentlinear_model.F in pkg/autodiff which are
part of the compiling list created by genmake2 are restored.

• make depend, make small_f

The bin/ directory is brought up to date, i.e., for recent changes in header or source code .[Fh],
corresponding .f routines are generated or re-generated. Note that here, only CPP pre-compiling is
performed; no object code .o is generated as yet. Pre-compiling is necessary for TAMC to see the full code.

• make allcode

All Fortran routines .f in bin/ are concatenated into a single file called tamc_code.f.

• make admodeltaf/admodeltamc
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Adjoint code is generated by TAMC or TAF. The adjoint code is written to the file tamc_code_ad.f. It
contains all adjoint routines of the forward routines concatenated in tamc_code.f. For a given forward
routine subroutine routinename the adjoint routine is named adsubroutine routinename by default (that default
can be changed via the flag -admark «markname»). Furthermore, it may contain modified code which
incorporates the translation of adjoint store directives into specific Fortran code. For a given forward routines
subroutine routinename the modified routine is named mdsubroutine routinename. TAMC or TAF info is
written to file tamc_code.prot or taf.log, respectively.

• make adchange

The multi-threading capability of MITgcm requires a slight change in the parameter list of some routines that
are related to to active file handling. This post-processing invokes the sed script tools/adjoint_sed to insert the
threading counter myThId into the parameter list of those subroutines. The resulting code is written to file
tamc_code_sed_ad.f and appended to the file adjoint_model.F. This concludes the adjoint code
generation.

5. cd ../bin

make

The file adjoint_model.F cnow contains the full adjoint code. All routines are now compiled.

N.B.: The targets make adtaf/adtamc now comprise a series of targets that in previous versions had to be invoked
separately. This was probably preferable at a more experimental stage, but has now been dropped in favor of a more
straightforward build process.

Adjoint code generation and compilation – summary

cd bin
ln -s ../verification/my_experiment/code/.genmakerc .
ln -s ../verification/my_experiment/code/*.[Fh] .
../tools/genmake -makefile
make depend
cd ../adjoint
make adtaf <OR: make adtamc>

contains the targets:
adrestore small_f allcode admodeltaf/admodeltamc adchange

cd ../bin
make

4.13 Offline Experiments

(in directory: verification/tutorial_cfc_offline/)

This document describes two experiments using the offline form of the MITgcm.
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4.13.1 Overview

The first experiment demonstrates use of the offline form of the MITgcm to study advection of a passive tracer.
Time-averaged flow-fields and mixing coefficients, deriving from a prior online run, are re-used leaving only
the tracer equation to be integrated. This first experiment’s run configuration is specified in directory verifica-
tion/tutorial_cfc_offline/input_tutorial.

Figure — missing figure — shows a movie of tracer being advected using the offline package of the MITgcm. In the
top panel the frames of the movie show the monthly surface evolution of an initially local source of passive tracer. In
the lower panel, the frames of the movie show the changing monthly surface evolution where the initial tracer field
had a global distribution.

The second experiment, a more complicated example exploring contamination of the global ocean through surface
exposure to CFCs during the last century, is described after this more simple first example. The run configuration for
this second experiment is specified in directory verification/tutorial_cfc_offline/input.

4.13.2 Time-stepping of tracers

See Section 2.16 and Section 2.17 for details of available tracer time-stepping schemes and their characteristics.

4.13.3 Code Configuration

The experiment files

• verification/tutorial_cfc_offline/input_tutorial/data

• verification/tutorial_cfc_offline/input_tutorial/data.off

• verification/tutorial_cfc_offline/input_tutorial/data.pkg

• verification/tutorial_cfc_offline/input_tutorial/data.ptracers

• verification/tutorial_cfc_offline/input_tutorial/eedata

• verification/tutorial_cfc_offline/code/packages.conf

• verification/tutorial_cfc_offline/code/PTRACERS_SIZE.h

• verification/tutorial_cfc_offline/code/GMREDI_OPTIONS.h

• verification/tutorial_cfc_offline/code/SIZE.h

contain the code customizations and parameter settings required to run the example. In addition the following binary
data files are required:

• input/depth_g77.bin

• pickup_ptracers.0004269600, pickup_ptracers.0004269600.meta

• binary files in verification/tutorial_cfc_offline/input/input_off
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4.13.3.1 File input_tutorial/data

Listing 4.35: verification/tutorial_cfc_offline/input_tutorial/data

1 # ====================
2 # | Model parameters |
3 # ====================
4 #
5 # Continuous equation parameters
6 &PARM01
7 implicitDiffusion=.TRUE.,
8 &
9 #

10 # Elliptic solver parameters
11 &PARM02
12 cg2dMaxIters=1000,
13 cg2dTargetResidual=1.E-13,
14 &
15 #
16 # Time stepping parameters
17 &PARM03
18 nIter0 = 4269600,
19 nTimeSteps = 4,
20 deltaTtracer= 43200.0,
21 deltaTClock = 43200.0,
22 pChkptFreq=3110400000.,
23 chkptFreq= 3110400000.,
24 dumpFreq= 31104000.,
25 taveFreq= 31104000.,
26 monitorFreq= 1.,
27 periodicExternalForcing=.TRUE.,
28 externForcingPeriod=2592000.,
29 externForcingCycle=31104000.,
30 &
31 #
32 # Gridding parameters
33 &PARM04
34 usingSphericalPolarGrid=.TRUE.,
35 delR= 50., 70., 100., 140., 190.,
36 240., 290., 340., 390., 440.,
37 490., 540., 590., 640., 690.,
38 ygOrigin=-90.,
39 dxSpacing=2.8125,
40 dySpacing=2.8125,
41 &
42 #
43 # Input datasets
44 &PARM05
45 bathyFile= 'depth_g77.bin',
46 &

This file specifies the main parameters for the experiment.

• Lines 18-19,

nIter0 = 4269600,
nTimeSteps = 4,
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nIter0 and nTimesteps control the start time and the length of the run (in timesteps). Given at nIter0 is non-zero, the
model requires appropriate pickup files to be present in the run directory. For testing purposes, the model has been
prescribed to run for 4 timesteps; for a longer run, increase nTimesteps.

• Line 20,

deltaTtracer= 43200.0,

deltaTtracer is the tracer timestep in seconds, in this case, 12 hours (43200 seconds = 12 hours). Note that deltatTracer
must be specified in input_tutorial/data as well as specified in deltaToffline in input_tutorial/data.off.

• Line 21,

deltaTClock= 43200.0,

When using the MITgcm in offline mode, deltaTClock (an internal model counter) should be made equal to the value
assigned to deltatTtracer.

• Line 27,

periodicExternalForcing=.TRUE.,

periodicExternalForcing is a flag telling the model whether to cyclically re-use forcing data where there is external
forcing (see Section 4.13.5 below). Where there is no external forcing, as here, but where there is to be cyclic re-use
of the offline flow and mixing fields, periodicExternalForcing must be assigned the value .TRUE..

• Line 28,

externForcingPeriod=2592000.,

externForcingPeriod specifies the period of the external forcing data in seconds. In the absence of external forcing,
as in this example, it must be made equal to the value of externForcingPeriod in input_tutorial/data.off, in this case,
monthly (2592000 seconds = 1 month).

• Line 29,

externForcingCycle=31104000.,

externForcingCycle specifies the duration of the external forcing data cycle in seconds. In the absence of external
forcing, as in this example, it must be made equal to the value of externForcingCycle in input_tutorial/data.off, in this
case, the cycle is one year (31104000 seconds = 1 year).

• Line34,

usingSphericalPolarGrid=.TRUE.,

This line requests that the simulation be performed in a spherical polar coordinate system. It affects the interpretation
of grid input parameters and causes the grid generation routines to initialize an internal grid based on spherical polar
geometry.

• Lines 35-37,

delR= 50., 70., 100., 140., 190.,
240., 290., 340., 390., 440.,
490., 540., 590., 640., 690.,

This line sets the vertical grid spacing between each 𝑧-coordinate line in the discrete grid. Here the total model depth
is 5200 m.

• Line 38,
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ygOrigin=-90.,

This line sets the southern boundary of the modeled domain to -90o latitude N (= 90o S). This value affects both the
generation of the locally orthogonal grid that the model uses internally and affects the initialization of the Coriolis
force. Note: it is not required to set a longitude boundary, since the absolute longitude does not alter the kernel
equation discretization.

• Line 39,

dxSpacing=2.8125,

This line sets the horizontal grid spacing between each 𝑦-coordinate line in the discrete grid to 2.8125o in longitude.

• Line 40,

dySpacing=2.8125,

This line sets the vertical grid spacing between each 𝑥-coordinate line in the discrete grid to 2.8125o in latitude.

• Line 45,

bathyFile='depth_g77.bin',

This line specifies the name of the file from which the domain bathymetry is read. This file contains a 2-D (𝑥, 𝑦) map
of (assumed 64-bit) binary numbers giving the depth of the model at each grid cell, ordered with the 𝑥 coordinate
varying fastest. The points are ordered from low coordinate to high coordinate for both axes. The units and orientation
of the depths in this file are the same as used in the MITgcm code. In this experiment, a depth of 0 m indicates land.

4.13.3.2 File input_tutorial/data.off

Listing 4.36: verification/tutorial_cfc_offline/input_tutorial/data.off

1 &OFFLINE_PARM01
2 UvelFile= 'input_off/uVeltave',
3 VvelFile= 'input_off/vVeltave',
4 WvelFile= 'input_off/wVeltave',
5 GMwxFile= 'input_off/GM_Kwx-T',
6 GMwyFile= 'input_off/GM_Kwy-T',
7 GMwzFile= 'input_off/GM_Kwz-T',
8 ConvFile= 'input_off/Convtave',
9 &

10

11 &OFFLINE_PARM02
12 offlineIter0=4248000,
13 deltaToffline=43200.,
14 offlineForcingPeriod=2592000.,
15 offlineForcingCycle=31104000.,
16 &
17

input_tutorial/data.off provides the MITgcm offline package with package specific parameters. Specifically, it contains
the location (relative to the run directory) and prefix of files describing the flow field (UvelFile, VvelFile, WvelFile) and
the corresponding convective mixing coefficients (ConvFile) which together prescribe the 3-D, time varying dynamic
system within which the offline model will advect the tracer.

• Lines 2-4,8
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UvelFile= '../input/input_off/uVeltave',
VvelFile= '../input/input_off/vVeltave',
WvelFile= '../input/input_off/wVeltave',
ConvFile= '../input/input_off/Convtave',

In the example the offline data is located in the sub-directory verification/tutorial_cfc_offline/input/input_off. In this
directory are fields describing the velocity and convective mixing histories of a prior forward integration of the MIT-
gcm, required for the offline package. Based on the values of deltaToffline, offlineForcingPeriod and offlineForcing-
Cycle specified in verification/tutorial_cfc_offline/input/input_off, since offlineForcingCycle corresponds to twelve
forcing periods offlineForcingPeriod and since offlineIter0 is zero, there needs to be twelve uVeltave, twelve vVeltave,
twelve wVeltave and twelve Convtave files each having a 10 digit sequence identifier between 0000000001 to
0000000012, that is, a total of 48 files.

• Line 12,

offlineIter0=4248000,

offlineIter0, here specified to be 4248000 timesteps, corresponds to the timestep at which the tracer model is initialized.
Note that offlineIter0 and nIter0 (set in input_tutorial/data) need not be the same.

• Line 13,

deltaToffline=43200.,

deltatToffline sets the timestep associated with the offline model data in seconds, here 12 hours (43200 seconds = 12
hours).

• Line 14,

offlineForcingPeriod=43200.,

offlineForcingPeriod sets the forcing period associated with the offline model data in seconds.

• Line 15,

offlineForcingCycle=518400.,

offlineForcingCycle sets the forcing cycle length associated with the offline model data in seconds. In this example the
offline forcing cycle is 6 days, or twelve offline forcing periods. Together deltatToffline, offlineForcingPeriod and of-
flineForcingCycle determine the value of the ten digit sequencing tag the model expects files in input_tutorial/data.off
to have.

4.13.3.3 File input_tutorial/data.pkg

Listing 4.37: verification/tutorial_cfc_offline/input_tutorial/data.pkg

1 # Packages
2 &PACKAGES
3 useGMRedi=.TRUE.,
4 usePTRACERS=.TRUE.,
5 useGCHEM=.TRUE.,
6 &
7

This file specifies which MITgcm packages are to be used.

• Line 4,
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usePTRACERS=.TRUE.,

usePTRACERS is a flag invoking pkg/ptracers which is responsible for the advection of the tracer within the model.

4.13.3.4 File input_tutorial/data.ptracers

Listing 4.38: verification/tutorial_cfc_offline/input_tutorial/data.ptracers

1 &PTRACERS_PARM01
2 PTRACERS_numInUse=2,
3 PTRACERS_Iter0= 4248000,
4 #
5 # tracer 1 - CFC11
6 PTRACERS_advScheme(1)=77,
7 PTRACERS_diffKh(1)=0.E3,
8 PTRACERS_diffKr(1)=5.E-5,
9 PTRACERS_useGMRedi(1)=.TRUE. ,

10 PTRACERS_useKPP(1)=.FALSE. ,
11 PTRACERS_initialFile(1)=' ',
12 # tracer 2 - CFC12
13 PTRACERS_advScheme(2)=77,
14 PTRACERS_diffKh(2)=0.E3,
15 PTRACERS_diffKr(2)=5.E-5,
16 PTRACERS_useGMRedi(2)=.TRUE. ,
17 PTRACERS_useKPP(2)=.FALSE. ,
18 PTRACERS_initialFile(2)=' ',
19 &

This file provides the MITgcm ptracers package with package specific parameters, prescribing the nature of the the
tracer/tracers as well as the variables associated with their advection.

• Line 2,

PTRACERS_numInUse=2,

PTRACERS_numInUse tells the model how many separate tracers are to be advected, in this case 2. Note: The value
of PTRACERS_numInUse must agree with the value specified in code/PTRACERS_SIZE.h (see below).

• Line 3,

PTRACERS_Iter0= 4248000,

PTRACERS_Iter0 specifies the iteration at which the tracer is to be introduced.

• Lines 6 and 13,

PTRACERS_advScheme(1)=77,

PTRACERS_advScheme(n) identifies which advection scheme will be used for tracer n, where n is the number of
the tracer up to PTRACERS_numInUse. See Section 2.17 to identify the numerical codes used to specify different
advection schemes (e.g. centered 2nd order, 3rd order upwind) as well as details of each.

• Lines 7 and 14,

PTRACERS_diffKh(1)=1.E3,

PTRACERS_diffKh(n) is the horizontal diffusion coefficient for tracer n, where n is the number of the tracer up to
PTRACERS_numInUse.
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• Lines 8 and 15,

PTRACERS_diffKr(1)=5.E-5,

PTRACERS_diffKr(n) is the vertical diffusion coefficient for tracer n, where n is the number of the tracer up to
PTRACERS_numInUse.

• Lines 11 and 18,

PTRACERS_initialFile(1)=' ',

PTRACERS_initialFile(n) identifies the initial tracer field to be associated with tracer n, where n is the number of the
tracer up to PTRACERS_numInUse. Note that no initial file is specified here.

Note input_tutorial/data.ptracers requires a set of entries for each tracer.

4.13.3.5 File input_tutorial/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.13.3.6 File code/packages.conf

Listing 4.39: verification/tutorial_cfc_offline/code/packages.conf

1 #-- list of packages (or group of packages) to compile for this experiment:
2 gfd
3 -mom_common
4 -mom_fluxform
5 -mom_vecinv
6 gmredi
7 offline
8 ptracers
9 gchem

10 cfc
11 timeave

This file is used to invoke the model components required for a particular implementation of the MITgcm.

4.13.3.7 File code/PTRACERS_SIZE.h

Listing 4.40: verification/tutorial_cfc_offline/code/PTRACERS_SIZE.h

1 #ifdef ALLOW_PTRACERS
2

3 CBOP
4 C !ROUTINE: PTRACERS_SIZE.h
5 C !INTERFACE:
6 C #include PTRACERS_SIZE.h
7

8 C !DESCRIPTION:
9 C Contains passive tracer array size (number of tracers).

10

11 C PTRACERS_num defines how many passive tracers are allocated/exist.
12 C and is set here (default 1)

(continues on next page)
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(continued from previous page)

13 C
14 C Number of tracers
15 INTEGER PTRACERS_num
16 PARAMETER(PTRACERS_num = 2 )
17

18 CEOP
19 #endif /* ALLOW_PTRACERS */

• Line 16,

PARAMETER(PTRACERS_num = 2 )

This line sets the parameters PTRACERS_num (the number of tracers to be integrated) to 2 (in agreement with in-
put_tutorial/data.ptracers).

4.13.3.8 File code/SIZE.h

Listing 4.41: verification/tutorial_cfc_offline/code/SIZE.h

1 CBOP
2 C !ROUTINE: SIZE.h
3 C !INTERFACE:
4 C include SIZE.h
5 C !DESCRIPTION: \bv
6 C *==========================================================*
7 C | SIZE.h Declare size of underlying computational grid.
8 C *==========================================================*
9 C | The design here supports a three-dimensional model grid

10 C | with indices I,J and K. The three-dimensional domain
11 C | is comprised of nPx*nSx blocks (or tiles) of size sNx
12 C | along the first (left-most index) axis, nPy*nSy blocks
13 C | of size sNy along the second axis and one block of size
14 C | Nr along the vertical (third) axis.
15 C | Blocks/tiles have overlap regions of size OLx and OLy
16 C | along the dimensions that are subdivided.
17 C *==========================================================*
18 C \ev
19 C
20 C Voodoo numbers controlling data layout:
21 C sNx :: Number of X points in tile.
22 C sNy :: Number of Y points in tile.
23 C OLx :: Tile overlap extent in X.
24 C OLy :: Tile overlap extent in Y.
25 C nSx :: Number of tiles per process in X.
26 C nSy :: Number of tiles per process in Y.
27 C nPx :: Number of processes to use in X.
28 C nPy :: Number of processes to use in Y.
29 C Nx :: Number of points in X for the full domain.
30 C Ny :: Number of points in Y for the full domain.
31 C Nr :: Number of points in vertical direction.
32 CEOP
33 INTEGER sNx
34 INTEGER sNy
35 INTEGER OLx
36 INTEGER OLy

(continues on next page)
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(continued from previous page)

37 INTEGER nSx
38 INTEGER nSy
39 INTEGER nPx
40 INTEGER nPy
41 INTEGER Nx
42 INTEGER Ny
43 INTEGER Nr
44 PARAMETER (
45 & sNx = 64,
46 & sNy = 32,
47 & OLx = 4,
48 & OLy = 4,
49 & nSx = 2,
50 & nSy = 2,
51 & nPx = 1,
52 & nPy = 1,
53 & Nx = sNx*nSx*nPx,
54 & Ny = sNy*nSy*nPy,
55 & Nr = 15)
56

57 C MAX_OLX :: Set to the maximum overlap region size of any array
58 C MAX_OLY that will be exchanged. Controls the sizing of exch
59 C routine buffers.
60 INTEGER MAX_OLX
61 INTEGER MAX_OLY
62 PARAMETER ( MAX_OLX = OLx,
63 & MAX_OLY = OLy )
64

65 C for pkg/ctrl:
66 INTEGER nobcs
67 PARAMETER ( nobcs = 4 )

Several lines are customized in this file for the current experiment:

• Line 45,

sNx=64,

this line sets the lateral domain extent in grid points for the axis aligned with the 𝑥-coordinate.

• Line 46,

sNy=64,

this line sets the lateral domain extent in grid points for the axis aligned with the 𝑦-coordinate.

• Line 55,

Nr=15,

this line sets the vertical domain extent in grid points.
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4.13.4 Running the Experiment

In your run directory, as per usual, a copy of all files from the input directory (here, input_tutorial/) are required. In
addition, you will also need to copy .data and .meta files from directory input/input_off.

4.13.5 A more complicated example

The previous example demonstrated simple advection of a passive tracer using the offline form of the MITgcm. Now
we present a more complicated example in which the model is used to explore contamination of the global ocean
through surface exposure to CFCs during the last century. In invoking packages pkg/gchem, pkg/gmredi and pkg/cfc
it provides a starting point and template for more complicated offline modeling, involving as it does surface forcing
through wind and ice fields, more sophisticated mixing, and a time-varying forcing function.

The run configuration for this experiment resides under the directory verification/tutorial_cfc_offline/input/ (the code
configuration is the same as in the first example, so the same model executable can be used, i.e., no need to re-compile).
The files

• verification/tutorial_cfc_offline/input/data

• verification/tutorial_cfc_offline/input/data.off

• verification/tutorial_cfc_offline/input/data.pkg

• verification/tutorial_cfc_offline/input/data.ptracers

• verification/tutorial_cfc_offline/input/data.gmredi

• verification/tutorial_cfc_offline/input/data.gchem

• verification/tutorial_cfc_offline/input/data.cfc

• verification/tutorial_cfc_offline/input/eedata

contain all the parameter settings required.

4.13.5.1 File input/data

Listing 4.42: verification/tutorial_cfc_offline/input/data

1 # ====================
2 # | Model parameters |
3 # ====================
4 #
5 # Continuous equation parameters
6 &PARM01
7 tRef=15*20.,
8 sRef=15*35.,
9 viscA4=0.,

10 viscAh=5.E5,
11 diffKhT=0.E3,
12 diffKhS=0.E3,
13 viscAr=1.E-3,
14 diffKrT=5.E-5,
15 diffKrS=5.E-5,
16 gravity=9.81,
17 rhoConst=1035.,
18 rigidLid=.FALSE.,
19 implicitFreeSurface=.TRUE.,

(continues on next page)
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(continued from previous page)

20 eosType='POLY3',
21 implicitDiffusion=.TRUE.,
22 implicitViscosity=.TRUE.,
23 ivdc_kappa=100.,
24 multiDimAdvection = .FALSE.
25 #allowFreezing=.TRUE.,
26 useCDscheme=.FALSE.,
27 &
28

29 # Elliptic solver parameters
30 &PARM02
31 cg2dMaxIters=1000,
32 cg2dTargetResidual=1.E-13,
33 &
34

35 # Time stepping parameters
36 &PARM03
37 nIter0 = 4269600,
38 nTimeSteps = 4,
39 # 100 years starting from a spinup of 5900 years:
40 #startTime = 1.835136E+11,
41 #endTime = 1.866240E+11,
42 deltaTmom = 900.0,
43 #tauCD = 321428.,
44 deltaTtracer= 43200.0,
45 deltaTClock = 43200.0,
46 abEps = 0.1,
47 #cAdjFreq = -1,
48 pChkptFreq=3110400000.,
49 #chkptFreq= 3110400000.,
50 dumpFreq= 31104000.,
51 taveFreq= 31104000.,
52 #monitorFreq= 4853865600.,
53 monitorFreq= 2592000.,
54 #tauThetaClimRelax = 5184000.0,
55 #tauSaltClimRelax = 7776000.0,
56 periodicExternalForcing=.TRUE.,
57 externForcingPeriod=2592000.,
58 externForcingCycle=31104000.,
59 &
60

61 # Gridding parameters
62 &PARM04
63 usingSphericalPolarGrid=.TRUE.,
64 delR= 50., 70., 100., 140., 190.,
65 240., 290., 340., 390., 440.,
66 490., 540., 590., 640., 690.,
67 ygOrigin=-90.,
68 dxSpacing=2.8125,
69 dySpacing=2.8125,
70 &
71

72 # Input datasets
73 &PARM05
74 bathyFile= 'depth_g77.bin',
75 #hydrogThetaFile='lev_clim_temp.bin',
76 #hydrogSaltFile= 'lev_clim_salt.bin',

(continues on next page)
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(continued from previous page)

77 #zonalWindFile= 'tren_taux.bin',
78 #meridWindFile= 'tren_tauy.bin',
79 #thetaClimFile= 'lev_monthly_temp.bin',
80 #saltClimFile= 'lev_monthly_salt.bin',
81 #surfQnetFile= 'shi_qnet.bin',
82 #EmPmRFile= 'shi_empmr_year.bin',
83 the_run_name= 'Testing CFC and OFFLINE code',
84 &

A single line must be added (under PARM01, line 21) from the previous example

&PARM01
implicitDiffusion=.TRUE.,
&

When pkg/gmredi is used, the flag implicitDiffusion must be assigned the value .TRUE.

In this example the starting timestep nIter0 is set to 4269600 requiring model access to pickup files with the suffix
0004269600. The model will run for 4 timesteps (nTimeSteps = 4). In this case the frequencies with which permanent
and rolling checkpoints (pChkptFreq and chkptFreq) have been set is sufficiently long to ensure that only one from
the last timestep will be written. This is also true of the values that have been assigned to the frequency with which
dumps are written (dumpFreq) and time averaging (taveFreq) is performed. However, since the model always dumps
the state of the model when it stops without error, a dump will be written with suffix 0004269604 upon completion.

4.13.5.2 File input/data.off

Listing 4.43: verification/tutorial_cfc_offline/input/data.off

1 &OFFLINE_PARM01
2 UvelFile= '../input/input_off/uVeltave',
3 VvelFile= '../input/input_off/vVeltave',
4 WvelFile= '../input/input_off/wVeltave',
5 GMwxFile= '../input/input_off/GM_Kwx-T',
6 GMwyFile= '../input/input_off/GM_Kwy-T',
7 GMwzFile= '../input/input_off/GM_Kwz-T',
8 ConvFile= '../input/input_off/Convtave',
9 SaltFile= '../input/input_off/Stave',

10 ThetFile= '../input/input_off/Ttave',
11 # SFluxFile='../input/input_off/sFluxtave',
12 # HFluxFile=' ',
13 &
14

15 &OFFLINE_PARM02
16 offlineIter0=4248000,
17 deltaToffline=43200.,
18 offlineForcingPeriod=2592000.,
19 offlineForcingCycle=31104000.,
20 &
21

This file specifies the prefixes and locations of additional input files required to run the offline model. Note that
directory input/input_off contains only as many offline files as are required to successfully run for 4 timesteps. Where
the GMREDI scheme was used in the forward run, as here, package GMREDI must again be invoked when running
offline. In this example, tracer is specified as having been introduced with a non-zero starttime, at timestep 4248000.
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4.13.5.3 File input/data.pkg

Listing 4.44: verification/tutorial_cfc_offline/input/data.pkg

1 # Packages
2 &PACKAGES
3 useGMRedi=.TRUE.,
4 usePTRACERS=.TRUE.,
5 useGCHEM=.TRUE.,
6 useOffLine=.TRUE.,
7 #useMNC=.TRUE.,
8 &
9

This file specifies which MITgcm packages are to be used. It now invokes additional packages pkg/gmredi and
pkg/gchem.

4.13.5.4 File input/data.ptracers

Listing 4.45: verification/tutorial_cfc_offline/input/data.ptracers

1 &PTRACERS_PARM01
2 PTRACERS_numInUse=2,
3 PTRACERS_Iter0= 4248000,
4 # for verification:
5 PTRACERS_monitorFreq=43200.,
6 #- for each tracers:
7 # tracer 1 - dic
8 PTRACERS_names(1)='cfc11',
9 PTRACERS_long_names(1)='CFC11',

10 PTRACERS_units(1)='mol/m^3',
11 PTRACERS_advScheme(1)=77,
12 PTRACERS_diffKh(1)=0.E3,
13 PTRACERS_diffKr(1)=5.E-5,
14 PTRACERS_useGMRedi(1)=.TRUE. ,
15 PTRACERS_useKPP(1)=.FALSE. ,
16 PTRACERS_initialFile(1)=' ',
17 # tracer 2 - alk
18 PTRACERS_names(2)='cfc12',
19 PTRACERS_units(2)='mol/m^3',
20 PTRACERS_advScheme(2)=77,
21 PTRACERS_diffKh(2)=0.E3,
22 PTRACERS_diffKr(2)=5.E-5,
23 PTRACERS_useGMRedi(2)=.TRUE. ,
24 PTRACERS_useKPP(2)=.FALSE. ,
25 PTRACERS_initialFile(2)=' ',
26 &

This file specifies parameters associated with the CFC11 and CFC12 tracer fields advected in this example.

• Line 3,

PTRACERS_Iter0= 4248000,

In this example the tracers were introduced at iteration 4248000.

• Lines 12 and 21,
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PTRACERS_diffKh(n)=0.E3,

Since package GMREDI is being used, regular horizontal diffusion is set to zero.

• Lines 14-15 and 23-24,

PTRACERS_useGMRedi(n)=.TRUE. ,
PTRACERS_useKPP(n)=.FALSE. ,

Setting flag PTRACERS_useGMRedi(n) to .TRUE. identifies that /pkg/gmredi is to be used. Setting flag PTRAC-
ERS_useKPP(n) to .FALSE. explicitly turns off KPP mixing.

• Lines 16 and 25,

PTRACERS_initialFile(n)=' ',

Since this is a ‘pickup’ run the initial tracer files PTRACERS_initialFile are not needed. The model will obtain the
tracer state from pickup_ptracers.0004269600.data

4.13.5.5 File input/data.gchem

Listing 4.46: verification/tutorial_cfc_offline/input/data.gchem

1 &GCHEM_PARM01
2 useCFC=.TRUE.,
3 nsubtime=1,
4 &

This file specifies the parameters used in /pkg/gchem.

4.13.5.6 File input/data.gmredi

Listing 4.47: verification/tutorial_cfc_offline/input/data.gmredi

1 # from MOM
2 # GM_background_K: isopycnal diffusion coefficien
3 # GM_maxSlope: max slope of isopycnals
4 # GM_Scrit: transition for scaling diffusion coefficient
5 # GM_Sd: half width scaling for diffusion coefficient
6 # real background diff: horizontal diffusion
7

8 # ifdef GM_VISBECK_VARIABLE_K, include following in GM_PARM01
9 # GM_Visbeck_alpha = 0.,

10 # GM_Visbeck_length = 2.e+5,
11 # GM_Visbeck_depth = 1.e+3,
12 # GM_Visbeck_maxval_K= 2.5e+3,
13

14 &GM_PARM01
15 GM_background_K = 1.e+3,
16 GM_taper_scheme = 'gkw91',
17 GM_maxSlope = 1.e-2,
18 GM_Kmin_horiz = 100.,
19 GM_Scrit = 4.e-3,
20 GM_Sd = 1.e-3,
21 &

(continues on next page)
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(continued from previous page)

22

23

This file specifies parameters required for /pkg/gmredi.

4.13.5.7 File input/cfc1112.atm

This is a ASCII data file containing the CFC source functions over the northern and southern hemispheres annually
from 1931 through 1998.

4.13.5.8 Running the Experiment

The model is run as before.

4.14 Rotating Tank

(in directory: verification/tutorial_rotating_tank/)

This example configuration demonstrates using the MITgcm to simulate a laboratory demonstration using a differen-
tially heated rotating annulus of water. The simulation is configured for a laboratory scale on a 3∘ × 1 cm cylindrical
grid with 29 vertical levels of 0.5 cm each. This is a typical laboratory setup for illustrating principles of GFD, as well
as for a laboratory data assimilation project.

example illustration from GFD lab here

4.14.1 Equations Solved

4.14.2 Discrete Numerical Configuration

The domain is discretized with a uniform cylindrical grid spacing in the horizontal set to ∆𝑎 = 1 cm and ∆𝜑 = 3∘,
so that there are 120 grid cells in the azimuthal direction and 31 grid cells in the radial, representing a tank 62 cm in
diameter. The bathymetry file sets the depth=0 in the nine lowest radial rows to represent the central of the annulus.
Vertically the model is configured with 29 layers of uniform 0.5 cm thickness.

something about heat flux

4.14.3 Code Configuration

The model configuration for this experiment resides under the directory verification/tutorial_rotating_tank/. The ex-
periment files

• verification/tutorial_rotating_tank/input/data

• verification/tutorial_rotating_tank/input/data.pkg

• verification/tutorial_rotating_tank/input/eedata

• verification/tutorial_rotating_tank/input/bathyPolR.bin

• verification/tutorial_rotating_tank/input/thetaPolR.bin

• verification/tutorial_rotating_tank/code/CPP_OPTIONS.h
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• verification/tutorial_rotating_tank/code/SIZE.h

contain the code customizations and parameter settings for this experiments. Below we describe the customizations to
these files associated with this experiment.

4.14.3.1 File input/data

Listing 4.48: verification/tutorial_rotating_tank/input/data

1 # ====================
2 # | Model parameters |
3 # ====================
4 #
5 # Continuous equation parameters
6 &PARM01
7 tRef=29*20.0,
8 sRef=29*35.0,
9 viscAh=5.0E-6,

10 viscAz=5.0E-6,
11 no_slip_sides=.FALSE.,
12 no_slip_bottom=.FALSE.,
13 diffKhT=2.5E-6,
14 diffKzT=2.5E-6,
15 diffKhS=1.0E-6,
16 diffKzS=1.0E-6,
17 f0=0.5,
18 eosType='LINEAR',
19 sBeta =0.,
20 gravity=9.81,
21 rhoConst=1000.0,
22 rhoNil=1000.0,
23 #heatCapacity_Cp=3900.0,
24 rigidLid=.TRUE.,
25 implicitFreeSurface=.FALSE.,
26 nonHydrostatic=.TRUE.,
27 readBinaryPrec=32,
28 &
29

30 # Elliptic solver parameters
31 &PARM02
32 cg2dMaxIters=1000,
33 cg2dTargetResidual=1.E-7,
34 cg3dMaxIters=10,
35 cg3dTargetResidual=1.E-9,
36 &
37

38 # Time stepping parameters
39 &PARM03
40 nIter0=0,
41 nTimeSteps=20,
42 #nTimeSteps=36000000,
43 deltaT=0.1,
44 abEps=0.1,
45 pChkptFreq=2.0,
46 #chkptFreq=2.0,
47 dumpFreq=2.0,
48 monitorSelect=2,

(continues on next page)

4.14. Rotating Tank 301

https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_rotating_tank/code/SIZE.h


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

(continued from previous page)

49 monitorFreq=0.1,
50 &
51

52 # Gridding parameters
53 &PARM04
54 usingCylindricalGrid=.TRUE.,
55 dXspacing=3.,
56 dYspacing=0.01,
57 delZ=29*0.005,
58 ygOrigin=0.07,
59 &
60

61 # Input datasets
62 &PARM05
63 hydrogThetaFile='thetaPolR.bin',
64 bathyFile='bathyPolR.bin',
65 tCylIn = 0.,
66 tCylOut = 20.,
67 &

This file specifies the main parameters for the experiment. The parameters that are significant for this configuration
are

• Lines 9-10,

viscAh=5.0E-6,
viscAz=5.0E-6,

These lines set the Laplacian friction coefficient in the horizontal and vertical, respectively. Note that they are
several orders of magnitude smaller than the other examples due to the small scale of this example.

• Lines 13-16,

diffKhT=2.5E-6,
diffKzT=2.5E-6,
diffKhS=1.0E-6,
diffKzS=1.0E-6,

These lines set horizontal and vertical diffusion coefficients for temperature and salinity. Similar to the friction
coefficients, the values are a couple of orders of magnitude less than most configurations.

• Line 17,

f0=0.5,

this line sets the Coriolis term, and represents a tank spinning at about 2.4 rpm.

• Lines 24 and 25,

rigidLid=.TRUE.,
implicitFreeSurface=.FALSE.,

These lines activate the rigid lid formulation of the surface pressure inverter and suppress the implicit free
surface form of the pressure inverter.

• Line 40,
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nIter=0,

This line indicates that the experiment should start from 𝑡 = 0 and implicitly suppresses searching for check-
point files associated with restarting an numerical integration from a previously saved state. Instead, the file
thetaPolR.bin will be loaded to initialized the temperature fields as indicated below, and other variables
will be initialized to their defaults.

• Line 43,

deltaT=0.1,

This line sets the integration timestep to 0.1 s. This is an unusually small value among the examples due to the
small physical scale of the experiment. Using the ensemble Kalman filter to produce input fields can necessitate
even shorter timesteps.

• Line 54,

usingCylindricalGrid=.TRUE.,

This line requests that the simulation be performed in a cylindrical coordinate system.

• Line 55,

dXspacing=3,

This line sets the azimuthal grid spacing between each 𝑥-coordinate line in the discrete grid. The syntax indicates
that the discrete grid should be comprised of 120 grid lines each separated by 3o.

• Line 56,

dYspacing=0.01,

This line sets the radial cylindrical grid spacing between each 𝑎-coordinate line in the discrete grid to 1 cm.

• Line 57,

delZ=29*0.005,

This line sets the vertical grid spacing between each of 29 𝑧-coordinate lines in the discrete grid to 0.005 m (=
5 mm).

• Line 64,

bathyFile='bathyPolR.bin',

This line specifies the name of the file from which the domain ‘bathymetry’ (i.e., tank depth) is read. This file is
a 2-D (𝑎, 𝜑) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth of the model
at each grid cell, ordered with the 𝜑 coordinate varying fastest. The points are ordered from low coordinate to
high coordinate for both axes. The units and orientation of the depths in this file are the same as used in the
MITgcm code. In this experiment, a depth of 0 m indicates an area outside of the tank and a depth of -0.145 m
indicates the tank itself.

• Line 63,

hydrogThetaFile='thetaPol.bin',

This line specifies the name of the file from which the initial values of temperature are read. This file is a 3-D
(𝑥, 𝑦, 𝑧) map and is enumerated and formatted in the same manner as the bathymetry file.
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• Lines 65 and 66

tCylIn = 0.,
tCylOut = 20.,

These line specify the temperatures in degrees Celsius of the interior and exterior walls of the tank – typically
taken to be icewater on the inside and room temperature on the outside.

Other lines in the file verification/tutorial_rotating_tank/input/data are standard values that are described in Section
3.8.

4.14.3.2 File - input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

4.14.3.3 File - input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.14.3.4 File input/thetaPolR.bin

This file specifies a 3-D (𝑥, 𝑦, 𝑧) map of initial values of 𝜃 in degrees Celsius. This particular experiment is set to
random values around 20 oC to provide initial perturbations.

4.14.3.5 File input/bathyPolR.bin

This file specifies a 2-D (𝑥, 𝑦) map of depth values. For this experiment values are either 0 m or -delZ m, corresponding
respectively to outside or inside of the tank. The file contains a raw binary stream of data that is enumerated in the
same way as standard MITgcm 2-D, horizontal arrays.

4.14.3.6 File code/SIZE.h

Listing 4.49: verification/tutorial_rotating_tank/code/SIZE.h

1 CBOP
2 C !ROUTINE: SIZE.h
3 C !INTERFACE:
4 C include SIZE.h
5 C !DESCRIPTION: \bv
6 C *==========================================================*
7 C | SIZE.h Declare size of underlying computational grid.
8 C *==========================================================*
9 C | The design here supports a three-dimensional model grid

10 C | with indices I,J and K. The three-dimensional domain
11 C | is comprised of nPx*nSx blocks (or tiles) of size sNx
12 C | along the first (left-most index) axis, nPy*nSy blocks
13 C | of size sNy along the second axis and one block of size
14 C | Nr along the vertical (third) axis.
15 C | Blocks/tiles have overlap regions of size OLx and OLy
16 C | along the dimensions that are subdivided.
17 C *==========================================================*
18 C \ev

(continues on next page)
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19 C
20 C Voodoo numbers controlling data layout:
21 C sNx :: Number of X points in tile.
22 C sNy :: Number of Y points in tile.
23 C OLx :: Tile overlap extent in X.
24 C OLy :: Tile overlap extent in Y.
25 C nSx :: Number of tiles per process in X.
26 C nSy :: Number of tiles per process in Y.
27 C nPx :: Number of processes to use in X.
28 C nPy :: Number of processes to use in Y.
29 C Nx :: Number of points in X for the full domain.
30 C Ny :: Number of points in Y for the full domain.
31 C Nr :: Number of points in vertical direction.
32 CEOP
33 INTEGER sNx
34 INTEGER sNy
35 INTEGER OLx
36 INTEGER OLy
37 INTEGER nSx
38 INTEGER nSy
39 INTEGER nPx
40 INTEGER nPy
41 INTEGER Nx
42 INTEGER Ny
43 INTEGER Nr
44 PARAMETER (
45 & sNx = 30,
46 & sNy = 23,
47 & OLx = 3,
48 & OLy = 3,
49 & nSx = 4,
50 & nSy = 1,
51 & nPx = 1,
52 & nPy = 1,
53 & Nx = sNx*nSx*nPx,
54 & Ny = sNy*nSy*nPy,
55 & Nr = 29)
56

57 C MAX_OLX :: Set to the maximum overlap region size of any array
58 C MAX_OLY that will be exchanged. Controls the sizing of exch
59 C routine buffers.
60 INTEGER MAX_OLX
61 INTEGER MAX_OLY
62 PARAMETER ( MAX_OLX = OLx,
63 & MAX_OLY = OLy )
64

Two lines are customized in this file for the current experiment

• Line 45,

sNx=120,

this line sets the lateral domain extent in grid points for the axis aligned with the 𝑥-coordinate.

• Line 46,
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sNy=31,

this line sets the lateral domain extent in grid points for the axis aligned with the 𝑦-coordinate.

4.14.3.7 File code/CPP_OPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

4.15 Additional Example Experiments: Forward Model Setups

For many experiments, additional information is provided in a README file located in the respective experiment’s
subdirectory.

1. 1D_ocean_ice_column - Oceanic column with seaice on top.

2. adjustment.128x64x1 - Barotropic adjustment problem on latitude-longitude grid with 128x64 grid points (2.8o

resolution).

3. adjustment.cs-32x32x1 - Barotropic adjustment problem on cube sphere grid with 32x32 points per face
(roughly 2.8o resolution). Also contains a non-linear free-surface adjustment version (input.nlfs).

4. advect_cs - 2-D passive advection test on cube sphere grid (32x32 grid points per face, roughly 2.8o resolution).

5. advect_xy - 2-D (horizontal plane) passive advection test on Cartesian grid. Also contains an additional setup
using Adams-Bashforth 3 (input.ab3_c4).

6. advect_xz - 2-D (vertical plane) passive advection test on Cartesian grid. Also contains an additional setup using
non-linear free-surface with divergent barotropic flow and implicit vertical advection (input.nlfs), and a setup
using piecewise quartic (“mono” and “weno” limiter) advection schemes (input.pqm).

7. aim.5l_Equatorial_Channel - 5-level intermediate atmospheric physics, 3-D equatorial channel configuration.

8. aim.5l_LatLon - 5-level intermediate atmospheric physics, global configuration, on latitude-longitude grid with
128x64x5 grid points (2.8o resolution).

9. aim.5l_cs - 5-level intermediate atmospheric physics, global configuration on cube sphere grid (32x32 grid
points per face, roughly 2.8o resolution). Also contains an additional setup with a slab-ocean and thermodynamic
sea ice (input.thSI).

10. cfc_example - Global ocean with online computation and advection of CFC11 and CFC12.

11. cheapAML_box - Example using cheap atmospheric mixed layer (cheapaml) package.

12. cpl_aim+ocn - Coupled ocean-atmosphere realistic configuration on cubed-sphere cs32 horizontal grid, using
intermediate atmospheric physics (pkg/aim_v23) thermodynamic seaice (pkg/thsice) and land packages.

13. deep_anelastic - Convection simulation on a giant planet: relaxes both the Boussinesq approximation (anelastic)
and the thin atmosphere approximation (deep atmosphere).

14. dome - Idealized 3-D test of a density-driven bottom current (Denmark Overflow Mixing and Entrainment
experiment).

15. exp2 - Old version of the global ocean experiment (no GM, no partial-cells). Also contains an additional setup
with rigid lid (input.rigidLid).

16. exp4 - Flow over a Gaussian bump in open-water or channel with open boundaries. Also contains an additional
setup using non-linear free-surface (input.nlfs), and a setup using Stevens (1990) [Ste90] boundary conditions
(input.stevens).
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17. fizhi-cs-32x32x40 - Global atmospheric simulation with realistic topography, 40 vertical levels, a cubed sphere
grid and the full atmospheric physics package.

18. fizhi-cs-aqualev20 - Global atmospheric simulation on an aqua planet with full atmospheric physics. Run is
perpetual March with an analytical SST distribution. This is the configuration used for the APE (Aqua Planet
Experiment) participation experiment.

19. fizhi-gridalt-hs - Global atmospheric simulation Held-Suarez (1994) [HS94] forcing, with the physical forcing
and the dynamical forcing running on different vertical grids.

20. flt_example - Example using float package.

21. front_relax - Relaxation of an 2-D (𝑦 − 𝑧) ocean thermal front (test of Gent and McWilliams scheme). Also
contains additional setups:

• using the boundary-value problem method (Ferrari et al. 2010 [FGNV10]) (input.bvp).

• with mixed-layer eddy parameterization (Ferrari and McWilliams 2008 [FMCD08]) (input.mxl).

22. global_ocean.90x40x15 - Global ocean simulation at 4ox4o resolution. Similar to tutorial_global_oce_latlon,
but using 𝑧* coordinates with quasi-non-hydrostatic and non-hydrostatic metric terms. This experiment illus-
trates the use of sbo package. Also contains additional setups:

• using down-slope package (input.dwnslp)

• using package ggl90 scheme (Gaspar et al. 1990 [GGL90]) with parameterized tidal and wind energy input
into vertical mixing (input.idemix).

23. global_ocean.cs32x15 - Global ocean experiment on the cubed sphere grid. Also contains additional setups:

• non-hydrostatic with biharmonic viscosity (input.viscA4)

• using thermodynamic sea ice and bulk force (input.thsice)

• using both thermodynamic (pkg/thsice) and dynamic (pkg/seaice) sea ice packages with exf package (in-
put.icedyn)

• using thermodynamic and dynamic (pkg/seaice) sea ice with exf package package (input.seaice).

24. global_ocean_ebm - Global ocean experiment on a lat-lon grid coupled to a zonally averaged atmospheric energy
balance model. Similar to global_ocean.90x40x15 experiment.

25. global_oce_biogeo_bling - Global ocean biogeochemistry simulation, based on Biogeochemistry Simulation but
using package bling instead of the DIC package.

26. global_with_exf - Global ocean experiment (at 4ox4o) on a lat-lon grid using the exf package with exf interpo-
lation. Similar to tutorial_global_oce_latlon experiment. Also contains a secondary setup with yearly exf fields
(input.yearly).

27. halfpipe_streamice - Example using package streamice.

28. hs94.128x64x5 - 3-D atmosphere dynamics on lat-lon grid, using Held and Suarez (1994) [HS94] forcing.

29. hs94.1x64x5 - Zonal averaged atmosphere dynamics using Held and Suarez (1994) [HS94] forcing.

30. hs94.cs-32x32x5 - 3-D atmosphere dynamics using Held and Suarez (1994) [HS94] forcing on the cubed sphere,
similar to tutorial_held_suarez_cs experiment but using linear free-surface and only 5 levels. Also contains an
additional setup with implicit internal gravity waves treatment and Adams-Bashforth 3 (input.impIGW).

31. ideal_2D_oce - Idealized 2-D global ocean simulation on an aqua planet.

32. internal_wave - Ocean internal wave forced by open boundary conditions. Also contains an additional setup
using pkg/kl10 (see Section 8.4.5, Klymak and Legg 2010 [KL10]) (input.kl10).

33. inverted_barometer - Simple test of atmospheric pressure loading with radially symmetric Bessel-function ge-
ometry in a quadratic domain.
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34. isomip - ISOMIP-like setup (Ice Shelf Ocean Model Intercomparison Project experiment 0) including ice-shelf
cavities (pkg/shelfice). Also contains additional setups:

• with “htd” (Hellmer’s thermodynamics, Hellmer 1989 [HO89]) (input.htd).

• using package icefront (input.icefront)

• using package OBCS enabled to balance surface mass (freshwater and ice shelf mass flux) input through
open boundaries (input.obcs).

35. lab_sea - Regional (2ox2o) Labrador Sea simulation on a lat-lon grid using pkg/seaice. Also contains additional
setups:

• using the simple “free-drift” assumption for sea ice (input.fd)

• using EVP dynamics (instead of LSR solver) and Hibler and Bryan (1987) [HB87] sea ice ocean stress
(input.hb87)

• using package salt_plume (input.salt_plume).

36. matrix_example - Test of experimental method to accelerate convergence towards equilibrium.

37. MLAdjust - Simple tests of different viscosity formulations in a zonally reentrant, flat-bottom channel. Con-
tains additional setups; see verification/MLAdjust/README for a listing of different viscosity settings in these
experiments:

• input.A4FlxF

• input.AhFlxF

• input.AhVrDv

• input.AhStTn

• input.QGLeith

• input.QGLthGM.

38. natl_box - Eastern subtropical North Atlantic with KPP scheme. Contains additional setup with added tracers
(pkg/ptracers) using the package longstep to speed up integration time (input.longstep).

39. offline_exf_seaice - Sea ice on top of oceanic surface layer in an idealized channel. Forcing is computed by
bulk-formulae (pkg/exf) with temperature relaxation to prescribed SST (i.e., no momentum timestepping in
ocean, so ocean is “offline”, not to be confused with pkg/offline). Also contains additional setups:

• sea ice dynamics-only using JFNK solver and (pkg/seaice) advection (input.dyn_jfnk)

• sea ice dynamics-only using LSR solver and (pkg/seaice) advection (input.dyn_lsr)

• sea ice thermodynamics-only using (pkg/seaice) (input.thermo)

• sea ice thermodynamics-only using (pkg/thsice) (input.thsice).

40. seaice_itd - Seaice example using ice thickness distribution (ITD); otherwise very similar to offline_exf_seaice.
Also contains additional setups; see verification/seaice_itd/README for details of these setups:

• input.thermo

• input.lipscomb07.

41. seaice_obcs - Similar to lab_sea (input.salt_plume) experiment with only a fraction of the domain and open
boundary conditions derived from lab_sea experiment. Also contains additional setups:

• includes relaxation of seaice variables (input.seaiceSponge)

• includes tidal velocity forcing (input.tides).
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42. shelfice_2d_remesh - Simple experiment to test (pkg/shelfice) vertical remeshing code in 2-D idealized-
geometry setup.

43. short_surf_wave - Short surface wave adjustment (non-hydrostatic) in homogeneous 2-D vertical section (𝑥−𝑧).

44. so_box_biogeo - Open boundary Southern Ocean box around Drake Passage, using same model parameters
and forcing as experiment tutorial_global_oce_biogeo from which initial conditions and open boundary condi-
tions have been extracted. Also contains additional setup using the SolveSAPHE algorithm (Munhoven 2013
[Mun13]) to determine oceanic pH (input.saphe).

45. solid-body.cs-32x32x1 - Solid body rotation test for cube sphere grid.

46. tutorial_deep_convection - Experiment as described in Section 4.8, also contains an additional setup using the
Smagorinisky (1963) [Sma63] viscosity scheme (input.smag3d).

47. vermix - Simple test in a small domain (3 columns) for ocean vertical mixing schemes. The standard setup
(input) uses the KPP scheme Large et al. (1994) [LMD94]. Also contains additional setups:

• with double diffusion scheme from KPP (input.dd)

• with package ggl90 scheme (Gaspar et al. 1990 [GGL90]) scheme (input.ggl90)

• with Mellor and Yamada (1982) [MY82] level 2 (pkg/my82) scheme (input.my82)

• with Paluszkiewicz and Romea (1997) [PR97] (pkg/opps) scheme (input.opps)

• with Pacanowski and Philander (1981) [PP81] (pkg/pp81) scheme (input.pp81).

4.16 Additional Example Experiments: Adjoint Model Setups

Unless stated otherwise, the physical setup of the adjoint run is identical to the forward run, see description above. TAF
adjoint setups require building with directory code_ad with input directory input_ad, whereas OpenAD requires
directories coad_oad and input_oad respectively.

1. 1D_ocean_ice_column - Based on standard forward experiment, TAF adjoint setup, uses package ecco.

2. bottom_ctrl_5x5 - TAF adjoint test using the bottom topography as the control parameter, uses package ecco.

3. global_ocean.90x40x15 - Based on standard forward experiment, TAF and OpenAD adjoint setups. Also con-
tains additional TAF adjoint setups:

• with bottom drag as a control (input_ad.bottomdrag)

• with 𝜅𝐺𝑀 as a control (input_ad.kapgm)

• with 𝜅𝑅𝑒𝑑𝑖 as a control (input_ad.kapredi).

4. global_ocean.cs32x15 - Based on standard forward experiment, TAF adjoint setup. Also contains additional
TAF adjoint setups:

• using thermodynamic-dynamic sea ice (input_ad.seaice).

• same as above but without adjoint sea ice dynamics (input_ad.seaice_dynmix).

• using thermodynamic sea ice from pkg/thsice (input_ad.thsice).

5. global_ocean_ebm - Based on standard forward experiment, TAF adjoint setup.

6. global_oce_biogeo_bling - Based on standard forward experiment, TAF adjoint setup, uses package ecco.

7. global_with_exf - Based on standard forward experiment, TAF adjoint setup.

8. halfpipe_streamice - Based on standard forward experiment, TAF and OpenAD adjoint setups.

9. hs94.1x64x5 - Based on standard forward experiment, TAF and OpenAD adjoint setups.
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10. isomip - Based on standard forward experiment, TAF and OpenAD adjoint setups. Also contains additional TAF
adjoint setup with “htd” (Hellmer’s thermodynamics, Hellmer 1989 [HO89]) (input_ad.htd).

11. lab_sea - Based on standard forward experiment, TAF adjoint setup, uses package ecco and divided adjoint
(DIVA). Also contains additional TAF adjoint setups:

• without seaice dynamics (input_ad.noseaicedyn).

• without seaice altogether (input_ad.noseaice).

12. obcs_ctrl - Adjoint test using open boundary conditions as control parameters, uses package ecco.

13. offline_exf_seaice - Based on standard forward experiment, TAF adjoint setup. Also contains additional TAF
adjoint setup with sea ice thermodynamics-only using pkg/thsice (input_ad.thsice).

14. OpenAD - Simple adjoint experiment (used also to test OpenAD compiler), TAF and OpenAD adjoint setups.
Also contains additional OpenAD adjoint setups:

• using package ggl90 (input_oad.ggl90).

• using package kpp (input_oad.kpp).

15. tutorial_dic_adjoffline - TAF adjoint setup of offline form of passive tracers coupled to the dissolved inorganic
carbon biogeochemistry model (currently NOT documented as a tutorial experiment).

16. tutorial_global_oce_biogeo - Based on forward experiment described in Section 4.10, TAF and OpenAD adjoint
setups.

17. tutorial_tracer_adjsens - Based on adjoint experiment described in Section 4.12, contains an additional TAF
setup using Second Order Moment (SOM) advection scheme (input_ad.som81).
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CHAPTER

FIVE

CONTRIBUTING TO THE MITGCM

The MITgcm is an open source project that relies on the participation of its users, and we welcome contributions. This
chapter sets out how you can contribute to the MITgcm.

5.1 Bugs and feature requests

If you think you’ve found a bug, the first thing to check that you’re using the latest version of the model. If the bug
is still in the latest version, then think about how you might fix it and file a ticket in the GitHub issue tracker. Please
include as much detail as possible. At a minimum your ticket should include:

• what the bug does;

• the location of the bug: file name and line number(s); and

• any suggestions you have for how it might be fixed.

To request a new feature, or guidance on how to implement it yourself, please open a ticket with the following details:

• a clear explanation of what the feature will do; and

• a summary of the equations to be solved.

5.2 Using Git and Github

To contribute to the source code of the model you will need to fork the repository and place a pull request on GitHub.
The two following sections describe this process in different levels of detail. If you are unfamiliar with git, you may
wish to skip the quickstart guide and use the detailed instructions. All contributions to the source code are expected
to conform with the Coding style guide. Contributions to the manual should follow the same procedure and conform
with Section 5.6.

5.2.1 Quickstart Guide

1. Fork the project on GitHub (using the fork button).

2. Create a local clone (we strongly suggest keeping a separate repository for development work):

% git clone https://github.com/«GITHUB_USERNAME»/MITgcm.git

3. Move into your local clone directory (cd MITgcm) and and set up a remote that points to the original:

% git remote add upstream https://github.com/MITgcm/MITgcm.git
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4. Make a new branch from upstream/master (name it something appropriate, such as ‘bugfix’ or ‘newfeature’
etc.) and make edits on this branch:

% git fetch upstream
% git checkout -b «YOUR_NEWBRANCH_NAME» upstream/master

5. When edits are done, do all git add’s and git commit’s. In the commit message, make a succinct (<70 char)
summary of your changes. If you need more space to describe your changes, you can leave a blank line and type a
longer description, or break your commit into multiple smaller commits. Reference any outstanding issues addressed
using the syntax #«ISSUE_NUMBER».

6. Push the edited branch to the origin remote (i.e. your fork) on GitHub:

% git push -u origin «YOUR_NEWBRANCH_NAME»

7. On GitHub, go to your fork and hit the compare and pull request (PR) button, provide the requested information
about your PR (in particular, a non-trivial change to the model requires a suggested addition to doc/tag-index) and
wait for the MITgcm head developers to review your proposed changes. In general the MITgcm code reviewers try
to respond to a new PR within a week. The reviewers may accept the PR as is, or may request edits and changes.
Occasionally the review team will reject changes that are not sufficiently aligned with and do not fit with the code
structure. The review team is always happy to discuss their decisions, but wants to avoid people investing extensive
effort in code that has a fundamental design flaw. The current review team is Jean-Michel Campin, Ed Doddridge,
Chris Hill, Oliver Jahn, and Jeff Scott.

If you want to update your code branch before submitting a PR (or any point in development), follow the recipe below.
It will ensure that your GitHub repo stays up to date with the main repository. Note again that your edits should always
be to your development branch, not the master branch.

% git checkout master
% git pull upstream master
% git push origin master
% git checkout «YOUR_NEWBRANCH_NAME»
% git merge master

If you prefer, you can rebase rather than merge in the final step above; just be careful regarding your rebase syntax!

5.2.2 Detailed guide for those less familiar with Git and GitHub

What is Git? Git is a version control software tool used to help coordinate work among the many MITgcm model
contributors. Version control is a management system to track changes in code over time, not only facilitating ongoing
changes to code, but also as a means to check differences and/or obtain code from any past time in the project history.
Without such a tool, keeping track of bug fixes and new features submitted by the global network of MITgcm contrib-
utors would be virtually impossible. If you are familiar with the older form of version control used by the MITgcm
(CVS), there are many similarities, but we now take advantage of the modern capabilities offered by Git.

Git itself is open source linux software (typically included with any new linux installation, check with your sys-admin
if it seems to be missing) that is necessary for tracking changes in files, etc. through your local computer’s terminal
session. All Git-related terminal commands are of the form git «arguments». Important functions include
syncing or updating your code library, adding files to a collection of files with edits, and commands to “finalize” these
changes for sending back to the MITgcm maintainers. There are numerous other Git command-line tools to help along
the way (see man pages via man git).

The most common git commands are:

• git clone download (clone) a repository to your local machine

• git status obtain information about the local git repository
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• git diff highlight differences between the current version of a file and the version from the most recent
commit

• git add stage a file, or changes to a file, so that they are ready for git commit

• git commit create a commit. A commit is a snapshot of the repository with an associated message that
describes the changes.

What is GitHub then? GitHub is a website that has three major purposes: 1) Code Viewer: through your browser, you
can view all source code and all changes to such over time; 2) “Pull Requests”: facilitates the process whereby code
developers submit changes to the primary MITgcm maintainers; 3) the “Cloud”: GitHub functions as a cloud server
to store different copies of the code. The utility of #1 is fairly obvious. For #2 and #3, without GitHub, one might
envision making a big tarball of edited files and emailing the maintainers for inclusion in the main repository. Instead,
GitHub effectively does something like this for you in a much more elegant way. Note unlike using (linux terminal
command) git, GitHub commands are NOT typed in a terminal, but are typically invoked by hitting a button on the
web interface, or clicking on a webpage link etc. To contribute edits to MITgcm, you need to obtain a github account.
It’s free; do this first if you don’t have one already.

Before you start working with git, make sure you identify yourself. From your terminal, type:

% git config --global user.email «your_email@example.edu»
% git config --global user.name «‘John Doe’»

(note the required quotes around your name). You should also personalize your profile associated with your GitHub
account.

There are many online tutorials to using Git and GitHub (see for example https://akrabat.com/
the-beginners-guide-to-contributing-to-a-github-project ); here, we are just communicating the basics neces-
sary to submit code changes to the MITgcm. Spending some time learning the more advanced features of Git will
likely pay off in the long run, and not just for MITgcm contributions, as you are likely to encounter it in all sorts of
different projects.

To better understand this process, Figure 5.1 shows a conceptual map of the Git setup. Note three copies of the code:
the main MITgcm repository sourcecode “upstream” (i.e., owned by the MITgcm maintainers) in the GitHub cloud,
a copy of the repository “origin” owned by you, also residing in the GitHub cloud, and a local copy on your personal
computer or compute cluster (where you intend to compile and run). The Git and GitHub commands to create this
setup are explained more fully below.

One other aspect of Git that requires some explanation to the uninitiated: your local linux copy of the code repository
can contain different “branches”, each branch being a different copy of the code repository (this can occur in all git-
aware directories). When you switch branches, basic unix commands such as ls or cat will show a different set of
files specific to current branch. In other words, Git interacts with your local file system so that edits or newly created
files only appear in the current branch, i.e., such changes do not appear in any other branches. So if you swore you
made some changes to a particular file, and now it appears those changes have vanished, first check which branch
you are on (git status is a useful command here), all is probably not lost. NOTE: for a file to be “assigned” to
a specific Git branch, Git must first be “made aware” of the file, which occurs after a git add and git commit
(see below). Prior to this, the file will appear in the current folder independently, i.e., regardless of which git branch
you are on.

A detailed explanation of steps for contributing MITgcm repository edits:

1. On GitHub, create a local copy of the repository in your GitHub cloud user space: from the main repository
(https://github.com/MITgcm/MITgcm) hit the Fork button. As mentioned, your GitHub copy “origin” is necessary to
streamline the collaborative development process – you need to create a place for your edits in the GitHub cloud, for
developers to peruse.

2. Download the code onto your local computer using the git clone command. Even if you previously downloaded
the code through a “git-aware” method (i.e., a git clone command, see Section 3.2.1), we STRONGLY SUGGEST
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MITgcm
local copylocal computer

git clone
git pull git push

git pull upstream

git clone

MITgcm
main repo

MITgcm
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“origin”“upstream”

pull request

GitHub cloud

Figure 5.1: A conceptual map of the GitHub setup. Git terminal commands are shown in red, GitHub commands are
shown in green.
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you download a fresh repository, to a separate disk location, for your development work (keeping your research work
separate). Type:

% git clone https://github.com/«GITHUB_USERNAME»/MITgcm.git

from your terminal (technically, here you are copying the forked “origin” version from the cloud, not the “upstream”
version, but these will be identical at this point).

3. Move into the local clone directory on your computer:

% cd MITgcm

We need to set up a remote that points to the main repository:

% git remote add upstream https://github.com/MITgcm/MITgcm.git

This means that we now have two “remotes” of the project. A remote is just a pointer to a repository not on your
computer, i.e., in the GitHub cloud, one pointing to your GitHub user space (“origin”), and this new remote pointing
to the original (“upstream”). You can read and write into your “origin” version (since it belongs to you, in the cloud),
but not into the “upstream” version. This command just sets up this remote, which is needed in step #4 – no actual file
manipulation is done at this point. If in doubt, the command git remote -v will list what remotes have been set
up.

4. Next make a new branch.

% git fetch upstream
% git checkout -b «YOUR_NEWBRANCH_NAME» upstream/master

You will make edits on this new branch, to keep these new edits completely separate from all files on the master branch.
The first command git fetch upstreammakes sure your new branch is the latest code from the main repository;
as such, you can redo step 4 at any time to start additional, separate development projects (on a separate, new branch).
Note that this second command above not only creates this new branch, from the upstream/master branch, it also
switches you onto this newly created branch. Naming the branch something descriptive like ‘newfeature’ or ‘bugfix’
(preferably, be even more descriptive) is helpful.

5. Doing stuff! This usually comes in one of three flavors:

i) cosmetic changes, formatting, documentation, etc.;
ii) fixing bug(s), or any change to the code which results in different numerical output; or
iii) adding a feature or new package.

To do this you should:

• edit the relevant file(s) and/or create new files. Refer to Coding style guide for details on expected documentation
standards and code style requirements. Of course, changes should be thoroughly tested to ensure they compile
and run successfully!

• type git add «FILENAME1» «FILENAME2» ... to stage the file(s) ready for a commit command (note
both existing and brand new files need to be added). “Stage” effectively means to notify Git of the the list of files
you plan to “commit” for changes into the version tracking system. Note you can change other files and NOT
have them sent to model developers; only staged files will be sent. You can repeat this git add command
as many times as you like and it will continue to augment the list of files. git diff and git status are
useful commands to see what you have done so far.

• use git commit to commit the files. This is the first step in bundling a collection of files together to be sent
off to the MITgcm maintainers. When you enter this command, an editor window will pop up. On the top line,
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type a succinct (<70 character) summary of what these changes accomplished. If your commit is non-trivial and
additional explanation is required, leave a blank line and then type a longer description of why the action in this
commit was appropriate etc. It is good practice to link with known issues using the syntax #ISSUE_NUMBER
in either the summary line or detailed comment. Note that all the changes do not have to be handled in a single
commit (i.e. you can git add some files, do a commit, than continue anew by adding different files, do another
commit etc.); the git commit command itself does not (yet) submit anything to maintainers.

• if you are fixing a more involved bug or adding a new feature, such that many changes are required, it is
preferable to break your contribution into multiple commits (each documented separately) rather than submitting
one massive commit; each commit should encompass a single conceptual change to the code base, regardless of
how many files it touches. This will allow the MITgcm maintainers to more easily understand your proposed
changes and will expedite the review process.

When your changes are tested and documented, continue on to step #6, but read all of step #6 and #7 before proceeding;
you might want to do an optional “bring my development branch up to date” sequence of steps before step #6.

6. Now we “push” our modified branch with committed changes onto the origin remote in the GitHub cloud. This
effectively updates your GitHub cloud copy of the MITgcm repo to reflect the wonderful changes you are contributing.

% git push -u origin «YOUR_NEWBRANCH_NAME»

Some time might elapse during step #5, as you make and test your edits, during which continuing development occurs
in the main MITgcm repository. In contrast with some models that opt for static, major releases, the MITgcm is in a
constant state of improvement and development. It is very possible that some of your edits occur to files that have also
been modified by others. Your local clone however will not know anything about any changes that may have occurred
to the MITgcm repo in the cloud, which may cause an issue in step #7 below, when one of three things will occur:

• the files you have modified in your development have NOT been modified in the main repo during this elapsed
time, thus git will have no conflicts in trying to update (i.e. merge) your changes into the main repo.

• during the elapsed time, the files you have modified have also been edited/updated in the main repo, but you
edited different places in these files than those edits to the main repo, such that git is smart enough to be able to
merge these edits without conflict.

• during the elapsed time, the files you have modified have also been edited/updated in the main repo, but git is
not smart enough to know how to deal with this conflict (it will notify you of this problem during step #7).

One option is to NOT attempt to bring your development code branch up to date, instead simply proceed with steps
#6 and #7 and let the maintainers assess and resolve any conflict(s), should such occur (there is a checkbox ‘Allow
edits by maintainers’ that is checked by default when you do step #7). If very little time elapsed during step #5, such
conflict is less likely. However, if step #5 takes on the order of months, we do suggest you follow this recipe below
to update the code and merge yourself. And/or during the development process, you might have reasons to bring the
latest changes in the main repo into your development branch, and thus might opt to follow these same steps.

Development branch code update recipe:

% git checkout master
% git pull upstream master
% git push origin master
% git checkout «YOUR_NEWBRANCH_NAME»
% git merge master

This first command switches you from your development branch to the master branch. The second command above
will synchronize your local master branch with the main MITgcm repository master branch (i.e. “pull” any new
changes that might have occurred in the upstream repository into your local clone). Note you should not have made
any changes to your clone’s master branch; in other words, prior to the pull, master should be a stagnant copy of
the code from the day you performed step #1 above. The git push command does the opposite of pull, so in the
third step you are synchronizing your GitHub cloud copy (“origin”) master branch to your local clone’s master branch
(which you just updated). Then, switch back to your development branch via the second git checkout command.
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Finally, the last command will merge any changes into your development branch. If conflicts occur that git cannot
resolve, git will provide you a list of the problematic file names, and in these files, areas of conflict will be demarcated.
You will need to edit these files at these problem spots (while removing git’s demarcation text), then do a git add
«FILENAME» for each of these files, followed by a final git commit to finish off the merger.

Some additional git diff commands to help sort out file changes, in case you want to assess the scope of devel-
opment changes, are as follows. git diff master upstream/master will show you all differences between
your local master branch and the main MITgcm repo, i.e., so you can peruse what parallel MITgcm changes have
occurred while you were doing your development (this assumes you have not yet updated your clone’s master branch).
You can check for differences on individual files via git diff master upstream/master «FILENAME».
If you want to see all differences in files you have modified during your development, the command is git diff
master. Similarly, to see a combined list of both your changes and those occurring to the main repo, git diff
upstream/master.

Aside comment: if you are familiar with git, you might realize there is an alternate way to merge, using the “rebase”
syntax. If you know what you are doing, feel free to use this command instead of our suggested merge command
above.

7. Finally create a “pull request” (a.k.a. “PR”; in other words, you are requesting that the maintainers pull
your changes into the main code repository). In GitHub, go to the fork of the project that you made (https:
//github.com/«GITHUB_USERNAME»/MITgcm.git). There is a button for “Compare and Pull” in your newly cre-
ated branch. Click the button! Now you can add a final succinct summary description of what you’ve done in your
commit(s), flag up any issues, and respond to the remaining questions on the PR template form. If you have made
non-trivial changes to the code or documentation, we will note this in the MITgcm change log, doc/tag-index. Please
suggest how to note your changes in doc/tag-index; we will not accept the PR if this field is left blank. The maintain-
ers will now be notified and be able to peruse your changes! In general, the maintainers will try to respond to a new
PR within a week. While the PR remains open, you can go back to step #5 and make additional edits, git adds, git
commits, and then redo step #6; such changes will be added to the PR (and maintainers re-notified), no need to redo
step #7.

Your pull request remains open until either the maintainers fully accept and merge your code changes into the main
repository, or decide to reject your changes. Occasionally, the review team will reject changes that are not sufficiently
aligned with and do not fit with the code structure; the review team is always happy to discuss their decisions, but
wants to avoid people investing extensive additional effort in code that has a fundamental design flaw. But much more
likely than outright rejection, you will instead be asked to respond to feedback, modify your code changes in some
way, and/or clean up your code to better satisfy our style requirements, etc., and the pull request will remain open. In
some cases, the maintainers might take initiative to make some changes to your pull request (such changes can then
be incorporated back into your local branch simply by typing git pull from your branch), but more typically you
will be asked to undertake the majority of the necessary changes.

It is possible for other users (besides the maintainers) to examine or even download your pull request; see Reviewing
pull requests.

The current review team is Jean-Michel Campin, Ed Doddridge, Chris Hill, Oliver Jahn, and Jeff Scott.
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5.3 Coding style guide

Detailed instructions or link to be added.

5.4 Creating MITgcm packages

Optional parts of code are separated from the MITgcm core driver code and organized into packages. The packaging
structure provides a mechanism for maintaining suites of code, specific to particular classes of problem, in a way that
is cleanly separated from the generic fluid dynamical engine. An overview of available MITgcm packages is presented
in Section 8, as illustrated in Figure 8.1. An overview of how to include and use MITgcm packages in your setup is
presented in Section 8.1.1, with specific details on using existing packages spread throughout Section 8, Section 9,
and Section 10. This sub-section includes information necessary to create your own package for use with MITgcm.

The MITgcm packaging structure is described below using generic package names ${pkg}. A concrete examples of
a package is the code for implementing GM/Redi mixing: this code uses the package names ${PKG} = GMREDI,
${pkg} = gmredi, and ${Pkg} = gmRedi.

5.4.1 Package structure

• Compile-time state: Given that each package is allowed to be compiled or not (e.g., all ${pkg} listed in
packages.conf are compiled, see Section 8.1.1.1), genmake2 keeps track of each package’s compile-state
in PACKAGES_CONFIG.h with CPP option ALLOW_${PKG} being defined (#define) or not (#undef).
Therefore, in the MITgcm core code (or code from other included packages), calls to package-specific
subroutines and package-specific header file #include statements must be protected within #ifdef
ALLOW_${PKG} . . . . . . #endif /* ALLOW_${PKG} */ (see below) to ensure that the model compiles
when this ${pkg} is not compiled.

• Run-time state: The core driver part of the model can check for a run-time on/off switch of individual pack-
age(s) through the Fortran logical flag use${Pkg}. The information is loaded from a global package setup
file called data.pkg. Note a use${Pkg} flag is NOT used within the package-local subroutine code (i.e.,
${pkg}_«DO_SOMETHING».F package source code).

• Each package gets its runtime configuration parameters from a file named data.${pkg}. Package runtime
configuration options are imported into a common block held in a header file called ${PKG}.h. Note in
some packages, the header file ${PKG}.h is split into ${PKG}_PARAMS.h, which contains the package
parameters, and ${PKG}_VARS.h for the field arrays. The ${PKG}.h header file(s) can be imported by other
packages to check dependencies and requirements from other packages (see Section 5.4.2).

In order for a package’s run-time state use${Pkg} to be set to true (i.e., “on”), the code build must have its compile-
time state ALLOW_${PKG} defined (i.e., “included”), else mitgcmuv will terminate (cleanly) during initialization. A
package’s run-time state is not permitted to change during a model run.

Every call to a package routine from outside the package requires a check on BOTH compile-time and run-time states:

#include "PACKAGES_CONFIG.h"
#include "CPP_OPTIONS.h"

.

.
#ifdef ALLOW_${PKG}
# include "${PKG}_PARAMS.h"
#endif

.

.

(continues on next page)
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(continued from previous page)

.

#ifdef ALLOW_${PKG}
IF ( use${Pkg} ) THEN

.

.
CALL ${PKG}_DO_SOMETHING(...)
.

ENDIF
#endif

Within an individual package, the header file ${PKG}_OPTIONS.h is used to set CPP flags specific to that package.
This header file should include PACKAGES_CONFIG.h and CPP_OPTIONS.h, as shown in this example:

#ifndef ${PKG}_OPTIONS_H
#define ${PKG}_OPTIONS_H
#include "PACKAGES_CONFIG.h"
#include "CPP_OPTIONS.h"

#ifdef ALLOW_${PKG}
.
.
.

#define ${PKG}_SOME_PKG_SPECIFIC_CPP_OPTION
.
.
.

#endif /* ALLOW_${PKG} */
#endif /* ${PKG}_OPTIONS_H */

See for example GMREDI_OPTIONS.h.

5.4.2 Package boot sequence

All packages follow a required “boot” sequence outlined here:

S/R PACKAGES_BOOT()

S/R PACKAGES_READPARMS()
#ifdef ALLOW_${PKG}

IF ( use${Pkg} ) CALL ${PKG}_READPARMS( retCode )
#endif

S/R PACKAGES_INIT_FIXED()
#ifdef ALLOW_${PKG}

IF ( use${Pkg} ) CALL ${PKG}_INIT_FIXED( retCode )
#endif

S/R PACKAGES_CHECK()
#ifdef ALLOW_${PKG}

IF ( use${Pkg} ) CALL ${PKG}_CHECK( retCode )
#else

IF ( use${Pkg} ) CALL PACKAGES_CHECK_ERROR('${PKG}')
#endif

(continues on next page)
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(continued from previous page)

S/R PACKAGES_INIT_VARIABLES()
#ifdef ALLOW_${PKG}

IF ( use${Pkg} ) CALL ${PKG}_INIT_VARIA( )
#endif

• PACKAGES_BOOT() determines the logical state of all use${Pkg} variables, as defined in the file data.
pkg.

• ${PKG}_READPARMS() is responsible for reading in the package parameters file data.${pkg} and stor-
ing the package parameters in ${PKG}.h (or in ${PKG}_PARAMS.h). ${PKG}_READPARMS is
called in S/R packages_readparms.F, which in turn is called from S/R initialise_fixed.F.

• ${PKG}_INIT_FIXED() is responsible for completing the internal setup of a package, including
adding any package-specific variables available for output in pkg/diagnostics (done in S/R
${PKG}_DIAGNOSTICS_INIT). ${PKG}_INIT_FIXED is called in S/R packages_init_fixed.F,
which in turn is called from S/R initialise_fixed.F. Note: some packages instead use CALL
${PKG}_INITIALISE (or the old form CALL ${PKG}_INIT).

• ${PKG}_CHECK() is responsible for validating basic package setup and inter-package dependencies.
${PKG}_CHECK can also import parameters from other packages that it may need to check; this is ac-
complished through header files ${PKG}.h. (It is assumed that parameters owned by other packages will
not be reset during ${PKG}_CHECK !!!) ${PKG}_CHECK is called in S/R packages_check.F, which in
turn is called from S/R initialise_fixed.F.

• ${PKG}_INIT_VARIA() is responsible for initialization of all package variables, called after the core model
state has been completely initialized but before the core model timestepping starts. This routine calls
${PKG}_READ_PICKUP, where any package variables required to restart the model will be read from a
pickup file. ${PKG}_INIT_VARIA is called in packages_init_variables.F, which in turn is called from S/R
initialise_varia.F. Note: the name ${PKG}_INIT_VARIA is not yet standardized across all packages; one
can find other S/R names such as ${PKG}_INI_VARS or ${PKG}_INIT_VARIABLES or ${PKG}_INIT.

5.4.3 Package S/R calls

Calls to package subroutines within the core code timestepping loop can vary. Below we show an example of calls to
do calculations, generate output and dump the package state (for pickup):

S/R DO_OCEANIC_PHYS()
#ifdef ALLOW_${PKG}

IF ( use${Pkg} ) CALL ${PKG}_DO_SOMETHING( )
#endif

S/R DO_THE_MODEL_IO()
#ifdef ALLOW_${PKG}

IF ( use${Pkg} ) CALL ${PKG}_OUTPUT( )
#endif

S/R PACKAGES_WRITE_PICKUP()
#ifdef ALLOW_${PKG}

IF ( use${Pkg} ) CALL ${PKG}_WRITE_PICKUP( )
#endif

• ${PKG}_DO_SOMETHING() refers to any local package source code file, which may be called from any
model/src routine (or, from any subroutine in another package). An specific example would be the S/R call
gmredi_calc_tensor.F from within the core S/R model/src/do_oceanic_phys.F.
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• ${PKG}_OUTPUT() is responsible for writing time-average fields to output files (although the cumulat-
ing step is done within other package subroutines). May also call other output routines (e.g., CALL
${PKG}_MONITOR) and write snapshot fields that are held in common blocks. Other temporary fields
are directly dumped to file where they are available. Note that pkg/diagnostics output of ${PKG} variables
is generated in pkg/diagnostics subroutines. ${PKG}_OUTPUT() is called in S/R do_the_model_io.F
NOTE: 1) the S/R ${PKG}_DIAGS is used in some packages but is being replaced by ${PKG}_OUTPUT
to avoid confusion with pkg/diagnostics functionality. 2) the output part is not yet in a standard form.

• ${PKG}_WRITE_PICKUP() is responsible for writing a package pickup file, used in packages where such is
necessary for a restart. ${PKG}_WRITE_PICKUP is called in packages_write_pickup.F which in turn is
called from the_model_main.F.

Note: In general, subroutines in one package (pkgA) that only contains code which is connected to a 2nd package
(pkgB) will be named pkgA_pkgB_something.F (e.g., gmredi_diagnostics_init.F).

5.4.4 Package “mypackage”

In order to simply creating the infrastructure required for a new package, we have created pkg/mypackage as essentially
an existing package (i.e., all package variables defined, proper boot sequence, output generated) that does not do
anything. Thus, we suggest you start with this “blank” package’s code infrastructure and add your new package
functionality to it, perusing the existing mypackage routines and editing as necessary, rather than creating a new
package from scratch.

5.5 MITgcm code testing protocols

verification directory includes many examples intended for regression testing (some of which are tutorial experiments
presented in detail in Section 4). Each one of these test-experiment directories contains “known-good” standard output
files (see Section 5.5.2.1) along with all the input (including both code and data files) required for their re-calculation.
Also included in verification is the shell script testreport to perform regression tests.

5.5.1 Test-experiment directory content

Each test-experiment directory («TESTDIR», see verification for the full list of choices) contains several standard
subdirectories and files which testreport recognizes and uses when running a regression test. The directories and files
that testreport uses are different for a forward test and an adjoint test (testreport -adm, see Section 5.5.2) and
some test-experiments are set-up for only one type of regression test whereas others allow both types of tests (forward
and adjoint). Also some test-experiments allow, using the same MITgcm executable, multiple tests using different
parameters and input files, with a primary input set-up (e.g., input/ or input_ad/) and corresponding results
(e.g., results/output.txt or results/output_adm.txt) and with one or several secondary inputs (e.g.,
input.«OTHER»/ or input_ad.«OTHER»/) and corresponding results (e.g., results/output.«OTHER».
txt or results/output_adm.«OTHER».txt).

directory «TESTDIR»/code/ Contains the test-experiment specific source code (i.e., files that have been modified
from the standard MITgcm repository version) used to build the MITgcm executable (mitgcmuv) for forward-
test (using genmake2 -mods=../code).

It can also contain specific source files with the suffix _mpi to be used in place of the corresponding file
(without suffix) for an MPI test (see Section 5.5.2). The presence or absence of SIZE.h_mpi determines
whether or not an MPI test on this test-experiment is performed or skipped. Note that the original code/
SIZE.h_mpi is not directly used as SIZE.h to build an MPI-executable; instead, a local copy build/SIZE.
h.mpi is derived from code/SIZE.h_mpi by adjusting the number of processors (nPx, nPy) according
to «NUMBER_OF_PROCS» (see Section 5.5.2, testreport -MPI); then it is linked to SIZE.h (ln -s
SIZE.h.mpi SIZE.h) before building the MPI-executable.
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directory «TESTDIR»/code_ad/ Contains the test-experiment specific source code used to build the MITgcm ex-
ecutable (mitgcmuv_ad) for adjoint-test (using genmake2 -mods=../code_ad). It can also contain
specific source files with the suffix _mpi (see above).

directory «TESTDIR»/build/ Directory where testreport will build the MITgcm executable for forward and adjoint
tests. It is initially empty except in some cases will contain an experiment specific genmake_local file (see
Section 3.5.2).

directory TESTDIR/input/ Contains the input and parameter files used to run the primary forward test of this test-
experiment.

It can also contain specific parameter files with the suffix .mpi to be used in place of the corresponding file
(without suffix) for MPI tests, or with suffix .mth to be used for multi-threaded tests (see Section 5.5.2). The
presence or absence of eedata.mth determines whether or not a multi-threaded test on this test-experiment
is performed or skipped, respectively.

To save disk space and reduce downloading time, multiple copies of the same input file are avoided by using a
shell script prepare_run. When such a script is found in TESTDIR/input/, testreport runs this script in
directory TESTDIR/run/ after linking all the input files from TESTDIR/input/.

directory «TESTDIR»/input_ad/ Contains the input and parameter files used to run the primary adjoint test of
this test-experiment. It can also contain specific parameter files with the suffix .mpi and shell script
prepare_run as described above.

directory «TESTDIR»/input.«OTHER»/ Contains the input and parameter files used to run the secondary OTHER
forward test of this test-experiment. It can also contain specific parameter files with suffix .mpi or .mth and
shell script prepare_run (see above).

The presence or absence the file eedata.mth determines whether or not a secondary multi-threaded test on
this test-experiment is performed or skipped.

directory «TESTDIR»/input_ad.«OTHER»/ Contains the input and parameter files used to run the secondary
OTHER adjoint test of this test-experiment. It can also contain specific parameter files with the suffix .mpi and
shell script prepare_run (see above).

directory «TESTDIR»/results/ Contains reference standard output used for test comparison. results/output.
txt and results/output_adm.txt, respectively, correspond to primary forward and adjoint test run
on the reference platform (currently villon.mit.edu) on one processor (no MPI, single thread) using the refer-
ence compiler (currently the GNU Fortran compiler gfortran). The presence of these output files determines
whether or not testreport is testing or skipping this test-experiment. Reference standard output for secondary
tests (results/output.«OTHER».txt or results/output_adm.«OTHER».txt) are also expected
here.

directory «TESTDIR»/run/ Initially empty directory where testreport will run the MITgcm executable for primary
forward and adjoint tests.

Symbolic links (using command ln -s) are made for input and parameter files (from ../input/ or from
../input_ad/) and for MITgcm executable (from ../build/) before the run proceeds. The sequence of
links (function linkdata within shell script testreport) for a forward test is:

• link and rename or remove links to special files with suffix .mpi or .mth from ../input/

• link files from ../input/

• execute ../input/prepare_run (if it exists)

The sequence for an adjoint test is similar, with ../input_ad/ replacing ../input/.

directory «TESTDIR»/tr_run.«OTHER»/ Directory created by testreport to run the MITgcm executable for sec-
ondary “OTHER” forward or adjoint tests.

The sequence of links for a forward secondary test is:
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• link and rename or remove links to special files with suffix .mpi or .mth from ../input.OTHER/

• link files from ../input.OTHER/

• execute ../input.OTHER/prepare_run (if it exists)

• link files from ../input/

• execute ../input/prepare_run (if it exists)

The sequence for an adjoint test is similar, with ../input_ad.OTHER/ and ../input_ad/ replacing
../input.OTHER/ and ../input/.

5.5.2 The testreport utility

The shell script testreport, which was written to work with genmake2, can be used to build different versions of
MITgcm code, run the various examples, and compare the output. On some systems, the testreport script can be run
with a command line as simple as:

% cd verification
% ./testreport -optfile ../tools/build_options/linux_amd64_gfortran

The testreport script accepts a number of command-line options which can be listed using the -help option. The
most important ones are:

-ieee (default) / -fast If allowed by the compiler (as defined in the specified optfile), use IEEE arithmetic
(genmake2 -ieee). In contrast, -fast uses the optfile default for compiler flags.

-devel Use optfile development flags (assumes specified in optfile).

-optfile «/PATH/FILENAME» (or -optfile ’«/PATH/F1» «/PATH/F2» ...’) This specifies a list
of “options files” that will be passed to genmake2. If multiple options files are used (for example, to test different
compilers or different sets of options for the same compiler), then each options file will be used with each of the
test directories.

-tdir «TESTDIR» (or -tdir ’«TDIR1» «TDIR2» ...’) This option specifies the test directory or list of
test directories that should be used. Each of these entries should exactly match (note: they are case sensitive!)
the names of directories in verification. If this option is omitted, then all directories that are properly formatted
(that is, containing an input subdirectory and a results/output.txt file) will be used.

-skipdir «TESTDIR» (or -skipdir ’«TDIR1» «TDIR2» ...’) This option specifies a test directory or
list of test directories to skip. The default is to test ALL directories in verification.

-MPI «NUMBER_OF_PROCS» (or -mpi) If the necessary file «TESTDIR»/code/SIZE.h_mpi exists, then
use it (and all TESTDIR/code/*_mpi files) for an MPI-enabled run. The option -MPI followed by the
maximum number of processors enables to build and run each test-experiment using different numbers of MPI
processors (specific number chosen by: multiple of nPx*nPy from «TESTDIR»/code/SIZE.h_mpi and
not larger than «NUMBER_OF_PROCS»). The short option (-mpi) can only be used to build and run on 2
MPI processors (equivalent to -MPI 2).

Note that the use of MPI typically requires a special command option (see “-command” below) to invoke the
MPI executable.

-command=’«SOME COMMANDS TO RUN»’ For some tests, particularly MPI runs, a specific command might
be needed to run the executable. This option allows a more general command (or shell script) to be invoked.

The default here is for «SOME COMMANDS TO RUN» to be replaced by mpirun -np TR_NPROC
mitgcmuv. If on your system you require something other than mpirun, you will need to use the option
and specify your computer’s syntax. Because the number of MPI processors varies according to each test-
experiment, the keyword TR_NPROC will be replaced by its effective value, the actual number of MPI proces-
sors needed to run the current test-experiment.
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-mth Compile with genmake2 -omp and run with multiple threads (using eedata.mth).

-adm Compile and test the adjoint suite of verification runs using TAF.

-clean Clean out all files/progress from any previously executed testreport runs.

-match «NUMBER» Set matching criteria to «NUMBER» of significant digits (default is 10 digits).

Additional testreport options are available to pass options to genmake2 (called during testreport execution) as well as
additional options to skip specific steps of the testreport shell script. See testreport -help for a detailed list.

In the verification/ directory, the testreport script will create an output directory «tr_NAME_DATE_N», with your
computer hostname substituted for NAME, the current date for DATE, followed by a suffix number N to distinguish
from previous testreport output directories. Unless you specify otherwise using the -tdir or -skipdir options de-
scribed above, all sub-directories (i.e., TESTDIR experiments) in verification will be tested. testreport writes progress
to the screen (stdout) and reports into the «tr_NAME_DATE_N/TESTDIR» sub-directories as it runs. In particular, one
can find, in each TESTDIR subdirectory, a summary.txt file in addition to log and/or error file(s) (depending how
the run failed, if this occurred). summary.txt contains information about the run and a comparison of the current
output with “reference output” (see below for information on how this reference output is generated). The test com-
parison involves several output model variables. By default, for a forward test, these are the 2D solver initial residual
cg2d_init_res and 3D state variables (T, S, U, V) from pkg/monitor output; by default for an adjoint test, the cost-
function and gradient-check. However, some test-experiments use some package-specific variables from pkg/monitor
according to the file «TESTDIR»/input[_ad][.«OTHER»]/tr_checklist specification. Note that at this
time, the only variables that are compared by testreport are those dumped in standard output via pkg/monitor, not
output produced by pkg/diagnostics. Monitor output produced from ALL run time steps are compared to assess sig-
nificant digit match; the worst match is reported. At the end of the testing process, a composite summary.txt file
is generated in the top «tr_NAME_DATE_N» directory as a compact, combined version of the summary.txt files
located in all TESTDIR sub-directories (a slightly more condensed version of this information is also written to file
tr_out.txt in the top verification/ directory; note this file is overwritten upon subsequent testreport runs). Figure
5.2 shows an excerpt from the composite summary.txt, created by running the full testreport suite (in the example
here, on a linux cluster, using gfortran):

The four columns on the left are build/run results (successful=Y, unsuccessful=N). Explanation of these columns is as
follows:

• Gen2: did genmake2 build the makefile for this experiment without error?

• Dpnd: did the make depend for this experiment complete without error?

• Make: did the make successfully generate a mitgcmuv executable for this experiment?

• Run: did execution of this experiment startup and complete successfully?

The next sets of columns shows the number of significant digits matched from the monitor output “cg2d”, “min”,
“max”, “mean”, and “s d” (standard deviation) for variables T, S, U, and V (see column headings), as compared with
the reference output. NOTE: these column heading labels are for the default list of variables, even if different variables
are specified in a tr_checklist file (for reference, the list of actual variables tested for a specific TESTDIR
experiment is output near the end of the file summary.txt appearing in the specific TESTDIR experiment directory).
For some experiments, additional variables are tested, as shown in “PTR 01”, “PTR 02” sets of columns; testreport
will detect if tracers are active in a given experiment and check digit match on their concentration values. A match to
near-full machine precision is 15-16 digits; this generally will occur when a similar type of computer, similar operating
system, and similar version of Fortran compiler are used for the test. Otherwise, different round-off can occur, and
due to the chaotic nature of ocean and climate models, fewer digits (typically, 10-13 digits) are matched. A match
of 22 digits generally is due to output being exactly 0.0. In some experiments, some variables may not be used or
meaningful, which causes the ‘0’ and ‘4’ match results in several of the adjustment experiments above.

While the significant digit match for many variables is tested and displayed in summary.txt, only one of these is
used to assess pass/fail (output to the right of the match test results) – the number bracketed by > and <. For example,
see above for experiment advect_cs the pass/fail test occurs on variable “T: s d” (i.e., standard deviation of potential
temperature), the first variable in the list specified in verification/advect_cs/input/tr_checklist. By default (i.e., if no
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  run: ./testreport -of ../tools/build_options/linux_amd64_gfortran 
  on : Linux c072 4.11.9-100.fc24.x86_64 #1 SMP Wed Jul 5 16:34:07 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux 
   
    OPTFILE=/home/jscott/MITgcm_fortesting/MITgcm/tools/build_options/linux_amd64_gfortran 
   
  default 10  ----T-----  ----S-----  ----U-----  ----V-----  --PTR 01--  --PTR 02-- 
  G D M    c        m  s        m  s        m  s        m  s        m  s        m  s 
  e p a R  g  m  m  e  .  m  m  e  .  m  m  e  .  m  m  e  .  m  m  e  .  m  m  e  .  
  n n k u  2  i  a  a  d  i  a  a  d  i  a  a  d  i  a  a  d  i  a  a  d  i  a  a  d  
  2 d e n  d  n  x  n  .  n  x  n  .  n  x  n  .  n  x  n  .  n  x  n  .  n  x  n  .  
   
  Y Y Y Y 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 22 16 16>16<22 pass  1D_ocean_ice_column 
  Y Y Y Y>14<16 16 16 16 22 22 22 22 22 22 22 22 13  4 13 13  .  .  .  .  .  .  .  . pass  adjustment.128x64x1 
  Y Y Y Y>14<16 16 16 16 22 22 22 22 16 16 13 16 16 16  4 16  .  .  .  .  .  .  .  . pass  adjustment.cs-32x32x1 
  Y Y Y Y>14<16 16 16  0 22 22 22 22 16 16  0 14 16 16  0 16  .  .  .  .  .  .  .  . pass  adjustment.cs-32x32x1.nlfs 
  Y Y Y Y -- 16 16 16>16<16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  advect_cs 
  Y Y Y Y -- 14 14 16>16<16 16 16 16 16 16 16 22 16 16 16 22  .  .  .  .  .  .  .  . pass  advect_xy 
  Y Y Y Y -- 16 16 16>16<16 16 16 16 16 16 16 22 16 16 16 22  .  .  .  .  .  .  .  . pass  advect_xy.ab3_c4 
  Y Y Y Y -- 16 16 16>16<16 16 16 16 16 16 16 16 22 22 22 22  .  .  .  .  .  .  .  . pass  advect_xz 
  Y Y Y Y -- 16 16 16>16<16 14 16 14 16 16 16 16 22 22 22 22  .  .  .  .  .  .  .  . pass  advect_xz.nlfs 
  Y Y Y Y -- 13 14 16>14<12 16 16 16 16 16 16 16 22 22 22 22  .  .  .  .  .  .  .  . pass  advect_xz.pqm 
  Y Y Y Y>14<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  aim.5l_cs 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  . pass  aim.5l_cs.thSI 
  Y Y Y Y>14<16 16 13 14 16 16 13 13 16 16 13 13 16 16 13 14  .  .  .  .  .  .  .  . pass  aim.5l_Equatorial_Channel 
  Y Y Y Y>14<16 16 13 13 16 16 13 13 16 16 13 13 16 16 13 13  .  .  .  .  .  .  .  . pass  aim.5l_LatLon 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 pass  cfc_example 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  cheapAML_box 
  Y Y Y Y>14<16 16 16 12 22 22 22 22 13 16 12 16 13 14 12 16  .  .  .  .  .  .  .  . pass  deep_anelastic 
  Y Y Y Y>14<16 16 16 16 16 16 16 16 16 16 16 16 16 13 14 16  .  .  .  .  .  .  .  . pass  dome 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  exp2 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  exp2.rigidLid 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  . pass  exp4 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  . pass  exp4.nlfs 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  exp4.stevens 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  fizhi-cs-32x32x40 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  fizhi-cs-aqualev20 
  Y Y Y Y>16<16 16 16 16 22 22 22 22 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  fizhi-gridalt-hs 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  flt_example 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  front_relax 
  Y Y Y Y>16<16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  .  .  .  .  .  .  .  . pass  front_relax.bvp 
  ... 
 
 

Figure 5.2: Example output from testreport summary.txt
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file tr_checklist is present), pass/fail is assessed on the cg2d monitor output. See the testreport script for a list of
permissible variables to test and a guide to their abbreviations. See tr_checklist files in the input subdirectories
of several TESTDIR experiments (e.g., verification/advect_xz/input/tr_checklist) for examples of syntax (note, a +
after a variable in a tr_checklist file is shorthand to compare the mean, minimum, maximum, and standard
deviation for the variable).

5.5.2.1 Reference Output

Reference output is currently generated using the linux server villon.mit.edu which employs an Intel Haswell
processor running Ubuntu 18.04.3 LTS. For each verification experiment in the MITgcm repository, this reference
output is stored in the file «TESTDIR»/results/output.txt, which is the standard output generated by running
testreport (using a single process) on villon.mit.edu using the gfortran (GNU Fortran) compiler version 7.4.0.

Using a different gfortran version (or a different Fortran compiler entirely), and/or running with MPI, a different
operating system, or a different processor (cpu) type will generally result in output that differs to machine precision.
The greater the number of such differences between your platform and this reference platform, typically the fewer
digits of matching output precision.

5.5.3 The do_tst_2+2 utility

The shell script tools/do_tst_2+2 can be used to check the accuracy of the restart procedure. For each experiment that
has been run through testreport, do_tst_2+2 executes three additional short runs using the tools/tst2+2 script. The first
run makes use of the pickup files output from the run executed by testreport to restart and run for four time steps,
writing pickup files upon completion. The second run is similar except only two time steps are executed, writing
pickup files. The third run restarts from the end of the second run, executing two additional time steps, writing pickup
files upon completion. In order to successfully pass do_tst_2+2, not only must all three runs execute and complete
successfully, but the pickups generated at the end the first run must be identical to the pickup files from the end of the
third run. Note that a prerequisite to running do_tst_2+2 is running testreport, both to build the executables used by
do_tst_2+2, and to generate the pickup files from which do_tst_2+2 begins execution.

The tools/do_tst_2+2 script should be called from the verification/ directory, e.g.:

% cd verification
% ../tools/do_tst_2+2

The do_tst_2+2 script accepts a number of command-line options which can be listed using the -help option. The
most important ones are:

-t «TESTDIR» Similar to testreport option -tdir, specifies the test directory or list of test directories that should
be used. If omitted, the test is attempted in all sub-directories.

-skd «TESTDIR» Similar to testreport option -skipdir, specifies a test directory or list of test directories to
skip.

-mpi Run the tests using MPI; requires the prerequisite testreport run to have been executed with the -mpi or -MPI
«NUMBER_OF_PROCS» flag. No argument is necessary, as the do_tst_2+2 script will determine the correct
number of processes to use for your executable.

-clean Clean up any output generated from the do_tst_2+2. This step is necessary if one wants to do additional
testreport runs from these directories.

Upon completion, do_tst_2+2 will generate a file tst_2+2_out.txt in the verification/ directory which sum-
marizes the results. The top half of the file includes information from the composite summary.txt file from the
prerequisite testreport run. In the bottom half, new results from each verification experiment are given: each line
starts with four Y/N indicators indicating if pickups from the testreport run were available, and whether runs 1, 2
and 3, completely successfully, respectively, followed by a pass or fail from the output pickup file comparison test,
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followed by the TESTDIR experiment name. In each «TESTDIR»/run subdirectory do_tst_2+2 also creates a log
file tst_2+2_out.log which contains additional information. During do_tst_2+2 execution a separate directory
of summary information, including log files for all failed tests, is created in an output directory «rs_NAME_DATE_N»
similar to the syntax for the testreport output directory name. Note however this directory is deleted by default upon
do_tst_2+2 completion, but can be saved by adding the do_tst_2+2 command line option -a NONE.

5.5.4 Daily Testing of MITgcm

On a daily basis, MITgcm runs a full suite of testreport (i.e., forward and adjoint runs, single process, single-threaded
and mpi) on an array of different clusters, running using different operating systems, testing several different Fortran
compilers. The reference machine villon.mit.edu is one of such daily test machines. When changes in output
occur from previous runs, even if as minor as changes in numeric output to machine precision, MITgcm maintainers
are automatically notified.

Links to summary results from the daily testing are posted at http://mitgcm.org/public/testing.html.

5.5.5 Required Testing for MITgcm Code Contributors

5.5.5.1 Using testreport to check your new code

Before submitting your pull request for approval, if you have made any changes to MITgcm code, however trivial, you
MUST complete the following:

• Run testreport (on all experiments) on an unmodified master branch of MITgcm. We suggest using the -devel
option and gfortran (typically installed in most linux environments) although neither is strictly necessary for this
test. Depending how different your platform is from our reference machine setup, typically most tests will pass
but some match tests may fail; it is possible one or more experiments might not even build or run successfully.
But even if there are multiple experiment fails or unsuccessful builds or runs, do not despair, the purpose at this
stage is simply to generate a reference report on your local platform using the master code. It may take one or
more hours for testreport to complete.

• Save a copy of this summary output from running testreport on the mastrer branch: from the verification direc-
tory, type cp tr_out.txt tr_out_master.txt. The file tr_out.txt is simply a condensed version
of the composite summary.txt file located in the «tr_NAME_DATE_N» directory. Note we are not making
this file “git-aware”, as we have no desire to check this into the repo, so we are using an old-fashioned copy to
save the output here for later comparison.

• Switch to your pull request branch, and repeat the testreport sequence using the same options.

• From the verification directory, type diff tr_out_master.txt tr_out.txt which will report any
differences in testreport output from the above tests. If no differences occur (other than timestamp-related), see
below if you are required to do a do_tst_2+2 test; otherwise, you are clear for submitting your pull request.

Differences might occur due to one or more of the following reasons:

• Your modified code no longer builds properly in one or more experiments. This is likely due to a Fortran syntax
error; examine output and log files in the failed experiment TESTDIR to identify and fix the problem.

• The run in the modified code branch terminates due to a numerical exception error. This too requires further
investigation into the cause of the error, and a remedy, before the pull request should be submitted.

• You have made changes which require changes to input parameters (e.g., renaming a namelist parameter, chang-
ing the units or function of an input parameter, etc.) This by definition is a “breaking change”, which must be
noted when completing the PR template – but should not deter you from submitting your PR. Ultimately, you
and the maintainers will likely have to make changes to one or more verification experiments, but as a first step
we will want to review your PR.
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• You have made algorithmic changes which change model output in some or all setups; this too is a “breaking
change” that should be noted in the PR template. As usual recourse, if the PR is accepted, the maintainers
will re-generate reference output and push to the affected «TESTDIR»/results/ directories when the PR is
merged.

Most typically, running testreport using a single process is a sufficient test. However, any code changes which call
MITgcm routines (such as eesupp/src/global_sum.F) employing low-level MPI-directives should run testreport with
the -mpi option enabled.

5.5.5.2 Using do_tst_2+2 to check your new code

If you make any kind of algorithmic change to the code, or modify anything related to generating or reading pickup
files, you are also required to also complete a do_tst_2+2. Again, run the test on both the unmodified master branch
and your pull request branch (after you have run testreport on both branches). Verify that the output tst_2+2_out.
txt file is identical between branches, similar to the above procedure for the file tr_out.txt. If the files differ,
attempt to identify and fix what is causing the problem.

5.5.5.3 Automatic testing with Travis-CI

Once your PR is submitted onto GitHub, the continuous integration service Travis-CI runs additional tests on your PR
submission. On the ‘Pull request’ tab in GitHub (https://github.com/MITgcm/MITgcm/pulls), find your pull request;
initially you will see a yellow circle to the right of your PR title, indicating testing in progress. Eventually this will
change to a green checkmark (pass) or a red X (fail). If you get a red X, click the X and then click on ‘Details’ to list
specifics tests that failed; these can be clicked to produce a screenshot with error messages.

Note that Travis-CI builds documentation (both html and latex) in addition to code testing, so if you have introduced
syntax errors into the documentation files, these will be flagged at this stage. Follow the same procedure as above
to identify the error messages so the problem(s) can be fixed. Make any appropriate edits to your pull request, re-
git add and re-git commit any newly modified files, re-git push. Anytime changes are pushed to the PR,
Travis-CI will re-run its tests.

The maintainers will not review your PR until all Travis-CI tests pass.

5.6 Contributing to the manual

Whether you are simply correcting typos or describing undocumented packages, we welcome all contributions to the
manual. The following information will help you make sure that your contribution is consistent with the style of the
MITgcm documentation. (We know that not all of the current documentation follows these guidelines - we’re working
on it)

The manual is written in rst format, which is short for ReStructuredText directives. rst offers many wonderful features:
it automatically does much of the formatting for you, it is reasonably well documented on the web (e.g., primers
available here and here), it can accept raw latex syntax and track equation labelling for you, in addition to numerous
other useful features. On the down side however, it can be very fussy about formatting, requiring exact spacing and
indenting, and seemingly innocuous things such as blank spaces at ends of lines can wreak havoc. We suggest looking
at the existing rst files in the manual to see exactly how something is formatted, along with the syntax guidelines
specified in this section, prior to writing and formatting your own manual text.

The manual can be viewed either of two ways: interactively (i.e., web-based), as hosted by read-the-docs (https:
//readthedocs.org/), requiring an html format build, or downloaded as a pdf file. When you have completed your
documentation edits, you should double check both versions are to your satisfaction, particularly noting that figure
sizing and placement may be rendered differently in the pdf build.
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5.6.1 Section headings

• Chapter headings - these are the main headings with integer numbers - underlined with ****

• section headings - headings with number format X.Y - underlined with ====

• Subsection headings - headings with number format X.Y.Z - underlined with ----

• Subsubsection headings - headings with number format X.Y.Z.A - underlined with ~~~~

• Paragraph headings - headings with no numbers - underlined with ^^^^

N.B. all underlinings should be the same length as the heading. If they are too short an error will be produced.

5.6.2 Internal document references

rst allows internal referencing of figures, tables, section headings, and equations, i.e. clickable links that bring the
reader to the respective figure etc. in the manual. To be referenced, a unique label is required. To reference figures,
tables, or section headings by number, the rst (inline) directive is :numref:`«LABELNAME»`. For example, this
syntax would write out Figure XX on a line (assuming «LABELNAME» referred to a figure), and when clicked,
would relocate your position in the manual to figure XX. Section headings can also be referenced so that the name is
written out instead of the section number, instead using this directive :ref:`«LABELNAME»`.

Equation references have a slightly different inline syntax: :eq:`«LABELNAME»` will produce a clickable equation
number reference, surrounded by parentheses.

For instructions how to assign a label to tables and figures, see below. To label a section heading, labels go above the
section heading they refer to, with the format .. _«LABELNAME»:. Note the necessary leading underscore. You
can also place a clickable link to any spot in the text (e.g., mid-section), using this same syntax to make the label,
using the syntax :ref:`«SOME TEXT TO CLICK ON» <«LABELNAME»>` for the link.

5.6.3 Citations

In the text, references should be given using the standard “Author(s) (Year)” shorthand followed by a link to the full
reference in the manual bibliography. This link is accomplished using the syntax :cite:`«BIB_REFERENCE»`;
this will produce clickable text, usually some variation on the authors’ initials or names, surrounded by brackets.

Full references are specified in the file doc/manual_references.bib using standard BibTeX format. Even if unfamiliar
with BibTeX, it is relatively easy to add a new reference by simply examining other entries. Furthermore, most
publishers provide a means to download BibTex formatted references directly from their website. Note this file is in
approximate alphabetic order by author name. For all new references added to the manual, please include a DOI or a
URL in addition to journal name, volume and other standard reference infomation. An example JGR journal article
reference is reproduced below; note the «BIB_REFERENCE» here is “bryan:79” so the syntax in the rst file format
would be “Bryan and Lewis (1979) :cite:`bryan:79`, which will appear in the manual as Bryan and
Lewis (1979) [BL79].

@Article{bryan:79,
author = {Bryan, K. and L.J. Lewis},
title = {A water mass model of the world ocean},
journal = jgr,
volume = 84,
number = {C5},
pages = {2503–2517},
doi = {10.1029/JC084iC05p02503},
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year = 1979,
}

5.6.4 Other embedded links

Hyperlinks: to reference a (clickable) URL, simply enter the full URL. If you want to have a different, clickable
text link instead of displaying the full URL, the syntax is `«CLICKABLE TEXT» <«URL»>`_ (the ‘<’ and ‘>’ are
literal characters, and note the trailing underscore). For this kind of link, the clickable text has to be unique for each
URL. If you would like to use non-unique text (like ‘click here’), you should use an ‘anonymous reference’ with a
double trailing underscore: `«CLICKABLE TEXT» <«URL»>`__.

File references: to create a link to pull up MITgcm code (or any file in the repo) in a code browser window, the
syntax is :filelink:`«PATH/FILENAME»`. If you want to have a different text link to click on (e.g., say you
didn’t want to display the full path), the syntax is :filelink:`«CLICKABLE TEXT» <«PATH/FILENAME»>`
(again, the ‘<‘ and ‘>’ are literal characters). The top directory here is https://github.com/MITgcm/MITgcm , so if
for example you wanted to pop open the file dynamics.F from the main model source directory, you would specify
model/src/dynamics.F in place of «PATH/FILENAME».

Variable references: to create a link to bring up a webpage displaying all MITgcm repo references
to a particular variable name (for this purpose we are using the LXR Cross Referencer), the syntax is
:varlink:`«NAME_OF_VARIABLE»`. This will work on CPP options as well as FORTRAN identifiers (e.g.,
common block names, subroutine names).

5.6.5 Symbolic Notation

Inline math is done with :math:`«LATEX_HERE»`

Separate equations, which will be typeset on their own lines, are produced with:

.. math::
«LATEX_HERE»
:label: «EQN_LABEL_HERE»

Labelled separate equations are assigned an equation number, which may be referenced elsewhere in the document
(see Section 5.6.2). Omitting the :label: above will still produce an equation on its own line, except without an
equation label. Note that using latex formatting \begin{aligned} . . . \end{aligned} across multiple lines of
equations will not work in conjunction with unique equation labels for each separate line (any embedded formatting &
characters will cause errors too). Latex alignment will work however if you assign a single label for the multiple lines
of equations.

There is a software tool ‘universal document converter’ named pandoc that we have found helpful in converting raw
latex documents into rst format. To convert a .tex file into .rst, from a terminal window type:

% pandoc -f latex -t rst -o «OUTPUT_FILENAME».rst «INPUT_FILENAME».tex

Additional conversion options are available, for example if you have your equations or text in another format; see the
pandoc documentation.

Note however we have found that a fair amount of clean-up is still required after conversion, particularly regarding
latex equations/labels (pandoc has the unfortunate tendency to add extra spaces, sometimes confusing the rst :math:
directive, other times creating issues with indentation).
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5.6.6 Figures

The syntax to insert a figure is as follows:

.. figure:: «PATHNAME/FILENAME».*
:width: 80%
:align: center
:alt: «TEXT DESCRIPTION OF FIGURE HERE»
:name: «MY_FIGURE_NAME»

The figure caption goes here as a single line of text.

figure::: The figure file is located in subdirectory pathname above; in practice, we have located figure files in
subdirectories figs off each manual chapter subdirectory. The wild-card * is used here so that different file formats
can be used in the build process. For vector graphic images, save a pdf for the pdf build plus a svg file for the html
build. For bitmapped images, gif, png, or jpeg formats can be used for both builds, no wild-card necessary, just
substitute the actual extension (see here for more info on compatible formats). [Note: A repository for figure source
.eps needs to be created]

:width:: used to scale the size of the figure, here specified as 80% scaling factor (check sizing in both the pdf and
html builds, as you may need to adjust the figure size within the pdf file independently).

:align:: can be right, center, or left.

:name: use this name when you refer to the figure in the text, i.e. :numref:`«MY_FIGURE_NAME»`.

Note the indentation and line spacing employed above.

5.6.7 Tables

There are two syntaxes for tables in reStructuredText. Grid tables are more flexible but cumbersome to create. Simple
tables are easy to create but limited (no row spans, etc.). The raw rst syntax is shown first, then the output.

Grid Table Example:

+------------+------------+-----------+
| Header 1 | Header 2 | Header 3 |
+============+============+===========+
| body row 1 | column 2 | column 3 |
+------------+------------+-----------+
| body row 2 | Cells may span columns.|
+------------+------------+-----------+
| body row 3 | Cells may | - Cells |
+------------+ span rows. | - contain |
| body row 4 | | - blocks. |
+------------+------------+-----------+

Header 1 Header 2 Header 3
body row 1 column 2 column 3
body row 2 Cells may span columns.
body row 3 Cells may span rows. • Cells

• contain
• blocks.body row 4

Simple Table Example:
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===== ===== ======
Inputs Output

------------ ------
A B A or B

===== ===== ======
False False False
True False True
False True True
True True True
===== ===== ======

Inputs Output
A B A or B
False False False
True False True
False True True
True True True

Note that the spacing of your tables in your .rst file(s) will not match the generated output; rather, when you build
the final output, the rst builder (Sphinx) will determine how wide the columns need to be and space them appropriately.

5.6.8 Other text blocks

Conventionally, we have used the rst ‘inline literal’ syntax around any literal computer text (commands, labels, literal
computer syntax etc.) Surrounding text with double back-quotes `` results in output html like this.

To set several lines apart in an whitespace box, e.g. useful for showing lines in from a terminal session, rst uses :: to
set off a ‘literal block’. For example:

::

% unix_command_foo
% unix_command_fum

(note the :: would not appear in the output html or pdf) A splashier way to outline a block, including a box label, is
to employ what is termed in rst as an ‘admonition block’. In the manual these are used to show calling trees and for
describing subroutine inputs and outputs. An example of a subroutine input/output block is as follows:

This is an admonition block showing subroutine in/out syntax

.. admonition:: SUBROUTINE_NAME
:class: note

| 𝑣𝑎𝑟1 : VAR1 ( WHERE_VAR1_DEFINED.h)
| 𝑣𝑎𝑟2 : VAR1 ( WHERE_VAR2_DEFINED.h )
| 𝑣𝑎𝑟3 : VAR1 ( WHERE_VAR3_DEFINED.h )

An example of a subroutine in/out admonition box in the documentation is here.

An example of a calling tree in the documentation is here.
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To show text from a separate file (e.g., to show lines of code, show comments from a Fortran file, show a parameter
file etc.), use the literalinclude directive. Example usage is shown here:

.. literalinclude:: «FILE_TO_SHOW»
:start-at: String indicating where to start grabbing text
:end-at: String indicating where to stop grabbing text

Unlike the :filelink: and :varlink: directives, which assume a file path starting at the top of the MITgcm
repository, one must specify the path relative to the current directory of the file (for example, from the doc directory, it
would require ../../ at the start of the file path to specify the base directory of the MITgcm repository). Note one
can instead use :start-after: and :end-before: to get text from the file between (not including) those lines.
If one omits the start-at or start-after, etc. options the whole file is shown. More details for this directive
can be found here. Example usage in this documentation is here, where the lines to generate this are:

.. literalinclude:: ../../model/src/the_model_main.F
:start-at: C Invocation from WRAPPER level...
:end-at: C | :: events.

5.6.9 Other style conventions

Units should be typeset in normal text, with a space between a numeric value and the unit, and exponents added with
the :sup: command.

9.8 m/s\ :sup:`2`

will produce 9.8 m/s2. If the exponent is negative use two dashes -- to make the minus sign sufficiently long. The
backslash removes the space between the unit and the exponent. Similarly, for subscripts the command is :sub:.

Alternatively, latex :math: directives (see above) may also be used to display units, using the \text{} syntax to
display non-italic characters.

• Todo: determine how to break up sections into smaller files

• discuss | lines

5.6.10 Building the manual

Once you’ve made your changes to the manual, you should build it locally to verify that it works as expected. To do
this you will need a working python installation with the following packages installed:

• sphinx

• sphinxcontrib-bibtex

• sphinxcontrib-programoutput

• sphinx_rtd_theme

• numpy

There are many tools available to create a python environment with these packages on your local machine (e.g., using
pip install) and if you are comfortable doing so on your own, go ahead. Note that as of this writing (December
2020), sphinxcontrib-bibtex versions 2.0.0 and higher are not supported (we suggest using version 1.0.0).

However, if you are new to python, or less experienced, we suggest the following steps:

1. Get miniforge from https://github.com/conda-forge/miniforge/#download (for linux, win, or mac). Follow the
instructions to run the installer from a terminal window. Make sure to say “yes” when it asks to initialize
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Miniforge3 – that way you can use it right away. This is a minimal anaconda with conda-forge already set as
default.

2. Install MITgcm doc requirements:

cd MITgcm
conda install --file doc/requirements.txt

Once these modules are installed you can build the html version of the manual by running make html in the doc
directory.

To build the pdf version of the manual you will also need a working version of LaTeX that includes several packages
that are not always found in minimal LaTeX installations. The command to build the pdf version is make latexpdf,
which should also be run in the doc directory.

5.7 Reviewing pull requests

The only people with write access to the main repository are a small number of core MITgcm developers. They are
the people that will eventually merge your pull requests. However, before your PR gets merged, it will undergo the
automated testing on Travis-CI, and it will be assessed by the MITgcm community.

Everyone can review and comment on pull requests. Even if you are not one of the core developers you can still
comment on a pull request.

The simplest way to examine a pull request is to use GitHub. You can look at changes made to files (GitHub will show
you a standard linux diff for each file changed), read though commit messages, and/or peruse any comments the
MITgcm community has made regarding this pull request.

If you are reviewing changes to the documentation, most likely you will also want to review the rendered manual in
html format. While this is not available at GitHub, you can view html builds based on the pull request documentation
using this link at readthedocs.org. Here you will need to click on the appropriate pull request (as labeled by the pull
request number), then click on “View docs” (not the green button near the top of the page, but the text in the middle
of the page on the right side).

Finally, if you want to test pull requests locally (i.e., to compile or run the code), you should download the pull request
branch. You can do this either by cloning the branch from the pull request:

git clone -b «THEIR_DEVELOPMENT_BRANCHNAME» https://github.com/«THEIR_GITHUB_
→˓USERNAME»/MITgcm.git

where «THEIR_GITHUB_USERNAME» is replaced by the username of the person proposing the pull request, and
«THEIR_DEVELOPMENT_BRANCHNAME» is the branch from the pull request.

Alternatively, you can add the repository of the user proposing the pull request as a remote to your existing local
repository. Navigate to your local repository and type

git remote add «THEIR_GITHUB_USERNAME» https://github.com/«THEIR_GITHUB_USERNAME»/
→˓MITgcm.git

where «THEIR_GITHUB_USERNAME» is replaced by the user name of the person who has made the pull request.
Then download their pull request changes

git fetch «THEIR_GITHUB_USERNAME»

and switch to the desired branch
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git checkout --track «THEIR_GITHUB_USERNAME»/«THEIR_DEVELOPMENT_BRANCHNAME»

You now have a local copy of the code from the pull request and can run tests locally. If you have write access to the
main repository you can push fixes or changes directly to the pull request.

None of these steps, apart from pushing fixes back to the pull request, require write access to either the main repository
or the repository of the person proposing the pull request. This means that anyone can review pull requests. However,
unless you are one of the core developers you won’t be able to directly push changes. You will instead have to make a
comment describing any problems you find.
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CHAPTER

SIX

SOFTWARE ARCHITECTURE

This chapter focuses on describing the WRAPPER environment within which both the core numerics and the plug-
gable packages operate. The description presented here is intended to be a detailed exposition and contains significant
background material, as well as advanced details on working with the WRAPPER. The tutorial examples in this man-
ual (see Section 4) contain more succinct, step-by-step instructions on running basic numerical experiments, of various
types, both sequentially and in parallel. For many projects, simply starting from an example code and adapting it to
suit a particular situation will be all that is required. The first part of this chapter discusses the MITgcm architecture at
an abstract level. In the second part of the chapter we described practical details of the MITgcm implementation and
the current tools and operating system features that are employed.

6.1 Overall architectural goals

Broadly, the goals of the software architecture employed in MITgcm are three-fold:

• To be able to study a very broad range of interesting and challenging rotating fluids problems;

• The model code should be readily targeted to a wide range of platforms; and

• On any given platform, performance should be comparable to an implementation developed and specialized
specifically for that platform.

These points are summarized in Figure 6.1, which conveys the goals of the MITgcm design. The goals lead to a
software architecture which at the broadest level can be viewed as consisting of:

1. A core set of numerical and support code. This is discussed in detail in Section 2.

2. A scheme for supporting optional “pluggable” packages (containing for example mixed-layer schemes, biogeo-
chemical schemes, atmospheric physics). These packages are used both to overlay alternate dynamics and to
introduce specialized physical content onto the core numerical code. An overview of the package scheme is
given at the start of Section 8.

3. A support framework called WRAPPER (Wrappable Application Parallel Programming Environment Re-
source), within which the core numerics and pluggable packages operate.

This chapter focuses on describing the WRAPPER environment under which both the core numerics and the pluggable
packages function. The description presented here is intended to be a detailed exposition and contains significant
background material, as well as advanced details on working with the WRAPPER. The “Getting Started” chapter of
this manual (Section 3) contains more succinct, step-by-step instructions on running basic numerical experiments both
sequentially and in parallel. For many projects simply starting from an example code and adapting it to suit a particular
situation will be all that is required.
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Wide range of target hardware
Deskside clusters Terascale MPP

PVP clusters

Wide span of applications

Process studies Coupled climate
experiments

Figure 6.1: The MITgcm architecture is designed to allow simulation of a wide range of physical problems on a wide
range of hardware. The computational resource requirements of the applications targeted range from around 107 bytes
( ≈ 10 megabytes) of memory to 1011 bytes ( ≈ 100 gigabytes). Arithmetic operation counts for the applications of
interest range from 109 floating point operations to more than 1017 floating point operations.

6.2 WRAPPER

A significant element of the software architecture utilized in MITgcm is a software superstructure and substructure
collectively called the WRAPPER (Wrappable Application Parallel Programming Environment Resource). All numer-
ical and support code in MITgcm is written to “fit” within the WRAPPER infrastructure. Writing code to fit within
the WRAPPER means that coding has to follow certain, relatively straightforward, rules and conventions (these are
discussed further in Section 6.3.1).

The approach taken by the WRAPPER is illustrated in Figure 6.2, which shows how the WRAPPER serves to insulate
code that fits within it from architectural differences between hardware platforms and operating systems. This allows
numerical code to be easily retargeted.

6.2.1 Target hardware

The WRAPPER is designed to target as broad as possible a range of computer systems. The original development of
the WRAPPER took place on a multi-processor, CRAY Y-MP system. On that system, numerical code performance
and scaling under the WRAPPER was in excess of that of an implementation that was tightly bound to the CRAY
system’s proprietary multi-tasking and micro-tasking approach. Later developments have been carried out on unipro-
cessor and multiprocessor Sun systems with both uniform memory access (UMA) and non-uniform memory access
(NUMA) designs. Significant work has also been undertaken on x86 cluster systems, Alpha processor based clustered
SMP systems, and on cache-coherent NUMA (CC-NUMA) systems such as Silicon Graphics Altix systems. The
MITgcm code, operating within the WRAPPER, is also routinely used on large scale MPP systems (for example, Cray
T3E and IBM SP systems). In all cases, numerical code, operating within the WRAPPER, performs and scales very
competitively with equivalent numerical code that has been modified to contain native optimizations for a particular
system (see Hoe et al. 1999) [HHA99] .
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Figure 6.2: Numerical code is written to fit within a software support infrastructure called WRAPPER. The WRAPPER
is portable and can be specialized for a wide range of specific target hardware and programming environments, without
impacting numerical code that fits within the WRAPPER. Codes that fit within the WRAPPER can generally be made
to run as fast on a particular platform as codes specially optimized for that platform.
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6.2.2 Supporting hardware neutrality

The different systems mentioned in Section 6.2.1 can be categorized in many different ways. For example, one
common distinction is between shared-memory parallel systems (SMP and PVP) and distributed memory parallel
systems (for example x86 clusters and large MPP systems). This is one example of a difference between compute
platforms that can impact an application. Another common distinction is between vector processing systems with
highly specialized CPUs and memory subsystems and commodity microprocessor based systems. There are numerous
other differences, especially in relation to how parallel execution is supported. To capture the essential differences
between different platforms the WRAPPER uses a machine model.

6.2.3 WRAPPER machine model

Applications using the WRAPPER are not written to target just one particular machine (for example an IBM SP2) or
just one particular family or class of machines (for example Parallel Vector Processor Systems). Instead the WRAP-
PER provides applications with an abstract machine model. The machine model is very general; however, it can
easily be specialized to fit, in a computationally efficient manner, any computer architecture currently available to the
scientific computing community.

6.2.4 Machine model parallelism

Codes operating under the WRAPPER target an abstract machine that is assumed to consist of one or more logical
processors that can compute concurrently. Computational work is divided among the logical processors by allocating
“ownership” to each processor of a certain set (or sets) of calculations. Each set of calculations owned by a particular
processor is associated with a specific region of the physical space that is being simulated, and only one processor will
be associated with each such region (domain decomposition).

In a strict sense the logical processors over which work is divided do not need to correspond to physical processors.
It is perfectly possible to execute a configuration decomposed for multiple logical processors on a single physical
processor. This helps ensure that numerical code that is written to fit within the WRAPPER will parallelize with
no additional effort. It is also useful for debugging purposes. Generally, however, the computational domain will
be subdivided over multiple logical processors in order to then bind those logical processors to physical processor
resources that can compute in parallel.

6.2.4.1 Tiles

Computationally, the data structures (e.g., arrays, scalar variables, etc.) that hold the simulated state are associated with
each region of physical space and are allocated to a particular logical processor. We refer to these data structures as
being owned by the processor to which their associated region of physical space has been allocated. Individual regions
that are allocated to processors are called tiles. A processor can own more than one tile. Figure 6.3 shows a physical
domain being mapped to a set of logical processors, with each processor owning a single region of the domain (a
single tile). Except for periods of communication and coordination, each processor computes autonomously, working
only with data from the tile that the processor owns. If instead multiple tiles were allotted to a single processor, each
of these tiles would be computed on independently of the other allotted tiles, in a sequential fashion.
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Figure 6.3: The WRAPPER provides support for one and two dimensional decompositions of grid-point domains. The
figure shows a hypothetical domain of total size𝑁𝑥𝑁𝑦𝑁𝑧 . This hypothetical domain is decomposed in two-dimensions
along the𝑁𝑥 and𝑁𝑦 directions. The resulting tiles are owned by different processors. The owning processors perform
the arithmetic operations associated with a tile. Although not illustrated here, a single processor can own several tiles.
Whenever a processor wishes to transfer data between tiles or communicate with other processors it calls a WRAPPER
supplied function.

6.2.4.2 Tile layout

Tiles consist of an interior region and an overlap region. The overlap region of a tile corresponds to the interior
region of an adjacent tile. In Figure 6.4 each tile would own the region within the black square and hold duplicate
information for overlap regions extending into the tiles to the north, south, east and west. During computational phases
a processor will reference data in an overlap region whenever it requires values that lie outside the domain it owns.
Periodically processors will make calls to WRAPPER functions to communicate data between tiles, in order to keep
the overlap regions up to date (see Section 6.2.6). The WRAPPER functions can use a variety of different mechanisms
to communicate data between tiles.

Figure 6.4: A global grid subdivided into tiles. Tiles contain a interior region and an overlap region. Overlap regions
are periodically updated from neighboring tiles.
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6.2.5 Communication mechanisms

Logical processors are assumed to be able to exchange information between tiles (and between each other) using
at least one of two possible mechanisms, shared memory or distributed memory communication. The WRAPPER
assumes that communication will use one of these two styles. The underlying hardware and operating system support
for the style used is not specified and can vary from system to system.

6.2.5.1 Shared memory communication

Under this mode of communication, data transfers are assumed to be possible using direct addressing of regions of
memory. In the WRAPPER shared memory communication model, simple writes to an array can be made to be visible
to other CPUs at the application code level. So, as shown below, if one CPU (CPU1) writes the value 8 to element
3 of array a, then other CPUs (here, CPU2) will be able to see the value 8 when they read from a(3). This provides
a very low latency and high bandwidth communication mechanism. Thus, in this way one CPU can communicate
information to another CPU by assigning a particular value to a particular memory location.

CPU1 | CPU2
==== | ====

|
a(3) = 8 | WHILE ( a(3) .NE. 8 )

| WAIT
| END WHILE
|

Under shared communication independent CPUs are operating on the exact same global address space at the applica-
tion level. This is the model of memory access that is supported at the basic system design level in “shared-memory”
systems such as PVP systems, SMP systems, and on distributed shared memory systems (e.g., SGI Origin, SGI Al-
tix, and some AMD Opteron systems). On such systems the WRAPPER will generally use simple read and write
statements to access directly application data structures when communicating between CPUs.

In a system where assignments statements map directly to hardware instructions that transport data between CPU
and memory banks, this can be a very efficient mechanism for communication. In such case multiple CPUs can
communicate simply be reading and writing to agreed locations and following a few basic rules. The latency of this
sort of communication is generally not that much higher than the hardware latency of other memory accesses on the
system. The bandwidth available between CPUs communicating in this way can be close to the bandwidth of the
systems main-memory interconnect. This can make this method of communication very efficient provided it is used
appropriately.

Memory consistency

When using shared memory communication between multiple processors, the WRAPPER level shields user applica-
tions from certain counter-intuitive system behaviors. In particular, one issue the WRAPPER layer must deal with is
a systems memory model. In general the order of reads and writes expressed by the textual order of an application
code may not be the ordering of instructions executed by the processor performing the application. The processor
performing the application instructions will always operate so that, for the application instructions the processor is
executing, any reordering is not apparent. However, machines are often designed so that reordering of instructions is
not hidden from other second processors. This means that, in general, even on a shared memory system two processors
can observe inconsistent memory values.

The issue of memory consistency between multiple processors is discussed at length in many computer science papers.
From a practical point of view, in order to deal with this issue, shared memory machines all provide some mechanism
to enforce memory consistency when it is needed. The exact mechanism employed will vary between systems. For
communication using shared memory, the WRAPPER provides a place to invoke the appropriate mechanism to ensure
memory consistency for a particular platform.
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Cache effects and false sharing

Shared-memory machines often have local-to-processor memory caches which contain mirrored copies of main mem-
ory. Automatic cache-coherence protocols are used to maintain consistency between caches on different processors.
These cache-coherence protocols typically enforce consistency between regions of memory with large granularity
(typically 128 or 256 byte chunks). The coherency protocols employed can be expensive relative to other memory
accesses and so care is taken in the WRAPPER (by padding synchronization structures appropriately) to avoid unnec-
essary coherence traffic.

Operating system support for shared memory

Applications running under multiple threads within a single process can use shared memory communication. In this
case all the memory locations in an application are potentially visible to all the compute threads. Multiple threads
operating within a single process is the standard mechanism for supporting shared memory that the WRAPPER uti-
lizes. Configuring and launching code to run in multi-threaded mode on specific platforms is discussed in Section
6.3.2.1. However, on many systems, potentially very efficient mechanisms for using shared memory communication
between multiple processes (in contrast to multiple threads within a single process) also exist. In most cases this works
by making a limited region of memory shared between processes. The MMAP and IPC facilities in UNIX systems
provide this capability as do vendor specific tools like LAPI and IMC. Extensions exist for the WRAPPER that allow
these mechanisms to be used for shared memory communication. However, these mechanisms are not distributed with
the default WRAPPER sources, because of their proprietary nature.

6.2.5.2 Distributed memory communication

Under this mode of communication there is no mechanism, at the application code level, for directly addressing regions
of memory owned and visible to another CPU. Instead a communication library must be used, as illustrated below. If
one CPU (here, CPU1) writes the value 8 to element 3 of array a, then at least one of CPU1 and/or CPU2 will need to
call a function in the API of the communication library to communicate data from a tile that it owns to a tile that another
CPU owns. By default the WRAPPER binds to the MPI communication library for this style of communication (see
https://computing.llnl.gov/tutorials/mpi/ for more information about the MPI Standard).

CPU1 | CPU2
==== | ====

|
a(3) = 8 | WHILE ( a(3) .NE. 8 )
CALL SEND( CPU2,a(3) ) | CALL RECV( CPU1, a(3) )

| END WHILE
|

Many parallel systems are not constructed in a way where it is possible or practical for an application to use shared
memory for communication. For cluster systems consisting of individual computers connected by a fast network,
there is no notion of shared memory at the system level. For this sort of system the WRAPPER provides support
for communication based on a bespoke communication library. The default communication library used is MPI. It is
relatively straightforward to implement bindings to optimized platform specific communication libraries. For example
the work described in Hoe et al. (1999) [HHA99] substituted standard MPI communication for a highly optimized
library.
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6.2.6 Communication primitives

Optimized communication support is assumed to be potentially available for a small number of communication op-
erations. It is also assumed that communication performance optimizations can be achieved by optimizing a small
number of communication primitives. Three optimizable primitives are provided by the WRAPPER.

Figure 6.5: Three performance critical parallel primitives are provided by the WRAPPER. These primitives are always
used to communicate data between tiles. The figure shows four tiles. The curved arrows indicate exchange primitives
which transfer data between the overlap regions at tile edges and interior regions for nearest-neighbor tiles. The
straight arrows symbolize global sum operations which connect all tiles. The global sum operation provides both a
key arithmetic primitive and can serve as a synchronization primitive. A third barrier primitive is also provided, which
behaves much like the global sum primitive.

• EXCHANGE This operation is used to transfer data between interior and overlap regions of neighboring tiles.
A number of different forms of this operation are supported. These different forms handle:

– Data type differences. Sixty-four bit and thirty-two bit fields may be handled separately.

– Bindings to different communication methods. Exchange primitives select between using shared memory
or distributed memory communication.

– Transformation operations required when transporting data between different grid regions. Transferring
data between faces of a cube-sphere grid, for example, involves a rotation of vector components.

– Forward and reverse mode computations. Derivative calculations require tangent linear and adjoint forms
of the exchange primitives.

• GLOBAL SUM The global sum operation is a central arithmetic operation for the pressure inversion phase
of the MITgcm algorithm. For certain configurations, scaling can be highly sensitive to the performance of
the global sum primitive. This operation is a collective operation involving all tiles of the simulated domain.
Different forms of the global sum primitive exist for handling:

– Data type differences. Sixty-four bit and thirty-two bit fields may be handled separately.

– Bindings to different communication methods. Exchange primitives select between using shared memory
or distributed memory communication.

– Forward and reverse mode computations. Derivative calculations require tangent linear and adjoint forms
of the exchange primitives.
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• BARRIER The WRAPPER provides a global synchronization function called barrier. This is used to synchro-
nize computations over all tiles. The BARRIER and GLOBAL SUM primitives have much in common and in
some cases use the same underlying code.

6.2.7 Memory architecture

The WRAPPER machine model is aimed to target efficient systems with highly pipelined memory architectures and
systems with deep memory hierarchies that favor memory reuse. This is achieved by supporting a flexible tiling strat-
egy as shown in Figure 6.6. Within a CPU, computations are carried out sequentially on each tile in turn. By reshaping
tiles according to the target platform it is possible to automatically tune code to improve memory performance. On a
vector machine a given domain might be subdivided into a few long, thin regions. On a commodity microprocessor
based system, however, the same region could be simulated use many more smaller sub-domains.

Figure 6.6: The tiling strategy that the WRAPPER supports allows tiles to be shaped to suit the underlying system
memory architecture. Compact tiles that lead to greater memory reuse can be used on cache based systems (upper
half of figure) with deep memory hierarchies, whereas long tiles with large inner loops can be used to exploit vector
systems having highly pipelined memory systems.
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6.2.8 Summary

Following the discussion above, the machine model that the WRAPPER presents to an application has the following
characteristics:

• The machine consists of one or more logical processors.

• Each processor operates on tiles that it owns.

• A processor may own more than one tile.

• Processors may compute concurrently.

• Exchange of information between tiles is handled by the machine (WRAPPER) not by the application.

Behind the scenes this allows the WRAPPER to adapt the machine model functions to exploit hardware on which:

• Processors may be able to communicate very efficiently with each other using shared memory.

• An alternative communication mechanism based on a relatively simple interprocess communication API may
be required.

• Shared memory may not necessarily obey sequential consistency, however some mechanism will exist for en-
forcing memory consistency.

• Memory consistency that is enforced at the hardware level may be expensive. Unnecessary triggering of consis-
tency protocols should be avoided.

• Memory access patterns may need to be either repetitive or highly pipelined for optimum hardware performance.

This generic model, summarized in Figure 6.7, captures the essential hardware ingredients of almost all successful
scientific computer systems designed in the last 50 years.

Figure 6.7: Summary of the WRAPPER machine model.
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6.3 Using the WRAPPER

In order to support maximum portability the WRAPPER is implemented primarily in sequential Fortran 77. At a
practical level the key steps provided by the WRAPPER are:

1. specifying how a domain will be decomposed

2. starting a code in either sequential or parallel modes of operations

3. controlling communication between tiles and between concurrently computing CPUs.

This section describes the details of each of these operations. Section 6.3.1 explains the way a domain is decomposed
(or composed) is expressed. Section 6.3.2 describes practical details of running codes in various different parallel
modes on contemporary computer systems. Section 6.3.3 explains the internal information that the WRAPPER uses
to control how information is communicated between tiles.

6.3.1 Specifying a domain decomposition

At its heart, much of the WRAPPER works only in terms of a collection of tiles which are interconnected to each
other. This is also true of application code operating within the WRAPPER. Application code is written as a series of
compute operations, each of which operates on a single tile. If application code needs to perform operations involving
data associated with another tile, it uses a WRAPPER function to obtain that data. The specification of how a global
domain is constructed from tiles or alternatively how a global domain is decomposed into tiles is made in the file
SIZE.h. This file defines the following parameters:

File: model/inc/SIZE.h

Parameter: sNx, sNx
Parameter: OLx, OLy
Parameter: nSx, nSy
Parameter: nPx, nPy

Together these parameters define a tiling decomposition of the style shown in Figure 6.8. The parameters sNx and
sNx define the size of an individual tile. The parameters OLx and OLy define the maximum size of the overlap extent.
This must be set to the maximum width of the computation stencil that the numerical code finite-difference operations
require between overlap region updates. The maximum overlap required by any of the operations in the MITgcm code
distributed at this time is four grid points (some of the higher-order advection schemes require a large overlap region).
Code modifications and enhancements that involve adding wide finite-difference stencils may require increasing OLx
and OLy. Setting OLx and OLy to a too large value will decrease code performance (because redundant computations
will be performed), however it will not cause any other problems.

The parameters nSx and nSy specify the number of tiles that will be created within a single process. Each of these
tiles will have internal dimensions of sNx and sNy. If, when the code is executed, these tiles are allocated to different
threads of a process that are then bound to different physical processors (see the multi-threaded execution discussion
in Section 6.3.2), then computation will be performed concurrently on each tile. However, it is also possible to run
the same decomposition within a process running a single thread on a single processor. In this case the tiles will be
computed over sequentially. If the decomposition is run in a single process running multiple threads but attached to
a single physical processor, then, in general, the computation for different tiles will be interleaved by system level
software. This too is a valid mode of operation.

The parameters sNx, sNy, OLx, OLy, nSx and nSy are used extensively by numerical code. The settings of sNx,
sNy, OLx, and OLy are used to form the loop ranges for many numerical calculations and to provide dimensions for
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Figure 6.8: The three level domain decomposition hierarchy employed by the WRAPPER. A domain is composed of
tiles. Multiple tiles can be allocated to a single process. Multiple processes can exist, each with multiple tiles. Tiles
within a process can be spread over multiple compute threads.
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arrays holding numerical state. The nSx and nSy are used in conjunction with the thread number parameter myThid.
Much of the numerical code operating within the WRAPPER takes the form:

DO bj=myByLo(myThid),myByHi(myThid)
DO bi=myBxLo(myThid),myBxHi(myThid)

:
a block of computations ranging
over 1,sNx +/- OLx and 1,sNy +/- OLy grid points
:

ENDDO
ENDDO

communication code to sum a number or maybe update
tile overlap regions

DO bj=myByLo(myThid),myByHi(myThid)
DO bi=myBxLo(myThid),myBxHi(myThid)

:
another block of computations ranging
over 1,sNx +/- OLx and 1,sNy +/- OLy grid points
:

ENDDO
ENDDO

The variables myBxLo(myThid), myBxHi(myThid), myByLo(myThid) and myByHi(myThid) set the
bounds of the loops in bi and bj in this schematic. These variables specify the subset of the tiles in the range
1, nSx and 1, nSy1 that the logical processor bound to thread number myThid owns. The thread number vari-
able myThid ranges from 1 to the total number of threads requested at execution time. For each value of myThid
the loop scheme above will step sequentially through the tiles owned by that thread. However, different threads will
have different ranges of tiles assigned to them, so that separate threads can compute iterations of the bi, bj loop
concurrently. Within a bi, bj loop, computation is performed concurrently over as many processes and threads as
there are physical processors available to compute.

An exception to the the use of bi and bj in loops arises in the exchange routines used when the exch2 package is used
with the cubed sphere. In this case bj is generally set to 1 and the loop runs from 1, bi. Within the loop bi is used
to retrieve the tile number, which is then used to reference exchange parameters.

The amount of computation that can be embedded in a single loop over bi and bj varies for different parts of the
MITgcm algorithm. Consider a code extract from the 2-D implicit elliptic solver:

REAL*8 cg2d_r(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
REAL*8 err

:
:

other computations
:
:

err = 0.
DO bj=myByLo(myThid),myByHi(myThid)
DO bi=myBxLo(myThid),myBxHi(myThid)
DO J=1,sNy
DO I=1,sNx

err = err + cg2d_r(I,J,bi,bj)*cg2d_r(I,J,bi,bj)
ENDDO
ENDDO

ENDDO
ENDDO

(continues on next page)
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(continued from previous page)

CALL GLOBAL_SUM_R8( err , myThid )
err = SQRT(err)

This portion of the code computes the 𝐿2-Norm of a vector whose elements are held in the array cg2d_r, writing
the final result to scalar variable err. Notice that under the WRAPPER, arrays such as cg2d_r have two extra trailing
dimensions. These right most indices are tile indexes. Different threads with a single process operate on different
ranges of tile index, as controlled by the settings of myByLo(myThid), myByHi(myThid), myBxLo(myThid)
and myBxHi(myThid). Because the 𝐿2-Norm requires a global reduction, the bi, bj loop above only contains
one statement. This computation phase is then followed by a communication phase in which all threads and processes
must participate. However, in other areas of the MITgcm, code entries subsections of code are within a single bi, bj
loop. For example the evaluation of all the momentum equation prognostic terms (see dynamics.F) is within a single
bi, bj loop.

The final decomposition parameters are nPx and nPy. These parameters are used to indicate to the WRAPPER level
how many processes (each with nSx×nSy tiles) will be used for this simulation. This information is needed during
initialization and during I/O phases. However, unlike the variables sNx, sNy, OLx, OLy, nSx and nSy the values of
nPx and nPy are absent from the core numerical and support code.

6.3.1.1 Examples of SIZE.h specifications

The following different SIZE.h parameter setting illustrate how to interpret the values of sNx, sNy, OLx, OLy, nSx,
nSy, nPx and nPy.

1. PARAMETER (
& sNx = 90,
& sNy = 40,
& OLx = 3,
& OLy = 3,
& nSx = 1,
& nSy = 1,
& nPx = 1,
& nPy = 1)

This sets up a single tile with x-dimension of ninety grid points, y-dimension of forty grid points, and x and y
overlaps of three grid points each.

2. PARAMETER (
& sNx = 45,
& sNy = 20,
& OLx = 3,
& OLy = 3,
& nSx = 1,
& nSy = 1,
& nPx = 2,
& nPy = 2)

This sets up tiles with x-dimension of forty-five grid points, y-dimension of twenty grid points, and x and y
overlaps of three grid points each. There are four tiles allocated to four separate processes (nPx=2, nPy=2)
and arranged so that the global domain size is again ninety grid points in x and forty grid points in y. In general
the formula for global grid size (held in model variables Nx and Ny) is

Nx = sNx*nSx*nPx
Ny = sNy*nSy*nPy
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3. PARAMETER (
& sNx = 90,
& sNy = 10,
& OLx = 3,
& OLy = 3,
& nSx = 1,
& nSy = 2,
& nPx = 1,
& nPy = 2)

This sets up tiles with x-dimension of ninety grid points, y-dimension of ten grid points, and x and y overlaps of
three grid points each. There are four tiles allocated to two separate processes (nPy=2) each of which has two
separate sub-domains nSy=2. The global domain size is again ninety grid points in x and forty grid points in y.
The two sub-domains in each process will be computed sequentially if they are given to a single thread within a
single process. Alternatively if the code is invoked with multiple threads per process the two domains in y may
be computed concurrently.

4. PARAMETER (
& sNx = 32,
& sNy = 32,
& OLx = 3,
& OLy = 3,
& nSx = 6,
& nSy = 1,
& nPx = 1,
& nPy = 1)

This sets up tiles with x-dimension of thirty-two grid points, y-dimension of thirty-two grid points, and x and
y overlaps of three grid points each. There are six tiles allocated to six separate logical processors (nSx=6).
This set of values can be used for a cube sphere calculation. Each tile of size 32 × 32 represents a face of the
cube. Initializing the tile connectivity correctly (see Section 6.3.3.3. allows the rotations associated with moving
between the six cube faces to be embedded within the tile-tile communication code.

6.3.2 Starting the code

When code is started under the WRAPPER, execution begins in a main routine eesupp/src/main.F that is owned
by the WRAPPER. Control is transferred to the application through a routine called model/src/the_model_main.F
once the WRAPPER has initialized correctly and has created the necessary variables to support subsequent calls to
communication routines by the application code. The main stages of the WRAPPER startup calling sequence are as
follows:

MAIN
|
|--EEBOOT :: WRAPPER initialization
| |
| |-- EEBOOT_MINMAL :: Minimal startup. Just enough to
| | allow basic I/O.
| |-- EEINTRO_MSG :: Write startup greeting.
| |
| |-- EESET_PARMS :: Set WRAPPER parameters
| |
| |-- EEWRITE_EEENV :: Print WRAPPER parameter settings
| |
| |-- INI_PROCS :: Associate processes with grid regions.
| |

(continues on next page)

6.3. Using the WRAPPER 351

https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/main.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/the_model_main.F


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

(continued from previous page)

| |-- INI_THREADING_ENVIRONMENT :: Associate threads with grid regions.
| |
| |--INI_COMMUNICATION_PATTERNS :: Initialize between tile
| :: communication data structures
|
|
|--CHECK_THREADS :: Validate multiple thread start up.
|
|--THE_MODEL_MAIN :: Numerical code top-level driver routine

The steps above preceeds transfer of control to application code, which occurs in the procedure the_main_model.F

6.3.2.1 Multi-threaded execution

Prior to transferring control to the procedure the_main_model.F the WRAPPER may cause several coarse grain threads
to be initialized. The routine the_main_model.F is called once for each thread and is passed a single stack argument
which is the thread number, stored in the myThid. In addition to specifying a decomposition with multiple tiles per
process (see Section 6.3.1) configuring and starting a code to run using multiple threads requires the following steps.

Compilation

First the code must be compiled with appropriate multi-threading directives active in the file
eesupp/src/main.F and with appropriate compiler flags to request multi-threading support. The header files
eesupp/inc/MAIN_PDIRECTIVES1.h and eesupp/inc/MAIN_PDIRECTIVES2.h contain directives compatible with
compilers for Sun, Compaq, SGI, Hewlett-Packard SMP systems and CRAY PVP systems. These directives can be
activated by using compile time directives -DTARGET_SUN, -DTARGET_DEC, -DTARGET_SGI, -DTARGET_HP
or -DTARGET_CRAY_VECTOR respectively. Compiler options for invoking multi-threaded compilation vary from
system to system and from compiler to compiler. The options will be described in the individual compiler docu-
mentation. For the Fortran compiler from Sun the following options are needed to correctly compile multi-threaded
code

-stackvar -explicitpar -vpara -noautopar

These options are specific to the Sun compiler. Other compilers will use different syntax that will be described in their
documentation. The effect of these options is as follows:

1. -stackvar Causes all local variables to be allocated in stack storage. This is necessary for local variables to
ensure that they are private to their thread. Note, when using this option it may be necessary to override the
default limit on stack-size that the operating system assigns to a process. This can normally be done by changing
the settings of the command shell’s stack-size. However, on some systems changing this limit will require
privileged administrator access to modify system parameters.

2. -explicitpar Requests that multiple threads be spawned in response to explicit directives in the application code.
These directives are inserted with syntax appropriate to the particular target platform when, for example, the
-DTARGET_SUN flag is selected.

3. -vpara This causes the compiler to describe the multi-threaded configuration it is creating. This is not required
but it can be useful when troubleshooting.

4. -noautopar This inhibits any automatic multi-threaded parallelization the compiler may otherwise generate.

An example of valid settings for the eedata file for a domain with two subdomains in y and running with two threads
is shown below
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nTx=1,nTy=2

This set of values will cause computations to stay within a single thread when moving across the nSx sub-domains.
In the y-direction, however, sub-domains will be split equally between two threads.

Despite its appealing programming model, multi-threaded execution remains less common than multi-process execu-
tion (described in Section 6.3.2.2). One major reason for this is that many system libraries are still not “thread-safe”.
This means that, for example, on some systems it is not safe to call system routines to perform I/O when running in
multi-threaded mode (except, perhaps, in a limited set of circumstances). Another reason is that support for multi-
threaded programming models varies between systems.

6.3.2.2 Multi-process execution

Multi-process execution is more ubiquitous than multi-threaded execution. In order to run code in a multi-process
configuration, a decomposition specification (see Section 6.3.1) is given (in which at least one of the parameters nPx
or nPy will be greater than one). Then, as for multi-threaded operation, appropriate compile time and run time steps
must be taken.

Compilation

Multi-process execution under the WRAPPER assumes that portable, MPI libraries are available for controlling the
start-up of multiple processes. The MPI libraries are not required, although they are usually used, for performance
critical communication. However, in order to simplify the task of controlling and coordinating the start up of a large
number (hundreds and possibly even thousands) of copies of the same program, MPI is used. The calls to the MPI
multi-process startup routines must be activated at compile time. Currently MPI libraries are invoked by specifying
the appropriate options file with the -of flag when running the genmake2 script, which generates the Makefile for
compiling and linking MITgcm. (Previously this was done by setting the ALLOW_USE_MPI and ALWAYS_USE_MPI
flags in the CPP_EEOPTIONS.h file.) More detailed information about the use of genmake2 for specifying local
compiler flags is located in Section 3.5.2.

Execution

The mechanics of starting a program in multi-process mode under MPI is not standardized. Documentation associated
with the distribution of MPI installed on a system will describe how to start a program using that distribution. For the
open-source MPICH system, the MITgcm program can be started using a command such as

mpirun -np 64 -machinefile mf ./mitgcmuv

In this example the text -np 64 specifies the number of processes that will be created. The numeric value 64 must
be equal to (or greater than) the product of the processor grid settings of nPx and nPy in the file SIZE.h. The option
-machinefile mf specifies that a text file called mf will be read to get a list of processor names on which the
sixty-four processes will execute. The syntax of this file is specified by the MPI distribution.
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6.3.2.3 Environment variables

On some systems multi-threaded execution also requires the setting of a special environment variable. On many
machines this variable is called PARALLEL and its values should be set to the number of parallel threads required.
Generally the help or manual pages associated with the multi-threaded compiler on a machine will explain how to set
the required environment variables.

6.3.2.4 Runtime input parameters

Finally the file eedata needs to be configured to indicate the number of threads to be used in the x and y directions:

# Example "eedata" file
# Lines beginning "#" are comments
# nTx - No. threads per process in X
# nTy - No. threads per process in Y
&EEPARMS
nTx=1,
nTy=1,
&

The product of nTx and nTy must be equal to the number of threads spawned, i.e., the setting of the environment
variable PARALLEL. The value of nTx must subdivide the number of sub-domains in x (nSx) exactly. The value
of nTy must subdivide the number of sub-domains in y (nSy) exactly. The multi-process startup of the MITgcm
executable mitgcmuv is controlled by the routines eeboot_minimal.F and ini_procs.F. The first routine performs
basic steps required to make sure each process is started and has a textual output stream associated with it. By default
two output files are opened for each process with names STDOUT.NNNN and STDERR.NNNN. The NNNNN part of
the name is filled in with the process number so that process number 0 will create output files STDOUT.0000 and
STDERR.0000, process number 1 will create output files STDOUT.0001 and STDERR.0001, etc. These files are
used for reporting status and configuration information and for reporting error conditions on a process-by-process
basis. The eeboot_minimal.F procedure also sets the variables myProcId and MPI_COMM_MODEL. These variables
are related to processor identification and are used later in the routine ini_procs.F to allocate tiles to processes.

Allocation of processes to tiles is controlled by the routine ini_procs.F. For each process this routine sets the variables
myXGlobalLo and myYGlobalLo. These variables specify, in index space, the coordinates of the southernmost and
westernmost corner of the southernmost and westernmost tile owned by this process. The variables pidW, pidE,
pidS and pidN are also set in this routine. These are used to identify processes holding tiles to the west, east, south
and north of a given process. These values are stored in global storage in the header file EESUPPORT.h for use by
communication routines. The above does not hold when the exch2 package is used. The exch2 package sets its own
parameters to specify the global indices of tiles and their relationships to each other. See the documentation on the
exch2 package for details.

6.3.3 Controlling communication

The WRAPPER maintains internal information that is used for communication operations and can be customized for
different platforms. This section describes the information that is held and used.

1. Tile-tile connectivity information For each tile the WRAPPER sets a flag that sets the tile number to the north,
south, east and west of that tile. This number is unique over all tiles in a configuration. Except when using the
cubed sphere and the exch2 package, the number is held in the variables tileNo (this holds the tiles own num-
ber), tileNoN, tileNoS, tileNoE and tileNoW. A parameter is also stored with each tile that specifies the type of
communication that is used between tiles. This information is held in the variables tileCommModeN, tileCom-
mModeS, tileCommModeE and tileCommModeW. This latter set of variables can take one of the following
values COMM_NONE, COMM_MSG, COMM_PUT and COMM_GET. A value of COMM_NONE is used to indicate
that a tile has no neighbor to communicate with on a particular face. A value of COMM_MSG is used to indicate
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that some form of distributed memory communication is required to communicate between these tile faces (see
Section 6.2.5.2). A value of COMM_PUT or COMM_GET is used to indicate forms of shared memory communi-
cation (see Section 6.2.5.1). The COMM_PUT value indicates that a CPU should communicate by writing to data
structures owned by another CPU. A COMM_GET value indicates that a CPU should communicate by reading
from data structures owned by another CPU. These flags affect the behavior of the WRAPPER exchange prim-
itive (see Figure 6.5). The routine ini_communication_patterns.F is responsible for setting the communication
mode values for each tile.

When using the cubed sphere configuration with the exch2 package, the relationships between tiles and their
communication methods are set by the exch2 package and stored in different variables. See the exch2 package
documentation for details.

2. MP directives The WRAPPER transfers control to numerical application code through the routine
the_model_main.F. This routine is called in a way that allows for it to be invoked by several threads. Sup-
port for this is based on either multi-processing (MP) compiler directives or specific calls to multi-threading
libraries (e.g., POSIX threads). Most commercially available Fortran compilers support the generation of code
to spawn multiple threads through some form of compiler directives. Compiler directives are generally more
convenient than writing code to explicitly spawn threads. On some systems, compiler directives may be the only
method available. The WRAPPER is distributed with template MP directives for a number of systems.

These directives are inserted into the code just before and after the transfer of control to numerical algorithm
code through the routine the_model_main.F. An example of the code that performs this process for a Silicon
Graphics system is as follows:

C--
C-- Parallel directives for MIPS Pro Fortran compiler
C--
C Parallel compiler directives for SGI with IRIX
C$PAR PARALLEL DO
C$PAR& CHUNK=1,MP_SCHEDTYPE=INTERLEAVE,
C$PAR& SHARE(nThreads),LOCAL(myThid,I)
C

DO I=1,nThreads
myThid = I

C-- Invoke nThreads instances of the numerical model
CALL THE_MODEL_MAIN(myThid)

ENDDO

Prior to transferring control to the procedure the_model_main.F the WRAPPER may use MP directives to spawn
multiple threads. This code is extracted from the files main.F and eesupp/inc/MAIN_PDIRECTIVES1.h. The
variable nThreads specifies how many instances of the routine the_model_main.F will be created. The value
of nThreads is set in the routine ini_threading_environment.F. The value is set equal to the the product of the
parameters nTx and nTy that are read from the file eedata. If the value of nThreads is inconsistent with
the number of threads requested from the operating system (for example by using an environment variable as
described in Section 6.3.2.1) then usually an error will be reported by the routine check_threads.F.
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3. memsync flags As discussed in Section 6.2.5.1, a low-level system function may be need to force memory con-
sistency on some shared memory systems. The routine memsync.F is used for this purpose. This routine should
not need modifying and the information below is only provided for completeness. A logical parameter exch-
NeedsMemSync set in the routine ini_communication_patterns.F controls whether the memsync.F primitive is
called. In general this routine is only used for multi-threaded execution. The code that goes into the memsync.F
routine is specific to the compiler and processor used. In some cases, it must be written using a short code
snippet of assembly language. For an Ultra Sparc system the following code snippet is used

asm("membar #LoadStore|#StoreStore");

For an Alpha based system the equivalent code reads

asm("mb");

while on an x86 system the following code is required

asm("lock; addl $0,0(%%esp)": : :"memory")

4. Cache line size As discussed in Section 6.2.5.1, multi-threaded codes explicitly avoid penalties associated with
excessive coherence traffic on an SMP system. To do this the shared memory data structures used by the
global_sum.F, global_max.F and barrier.F routines are padded. The variables that control the padding are set
in the header file EEPARAMS.h. These variables are called cacheLineSize, lShare1, lShare4 and lShare8. The
default values should not normally need changing.

5. _BARRIER This is a CPP macro that is expanded to a call to a routine which synchronizes all the logical
processors running under the WRAPPER. Using a macro here preserves flexibility to insert a specialized call
in-line into application code. By default this resolves to calling the procedure barrier.F. The default setting for
the _BARRIER macro is given in the file CPP_EEMACROS.h.

6. _GSUM This is a CPP macro that is expanded to a call to a routine which sums up a floating point num-
ber over all the logical processors running under the WRAPPER. Using a macro here provides extra flexi-
bility to insert a specialized call in-line into application code. By default this resolves to calling the pro-
cedure GLOBAL_SUM_R8() for 64-bit floating point operands or GLOBAL_SUM_R4() for 32-bit floating
point operand (located in file global_sum.F). The default setting for the _GSUM macro is given in the file
CPP_EEMACROS.h. The _GSUM macro is a performance critical operation, especially for large processor
count, small tile size configurations. The custom communication example discussed in Section 6.3.3.2 shows
how the macro is used to invoke a custom global sum routine for a specific set of hardware.

7. _EXCH The _EXCH CPP macro is used to update tile overlap regions. It is qualified by a suffix indicating
whether overlap updates are for two-dimensional (_EXCH_XY) or three dimensional (_EXCH_XYZ) physical
fields and whether fields are 32-bit floating point (_EXCH_XY_R4, _EXCH_XYZ_R4) or 64-bit floating point
(_EXCH_XY_R8, _EXCH_XYZ_R8). The macro mappings are defined in the header file CPP_EEMACROS.h.
As with _GSUM, the _EXCH operation plays a crucial role in scaling to small tile, large logical and physical
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processor count configurations. The example in Section 6.3.3.2 discusses defining an optimized and specialized
form on the _EXCH operation.

The _EXCH operation is also central to supporting grids such as the cube-sphere grid. In this class of grid a
rotation may be required between tiles. Aligning the coordinate requiring rotation with the tile decomposition
allows the coordinate transformation to be embedded within a custom form of the _EXCH primitive. In these
cases _EXCH is mapped to exch2 routines, as detailed in the exch2 package documentation.

8. Reverse Mode The communication primitives _EXCH and _GSUM both employ hand-written adjoint forms (or
reverse mode) forms. These reverse mode forms can be found in the source code directory pkg/autodiff. For the
global sum primitive the reverse mode form calls are to GLOBAL_ADSUM_R4() and GLOBAL_ADSUM_R8()
(located in file global_sum_ad.F). The reverse mode form of the exchange primitives are found in rou-
tines prefixed ADEXCH. The exchange routines make calls to the same low-level communication primitives
as the forward mode operations. However, the routine argument theSimulationMode is set to the value
REVERSE_SIMULATION. This signifies to the low-level routines that the adjoint forms of the appropriate
communication operation should be performed.

9. MAX_NO_THREADS The variable MAX_NO_THREADS is used to indicate the maximum number of OS
threads that a code will use. This value defaults to thirty-two and is set in the file EEPARAMS.h. For single
threaded execution it can be reduced to one if required. The value is largely private to the WRAPPER and
application code will not normally reference the value, except in the following scenario.

For certain physical parametrization schemes it is necessary to have a substantial number of work arrays. Where
these arrays are allocated in heap storage (for example COMMON blocks) multi-threaded execution will require
multiple instances of the COMMON block data. This can be achieved using a Fortran 90 module construct.
However, if this mechanism is unavailable then the work arrays can be extended with dimensions using the
tile dimensioning scheme of nSx and nSy (as described in Section 6.3.1). However, if the configuration being
specified involves many more tiles than OS threads then it can save memory resources to reduce the variable
MAX_NO_THREADS to be equal to the actual number of threads that will be used and to declare the physical
parameterization work arrays with a single MAX_NO_THREADS extra dimension. An example of this is
given in the verification experiment verification/aim.5l_cs. Here the default setting of MAX_NO_THREADS is
altered to

INTEGER MAX_NO_THREADS
PARAMETER ( MAX_NO_THREADS = 6 )

and several work arrays for storing intermediate calculations are created with declarations of the form.

common /FORCIN/ sst1(ngp,MAX_NO_THREADS)

This declaration scheme is not used widely, because most global data is used for permanent, not temporary,
storage of state information. In the case of permanent state information this approach cannot be used because
there has to be enough storage allocated for all tiles. However, the technique can sometimes be a useful scheme
for reducing memory requirements in complex physical parameterizations.

6.3. Using the WRAPPER 357

https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/global_sum_ad.F
http://mitgcm.org/lxr/ident/MITgcm?_i=theSimulationMode
http://mitgcm.org/lxr/ident/MITgcm?_i=MAX_NO_THREADS
https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/EEPARAMS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=nSx
http://mitgcm.org/lxr/ident/MITgcm?_i=nSy
http://mitgcm.org/lxr/ident/MITgcm?_i=MAX_NO_THREADS
http://mitgcm.org/lxr/ident/MITgcm?_i=MAX_NO_THREADS
https://github.com/MITgcm/MITgcm/blob/master/verification/aim.5l_cs
http://mitgcm.org/lxr/ident/MITgcm?_i=MAX_NO_THREADS


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

6.3.3.1 Specializing the Communication Code

The isolation of performance critical communication primitives and the subdivision of the simulation domain into tiles
is a powerful tool. Here we show how it can be used to improve application performance and how it can be used to
adapt to new gridding approaches.

6.3.3.2 JAM example

On some platforms a big performance boost can be obtained by binding the communication routines _EXCH
and _GSUM to specialized native libraries (for example, the shmem library on CRAY T3E systems). The
LETS_MAKE_JAM CPP flag is used as an illustration of a specialized communication configuration that substitutes
for standard, portable forms of _EXCH and _GSUM. It affects three source files eeboot.F, CPP_EEMACROS.h and
cg2d.F. When the flag is defined is has the following effects.

• An extra phase is included at boot time to initialize the custom communications library (see ini_jam.F).

• The _GSUM and _EXCH macro definitions are replaced with calls to custom routines (see gsum_jam.F and
exch_jam.F)

• a highly specialized form of the exchange operator (optimized for overlap regions of width one) is substituted
into the elliptic solver routine cg2d.F.

Developing specialized code for other libraries follows a similar pattern.

6.3.3.3 Cube sphere communication

Actual _EXCH routine code is generated automatically from a series of template files, for example
exch2_rx1_cube.template. This is done to allow a large number of variations of the exchange process to be main-
tained. One set of variations supports the cube sphere grid. Support for a cube sphere grid in MITgcm is based on
having each face of the cube as a separate tile or tiles. The exchange routines are then able to absorb much of the de-
tailed rotation and reorientation required when moving around the cube grid. The set of _EXCH routines that contain
the word cube in their name perform these transformations. They are invoked when the run-time logical parameter
useCubedSphereExchange is set .TRUE.. To facilitate the transformations on a staggered C-grid, exchange opera-
tions are defined separately for both vector and scalar quantities and for grid-centered and for grid-face and grid-corner
quantities. Three sets of exchange routines are defined. Routines with names of the form exch2_rx are used to ex-
change cell centered scalar quantities. Routines with names of the form exch2_uv_rx are used to exchange vector
quantities located at the C-grid velocity points. The vector quantities exchanged by the exch_uv_rx routines can
either be signed (for example velocity components) or un-signed (for example grid-cell separations). Routines with
names of the form exch_z_rx are used to exchange quantities at the C-grid vorticity point locations.

6.4 MITgcm execution under WRAPPER

Fitting together the WRAPPER elements, package elements and MITgcm core equation elements of the source code
produces the calling sequence shown below.
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6.4.1 Annotated call tree for MITgcm and WRAPPER

WRAPPER layer.

MAIN
|
|--EEBOOT :: WRAPPER initialization
| |
| |-- EEBOOT_MINMAL :: Minimal startup. Just enough to
| | allow basic I/O.
| |-- EEINTRO_MSG :: Write startup greeting.
| |
| |-- EESET_PARMS :: Set WRAPPER parameters
| |
| |-- EEWRITE_EEENV :: Print WRAPPER parameter settings
| |
| |-- INI_PROCS :: Associate processes with grid regions.
| |
| |-- INI_THREADING_ENVIRONMENT :: Associate threads with grid regions.
| |
| |--INI_COMMUNICATION_PATTERNS :: Initialize between tile
| :: communication data structures
|
|
|--CHECK_THREADS :: Validate multiple thread start up.
|
|--THE_MODEL_MAIN :: Numerical code top-level driver routine

Core equations plus packages.

C Invocation from WRAPPER level...
C
C |
C |-THE_MODEL_MAIN :: Primary driver for the MITgcm algorithm
C | :: Called from WRAPPER level numerical
C | :: code invocation routine. On entry
C | :: to THE_MODEL_MAIN separate thread and
C | :: separate processes will have been established.
C | :: Each thread and process will have a unique ID
C | :: but as yet it will not be associated with a
C | :: specific region in decomposed discrete space.
C |
C |-INITIALISE_FIXED :: Set fixed model arrays such as topography,
C | | :: grid, solver matrices etc..
C | |
C | |-INI_PARMS :: Routine to set kernel model parameters.
C | | :: Kernel parameters are read from file "data"
C | | :: in directory in which code executes.
C | |
C | |-PACKAGES_BOOT :: Start up the optional package environment.
C | | :: Runtime selection of active packages.
C | |-CPL_IMPORT_CPLPARMS :: Import coupling parameters from/to
C | | :: the coupler layer
C | |-PACKAGES_READPARMS :: Read each package input parameter file
C | | |- ${PKG}_READPARMS
C | |
C | |-SET_PARMS :: Finalise model parameter setting (if fct of pkg usage)
C | |

(continues on next page)
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C | |-INI_MODEL_IO :: Initialise Input/Output setting
C | | |-MNC_INIT :: Initialise MITgcm NetCDF interface (MNC)(see pkg/mnc)
C | | |-MNC_CW_INIT :: Initialise MNC grid and variable types (see pkg/mnc)
C | | |-MON_INIT :: Initialises monitor package ( see pkg/monitor )
C | |
C | |-INI_GRID :: Control grid array (vert. and horiz.) initialisation.
C | | | :: Grid arrays are held and described in GRID.h.
C | | |-LOAD_GRID_SPACING :: Load grid spacing (vector) from files
C | | |-INI_VERTICAL_GRID :: Set up vertical grid and coordinate
C | | |-INI_CARTESIAN_GRID :: Cartesian horiz. grid initialisation
C | | | :: (calculate grid from kernel parameters).
C | | |-INI_SPHERICAL_POLAR_GRID :: Spherical polar horiz. grid setting
C | | | :: (calculate grid from kernel parameters).
C | | |-INI_CURVILINEAR_GRID :: General orthogonal, structured horiz. grid
C | | | :: initialisation; input from raw grid files
C | | | :: (LONC.bin, LATC.bin, DXF.bin, ... ) or per
C | | | :: face file: horizGridFile(.faceXXX.bin)
C | | |-INI_CYLINDER_GRID :: Cylindrical horiz. grid setting
C | |
C | |-LOAD_REF_FILES :: Read-in reference vertical profiles (T,S,Rho)
C | |-INI_EOS :: Initialise Equation Of State (EOS) coefficients
C | |-SET_REF_STATE :: Set reference pressure/geopotential, reference
C | | :: stratification (for implicit IGW), vertical
C | | :: velocity scaling factor and anelastic ref. density
C | |-SET_GRID_FACTORS :: Set grid factors (fct of k) for deep-atmosphere
C | |
C | |-INI_DEPTHS :: Read (from "bathyFile") or set bathymetry/orography.
C | |-INI_MASKS_ETC :: Derive horizontal and vertical cell fractions and
C | | :: land masking for solid-fluid boundaries.
C | |
C | |-PACKAGES_INIT_FIXED :: do all packages fixed-initialisation setting
C | | |- ${PKG}_INIT_FIXED
C | |
C | |-INI_GLOBAL_DOMAIN :: Initialise domain related (global) quantities.
C | |-INI_LINEAR_PHISURF :: Set ref. surface Bo_surf
C | |
C | |-INI_CORI :: Set coriolis term. zero, f-plane, beta-plane,
C | | :: sphere options are coded.
C | |-INI_CG2D :: 2D conjugate grad solver initialisation.
C | |-INI_CG3D :: 3D conjugate grad solver initialisation.
C | |
C | |-CONFIG_SUMMARY :: Provide synopsis of kernel setup. Includes
C | | :: annotated table of kernel parameter settings.
C | |
C | |-PACKAGES_CHECK :: call each package configuration checking S/R
C | | |- ${PKG}_CHECK
C | |
C | |-CONFIG_CHECK :: Check config and parameter consistency.
C | |
C | |-WRITE_GRID :: write grid fields to output files
C | |-CPL_EXCH_CONFIGS :: exchange config with coupler-interface
C |
C |-CTRL_UNPACK :: Control vector support package. see pkg/ctrl
C |-COST_DEPENDENT_INIT :: ( see pkg/cost )
C |
C |-ADTHE_MAIN_LOOP :: Derivative evaluating form of main time stepping loop
C ! :: Automatically generated by TAMC/TAF.

(continues on next page)
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C |
C |-THE_MAIN_LOOP :: Main timestepping loop routine.
C | |
C | |-INITIALISE_VARIA :: Set the initial conditions for time evolving fields
C | | |
C #ifdef ALLOW_AUTODIFF
C | | |-INI_DEPTHS \
C | | |-CTRL_DEPTH_INI \
C | | |-UPDATE_MASKS_ETC } ALLOW_DEPTH_CONTROL case
C | | |-UPDATE_CG2D /
C #endif
C | | |-INI_NLFS_VARS :: Initialise all Non-Lin Free-Surf arrays (SURFACE.h)
C | | |-INI_DYNVARS :: Initialise to zero all DYNVARS.h arrays
C | | |-INI_NH_VARS :: Initialise to zero all NH_VARS.h arrays
C | | |-INI_FFIELDS :: Initialise forcing fields in FFIELDS.h to zero
C | | |
C | | |-INI_FIELDS :: Control initialising model fields to non-zero
C | | | |-INI_VEL :: Initialize 3D flow field.
C | | | |-INI_THETA :: Set model initial temperature field.
C | | | |-INI_SALT :: Set model initial salinity field.
C | | | |-INI_PSURF :: Set model initial free-surface height/pressure.
C | | | |-READ_PICKUP :: Read in main model pickup files to restart a run.
C | | |
C | | |-INI_MIXING :: Initialise diapycnal diffusivity.
C | | |
C | | |-TAUEDDY_INIT_VARIA :: Initialise eddy (bolus) streamfunction
C | | |
C | | |-INI_FORCING :: Set model initial forcing fields, either
C | | | | :: set in-line or from file as shown here:
C | | | |-READ_FLD_XY_RS(zonalWindFile)
C | | | |-READ_FLD_XY_RS(meridWindFile)
C | | | |-READ_FLD_XY_RS(surfQnetFile)
C | | | |-READ_FLD_XY_RS(EmPmRfile)
C | | | |-READ_FLD_XY_RS(thetaClimFile)
C | | | |-READ_FLD_XY_RS(saltClimFile)
C | | | |-READ_FLD_XY_RS(surfQswFile)
C | | |
C | | |-AUTODIFF_INIT_VARIA :: (see pkg/autodiff )
C | | |
C | | |-PACKAGES_INIT_VARIABLES :: Does initialisation of time evolving
C | | | | ${PKG}_INIT_VARIA :: package data.
C | | |
C | | |-COST_INIT_VARIA :: ( see pkg/cost )
C | | |-CONVECTIVE_ADJUSTMENT_INI :: Apply conv. adjustment to initial state
C | | |
C | | |-CALC_R_STAR :: Calculate the new level thickness factor (r* coord)
C | | |-UPDATE_R_STAR :: Update the level thickness fraction (r* coord).
C | | |-UPDATE_SIGMA :: Update the level thickness fraction (sigma-coord).
C | | |-CALC_SURF_DR :: Calculate the new surface level thickness.
C | | |-UPDATE_SURF_DR :: Update the surface-level thickness fraction.
C | | |
C | | |-UPDATE_CG2D :: Update 2D conjugate grad. for Free-Surf.
C | | |
C | | |-INTEGR_CONTINUITY :: Integrate the continuity Equation
C | | | |-INTEGRATE_FOR_W :: Integrate for vertical velocity
C | | | |-OBCS_APPLY_W :: Open boundary package (see pkg/obcs).
C | | | |-DUMMY_FOR_ETAN :: For printing adEtaN (see pkg/autodiff).

(continues on next page)
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C | | | |-UPDATE_ETAH :: Update Surface height/pressure
C | | |
C | | |-CALC_R_STAR :: Calculate the new level thickness factor (r* coord)
C | | |-CALC_SURF_DR :: Calculate the new surface level thickness.
C | | |
C | | |-STATE_SUMMARY :: Summarise model prognostic variables.
C | | |
C | | |-MONITOR :: Monitor state (see pkg/monitor)
C | | |
C | | |-DO_STATEVARS_TAVE :: Time averaging package ( see pkg/timeave ).
C | | | |-TIMEAVE_STATVARS :: Accumulate main model state variables
C | | | |-PTRACERS_TIMEAVE :: Accumulate passive tracers variables
C | | |
C | | |-DO_THE_MODEL_IO :: Controlling routine for IO
C | | | |-WRITE_STATE :: Write model state variables.
C | | | |-TIMEAVE_STATV_WRITE :: Write Time averaged output (see pkg/timeave)
C | | | |-FIZHI_WRITE_STATE :: Write Fizhi pkg output (see pkg/fizhi)
C | | | |-AIM_WRITE_TAVE :: Write AIM pkg output (see pkg/aim_v23)
C | | | |-LAND_OUTPUT :: Write Land pkg output (see pkg/land)
C | | | |-OBCS_OUTPUT :: Write OBCS pkg output (see pkg/obcs)
C | | | |-GMREDI_OUTPUT :: Write GM-Redi pkg output (see pkg/gmredi)
C | | | |-KPP_OUTPUT :: Write KPP pkg output (see pkg/kpp)
C | | | |-PP81_OUTPUT :: Write PP81 pkg output (see pkg/pp81)
C | | | |-KL10_OUTPUT :: Write KL10 pkg output (see pkg/kl10)
C | | | |-MY82_OUTPUT :: Write MY82 pkg output (see pkg/my82)
C | | | |-OPPS_OUTPUT :: Write OPPS pkg output (see pkg/opps)
C | | | |-GGL90_OUTPUT :: Write GGL90 pkg output (see pkg/ggl90)
C | | | |-SBO_CALC :: Compute SBO diagnostics (see pkg/sbo)
C | | | |-SBO_OUTPUT :: Write SBO pkg output (see pkg/sbo)
C | | | |-SEAICE_OUTPUT :: Write SeaIce pkg output (see pkg/seaice)
C | | | |-SHELFICE_OUTPUT :: Write ShelfIce pkg output (see pkg/shelfice)
C | | | |-BULKF_OUTPUT :: Write Bulk-Force output (see pkg/bulK_force)
C | | | |-THSICE_OUTPUT :: Write ThSIce pkg output (see pkg/thsice)
C | | | |-PTRACERS_OUTPUT :: Write pTracers pkg output (see pkg/ptracers)
C | | | |-MATRIX_OUTPUT :: Write Matrix pkg output (see pkg/matrix)
C | | | |-GCHEM_OUTPUT :: Write Geochemistry pkg output (see pkg/gchem)
C | | | |-CPL_OUTPUT :: Write Coupler-Interface output (see
C | | | | :: pkg/atm_compon_interf, pkg/ocn_compon_interf)
C | | | |-LAYERS_CALC :: Calculate layers diagnostics (see pkg/layers)
C | | | |-LAYERS_OUTPUT :: Write Layers pkg output (see pkg/layers)
C | | | |-DIAGNOSTICS_WRITE :: Write pkg/diagnostics output
C | | |
C====|>| ****************************
C====|>| BEGIN MAIN TIMESTEPPING LOOP
C====|>| ****************************
C | |-COST_AVERAGESFIELDS :: time-averaged Cost function terms (see pkg/cost)
C | |-PROFILES_INLOOP :: ( see pkg/profiles )
C | /
C | |-MAIN_DO_LOOP :: Open-AD case: Main timestepping loop routine
C | \ otherwise: just call FORWARD_STEP
C | |
C/\ | |-FORWARD_STEP :: Step forward a time-step ( AT LAST !!! )
C/\ | | |
C/\ | | |-AUTODIFF_INADMODE_UNSET :: Set/reset some adjoint flags
C/\ | | |-RESET_NLFS_VARS :: Reset some Non-Lin Free-Surf vars (Adjoint)
C/\ | | |-UPDATE_R_STAR :: Reset r-star factor variables (Adjoint)
C/\ | | |-UPDATE_SURF_DR :: Reset NLFS surface thickness vars (Adjoint)

(continues on next page)
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C/\ | | |
C/\ | | |-PTRACERS_SWITCH_ONOFF :: Set/reset pTracers time-stepping switch
C/\ | | |-DIAGNOSTICS_SWITCH_ONOFF :: Activate/de-activate diagnostics
C/\ | | |-DO_STATEVARS_DIAGS ( 0 ) :: fill-up state variable diagnostics
C/\ | | |
C/\ | | |-NEST_CHILD_SETMEMO :: Nesting interface
C/\ | | |-NEST_PARENT_IO_1 :: Nesting interface
C/\ | | |
C/\ | | |-LOAD_FIELDS_DRIVER :: Control loading of input fields from files
C/\ | | |
C/\ | | |-BULKF_FORCING :: Calculate surface forcing (see pkg/bulk_force)
C/\ | | |-CHEAPAML :: Cheap AML driver ( see pkg/cheapaml )
C/\ | | |-CTRL_MAP_FORCING :: Control vector support package. (see pkg/ctrl)
C/\ | | |-DUMMY_IN_STEPPING :: Autodiff package ( pkg/autodiff ).
C/\ | | |
C/\ | | |-CPL_EXPORT_MY_DATA :: Send coupling fields to coupler
C/\ | | |-CPL_IMPORT_EXTERNAL_DATA :: Receive coupling fields from coupler
C/\ | | |
C/\ | | |-OASIS_PUT :: Oasis coupler interface
C/\ | | |-OASIS_GET :: Oasis coupler interface
C/\ | | |
C/\ | | |-EBM_DRIVER :: Calculate EBM type atmospheric forcing (see pkg/ebm)
C/\ | | |
C/\ | | |-DO_ATMOSPHERIC_PHYS :: Atmospheric physics computation
C/\ | | | |
C/\ | | | |-UPDATE_OCEAN_EXPORTS :: ( see pkg/fizhi )
C/\ | | | |-UPDATE_EARTH_EXPORTS :: ( see pkg/fizhi )
C/\ | | | |-UPDATE_CHEMISTRY_EXPORTS :: ( see pkg/fizhi )
C/\ | | | |-FIZHI_WRAPPER :: ( see pkg/fizhi )
C/\ | | | |-STEP_FIZHI_FG :: ( see pkg/fizhi )
C/\ | | | |-FIZHI_UPDATE_TIME :: ( see pkg/fizhi )
C/\ | | | |
C/\ | | | |-ATM_PHYS_DRIVER :: ( see pkg/atm_phys )
C/\ | | | |
C/\ | | | |-AIM_DO_PHYSICS :: ( see pkg/aim_v23 )
C/\ | | |
C/\ | | |-DO_OCEANIC_PHYS :: Oceanic (& seaice) physics computation
C/\ | | | |
C/\ | | | |-OBCS_CALC :: Open boundary. package (see pkg/obcs).
C/\ | | | |
C/\ | | | |-FRAZIL_CALC_RHS :: Compute FRAZIL tendencies ( see pkg/frazil )
C/\ | | | |-THSICE_MAIN :: Thermodynamic sea-ice driver (see pkg/thsice)
C/\ | | | |-SEAICE_MODEL :: Sea-ice model driver (see pkg/seaice )
C/\ | | | |-SEAICE_COST_SENSI :: Sea-ice cost-function (see pkg/seaice )
C/\ | | | |-SHELFICE_THERMODYNAMICS :: Compute ShelfIce thermo (pkg/shelfice)
C/\ | | | |-ICEFRONT_THERMODYNAMICS :: Compute IceFront thermo (pkg/icefront)
C/\ | | | |
C/\ | | | |-SALT_PLUME_DO_EXCH :: (see pkg/salt_plume )
C/\ | | | |-FREEZE_SURFACE :: Prevent SST to fall below TFreeze
C/\ | | | |-OCN_APPLY_IMPORT :: Apply imported fields from coupler
C/\ | | | |-EXTERNAL_FORCING_SURF:: Compute appropriately dimensioned
C/\ | | | | :: surface forcing terms.
C/\ | | | |-FIND_RHO_2D @ p(k) :: Calculate [rho(T,S,p)-Rho_0] of a slice
C/\ | | | |-FIND_RHO_2D @ p(k-1) :: Calculate [rho(T,S,p)-Rho_0] of a slice
C/\ | | | |-GRAD_SIGMA :: Calculate isoneutral gradients
C/\ | | | |-CALC_IVDC :: Set Implicit Vertical Diffusivity for Convection
C/\ | | | |-CALC_OCE_MXLAYER :: Diagnose Oceanic Mixed Layer depth

(continues on next page)
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C/\ | | | |
C/\ | | | |-SALT_PLUME_CALC_DEPTH :: (see pkg/salt_plume )
C/\ | | | |-SALT_PLUME_VOLFRAC :: (see pkg/salt_plume )
C/\ | | | |-SALT_PLUME_APPLY (Temp) :: (see pkg/salt_plume )
C/\ | | | |-SALT_PLUME_APPLY (Salt) :: (see pkg/salt_plume )
C/\ | | | |-SALT_PLUME_FORCING_SURF :: (see pkg/salt_plume )
C/\ | | | |-KPP_CALC :: Compute KPP vertical mixing ( see pkg/kpp )
C/\ | | | |-PP81_CALC :: Compute PP81 vertical mixing ( see pkg/pp81 )
C/\ | | | |-KL10_CALC :: Compute KL10 vertical mixing ( see pkg/kl10 )
C/\ | | | |-MY82_CALC :: Compute MY82 vertical mixing ( see pkg/kl10 )
C/\ | | | |-GGL90_CALC :: Compute GGL90 vertical mixing (see pkg/ggl10)
C/\ | | | |-GMREDI_CALC_TENSOR :: Compute GM-Redi tensor ( see pkg/gmredi )
C/\ | | | |-DWNSLP_CALC_FLOW :: Compute Down-Slope flow (see pkg/down_slope)
C/\ | | | |-BBL_CALC_RHS :: Compute BBL tendencies ( see pkg/bbl )
C/\ | | | |-MYPACKAGE_CALC_RHS :: Compute mypackage tendencies (pkg/mypackage)
C/\ | | | |
C/\ | | | |-GMREDI_DO_EXCH :: ( see pkg/gmredi )
C/\ | | | |-KPP_DO_EXCH :: ( see pkg/kpp )
C/\ | | | |-DIAGS_RHO_G :: Compute some density related diagnostics
C/\ | | | |-DIAGS_OCEANIC_SURF_FLUX :: Diagnose oceanic surface fluxes
C/\ | | | |-SALT_PLUME_DIAGNOSTICS_FILL :: (see pkg/salt_plume )
C/\ | | | |-ECCO_PHYS :: ( see pkg/ecco )
C/\ | | |
C/\ | | |-STREAMICE_TIMESTEP :: ( see pkg/streamice )
C/\ | | |
C/\ | | |-GCHEM_CALC_TENDENCY :: geochemistry driver routine (see pkg/gchem)
C/\ | | |
C/\ | | |-LONGSTEP_AVERAGE :: Averaging state vars ( see pkg/longstep )
C/\ | | |-LONGSTEP_THERMODYNAMICS :: Step forward tracers ( see pkg/longstep )
C/\ | | |
C/\ | | |-THERMODYNAMICS :: theta, salt + tracer equations driver.
C/\ | | | | (synchronous time-stepping case)
C/\ | | | |-CALC_WSURF_TR :: Compute T & S Linear-Free-Surf correction
C/\ | | | |-PTRACERS_CALC_WSURF_TR :: Compute Tracers Linear-Free-Surf correct.
C/\ | | | |
C/\ | | | |-GMREDI_RESIDUAL_FLOW :: Get the flow field used to advect tracers
C/\ | | | |
C/\ | | | |-TEMP_INTEGRATE :: Step forward Prognostic Eq for Temperature.
C/\ | | | | |
C/\ | | | | |-ADAMS_BASHFORTH3 :: Extrapolate tracer forward in time (AB-3)
C/\ | | | | |-ADAMS_BASHFORTH2 :: Extrapolate tracer forward in time (AB-2)
C/\ | | | | |-CALC_3D_DIFFUSIVITY :: set vertical diffusivity
C/\ | | | | |
C/\ | | | | |-GAD_SOM_ADVECT :: Second Order Moment (SOM) advection
C/\ | | | | |-GAD_ADVECTION :: Generalised advection driver (multi-dim
C/\ | | | | | advection case) (see pkg/gad).
C/\ | | | | |-CALC_ADV_FLOW :: set 3-D flow field to advect tracer
C/\ | | | | |-APPLY_FORCING_T :: Problem specific forcing for temperature.
C/\ | | | | |-GAD_CALC_RHS :: Calculate Advection-Diffusion tendency terms
C/\ | | | | |
C/\ | | | | |-ADAMS_BASHFORTH3 :: Extrapolate tendency forward in time (AB-3)
C/\ | | | | |-ADAMS_BASHFORTH2 :: Extrapolate tendency forward in time (AB-2)
C/\ | | | | |-FREESURF_RESCALE_G :: Re-scale Gt for free-surface height.
C/\ | | | | |-DWNSLP_APPLY :: Add pkg/down_slope tendency
C/\ | | | | |
C/\ | | | | |-TIMESTEP_TRACER :: Step tracer field forward in time
C/\ | | | | |

(continues on next page)
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C/\ | | | | |-GAD_IMPLICIT_R :: Solve vertical implicit Advect-Diffus. eqn.
C/\ | | | | |-IMPLDIFF :: Solve vertical implicit diffusion equation.
C/\ | | | | |-CYCLE_AB_TRACER :: Cycle time-stepping arrays for tracer field
C/\ | | | | |-CYCLE_TRACER :: Cycle time-stepping arrays for tracer field
C/\ | | | |
C/\ | | | |-SALT_INTEGRATE :: Step forward Prognostic Eq for Salinity.
C/\ | | | | | same sequence of calls as in TEMP_INTEGRATE
C/\ | | | |
C/\ | | | |-PTRACERS_INTEGRATE :: Integrate other tracer(s) (see pkg/ptracers).
C/\ | | | | | same sequence of calls as in TEMP_INTEGRATE
C/\ | | | | |-OBCS_APPLY_PTRACER :: Open boundary package for pTracers
C/\ | | | |
C/\ | | | |-OBCS_APPLY_TS :: Open boundary package (see pkg/obcs ).
C/\ | | |
C/\ | | |-LONGSTEP_AVERAGE :: Averaging state vars ( see pkg/longstep )
C/\ | | |-LONGSTEP_THERMODYNAMICS :: Step forward tracers ( see pkg/longstep )
C/\ | | |
C/\ | | |-DO_STAGGER_FIELDS_EXCHANGES :: Update overlap regions of arrays
C/\ | | | Theta & Salt (implicit IGW case)
C/\ | | |
C/\ | | |-DYNAMICS :: Momentum equations driver.
C/\ | | | |
C/\ | | | |-CALC_GRAD_PHI_SURF :: Calculate the gradient of the surface
C/\ | | | | Potential anomaly.
C/\ | | | |-CALC_VISCOSITY :: Calculate net vertical viscosity
C/\ | | | |-MOM_CALC_3D_STRAIN :: Calculates the strain tensor of 3D flow field
C/\ | | | |-OBCS_COPY_UV_N :: for Stevens bndary Conditions (see pkg/obcs)
C/\ | | | |
C/\ | | | |-CALC_PHI_HYD :: Integrate the hydrostatic relation.
C/\ | | | |-MOM_FLUXFORM :: Flux Form momentum eqn. (pkg/mom_fluxform)
C/\ | | | |-MOM_VECINV :: Vector Invariant momentum eqn (pkg/mom_vecinv)
C/\ | | | |-MOM_CALC_SMAG_3D :: Calculate Smagorinsky 3D (harmonic) viscosities
C/\ | | | |-MOM_UV_SMAG_3D :: Calculate U,V mom. tendency due to Smag 3D Visc
C/\ | | | |-TIMESTEP :: Step horizontal momentum fields forward in time
C/\ | | | |
C/\ | | | |-MOM_U_IMPLICIT_R :: Solve implicitly vertical Adv-Diffus equation.
C/\ | | | |-IMPLDIFF :: Solve vertical implicit diffusion equation.
C/\ | | | |-OBCS_SAVE_UV_N :: for Stevens bndary Conditions (see pkg/obcs)
C/\ | | | |-OBCS_APPLY_UV :: Apply Open bndary Conditions to provisional U,V
C/\ | | | |-IMPLDIFF :: (CD-Scheme) Solve vertical impl. diffus. eqn
C/\ | | | |
C/\ | | | |-CALC_GW :: Vert. momentum tendency terms (Non-Hydrostatic)
C/\ | | | | |-MOM_W_SMAG_3D :: Calculate W mom. tendency due to Smag 3D Visc
C/\ | | | |-TIMESTEP_WVEL :: Step vert mom forward in time (Non-Hydrostatic)
C/\ | | |
C/\ | | |-MNC_UPDATE_TIME :: Update MNC time record (see pkg/mnc)
C/\ | | |
C/\ | | |-UPDATE_R_STAR :: Update the level thickness fraction (r* coord).
C/\ | | |-UPDATE_SIGMA :: Update the level thickness fraction (sigma-coord).
C/\ | | |-UPDATE_R_STAR :: Update the level thickness fraction.
C/\ | | |-UPDATE_SURF_DR :: Update the surface-level thickness fraction.
C/\ | | |-UPDATE_CG2D :: Update 2D conjugate grad. for Free-Surf.
C/\ | | |
C/\ | | |-SHAP_FILT_APPLY_UV :: Apply Shapiro Filter to provisional velocity
C/\ | | |-ZONAL_FILT_APPLY_UV :: Apply Zonal Filter to provisional velocity
C/\ | | |
C/\ | | |-SOLVE_FOR_PRESSURE :: Find surface pressure.
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C/\ | | | |-CALC_DIV_GHAT :: Form the RHS of the surface pressure eqn.
C/\ | | | |-CG2D :: Two-dim pre-con. conjugate-gradient.
C/\ | | | |-PRE_CG3D :: Finish to set the RHS of the 3-D pressure eqn.
C/\ | | | |-CG3D :: Three-dim pre-con. conjugate-gradient solver.
C/\ | | | |-POST_CG3D :: finalise solution of NH and Free-Surf pressure
C/\ | | |
C/\ | | |-MOMENTUM_CORRECTION_STEP :: Finalise momentum stepping
C/\ | | | |-CALC_GRAD_PHI_SURF :: Return DDx and DDy of surface pressure
C/\ | | | |-CORRECTION_STEP :: Pressure correction to momentum
C/\ | | | |-OBCS_APPLY_UV :: Open boundary package (see pkg/obcs).
C/\ | | | |-SHAP_FILT_APPLY_UV :: Apply Shapiro Filter to latest velocity
C/\ | | | |-ZONAL_FILT_APPLY_UV :: Apply Zonal Filter to latest velocity
C/\ | | |
C/\ | | |-INTEGR_CONTINUITY :: Integrate continuity equation (see above)
C/\ | | |
C/\ | | |-CALC_R_STAR :: Calculate the new level thickness factor (r* coord)
C/\ | | |-CALC_SURF_DR :: Calculate the new surface level thickness.
C/\ | | |
C/\ | | |-DO_STAGGER_FIELDS_EXCHANGES :: Update overlap regions of arrays
C/\ | | | uVel,vVel & wVel (stagger-time-step case)
C/\ | | |
C/\ | | |-DO_STATEVARS_DIAGS ( 1 ) :: fill-up state variable diagnostics
C/\ | | |
C/\ | | |-THERMODYNAMICS :: theta, salt + tracer Eq. driver (see above).
C/\ | | | (staggered time-stepping case)
C/\ | | |
C/\ | | |-TRACERS_CORRECTION_STEP :: Finalise tracer stepping:
C/\ | | | | :: apply filter, conv.adjustment
C/\ | | | |-TRACERS_IIGW_CORRECTION :: apply Implicit IGW adjustment to T & S
C/\ | | | |-SHAP_FILT_APPLY_TS :: Apply Shapiro Filter to latest T & S
C/\ | | | |-ZONAL_FILT_APPLY_TS :: Apply Zonal Filter to latest T & S
C/\ | | | |-PTRACERS_ZONAL_FILT_APPLY :: Apply Zonal Filter to pTracers
C/\ | | | |-SALT_FILL :: Fill up negative Salt
C/\ | | | |-OPPS_INTERFACE :: ( see pkg/opps )
C/\ | | | |-CONVECTIVE_ADJUSTMENT :: Apply convective adjustment
C/\ | | | |-MATRIX_STORE_TENDENCY_IMP :: ( see pkg/matrix )
C/\ | | |
C/\ | | |-LONGSTEP_AVERAGE :: Averaging state vars ( see pkg/longstep )
C/\ | | |-LONGSTEP_THERMODYNAMICS :: Step forward tracers ( see pkg/longstep )
C/\ | | |
C/\ | | |-GCHEM_FORCING_SEP :: Tracer forcing for gchem pkg (if tracer
C/\ | | | :: dependent tendencies calculated separately)
C/\ | | |
C/\ | | |-DO_FIELDS_BLOCKING_EXCHANGES :: Sync up overlap regions.
C/\ | | |
C/\ | | |-DO_STATEVARS_DIAGS ( 2 ) :: fill-up state variable diagnostics
C/\ | | |
C/\ | | |-GRIDALT_UPDATE :: ( see pkg/gridalt )
C/\ | | |-STEP_FIZHI_CORR :: ( see pkg/fizhi )
C/\ | | |
C/\ | | |-FLT_MAIN :: Step forward Floats (see pkg/flt)
C/\ | | |
C/\ | | |-DO_STATEVARS_TAVE :: Time averaging package (see above)
C/\ | | |
C/\ | | |-NEST_PARENT_IO_2 :: Nesting interface
C/\ | | |-NEST_CHILD_TRANSP :: Nesting interface
C/\ | | |

(continues on next page)
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(continued from previous page)

C/\ | | |-MONITOR :: Monitor package (pkg/monitor).
C/\ | | |
C/\ | | |-COST_TILE :: ( see pkg/cost )
C/\ | | |
C/\ | | |-DO_THE_MODEL_IO :: Controlling routine for IO (see above)
C/\ | | |
C/\ | | |-PTRACERS_RESET :: Re-initialize PTRACERS ( see pkg/ptracers )
C/\ | | |
C/\ | | |-DO_WRITE_PICKUP :: Controlling routine for writing files to restart
C/\ | | | |-PACKAGES_WRITE_PICKUP :: Write pickup files for each package
C/\ | | | | | :: which needs it to restart
C/\ | | | | |-GAD_WRITE_PICKUP :: Write Generic AdvDiff pickups for SOM
C/\ | | | | | :: advection scheme (pkg/generic_advdiff)
C/\ | | | | |-CD_CODE_WRITE_PICKUP :: Write CD-code pickups (see pkg/cd_code)
C/\ | | | | |-OBCS_WRITE_PICKUP :: Write OBCS pickups (see pkg/obcs)
C/\ | | | | |-GGL90_WRITE_PICKUP :: Write GGL90 pickups (see pkg/ggl90)
C/\ | | | | |-BBL_WRITE_PICKUP :: Write BBL pickups (see pkg/bbl)
C/\ | | | | |-CHEAPAML_WRITE_PICKUP :: Write CheapAML pickups (pkg/cheapaml)
C/\ | | | | |-FLT_WRITE_PICKUP :: Write Floats pickups (see pkg/flt)
C/\ | | | | |-PTRACERS_WRITE_PICKUP :: Write pTracers pickups (pkg/ptracers)
C/\ | | | | |-GCHEM_WRITE_PICKUP :: Write Geo-Chem pickups (see pkg/gchem)
C/\ | | | | |-SEAICE_WRITE_PICKUP :: Write SeaIce pickups (see pkg/seaice)
C/\ | | | | |-STREAMICE_WRITE_PICKUP :: Write StreamIce pickups (pkg/streamice)
C/\ | | | | |-SHELFICE_WRITE_PICKUP :: Write ShelfIce pickups (pkg/shelfice)
C/\ | | | | |-THSICE_WRITE_PICKUP :: Write ThSIce pickups (see pkg/thsice)
C/\ | | | | |-LAND_WRITE_PICKUP :: Write Land pickups (see pkg/land)
C/\ | | | | |-ATM_PHYS_WRITE_PICKUP :: Write Atm-Phys pickups (pkg/atm_phys)
C/\ | | | | |-FIZHI_WRITE_PICKUP :: Write Fizhi pickups (see pkg/fizhi)
C/\ | | | | |-FIZHI_WRITE_VEGTILES :: Write Fizhi VegTiles (see pkg/fizhi)
C/\ | | | | |-FIZHI_WRITE_DATETIME :: Write Fizhi DateTime (see pkg/fizhi)
C/\ | | | | |-CPL_WRITE_PICKUP :: Write Coupling-Interface pickups
C/\ | | | | |-MYPACKAGE_WRITE_PICKUP :: Write pkg/mypackage pickups
C/\ | | | |
C/\ | | | |-WRITE_PICKUP :: Write main model pickup files.
C/\ | | |
C/\ | | |-AUTODIFF_INADMODE_SET :: Set/reset some adjoint flags
C | |
C<===|=| **************************
C<===|=| END MAIN TIMESTEPPING LOOP
C<===|=| **************************
C | |
C | |-COST_AVERAGESFIELDS :: Time-averaged Cost function terms (see pkg/cost)
C | |-PROFILES_INLOOP :: ( see pkg/profiles )
C | |-COST_FINAL :: Cost function package (see pkg/cost)
C |
C |-CTRL_PACK :: Control vector support package (see pkg/ctrl)
C |
C |-GRDCHK_MAIN :: Gradient check package (see pkg/grdchk)
C |
C |-TIMER_PRINTALL :: Computational timing summary
C |
C |-COMM_STATS :: Summarise inter-proc and inter-thread communication
C | :: events.
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6.4.2 Measuring and Characterizing Performance

TO BE DONE (CNH)

6.4.3 Estimating Resource Requirements

TO BE DONE (CNH)

6.4.3.1 Atlantic 1/6 degree example

6.4.3.2 Dry Run testing

6.4.3.3 Adjoint Resource Requirements

6.4.3.4 State Estimation Environment Resources
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CHAPTER

SEVEN

AUTOMATIC DIFFERENTIATION

Author: Patrick Heimbach

Automatic differentiation (AD), also referred to as algorithmic (or, more loosely, computational) differentiation, in-
volves automatically deriving code to calculate partial derivatives from an existing fully non-linear prognostic code
(see Griewank and Walther, 2008 [GW08]). A software tool is used that parses and transforms source files according
to a set of linguistic and mathematical rules. AD tools are like source-to-source translators in that they parse a program
code as input and produce a new program code as output (we restrict our discussion to source-to-source tools, ignoring
operator-overloading tools). However, unlike a pure source-to-source translation, the output program represents a new
algorithm, such as the evaluation of the Jacobian, the Hessian, or higher derivative operators. In principle, a variety of
derived algorithms can be generated automatically in this way.

MITgcm has been adapted for use with the Tangent linear and Adjoint Model Compiler (TAMC) and its successor TAF
(Transformation of Algorithms in Fortran), developed by Ralf Giering (Giering and Kaminski, 1998 [GK98], Giering,
2000 [Gie00]). The first application of the adjoint of MITgcm for sensitivity studies was published by Marotzke et al.
(1999) [MGZ+99]. Stammer et al. (1997, 2002) [SWG+97] [SWG+02] use MITgcm and its adjoint for ocean state
estimation studies. In the following we shall refer to TAMC and TAF synonymously, except were explicitly stated
otherwise.

As of mid-2007 we are also able to generate fairly efficient adjoint code of the MITgcm using a new, open-source
AD tool, called OpenAD (see Naumann, 2006 [NUH+06] and Utke et al., 2008 [UNF+08]). This enables us for
the first time to compare adjoint models generated from different AD tools, providing an additional accuracy check,
complementary to finite-difference gradient checks. OpenAD and its application to MITgcm is described in detail in
Section 7.5.

The AD tool exploits the chain rule for computing the first derivative of a function with respect to a set of input
variables. Treating a given forward code as a composition of operations – each line representing a compositional
element, the chain rule is rigorously applied to the code, line by line. The resulting tangent linear or adjoint code, then,
may be thought of as the composition in forward or reverse order, respectively, of the Jacobian matrices of the forward
code’s compositional elements.

7.1 Some basic algebra

Let ℳ be a general nonlinear, model, i.e., a mapping from the 𝑚-dimensional space 𝑈 ⊂ R𝑚 of input variables
𝑢⃗ = (𝑢1, . . . , 𝑢𝑚) (model parameters, initial conditions, boundary conditions such as forcing functions) to the 𝑛-
dimensional space 𝑉 ⊂ R𝑛 of model output variable 𝑣⃗ = (𝑣1, . . . , 𝑣𝑛) (model state, model diagnostics, objective
function, . . . ) under consideration:

ℳ :𝑈 −→ 𝑉

𝑢⃗ ↦−→ 𝑣⃗ = ℳ(𝑢⃗)
(7.1)
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The vectors 𝑢⃗ ∈ 𝑈 and 𝑣⃗ ∈ 𝑉 may be represented with respect to some given basis vectors span(𝑈) = {𝑒⃗𝑖}𝑖=1,...,𝑚

and span(𝑉 ) = {𝑓𝑗}𝑗=1,...,𝑛 as

𝑢⃗ =

𝑚∑︁
𝑖=1

𝑢𝑖 𝑒⃗𝑖, 𝑣⃗ =

𝑛∑︁
𝑗=1

𝑣𝑗 𝑓𝑗

Two routes may be followed to determine the sensitivity of the output variable 𝑣⃗ to its input 𝑢⃗.

7.1.1 Forward or direct sensitivity

Consider a perturbation to the input variables 𝛿𝑢⃗ (typically a single component 𝛿𝑢⃗ = 𝛿𝑢𝑖 𝑒⃗𝑖). Their effect on the
output may be obtained via the linear approximation of the model ℳ in terms of its Jacobian matrix 𝑀 , evaluated in
the point 𝑢(0) according to

𝛿𝑣⃗ = 𝑀 |𝑢⃗(0) 𝛿𝑢⃗ (7.2)

with resulting output perturbation 𝛿𝑣⃗. In components 𝑀𝑗𝑖 = 𝜕ℳ𝑗/𝜕𝑢𝑖, it reads

𝛿𝑣𝑗 =
∑︁
𝑖

𝜕ℳ𝑗

𝜕𝑢𝑖

⃒⃒⃒⃒
𝑢(0)

𝛿𝑢𝑖 (7.3)

(7.2) is the tangent linear model (TLM). In contrast to the full nonlinear model ℳ, the operator 𝑀 is just a matrix
which can readily be used to find the forward sensitivity of 𝑣⃗ to perturbations in 𝑢, but if there are very many input
variables (≫ 𝑂(106) for large-scale oceanographic application), it quickly becomes prohibitive to proceed directly as
in (7.2), if the impact of each component ei is to be assessed.

7.1.2 Reverse or adjoint sensitivity

Let us consider the special case of a scalar objective function 𝒥 (𝑣⃗) of the model output (e.g., the total meridional heat
transport, the total uptake of CO2 in the Southern Ocean over a time interval, or a measure of some model-to-data
misfit)

𝒥 : 𝑈 −→ 𝑉 −→ R
𝑢⃗ ↦−→ 𝑣⃗ = ℳ(𝑢⃗) ↦−→ 𝒥 (𝑢⃗) = 𝒥 (ℳ(𝑢⃗))

(7.4)

The perturbation of 𝒥 around a fixed point 𝒥0,

𝒥 = 𝒥0 + 𝛿𝒥

can be expressed in both bases of 𝑢⃗ and 𝑣⃗ with respect to their corresponding inner product ⟨ , ⟩

𝒥 = 𝒥 |𝑢⃗(0) +
⟨︀
∇𝑢𝒥 𝑇 |𝑢⃗(0) , 𝛿𝑢⃗

⟩︀
+ 𝑂(𝛿𝑢⃗2)

= 𝒥 |𝑣⃗(0) +
⟨︀
∇𝑣𝒥 𝑇 |𝑣⃗(0) , 𝛿𝑣⃗

⟩︀
+ 𝑂(𝛿𝑣⃗2)

(7.5)

(note, that the gradient ∇𝑓 is a co-vector, therefore its transpose is required in the above inner product). Then, using
the representation of 𝛿𝒥 =

⟨︀
∇𝑣𝒥 𝑇 , 𝛿𝑣⃗

⟩︀
, the definition of an adjoint operator 𝐴* of a given operator 𝐴,

⟨𝐴*𝑥⃗ , 𝑦⃗ ⟩ = ⟨ 𝑥⃗ , 𝐴𝑦⃗ ⟩

which for finite-dimensional vector spaces is just the transpose of 𝐴,

𝐴* = 𝐴𝑇
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and from (7.2), (7.5), we note that (omitting |’s):

𝛿𝒥 =
⟨︀
∇𝑣𝒥 𝑇 , 𝛿𝑣⃗

⟩︀
=
⟨︀
∇𝑣𝒥 𝑇 , 𝑀 𝛿𝑢⃗

⟩︀
=
⟨︀
𝑀𝑇 ∇𝑣𝒥 𝑇 , 𝛿𝑢⃗

⟩︀
(7.6)

With the identity (7.5), we then find that the gradient ∇𝑢𝒥 can be readily inferred by invoking the adjoint 𝑀* of the
tangent linear model 𝑀

∇𝑢𝒥 𝑇 |𝑢⃗ = 𝑀𝑇 |𝑢⃗ · ∇𝑣𝒥 𝑇 |𝑣⃗
= 𝑀𝑇 |𝑢⃗ · 𝛿𝑣⃗*

= 𝛿𝑢⃗*
(7.7)

(7.7) is the adjoint model (ADM), in which 𝑀𝑇 is the adjoint (here, the transpose) of the tangent linear operator 𝑀 ,
𝛿𝑣⃗* the adjoint variable of the model state 𝑣⃗, and 𝛿𝑢⃗* the adjoint variable of the control variable 𝑢⃗.

The reverse nature of the adjoint calculation can be readily seen as follows. Consider a model integration which
consists of Λ consecutive operations ℳΛ(ℳΛ−1(......(ℳ𝜆(......(ℳ1(ℳ0(𝑢⃗))))), where the ℳ’s could be the ele-
mentary steps, i.e., single lines in the code of the model, or successive time steps of the model integration, starting at
step 0 and moving up to step Λ, with intermediate ℳ𝜆(𝑢⃗) = 𝑣⃗(𝜆+1) and final ℳΛ(𝑢⃗) = 𝑣⃗(Λ+1) = 𝑣⃗. Let 𝒥 be a cost
function which explicitly depends on the final state 𝑣⃗ only (this restriction is for clarity reasons only). 𝒥 (𝑢) may be
decomposed according to:

𝒥 (ℳ(𝑢⃗)) = 𝒥 (ℳΛ(ℳΛ−1(......(ℳ𝜆(......(ℳ1(ℳ0(𝑢⃗)))))) (7.8)

Then, according to the chain rule, the forward calculation reads, in terms of the Jacobi matrices (we’ve omitted the
|’s which, nevertheless are important to the aspect of tangent linearity; note also that by definition ⟨∇𝑣𝒥 𝑇 , 𝛿𝑣⃗ ⟩ =
∇𝑣𝒥 · 𝛿𝑣⃗ )

∇𝑣𝒥 (𝑀(𝛿𝑢⃗)) = ∇𝑣𝒥 ·𝑀Λ · ...... ·𝑀𝜆 · ...... ·𝑀1 ·𝑀0 · 𝛿𝑢⃗
= ∇𝑣𝒥 · 𝛿𝑣⃗

(7.9)

whereas in reverse mode we have

𝑀𝑇 (∇𝑣𝒥 𝑇 ) = 𝑀𝑇
0 ·𝑀𝑇

1 · ...... ·𝑀𝑇
𝜆 · ...... ·𝑀𝑇

Λ · ∇𝑣𝒥 𝑇

= 𝑀𝑇
0 ·𝑀𝑇

1 · ...... · ∇𝑣(𝜆)𝒥 𝑇

= ∇𝑢𝒥 𝑇

(7.10)

clearly expressing the reverse nature of the calculation. (7.10) is at the heart of automatic adjoint compilers. If the
intermediate steps 𝜆 in (7.8) – (7.10) represent the model state (forward or adjoint) at each intermediate time step as
noted above, then correspondingly, 𝑀𝑇 (𝛿𝑣⃗(𝜆) *) = 𝛿𝑣⃗(𝜆−1) * for the adjoint variables. It thus becomes evident that
the adjoint calculation also yields the adjoint of each model state component 𝑣⃗(𝜆) at each intermediate step 𝜆, namely

∇𝑣(𝜆)𝒥 𝑇 |𝑣⃗(𝜆) = 𝑀𝑇
𝜆 |𝑣⃗(𝜆) · ...... ·𝑀𝑇

Λ |𝑣⃗(𝜆) · 𝛿𝑣⃗*

= 𝛿𝑣⃗(𝜆) *

in close analogy to (7.7) we note in passing that the 𝛿𝑣⃗(𝜆) * are the Lagrange multipliers of the model equations which
determine 𝑣⃗(𝜆).

In components, (7.7) reads as follows. Let

𝛿𝑢⃗ = (𝛿𝑢1, . . . , 𝛿𝑢𝑚)
𝑇
, 𝛿𝑢⃗* = ∇𝑢𝒥 𝑇 =

(︁
𝜕𝒥
𝜕𝑢1

, . . . , 𝜕𝒥
𝜕𝑢𝑚

)︁𝑇
𝛿𝑣⃗ = (𝛿𝑣1, . . . , 𝛿𝑢𝑛)

𝑇
, 𝛿𝑣⃗* = ∇𝑣𝒥 𝑇 =

(︁
𝜕𝒥
𝜕𝑣1

, . . . , 𝜕𝒥
𝜕𝑣𝑛

)︁𝑇
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denote the perturbations in 𝑢⃗ and 𝑣⃗, respectively, and their adjoint variables; further

𝑀 =

⎛⎜⎝
𝜕ℳ1

𝜕𝑢1
. . . 𝜕ℳ1

𝜕𝑢𝑚

...
...

𝜕ℳ𝑛

𝜕𝑢1
. . . 𝜕ℳ𝑛

𝜕𝑢𝑚

⎞⎟⎠
is the Jacobi matrix of ℳ (an 𝑛×𝑚 matrix) such that 𝛿𝑣⃗ = 𝑀 · 𝛿𝑢⃗, or

𝛿𝑣𝑗 =

𝑚∑︁
𝑖=1

𝑀𝑗𝑖 𝛿𝑢𝑖 =

𝑚∑︁
𝑖=1

𝜕ℳ𝑗

𝜕𝑢𝑖
𝛿𝑢𝑖

Then (7.7) takes the form

𝛿𝑢*𝑖 =

𝑛∑︁
𝑗=1

𝑀𝑗𝑖 𝛿𝑣
*
𝑗 =

𝑛∑︁
𝑗=1

𝜕ℳ𝑗

𝜕𝑢𝑖
𝛿𝑣*𝑗

or ⎛⎜⎜⎜⎝
𝜕

𝜕𝑢1
𝒥
⃒⃒⃒
𝑢⃗(0)

...
𝜕

𝜕𝑢𝑚
𝒥
⃒⃒⃒
𝑢⃗(0)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝜕ℳ1

𝜕𝑢1

⃒⃒⃒
𝑢⃗(0)

. . . 𝜕ℳ𝑛

𝜕𝑢1

⃒⃒⃒
𝑢⃗(0)

...
...

𝜕ℳ1

𝜕𝑢𝑚

⃒⃒⃒
𝑢⃗(0)

. . . 𝜕ℳ𝑛

𝜕𝑢𝑚

⃒⃒⃒
𝑢⃗(0)

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎝
𝜕

𝜕𝑣1
𝒥
⃒⃒⃒
𝑣⃗

...
𝜕

𝜕𝑣𝑛
𝒥
⃒⃒⃒
𝑣⃗

⎞⎟⎟⎟⎠
Furthermore, the adjoint 𝛿𝑣(𝜆) * of any intermediate state 𝑣(𝜆) may be obtained, using the intermediate Jacobian (an
𝑛𝜆+1 × 𝑛𝜆 matrix)

𝑀𝜆 =

⎛⎜⎜⎜⎝
𝜕(ℳ𝜆)1

𝜕𝑣
(𝜆)
1

. . . 𝜕(ℳ𝜆)1

𝜕𝑣
(𝜆)
𝑛𝜆

...
...

𝜕(ℳ𝜆)𝑛𝜆+1

𝜕𝑣
(𝜆)
1

. . .
𝜕(ℳ𝜆)𝑛𝜆+1

𝜕𝑣
(𝜆)
𝑛𝜆

⎞⎟⎟⎟⎠
and the shorthand notation for the adjoint variables 𝛿𝑣(𝜆) *𝑗 = 𝜕

𝜕𝑣
(𝜆)
𝑗

𝒥 𝑇 , 𝑗 = 1, . . . , 𝑛𝜆, for intermediate components,

yielding

⎛⎜⎜⎝
𝛿𝑣

(𝜆) *
1
...

𝛿𝑣
(𝜆) *
𝑛𝜆

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝜕(ℳ𝜆)1

𝜕𝑣
(𝜆)
1

. . . . . .
𝜕(ℳ𝜆)𝑛𝜆+1

𝜕𝑣
(𝜆)
1

...
...

𝜕(ℳ𝜆)1

𝜕𝑣
(𝜆)
𝑛𝜆

. . . . . .
𝜕(ℳ𝜆)𝑛𝜆+1

𝜕𝑣
(𝜆)
𝑛𝜆

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕(ℳ𝜆+1)1

𝜕𝑣
(𝜆+1)
1

. . .
𝜕(ℳ𝜆+1)𝑛𝜆+2

𝜕𝑣
(𝜆+1)
1

...
...

...
...

𝜕(ℳ𝜆+1)1

𝜕𝑣
(𝜆+1)
𝑛𝜆+1

. . .
𝜕(ℳ𝜆+1)𝑛𝜆+2

𝜕𝑣
(𝜆+1)
𝑛𝜆+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
· . . . ·

⎛⎜⎝ 𝛿𝑣*1
...
𝛿𝑣*𝑛

⎞⎟⎠

(7.9) and (7.10) are perhaps clearest in showing the advantage of the reverse over the forward mode if the gradient
∇𝑢𝒥 , i.e., the sensitivity of the cost function 𝒥 with respect to all input variables 𝑢 (or the sensitivity of the cost
function with respect to all intermediate states 𝑣⃗(𝜆)) are sought. In order to be able to solve for each component of the
gradient 𝜕𝒥 /𝜕𝑢𝑖 in (7.9) a forward calculation has to be performed for each component separately, i.e., 𝛿𝑢⃗ = 𝛿𝑢𝑖𝑒⃗𝑖 for
the 𝑖-th forward calculation. Then, (7.9) represents the projection of ∇𝑢𝒥 onto the 𝑖-th component. The full gradient
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is retrieved from the 𝑚 forward calculations. In contrast, (7.10) yields the full gradient ∇𝑢𝒥 (and all intermediate
gradients ∇𝑣(𝜆)𝒥 ) within a single reverse calculation.

Note, that if 𝒥 is a vector-valued function of dimension 𝑙 > 1, (7.10) has to be modified according to

𝑀𝑇
(︁
∇𝑣𝒥 𝑇

(︁
𝛿𝐽
)︁)︁

= ∇𝑢𝒥 𝑇 · 𝛿𝐽

where now 𝛿𝐽 ∈ R𝑙 is a vector of dimension 𝑙. In this case 𝑙 reverse simulations have to be performed for each
𝛿𝐽𝑘, 𝑘 = 1, . . . , 𝑙. Then, the reverse mode is more efficient as long as 𝑙 < 𝑛, otherwise the forward mode is
preferable. Strictly, the reverse mode is called adjoint mode only for 𝑙 = 1.

A detailed analysis of the underlying numerical operations shows that the computation of ∇𝑢𝒥 in this way requires
about two to five times the computation of the cost function. Alternatively, the gradient vector could be approximated
by finite differences, requiring 𝑚 computations of the perturbed cost function.

To conclude, we give two examples of commonly used types of cost functions:

7.1.2.1 Example 1: 𝒥 = 𝑣𝑗(𝑇 )

The cost function consists of the 𝑗-th component of the model state 𝑣⃗ at time 𝑇 . Then ∇𝑣𝒥 𝑇 = 𝑓𝑗 is just the 𝑗-th unit
vector. The ∇𝑢𝒥 𝑇 is the projection of the adjoint operator onto the 𝑗-th component fj,

∇𝑢𝒥 𝑇 = 𝑀𝑇 · ∇𝑣𝒥 𝑇 =
∑︁
𝑖

𝑀𝑇
𝑗𝑖 𝑒⃗𝑖

7.1.2.2 Example 2: 𝒥 = ⟨ℋ(𝑣⃗) − 𝑑 , ℋ(𝑣⃗) − 𝑑 ⟩

The cost function represents the quadratic model vs. data misfit. Here, 𝑑 is the data vector and ℋ represents the
operator which maps the model state space onto the data space. Then, ∇𝑣𝒥 takes the form

∇𝑣𝒥 𝑇 = 2 𝐻 ·
(︁
ℋ(𝑣⃗) − 𝑑

)︁
= 2

∑︁
𝑗

{︃∑︁
𝑘

𝜕ℋ𝑘

𝜕𝑣𝑗
(ℋ𝑘(𝑣⃗) − 𝑑𝑘)

}︃
𝑓𝑗

where 𝐻𝑘𝑗 = 𝜕ℋ𝑘/𝜕𝑣𝑗 is the Jacobi matrix of the data projection operator. Thus, the gradient ∇𝑢𝒥 is given by the
adjoint operator, driven by the model vs. data misfit:

∇𝑢𝒥 𝑇 = 2𝑀𝑇 ·𝐻 ·
(︁
ℋ(𝑣⃗) − 𝑑

)︁

7.1.3 Storing vs. recomputation in reverse mode

We note an important aspect of the forward vs. reverse mode calculation. Because of the local character of the
derivative (a derivative is defined with respect to a point along the trajectory), the intermediate results of the model
trajectory 𝑣⃗(𝜆+1) = ℳ𝜆(𝑣(𝜆)) may be required to evaluate the intermediate Jacobian 𝑀𝜆|𝑣⃗(𝜆) 𝛿𝑣⃗(𝜆). This is the
case for example for nonlinear expressions (momentum advection, nonlinear equation of state), and state-dependent
conditional statements (parameterization schemes). In the forward mode, the intermediate results are required in
the same order as computed by the full forward model ℳ, but in the reverse mode they are required in the reverse
order. Thus, in the reverse mode the trajectory of the forward model integration ℳ has to be stored to be available
in the reverse calculation. Alternatively, the complete model state up to the point of evaluation has to be recomputed
whenever its value is required.

A method to balance the amount of recomputations vs. storage requirements is called checkpointing (e.g., Griewank,
1992 [Gri92], Restrepo et al., 1998 [RLG98]). It is depicted in Figure 7.1 for a 3-level checkpointing (as an example,
we give explicit numbers for a 3-day integration with a 1-hourly timestep in square brackets).
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Figure 7.1: Schematic view of intermediate dump and restart for 3-level checkpointing.
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• In a first step, the model trajectory is subdivided into 𝑛𝑙𝑒𝑣3 subsections [𝑛𝑙𝑒𝑣3=3 1-day intervals], with the label
𝑙𝑒𝑣3 for this outermost loop. The model is then integrated along the full trajectory, and the model state stored to
disk only at every 𝑘𝑙𝑒𝑣3𝑖 -th timestep [i.e. 3 times, at 𝑖 = 0, 1, 2 corresponding to 𝑘𝑙𝑒𝑣3𝑖 = 0, 24, 48]. In addition,
the cost function is computed, if needed.

• In a second step each subsection itself is divided into 𝑛𝑙𝑒𝑣2 subsections [𝑛𝑙𝑒𝑣2=4 6-hour intervals per subsection].
The model picks up at the last outermost dumped state 𝑣𝑘𝑙𝑒𝑣3

𝑛
and is integrated forward in time along the last

subsection, with the label 𝑙𝑒𝑣2 for this intermediate loop. The model state is now stored to disk at every 𝑘𝑙𝑒𝑣2𝑖 -th
timestep [i.e. 4 times, at 𝑖 = 0, 1, 2, 3 corresponding to 𝑘𝑙𝑒𝑣2𝑖 = 48, 54, 60, 66].

• Finally, the model picks up at the last intermediate dump state 𝑣𝑘𝑙𝑒𝑣2
𝑛

and is integrated forward in time along
the last subsection, with the label 𝑙𝑒𝑣1 for this intermediate loop. Within this sub-subsection only, parts of
the model state are stored to memory at every timestep [i.e. every hour 𝑖 = 0, ..., 5 corresponding to 𝑘𝑙𝑒𝑣1𝑖 =
66, 67, . . . , 71]. The final state 𝑣𝑛 = 𝑣𝑘𝑙𝑒𝑣1

𝑛
is reached and the model state of all preceding timesteps along the

last innermost subsection are available, enabling integration backwards in time along the last subsection. The
adjoint can thus be computed along this last subsection 𝑘𝑙𝑒𝑣2𝑛 .

This procedure is repeated consecutively for each previous subsection 𝑘𝑙𝑒𝑣2𝑛−1, . . . , 𝑘
𝑙𝑒𝑣2
1 carrying the adjoint compu-

tation to the initial time of the subsection 𝑘𝑙𝑒𝑣3𝑛 . Then, the procedure is repeated for the previous subsection 𝑘𝑙𝑒𝑣3𝑛−1

carrying the adjoint computation to the initial time 𝑘𝑙𝑒𝑣31 .

For the full model trajectory of 𝑛𝑙𝑒𝑣3 · 𝑛𝑙𝑒𝑣2 · 𝑛𝑙𝑒𝑣1 timesteps the required storing of the model state was significantly
reduced to 𝑛𝑙𝑒𝑣2+𝑛𝑙𝑒𝑣3 to disk and roughly 𝑛𝑙𝑒𝑣1 to memory (i.e., for the 3-day integration with a total of 72 timesteps
the model state was stored 7 times to disk and roughly 6 times to memory). This saving in memory comes at a cost
of a required 3 full forward integrations of the model (one for each checkpointing level). The optimal balance of
storage vs. recomputation certainly depends on the computing resources available and may be adjusted by adjusting
the partitioning among the 𝑛𝑙𝑒𝑣3, 𝑛𝑙𝑒𝑣2, 𝑛𝑙𝑒𝑣1.

7.2 TLM and ADM generation in general

In this section we describe in a general fashion the parts of the code that are relevant for automatic differentiation using
the software tool TAF. Modifications to use OpenAD are described in Section 7.5.

The basic flow is as follows:

the_model_main
|
|--- initialise_fixed
|
|--- #ifdef ALLOW_ADJOINT_RUN
| |
| |--- ctrl_unpack
| |
| |--- adthe_main_loop
| | |
| | |--- initialise_varia
| | |--- ctrl_map_forcing
| | |--- do iloop = 1, nTimeSteps
| | | |--- forward_step
| | | |--- cost_tile
| | | end do
| | |--- cost_final
| | |
| | |--- adcost_final

(continues on next page)
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(continued from previous page)

| | |--- do iloop = nTimeSteps, 1, -1
| | | |--- adcost_tile
| | | |--- adforward_step
| | | end do
| | |--- adctrl_map_forcing
| | |--- adinitialise_varia
| | o
| |
| |--- ctrl_pack
| |
|--- #else
| |
| |--- the_main_loop
| |
| #endif
|
|--- #ifdef ALLOW_GRADIENT_CHECK
| |
| |--- grdchk_main
| o
| #endif
o

If CPP option ALLOW_AUTODIFF_TAMC is defined, the driver routine the_model_main.F, instead of
calling the_model_loop.F, invokes the adjoint of this routine, adthe_main_loop.F (case #define AL-
LOW_ADJOINT_RUN, or the tangent linear of this routine g_the_main_loop.F (case #define AL-
LOW_TANGENTLINEAR_RUN), which are the toplevel routines in terms of automatic differentiation. The routines
adthe_main_loop.F or g_the_main_loop.F are generated by TAF. It contains both the forward integration
of the full model, the cost function calculation, any additional storing that is required for efficient checkpointing, and
the reverse integration of the adjoint model.

[DESCRIBE IN A SEPARATE SECTION THE WORKING OF THE TLM]

The above structure of adthe_main_loop.F has been strongly simplified to focus on the essentials; in particular,
no checkpointing procedures are shown here. Prior to the call of adthe_main_loop.F, the routine ctrl_unpack.F is
invoked to unpack the control vector or initialize the control variables. Following the call of adthe_main_loop.F,
the routine ctrl_pack.F is invoked to pack the control vector (cf. Section 7.2.5). If gradient checks are to be performed,
the option #define ALLOW_GRDCHK is chosen. In this case the driver routine grdchk_main.F is called after the
gradient has been computed via the adjoint (cf. Section 7.3).

7.2.1 General setup

In order to configure AD-related setups the following packages need to be enabled:

• pkg/autodiff

• pkg/ctrl

• pkg/cost

• pkg/grdchk

The packages are enabled by adding them to your experiment-specific configuration file packages.conf (see
Section ???).

The following AD-specific CPP option files need to be customized:
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• ECCO_CPPOPTIONS.h This header file collects CPP options for pkg/autodiff, pkg/cost, pkg/ctrl as well
as AD-unrelated options for the external forcing package pkg/exf. (NOTE: These options are not set in
their package-specific headers such as COST_OPTIONS.h, but are instead collected in the single header file
ECCO_CPPOPTIONS.h. The package-specific header files serve as simple placeholders at this point.)

• tamc.h This header configures the splitting of the time stepping loop with respect to the 3-level checkpointing
(see section ???).

7.2.2 Building the AD code using TAF

The build process of an AD code is very similar to building the forward model. However, depending on which AD
code one wishes to generate, and on which AD tool is available (TAF or TAMC), the following make targets are
available:

AD-target output description
«MODE»«TOOL»only «MODE»_«TOOL»_output.f generates code for «MODE» using «TOOL»

no make dependencies on .F .h
useful for compiling on remote platforms

«MODE»«TOOL» «MODE»_«TOOL»_output.f generates code for «MODE» using «TOOL»
includes make dependencies on .F .h
i.e. input for «TOOL» may be re-generated

«MODE»all mitgcmuv_«MODE» generates code for «MODE» using «TOOL»
and compiles all code
(use of TAF is set as default)

Here, the following placeholders are used:

• «TOOL»

– TAF

– TAMC

• «MODE»

– ad generates the adjoint model (ADM)

– ftl generates the tangent linear model (TLM)

– svd generates both ADM and TLM for singular value decomposition (SVD) type calculations

For example, to generate the adjoint model using TAF after routines (.F) or headers (.h) have been modified, but
without compilation, type make adtaf; or, to generate the tangent linear model using TAMC without re-generating
the input code, type make ftltamconly.

A typical full build process to generate the ADM via TAF would look like follows:

% mkdir build
% cd build
% ../../../tools/genmake2 -mods=../code_ad
% make depend
% make adall
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7.2.3 The AD build process in detail

The make «MODE»all target consists of the following procedures:

1. A header file AD_CONFIG.h is generated which contains a CPP option on which code ought to be generated.
Depending on the make target, the contents is one of the following:

• #define ALLOW_ADJOINT_RUN

• #define ALLOW_TANGENTLINEAR_RUN

• #define ALLOW_ECCO_OPTIMIZATION

2. A single file «MODE»_input_code.f is concatenated consisting of all .f files that are part of the list
AD_FILES and all .flow files that are part of the list AD_FLOW_FILES.

3. The AD tool is invoked with the «MODE»_«TOOL»_FLAGS. The default AD tool flags in genmake2 can
be overwritten by a tools/adjoint_options file (similar to the platform-specific tools/build_options, see Section
3.5.2.2). The AD tool writes the resulting AD code into the file «MODE»_input_code_ad.f.

4. A short sed script tools/adjoint_sed is applied to «MODE»_input_code_ad.f to reinstate myThid into the
CALL argument list of active file I/O. The result is written to file «MODE»_«TOOL»_output.f.

5. All routines are compiled and an executable is generated.

7.2.3.1 The list AD_FILES and .list files

Not all routines are presented to the AD tool. Routines typically hidden are diagnostics routines which do not influence
the cost function, but may create artificial flow dependencies such as I/O of active variables.

genmake2 generates a list (or variable) AD_FILES which contains all routines that are shown to the AD tool. This
list is put together from all files with suffix .list that genmake2 finds in its search directories. The list file for the
core MITgcm routines is model/src/model_ad_diff.list Note that no wrapper routine is shown to TAF. These are either
not visible at all to the AD code, or hand-written AD code is available (see next section).

Each package directory contains its package-specific list file «PKG»_ad_diff.list. For example, pkg/ptracers
contains the file ptracers_ad_diff.list. Thus, enabling a package will automatically extend the AD_FILES list of
genmake2 to incorporate the package-specific routines. Note that you will need to regenerate the makefile if you
enable a package (e.g., by adding it to packages.conf) and a Makefile already exists.

7.2.3.2 The list AD_FLOW_FILES and .flow files

TAMC and TAF can evaluate user-specified directives that start with a specific syntax (CADJ, C$TAF, !$TAF). The
main categories of directives are STORE directives and FLOW directives. Here, we are concerned with flow directives,
store directives are treated elsewhere.

Flow directives enable the AD tool to evaluate how it should treat routines that are ’hidden’ by the user, i.e. routines
which are not contained in the AD_FILES list (see previous section), but which are called in part of the code that the
AD tool does see. The flow directive tell the AD tool:

• which subroutine arguments are input/output

• which subroutine arguments are active

• which subroutine arguments are required to compute the cost

• which subroutine arguments are dependent

378 Chapter 7. Automatic Differentiation

http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_ADJOINT_RUN
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_TANGENTLINEAR_RUN
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_ECCO_OPTIMIZATION
https://github.com/MITgcm/MITgcm/blob/master/tools/genmake2
https://github.com/MITgcm/MITgcm/blob/master/tools/adjoint_options
https://github.com/MITgcm/MITgcm/blob/master/tools/build_options
https://github.com/MITgcm/MITgcm/blob/master/tools/adjoint_sed
http://mitgcm.org/lxr/ident/MITgcm?_i=myThid
https://github.com/MITgcm/MITgcm/blob/master/tools/genmake2
https://github.com/MITgcm/MITgcm/blob/master/tools/genmake2
https://github.com/MITgcm/MITgcm/blob/master/model/src/model_ad_diff.list
https://github.com/MITgcm/MITgcm/blob/master/pkg/ptracers
https://github.com/MITgcm/MITgcm/blob/master/pkg/ptracers_ad_diff.list
https://github.com/MITgcm/MITgcm/blob/master/tools/genmake2


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

The syntax for the flow directives can be found in the AD tool manuals.

genmake2 generates a list (or variable) AD_FLOW_FILES which contains all files with suffix.flow that it finds
in its search directories. The flow directives for the core MITgcm routines of eesupp/src/ and model/src/ reside in
pkg/autodiff/. This directory also contains hand-written adjoint code for the MITgcm WRAPPER (Section 6.2).

Flow directives for package-specific routines are contained in the corresponding package directories in the file
«PKG»_ad.flow, e.g., ptracers-specific directives are in ptracers_ad.flow.

7.2.3.3 Store directives for 3-level checkpointing

The storing that is required at each period of the 3-level checkpointing is controlled by three top-level headers.

do ilev_3 = 1, nchklev_3
# include ``checkpoint_lev3.h''

do ilev_2 = 1, nchklev_2
# include ``checkpoint_lev2.h''

do ilev_1 = 1, nchklev_1
# include ``checkpoint_lev1.h''

...

end do
end do

end do

All files checkpoint_lev?.h are contained in directory pkg/autodiff/.

7.2.3.4 Changing the default AD tool flags: ad_options files

7.2.3.5 Hand-written adjoint code

7.2.4 The cost function (dependent variable)

The cost function 𝒥 is referred to as the dependent variable. It is a function of the input variables 𝑢⃗ via the composition
𝒥 (𝑢⃗) = 𝒥 (𝑀(𝑢⃗)). The input are referred to as the independent variables or control variables. All aspects relevant to
the treatment of the cost function 𝒥 (parameter setting, initialization, accumulation, final evaluation), are controlled by
the package pkg/cost. The aspects relevant to the treatment of the independent variables are controlled by the package
pkg/ctrl and will be treated in the next section.

the_model_main
|
|-- initialise_fixed
| |
| |-- packages_readparms
| |
| |-- cost_readparms
| o
|
|-- the_main_loop

... |
|-- initialise_varia
| |
| |-- packages_init_variables
| |

(continues on next page)
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(continued from previous page)

| |-- cost_init
| o
|
|-- do iloop = 1,nTimeSteps
| |-- forward_step
| |-- cost_tile
| | |
| | |-- cost_tracer
| end do
|
|-- cost_final
o

7.2.4.1 Enabling the package

pkg/cost is enabled by adding the line cost to your file packages.conf (see Section ???).

In general the following packages ought to be enabled simultaneously: pkg/autodiff, pkg/ctrl, and pkg/cost. The
basic CPP option to enable the cost function is ALLOW_COST. Each specific cost function contribution has
its own option. For the present example the option is ALLOW_COST_TRACER. All cost-specific options are
set in ECCO_CPPOPTIONS.h Since the cost function is usually used in conjunction with automatic differenti-
ation, the CPP option ALLOW_ADJOINT_RUN (file CPP_OPTIONS.h) and ALLOW_AUTODIFF_TAMC (file
ECCO_CPPOPTIONS.h) should be defined.

7.2.4.2 Initialization

The initialization of pkg/cost is readily enabled as soon as the CPP option ALLOW_COST is defined.

• The S/R cost_readparms.F reads runtime flags and parameters from file data.cost. For the present example
the only relevant parameter read is mult_tracer. This multiplier enables different cost function contributions to
be switched on (= 1.) or off (= 0.) at runtime. For more complex cost functions which involve model vs.
data misfits, the corresponding data filenames and data specifications (start date and time, period, . . . ) are read
in this S/R.

• The S/R cost_init_varia.F initializes the different cost function contributions. The contribution for the present
example is objf_tracer which is defined on each tile (bi,bj).

7.2.4.3 Accumulation

The ’driver’ routine cost_tile.F is called at the end of each time step. Within this ’driver’ routine, S/R are called for
each of the chosen cost function contributions. In the present example (ALLOW_COST_TRACER), S/R cost_tracer.F
is called. It accumulates objf_tracer according to eqn. (ref:ask-the-author).
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7.2.4.4 Finalize all contributions

At the end of the forward integration S/R cost_final.F is called. It accumulates the total cost function fc from each
contribution and sums over all tiles:

𝒥 = fc = mult_tracer
∑︁

global sum

𝑛𝑆𝑥, 𝑛𝑆𝑦∑︁
𝑏𝑖, 𝑏𝑗

objf_tracer(𝑏𝑖, 𝑏𝑗) + ...

The total cost function fc will be the ’dependent’ variable in the argument list for TAF, i.e.,

taf -output 'fc' ...

*************
the_main_loop

*************
|
|--- initialise_varia
| |
| ...
| |--- packages_init_varia
| | |
| | ...
| | |--- #ifdef ALLOW_ADJOINT_RUN
| | | call ctrl_map_ini
| | | call cost_ini
| | | #endif
| | ...
| | o
| ...
| o

...
|--- #ifdef ALLOW_ADJOINT_RUN
| call ctrl_map_forcing
| #endif

...
|--- #ifdef ALLOW_TAMC_CHECKPOINTING

do ilev_3 = 1,nchklev_3
| do ilev_2 = 1,nchklev_2
| do ilev_1 = 1,nchklev_1
| iloop = (ilev_3-1)*nchklev_2*nchklev_1 +
| (ilev_2-1)*nchklev_1 + ilev_1
| #else
| do iloop = 1, nTimeSteps
| #endif
| |
| |--- call forward_step
| |
| |--- #ifdef ALLOW_COST
| | call cost_tile
| | #endif
| |
| | enddo
| o
|
|--- #ifdef ALLOW_COST
| call cost_final
| #endif
o
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7.2.5 The control variables (independent variables)

The control variables are a subset of the model input (initial conditions, boundary conditions, model parameters). Here
we identify them with the variable 𝑢⃗. All intermediate variables whose derivative with respect to control variables do
not vanish are called active variables. All subroutines whose derivative with respect to the control variables don’t
vanish are called active routines. Read and write operations from and to file can be viewed as variable assignments.
Therefore, files to which active variables are written and from which active variables are read are called active files. All
aspects relevant to the treatment of the control variables (parameter setting, initialization, perturbation) are controlled
by the package pkg/ctrl.

the_model_main
|
|-- initialise_fixed
| |
| |-- packages_readparms
| |
| |-- cost_readparms
| o
|
|-- the_main_loop

... |
|-- initialise_varia
| |
| |-- packages_init_variables
| |
| |-- cost_init
| o
|
|-- do iloop = 1,nTimeSteps
| |-- forward_step
| |-- cost_tile
| | |
| | |-- cost_tracer
| end do
|
|-- cost_final
o

7.2.5.1 genmake2 and CPP options

Package pkg/ctrl is enabled by adding the line ctrl to your file packages.conf. Each control variable is enabled
via its own CPP option in ECCO_CPPOPTIONS.h.

7.2.5.2 Initialization

• The S/R ctrl_readparms.F reads runtime flags and parameters from file data.ctrl. For the present example
the file contains the file names of each control variable that is used. In addition, the number of wet points
for each control variable and the net dimension of the space of control variables (counting wet points only)
nvarlength is determined. Masks for wet points for each tile (bi,bj) and vertical layer k are generated for the
three relevant categories on the C-grid: nWetCtile for tracer fields, nWetWtile for zonal velocity fields, nWetStile
for meridional velocity fields.

• Two important issues related to the handling of the control variables in MITgcm need to be addressed. First, in
order to save memory, the control variable arrays are not kept in memory, but rather read from file and added to
the initial fields during the model initialization phase. Similarly, the corresponding adjoint fields which represent
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the gradient of the cost function with respect to the control variables are written to file at the end of the adjoint
integration. Second, in addition to the files holding the 2-D and 3-D control variables and the corresponding
cost gradients, a 1-D control vector and gradient vector are written to file. They contain only the wet points of
the control variables and the corresponding gradient. This leads to a significant data compression. Furthermore,
an option is available (ALLOW_NONDIMENSIONAL_CONTROL_IO) to non-dimensionalize the control and
gradient vector, which otherwise would contain different pieces of different magnitudes and units. Finally, the
control and gradient vector can be passed to a minimization routine if an update of the control variables is sought
as part of a minimization exercise.

The files holding fields and vectors of the control variables and gradient are generated and initialized in S/R
ctrl_unpack.F.

7.2.5.3 Perturbation of the independent variables

The dependency flow for differentiation with respect to the controls starts with adding a perturbation onto the input
variable, thus defining the independent or control variables for TAF. Three types of controls may be considered:

• Consider as an example the initial tracer distribution pTracer as control variable. After pTracer has been initial-
ized in ptracers_init_varia.F (dynamical variables such as temperature and salinity are initialized in ini_fields.F),
a perturbation anomaly is added to the field in S/R ctrl_map_ini.F:

𝑢 = 𝑢[0] + ∆𝑢

tr1(...) = tr1ini(...) + xx_tr1(...)
(7.11)

xx_tr1 is a 3-D global array holding the perturbation. In the case of a simple sensitivity study this array is
identical to zero. However, it’s specification is essential in the context of automatic differentiation since TAF
treats the corresponding line in the code symbolically when determining the differentiation chain and its origin.
Thus, the variable names are part of the argument list when calling TAF:

taf -input 'xx_tr1 ...' ...

Now, as mentioned above, MITgcm avoids maintaining an array for each control variable by reading the per-
turbation to a temporary array from file. To ensure the symbolic link to be recognized by TAF, a scalar dummy
variable xx_tr1_dummy is introduced and an ’active read’ routine of the adjoint support package pkg/autodiff
is invoked. The read-procedure is tagged with the variable xx_tr1_dummy enabling TAF to recognize the
initialization of the perturbation. The modified call of TAF thus reads

taf -input 'xx_tr1_dummy ...' ...

and the modified operation (to perturb) in the code takes on the form

call active_read_xyz(
& ..., tmpfld3d, ..., xx_tr1_dummy, ... )

tr1(...) = tr1(...) + tmpfld3d(...)

Note that reading an active variable corresponds to a variable assignment. Its derivative corresponds to a write
statement of the adjoint variable, followed by a reset. The ’active file’ routines have been designed to support
active read and corresponding adjoint active write operations (and vice versa).

• The handling of boundary values as control variables proceeds exactly analogous to the initial values with the
symbolic perturbation taking place in S/R ctrl_map_forcing.F. Note however an important difference: Since the
boundary values are time dependent with a new forcing field applied at each time step, the general problem may
be thought of as a new control variable at each time step (or, if the perturbation is averaged over a certain period,
at each 𝑁 timesteps), i.e.,

𝑢forcing = {𝑢forcing(𝑡𝑛) }𝑛=1,...,nTimeSteps
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In the current example an equilibrium state is considered, and only an initial perturbation to surface forcing is
applied with respect to the equilibrium state. A time dependent treatment of the surface forcing is implemented
in the ECCO environment, involving the calendar (pkg/cal) and external forcing (pkg/exf) packages.

• This routine is not yet implemented, but would proceed proceed along the same lines as the initial value sensi-
tivity. The mixing parameters diffkr and kapgm are currently added as controls in ctrl_map_ini.F.

7.2.5.4 Output of adjoint variables and gradient

Several ways exist to generate output of adjoint fields.

• In ctrl_map_ini.F, ctrl_map_forcing.F:

– The control variable fields xx\_«...»: before the forward integration, the control variables are read
from file «xx\_ ...» and added to the model field.

– The adjoint variable fields adxx\_«...», i.e., the gradient ∇𝑢𝒥 for each control variable: after the
adjoint integration the corresponding adjoint variables are written to adxx\_«...».

• In ctrl_unpack.F, ctrl_pack.F:

– The control vector vector_ctrl: at the very beginning of the model initialization, the updated com-
pressed control vector is read (or initialized) and distributed to 2-D and 3-D control variable fields.

– The gradient vector vector_grad: at the very end of the adjoint integration, the 2-D and 3-D adjoint
variables are read, compressed to a single vector and written to file.

• In addition to writing the gradient at the end of the forward/adjoint integration, many more adjoint variables
of the model state at intermediate times can be written using S/R addummy_in_stepping.F. The procedure is
enabled using via the CPP-option ALLOW_AUTODIFF_MONITOR (file ECCO_CPPOPTIONS.h). To be part
of the adjoint code, the corresponding S/R dummy_in_stepping.F has to be called in the forward model (S/R
the_main_loop.F) at the appropriate place. The adjoint common blocks are extracted from the adjoint code via
the header file adcommon.h.

dummy_in_stepping.F is essentially empty, the corresponding adjoint routine is hand-written rather than gen-
erated automatically. Appropriate flow directives (dummy_in_stepping.flow) ensure that TAMC does not auto-
matically generate addummy_in_stepping.F by trying to differentiate dummy_in_stepping.F, but instead refers
to the hand-written routine.

dummy_in_stepping.F is called in the forward code at the beginning of each timestep, before the call to
model/src/dynamics.F, thus ensuring that addummy_in_stepping.F is called at the end of each timestep in the
adjoint calculation, after the call to addummy_in_dynamics.F.

addummy_in_stepping.F includes the header files adcommon.h. This header file is also hand-written. It contains
the common blocks addynvars_r, addynvars_cd, addynvars_diffkr, addynvars_kapgm, adtr1_r, adffields, which
have been extracted from the adjoint code to enable access to the adjoint variables.

WARNING: If the structure of the common blocks dynvars_r, dynvars_cd, etc., changes similar changes will
occur in the adjoint common blocks. Therefore, consistency between the TAMC-generated common blocks and
those in adcommon.h have to be checked.

384 Chapter 7. Automatic Differentiation

https://github.com/MITgcm/MITgcm/blob/master/pkg/cal
https://github.com/MITgcm/MITgcm/blob/master/pkg/exf
http://mitgcm.org/lxr/ident/MITgcm?_i=diffkr
http://mitgcm.org/lxr/ident/MITgcm?_i=kapgm
https://github.com/MITgcm/MITgcm/blob/master//pkg/ctrl/ctrl_map_ini.F
https://github.com/MITgcm/MITgcm/blob/master//pkg/ctrl/ctrl_map_ini.F
https://github.com/MITgcm/MITgcm/blob/master//pkg/ctrl/ctrl_map_forcing.F
https://github.com/MITgcm/MITgcm/blob/master//pkg/ctrl/ctrl_unpack.F
https://github.com/MITgcm/MITgcm/blob/master//pkg/ctrl/ctrl_pack.F
https://github.com/MITgcm/MITgcm/blob/master//pkg/autodiff/addummy_in_stepping.F
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_AUTODIFF_MONITOR
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/ECCO_CPPOPTIONS.h
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/dummy_in_stepping.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/the_main_loop.F
https://github.com/MITgcm/MITgcm/blob/master//pkg/autodiff/adcommon.h
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/dummy_in_stepping.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/dummy_in_stepping.flow
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/addummy_in_stepping.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/dummy_in_stepping.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/dummy_in_stepping.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/addummy_in_stepping.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/addummy_in_dynamics.F
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/addummy_in_stepping.F
https://github.com/MITgcm/MITgcm/blob/master//pkg/autodiff/adcommon.h
http://mitgcm.org/lxr/ident/MITgcm?_i=addynvars_r
http://mitgcm.org/lxr/ident/MITgcm?_i=addynvars_cd
http://mitgcm.org/lxr/ident/MITgcm?_i=addynvars_diffkr
http://mitgcm.org/lxr/ident/MITgcm?_i=addynvars_kapgm
http://mitgcm.org/lxr/ident/MITgcm?_i=adtr1_r
http://mitgcm.org/lxr/ident/MITgcm?_i=adffields
http://mitgcm.org/lxr/ident/MITgcm?_i=dynvars_r
http://mitgcm.org/lxr/ident/MITgcm?_i=dynvars_cd
https://github.com/MITgcm/MITgcm/blob/master//pkg/autodiff/adcommon.h


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

7.2.5.5 Control variable handling for optimization applications

In optimization mode the cost function 𝒥 (𝑢) is sought to be minimized with respect to a set of control variables
𝛿𝒥 = 0, in an iterative manner. The gradient ∇𝑢𝒥 |𝑢[𝑘]

together with the value of the cost function itself 𝒥 (𝑢[𝑘]) at
iteration step 𝑘 serve as input to a minimization routine (e.g. quasi-Newton method, conjugate gradient, . . . (Gilbert
and Lemaréchal, 1989 [GLemarechal89]) to compute an update in the control variable for iteration step 𝑘 + 1:

𝑢[𝑘+1] = 𝑢[0] + ∆𝑢[𝑘+1] satisfying 𝒥
(︀
𝑢[𝑘+1]

)︀
< 𝒥

(︀
𝑢[𝑘]
)︀

𝑢[𝑘+1] then serves as input for a forward/adjoint run to determine 𝒥 and ∇𝑢𝒥 at iteration step 𝑘 + 1. Figure 7.2
sketches the flow between forward/adjoint model and the minimization routine.

u[0] , ∆u[k]y
u[k] = u[0] + ∆u[k]

forward−→ v[k] = M
(
u[k]

) forward−→ J[k] = J
(
M
(
u[k]

))
y

∇uJ[k](δJ ) = T∗ · ∇vJ |v[k]
(δJ )

adjoint←− ad v[k](δJ ) = ∇vJ |v[k]
(δJ )

adjoint←− adJ = δJ

y J[k], ∇uJ[k]

J[k] , ∇uJ[k] −→ minimisation −→ ∆u[k+1]

y
∆u[k+1]

Figure 7.2: Flow between the forward/adjoint model and the minimization routine.

The routines ctrl_unpack.F and ctrl_pack.F provide the link between the model and the minimization routine. As
described in Section ref:ask-the-author the ctrl_unpack.F and ctrl_pack.F routines read and write control and gradient
vectors which are compressed to contain only wet points, in addition to the full 2-D and 3-D fields. The corresponding
I/O flow is shown in Figure 7.3:

ctrl_unpack.F reads the updated control vector vector_ctrl_<k>. It distributes the different control variables to
2-D and 3-D files xx_«...»<k>. At the start of the forward integration the control variables are read from xx_«.
..»<k> and added to the field. Correspondingly, at the end of the adjoint integration the adjoint fields are written to
adxx_«...»<k>, again via the active file routines. Finally, ctrl_pack.F collects all adjoint files and writes them to
the compressed vector file vector_grad_<k>.

NOTE: These options are not set in their package-specific headers such as COST_OPTIONS.h, but are instead col-
lected in the single header file ECCO_CPPOPTIONS.h. The package-specific header files serve as simple placeholders
at this point.
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vector ctrl <k>y
ctrl unpacky

xx theta0...<k>

xx salt0...<k>
read−→ forward integration

.

.

.
↓

adxx theta0...<k>

adjoint integration
write−→ adxx salt0...<k>

.

.

. y
ctrl packy

vector grad <k>

Figure 7.3: Flow chart showing I/O in the forward/adjoint model.

7.3 The gradient check package

An indispensable test to validate the gradient computed via the adjoint is a comparison against finite difference gra-
dients. The gradient check package pkg/grdchk enables such tests in a straightforward and easy manner. The driver
routine grdchk_main.F is called from the_model_main.F after the gradient has been computed via the adjoint model
(cf. flow chart ???).

The gradient check proceeds as follows: The 𝑖−th component of the gradient (∇𝑢𝒥 𝑇 )𝑖 is compared with the following
finite-difference gradient: (︀

∇𝑢𝒥 𝑇
)︀
𝑖

vs.
𝜕𝒥
𝜕𝑢𝑖

=
𝒥 (𝑢𝑖 + 𝜖) − 𝒥 (𝑢𝑖)

𝜖

A gradient check at point 𝑢𝑖 may generally considered to be successful if the deviation of the ratio between the adjoint
and the finite difference gradient from unity is less than 1 percent,

1 − (grad𝒥 )𝑖(adjoint)
(grad𝒥 )𝑖(finite difference)

< 1%

7.3.1 Code description

7.3.2 Code configuration

The relevant CPP precompile options are set in the following files:

• CPP_OPTIONS.h - Together with the flag ALLOW_ADJOINT_RUN, define the flag AL-
LOW_GRADIENT_CHECK.

The relevant runtime flags are set in the files:

• data.pkg - Set useGrdchk = .TRUE.

• data.grdchk

386 Chapter 7. Automatic Differentiation

https://github.com/MITgcm/MITgcm/blob/master/pkg/grdchk
https://github.com/MITgcm/MITgcm/blob/master/pkg/grdchk/grdchk_main.F
https://github.com/MITgcm/MITgcm/blob/master/model/src/the_model_main.F
https://github.com/MITgcm/MITgcm/blob/master/model/inc/CPP_OPTIONS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_ADJOINT_RUN
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_GRADIENT_CHECK
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_GRADIENT_CHECK
http://mitgcm.org/lxr/ident/MITgcm?_i=useGrdchk


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

– grdchk_eps

– nbeg

– nstep

– nend

– grdchkvarindex

the_model_main
|
|-- ctrl_unpack
|-- adthe_main_loop - unperturbed cost function and
|-- ctrl_pack adjoint gradient are computed here
|
|-- grdchk_main

|
|-- grdchk_init
|-- do icomp=... - loop over control vector elements

|
|-- grdchk_loc - determine location of icomp on grid
|
|-- grdchk_getxx - get control vector component from file
| perturb it and write back to file
|-- grdchk_getadxx - get gradient component calculated
| via adjoint
|-- the_main_loop - forward run and cost evaluation
| with perturbed control vector element
|-- calculate ratio of adj. vs. finite difference gradient
|
|-- grdchk_setxx - Reset control vector element
|
|-- grdchk_print - print results

7.4 Adjoint dump & restart – divided adjoint (DIVA)

Authors: Patrick Heimbach & Geoffrey Gebbie, 07-Mar-2003*

*NOTE:THIS SECTION IS SUBJECT TO CHANGE. IT REFERS TO TAF-1.4.26.

Previous TAF versions are incomplete and have problems with both TAF options -pure and -mpi.

The code which is tuned to the DIVA implementation of this TAF version is checkpoint50 (MITgcm) and
ecco_c50_e28 (ECCO).

7.4.1 Introduction

Most high performance computing (HPC) centers require the use of batch jobs for code execution. Limits in maximum
available CPU time and memory may prevent the adjoint code execution from fitting into any of the available queues.
This presents a serious limit for large scale / long time adjoint ocean and climate model integrations. The MITgcm
itself enables the split of the total model integration into sub-intervals through standard dump/restart of/from the full
model state. For a similar procedure to run in reverse mode, the adjoint model requires, in addition to the model
state, the adjoint model state, i.e., all variables with derivative information which are needed in an adjoint restart. This
adjoint dump & restart is also termed ’divided adjoint (DIVA)’.

For this to work in conjunction with automatic differentiation, an AD tool needs to perform the following tasks:
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1. identify an adjoint state, i.e., those sensitivities whose accumulation is interrupted by a dump/restart and which
influence the outcome of the gradient. Ideally, this state consists of

• the adjoint of the model state,

• the adjoint of other intermediate results (such as control variables, cost function contributions, etc.)

• bookkeeping indices (such as loop indices, etc.)

2. generate code for storing and reading adjoint state variables

3. generate code for bookkeeping , i.e., maintaining a file with index information

4. generate a suitable adjoint loop to propagate adjoint values for dump/restart with a minimum overhead of adjoint
intermediate values.

TAF (but not TAMC!) generates adjoint code which performs the above specified tasks. It is closely tied to the adjoint
multi-level checkpointing. The adjoint state is dumped (and restarted) at each step of the outermost checkpointing level
and adjoint integration is performed over one outermost checkpointing interval. Prior to the adjoint computations, a
full forward sweep is performed to generate the outermost (forward state) tapes and to calculate the cost function. In
the current implementation, the forward sweep is immediately followed by the first adjoint leg. Thus, in theory, the
following steps are performed (automatically)

• 1st model call: This is the case if file costfinal does not exist. S/R mdthe_main_loop.f (generated by
TAF) is called.

1. calculate forward trajectory and dump model state after each outermost checkpointing interval to files
tapelev3

2. calculate cost function fc and write it to file costfinal

• 2nd and all remaining model calls: This is the case if file costfinal does exist. S/R adthe_main_loop.f
(generated by TAF) is called.

1. (forward run and cost function call is avoided since all values are known)

– if 1st adjoint leg: create index file divided.ctrl which contains info on current checkpointing
index 𝑖𝑙𝑒𝑣3

– if not 𝑖-th adjoint leg: adjoint picks up at 𝑖𝑙𝑒𝑣3 = 𝑛𝑙𝑒𝑣3 − 𝑖+ 1 and runs to 𝑛𝑙𝑒𝑣3 − 𝑖

2. perform adjoint leg from 𝑛𝑙𝑒𝑣3 − 𝑖+ 1 to 𝑛𝑙𝑒𝑣3 − 𝑖

3. dump adjoint state to file snapshot

4. dump index file divided.ctrl for next adjoint leg

5. in the last step the gradient is written.

A few modifications were performed in the forward code, obvious ones such as adding the corresponding TAF-
directive at the appropriate place, and less obvious ones (avoid some re-initializations, when in an intermediate adjoint
integration interval).

[For TAF-1.4.20 a number of hand-modifications were necessary to compensate for TAF bugs. Since we refer to
TAF-1.4.26 onwards, these modifications are not documented here].

388 Chapter 7. Automatic Differentiation



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

7.4.2 Recipe 1: single processor

1. In ECCO_CPPOPTIONS.h set:

• #define ALLOW_DIVIDED_ADJOINT

• #undef ALLOW_DIVIDED_ADJOINT_MPI

2. Generate adjoint code. Using the TAF option -pure, two codes are generated:

• mdthe_main_loop.f: Is responsible for the forward trajectory, storing of outermost checkpoint levels
to file, computation of cost function, and storing of cost function to file (1st step).

• adthe_main_loop.f: Is responsible for computing one adjoint leg, dump adjoint state to file and write
index info to file (2nd and consecutive steps).

for adjoint code generation, e.g., add -pure to TAF option list

make adtaf

• One modification needs to be made to adjoint codes in S/R adecco_the_main_loop.f (generated
by TAF):

There’s a remaining issue with the -pure option. The call ad... between call ad... and the
read of the snapshot file should be called only in the first adjoint leg between 𝑛𝑙𝑒𝑣3 and 𝑛𝑙𝑒𝑣3 − 1. In
the ecco-branch, the following lines should be bracketed by an if (idivbeg .GE. nchklev_3)
then, thus:

...
xx_psbar_mean_dummy = onetape_xx_psbar_mean_dummy_3h(1)
xx_tbar_mean_dummy = onetape_xx_tbar_mean_dummy_4h(1)
xx_sbar_mean_dummy = onetape_xx_sbar_mean_dummy_5h(1)
call barrier( mythid )

cAdd(
if (idivbeg .GE. nchklev_3) then

cAdd)

call adcost_final( mythid )
call barrier( mythid )
call adcost_sst( mythid )
call adcost_ssh( mythid )
call adcost_hyd( mythid )
call adcost_averagesfields( mytime,myiter,mythid )
call barrier( mythid )

cAdd(
endif

cAdd)

C----------------------------------------------
C read snapshot
C----------------------------------------------

if (idivbeg .lt. nchklev_3) then
open(unit=77,file='snapshot',status='old',form='unformatted',

$iostat=iers)
...

For the main code, in all likelihood the block which needs to be bracketed consists of adcost_final.f
(generated by TAF) only.

• Now the code can be copied as usual to adjoint_model.F and then be compiled:
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make adchange

then compile

7.4.3 Recipe 2: multi processor (MPI)

1. On the machine where you execute the code (most likely not the machine where you run TAF) find the includes
directory for MPI containing mpif.h. Either copy mpif.h to the machine where you generate the .f files
before TAF-ing, or add the path to the includes directory to your genmake2 platform setup, TAF needs some MPI
parameter settings (essentially mpi_comm_world and mpi_integer) to incorporate those in the adjoint
code.

2. In ECCO_CPPOPTIONS.h set

• #define ALLOW_DIVIDED_ADJOINT

• #define ALLOW_DIVIDED_ADJOINT_MPI

This will include the header file mpif.h into the top level routine for TAF.

3. Add the TAF option -mpi to the TAF argument list in the makefile.

4. Follow the same steps as in Recipe 1.

7.5 Adjoint code generation using OpenAD

Authors: Jean Utke, Patrick Heimbach and Chris Hill

7.5.1 Introduction

The development of OpenAD was initiated as part of the ACTS (Adjoint Compiler Technology & Standards) project
funded by the NSF Information Technology Research (ITR) program. The main goals for OpenAD initially defined
for the ACTS project are:

1. develop a flexible, modular, open source tool that can generate adjoint codes of numerical simulation programs,

2. establish a platform for easy implementation and testing of source transformation algorithms via a language-
independent abstract intermediate representation,

3. support for source code written in C and Fortan, and

4. generate efficient tangent linear and adjoint for the MIT general circulation model.

OpenAD’s homepage is at http://www-unix.mcs.anl.gov/OpenAD. A development WIKI is at http://wiki.mcs.anl.gov/
OpenAD/index.php/Main_Page. From the WIKI’s main page, click on Handling GCM for various aspects pertaining
to differentiating the MITgcm with OpenAD.
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7.5.2 Downloading and installing OpenAD

The OpenAD webpage has a detailed description on how to download and build OpenAD. From its homepage, please
click on Binaries. You may either download pre-built binaries for quick trial, or follow the detailed build process
described at http://www.mcs.anl.gov/OpenAD/access.shtml.

7.5.3 Building MITgcm adjoint with OpenAD

17-January-2008

OpenAD was successfully built on head node of itrda.acesgrid.org, for following system:

> uname -a
Linux itrda 2.6.22.2-42.fc6 #1 SMP Wed Aug 15 12:34:26 EDT 2007 i686 i686 i386 GNU/
→˓Linux

> cat /proc/version
Linux version 2.6.22.2-42.fc6 (brewbuilder@hs20-bc2-4.build.redhat.com)
(gcc version 4.1.2 20070626 (Red Hat 4.1.2-13)) #1 SMP Wed Aug 15 12:34:26 EDT 2007

> module load ifc/9.1.036 icc/9.1.042

Head of MITgcm branch (checkpoint59m with some modifications) was used for building adjoint code. Following
routing needed special care (revert to revision 1.1): http://wwwcvs.mitgcm.org/viewvc/MITgcm/MITgcm_contrib/
heimbach/OpenAD/OAD_support/active_module.f90?hideattic=0&view=markup.
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CHAPTER

EIGHT

PACKAGES I - PHYSICAL PARAMETERIZATIONS

In this chapter and in the following chapter, the MITgcm ‘packages’ are described. While you can carry out many
experiments with MITgcm by starting from case studies in section Section 4, configuring a brand new experiment or
making major changes to an experimental configuration requires some knowledge of the packages that make up the
full MITgcm code. Packages are used in MITgcm to help organize and layer various code building blocks that are
assembled and selected to perform a specific experiment. Each of the specific experiments described in section Section
4 uses a particular combination of packages.

Figure 8.1 shows the full set of packages that are available. As shown in the figure packages are classified into different
groupings that layer on top of each other. The top layer packages are generally specialized to specific simulation types.
In this layer there are packages that deal with biogeochemical processes, ocean interior and boundary layer processes,
atmospheric processes, sea-ice, coupled simulations and state estimation. Below this layer are a set of general purpose
numerical and computational packages. The general purpose numerical packages provide code for kernel numerical
algorithms that apply to many different simulation types. Similarly, the general purpose computational packages
implement non-numerical algorithms that provide parallelism, I/O and time-keeping functions that are used in many
different scenarios.

The following sections describe the packages shown in Figure 8.1. Section Section 8.1.1 describes the general proce-
dure for using any package in MITgcm. Sections Section 8 to Section 10 layout the algorithms implemented in specific
packages and describe how to use the individual packages. A brief synopsis of the function of each package is given
in Figure 8.1. Organizationally package code is assigned a separate subdirectory in the MITgcm code distribution
(within the source code directory pkg). The name of this subdirectory is used as the package name in Figure 8.1.

8.1 Overview

8.1.1 Using MITgcm Packages

The set of packages that will be used within a particular model can be configured using a combination of both “com-
pile–time” and “run–time” options. Compile–time options are those used to select which packages will be “compiled
in” or implemented within the program. Packages excluded at compile time are completely absent from the executable
program(s) and thus cannot be later activated by any set of subsequent run–time options.

Here we use the following shorthand for various forms of package names, i.e. that appear in package-related file-
names, parameters etc.: all upper case ${PKG}, all lower case ${pkg}, and mixed case ${Pkg}. For example, for
pkg/gmredi these are GMREDI, gmredi, and gmRedi respectively.
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Figure 8.1: Hierarchy of code layers that are assembled to make up an MITgcm simulation. Conceptually (and in
terms of code organization) MITgcm consists of several layers. At the base is a layer of core software that provides
a basic numerical and computational foundation for MITgcm simulations. This layer is shown marked Foundation
Code at the bottom of the figure and corresponds to code in the italicised subdirectories on the figure. This layer
is not organized into packages. All code above the foundation layer is organized as packages. Much of the code
in MITgcm is contained in packages which serve as a useful way of organizing and layering the different levels of
functionality that make up the full MITgcm software distribution. The figure shows the different packages in MITgcm
as boxes containing bold face upper case names. Directly above the foundation layer are two layers of general purpose
infrastructure software that consist of computational and numerical packages. These general purpose packages can be
applied to both online and offline simulations and are used in many different physical simulation types. Above these
layers are more specialized packages.
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8.1.1.1 Package Inclusion/Exclusion

There are numerous ways that one can specify compile–time package inclusion or exclusion and they are all im-
plemented by the genmake2 program which was previously described in Section Section 3.5. The options are as
follows:

1. Setting the genamake2 options -enable PKG and/or -disable PKG specifies inclusion or exclusion.
This method is intended as a convenient way to perform a single (perhaps for a quick test) compilation.

2. By creating a text file with the name packages.conf in either the local build directory or the -mods=DIR
directory, one can specify a list of packages (one package per line, with ’#’ as the comment character) to be
included. Since the packages.conf file can be saved, this is the preferred method for setting and recording
(for future reference) the package configuration.

3. For convenience, a list of “standard” package groups is contained in the pkg/pkg_groups file. By selecting
one of the package group names in the packages.conf file, one automatically obtains all packages in that
group.

4. By default (that is, if a packages.conf file is not found), the genmake2 program will use the package
group default “default_pkg_list” as defined in pkg/pkg_groups file.

5. To help prevent users from creating unusable package groups, the genmake2 program will parse the contents
of the pkg/pkg_depend file to determine:

• whether any two requested packages cannot be simultaneously included (eg. seaice and thsice are mutually
exclusive),

• whether additional packages must be included in order to satisfy package dependencies (eg. rw depends
upon functionality within the mdsio package), and

• whether the set of all requested packages is compatible with the dependencies (and producing an error if
they aren’t).

Thus, as a result of the dependencies, additional packages may be added to those originally requested.

8.1.1.2 Package Activation

For run–time package control, MITgcm uses flags set through a data.pkg file. While some packages (eg. debug,
mnc, exch2) may have their own usage conventions, most follow a simple flag naming convention of the form:

usePackageName=.TRUE.

where the usePackageName variable can activate or disable the package at runtime. As mentioned previously,
packages must be included in order to be activated. Generally, such mistakes will be detected and reported as errors
by the code. However, users should still be aware of the dependency.

8.1.1.3 Package Coding Standards

The following sections describe how to modify and/or create new MITgcm packages.
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Packages are Not Libraries

To a beginner, the MITgcm packages may resemble libraries as used in myriad software projects. While future
versions are likely to implement packages as libraries (perhaps using FORTRAN90/95 syntax) the current packages
(FORTRAN77) are not based upon any concept of libraries.

File Inclusion Rules

Instead, packages should be viewed only as directories containing “sets of source files” that are built using some
simple mechanisms provided by genmake2. Conceptually, the build process adds files as they are found and proceeds
according to the following rules:

1. genmake2 locates a “core” or main set of source files (the -standarddirs option sets these locations and
the default value contains the directories eesupp and model).

2. genmake2 then finds additional source files by inspecting the contents of each of the package directories:

1. As the new files are found, they are added to a list of source files.

2. If there is a file name “collision” (that is, if one of the files in a package has the same name as one of the
files previously encountered) then the file within the newer (more recently visited) package will superseed
(or “hide”) any previous file(s) with the same name.

3. Packages are visited (and thus files discovered) in the order that the packages are enabled within
genmake2. Thus, the files in PackB may superseed the files in PackA if PackA is enabled before
PackB. Thus, package ordering can be significant! For this reason, genmake2 honors the order in which
packages are specified.

These rules were adopted since they provide a relatively simple means for rapidly including (or “hiding”) existing files
with modified versions.

Conditional Compilation and PACKAGES_CONFIG.h

Given that packages are simply groups of files that may be added or removed to form a whole, one may wonder
how linking (that is, FORTRAN symbol resolution) is handled. This is the second way that genmake2 supports
the concept of packages. Basically, genmake2 creates a Makefile that, in turn, is able to create a file called
PACKAGES_CONFIG.h that contains a set of C pre-processor (or “CPP”) directives such as:

#undef ALLOW_KPP
#undef ALLOW_LAND
...
#define ALLOW_GENERIC_ADVDIFF
#define ALLOW_MDSIO
...

These CPP symbols are then used throughout the code to conditionally isolate variable definitions, function calls, or
any other code that depends upon the presence or absence of any particular package.

An example illustrating the use of these defines is:

#ifdef ALLOW_GMREDI
IF (useGMRedi) CALL GMREDI_CALC_DIFF(

I bi,bj,iMin,iMax,jMin,jMax,K,
I maskUp,
O KappaRT,KappaRS,

(continues on next page)
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(continued from previous page)

I myThid)
#endif

which is included from the file and shows how both the compile–time ALLOW_GMREDI flag and the run–time
useGMRedi are nested.

There are some benefits to using the technique described here. The first is that code snippets or subroutines associated
with packages can be placed or called from almost anywhere else within the code. The second benefit is related to
memory footprint and performance. Since unused code can be removed, there is no performance penalty due to unnec-
essary memory allocation, unused function calls, or extra run-time IF (...) conditions. The major problems with
this approach are the potentially difficult-to-read and difficult-to-debug code caused by an overuse of CPP statements.
So while it can be done, developers should exerecise some discipline and avoid unnecesarily “smearing” their package
implementation details across numerous files.

Package Startup or Boot Sequence

Calls to package routines within the core code timestepping loop can vary. However, all packages should follow a
required “boot” sequence outlined here:

1. S/R PACKAGES_BOOT()
:

CALL OPEN_COPY_DATA_FILE( 'data.pkg', 'PACKAGES_BOOT', ... )

2. S/R PACKAGES_READPARMS()
:

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_READPARMS( retCode )
#endif

3. S/R PACKAGES_INIT_FIXED()
:

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_INIT_FIXED( retCode )
#endif

4. S/R PACKAGES_CHECK()
:

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_CHECK( retCode )
#else

if ( use${Pkg} )
& CALL PACKAGES_CHECK_ERROR('${PKG}')

#endif

5. S/R PACKAGES_INIT_VARIABLES()
:

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_INIT_VARIA( )
#endif

(continues on next page)
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(continued from previous page)

6. S/R DO_THE_MODEL_IO

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_OUTPUT( )
#endif

7. S/R PACKAGES_WRITE_PICKUP()

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_WRITE_PICKUP( )
#endif

Adding a package to PARAMS.h and packages_boot()

An MITgcm package directory contains all the code needed for that package apart from one variable for each package.
This variable is the use${Pkg} flag. This flag, which is of type logical, must be declared in the shared header file
PARAMS.h in the PARM_PACKAGES block. This convention is used to support a single runtime control file data.
pkg which is read by the startup routine packages_boot() and that sets a flag controlling the runtime use of a
package. This routine needs to be able to read the flags for packages that were not built at compile time. Therefore
when adding a new package, in addition to creating the per-package directory in the pkg/ subdirectory a developer
should add a use${Pkg} flag to PARAMS.h and a use${Pkg} entry to the packages_boot() PACKAGES
namelist. The only other package specific code that should appear outside the individual package directory are calls to
the specific package API.

8.2 Packages Related to Hydrodynamical Kernel

8.2.1 Generic Advection/Diffusion

The generic_advdiff package contains high-level subroutines to solve the advection-diffusion equation of any tracer,
either active (potential temperature, salinity or water vapor) or passive (see pkg/ptracer). (see also Section 2.16 and
Section 2.17).

8.2.1.1 Introduction

Package “generic_advdiff” provides a common set of routines for calculating advective/diffusive fluxes for tracers
(cell centered quantities on a C-grid).

Many different advection schemes are available: the standard centered second order, centered fourth order and upwind
biased third order schemes are known as linear methods and require some stable time-stepping method such as Adams-
Bashforth. Alternatives such as flux-limited schemes are stable in the forward sense and are best combined with the
multi-dimensional method provided in gad_advection.
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8.2.1.2 Key subroutines, parameters and files

There are two high-level routines:

• GAD_CALC_RHS calculates all fluxes at time level “n” and is used for the standard linear schemes. This must
be used in conjuction with Adams–Bashforth time stepping. Diffusive and parameterized fluxes are always
calculated here.

• GAD_ADVECTION calculates just the advective fluxes using the non-linear schemes and can not be used in
conjuction with Adams–Bashforth time stepping.

CPP Flag Name Default Description
COSINEMETH_III #define sets the implementation form of cos𝜙 scaling of

bi-harmonic terms for tracer diffusivity (note, in
pkg/generic_advdiff routines the definition set here
overrides whether this is defined in
model/inc/CPP_OPTIONS.h, where the setting affects
viscous term calculations)

ISOTROPIC_COS_SCALING #undef selects isotropic scaling of harmonic and bi-harmonic
terms when using the cos𝜙 scaling (note, in
pkg/generic_advdiff routines the definition set here
overrides whether this is defined in
model/inc/CPP_OPTIONS.h, where the setting affects
viscous term calculations)

DISABLE_MULTIDIM_ADVECTION #undef disables compilation of multi-dim. advection code
GAD_MULTIDIM_COMPRESSIBLE #undef use compressible flow method for multi-dim advection

instead of older, less accurate method; note option has
no effect on SOM advection which always uses
compressible flow method

GAD_ALLOW_TS_SOM_ADV #undef enable the use of 2nd-order moment advection scheme
(Prather 1986 [Pra86]) for temp. and salinity

GAD_SMOLARKIEWICZ_HACK #undef enables hack to get rid of negatives caused by Redi, see
Smolarkiewicz (1989) [Smo89] (for ptracers, except
temp and salinity)

8.2.1.3 GAD Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
ADVr_TH | 15 |WM LR |degC.m^3/s |Vertical Advective Flux of Pot.
→˓Temperature
ADVx_TH | 15 |UU 087MR |degC.m^3/s |Zonal Advective Flux of Pot.
→˓Temperature
ADVy_TH | 15 |VV 086MR |degC.m^3/s |Meridional Advective Flux of Pot.
→˓Temperature
DFrE_TH | 15 |WM LR |degC.m^3/s |Vertical Diffusive Flux of Pot.
→˓Temperature (Explicit part)
DIFx_TH | 15 |UU 090MR |degC.m^3/s |Zonal Diffusive Flux of Pot.
→˓Temperature
DIFy_TH | 15 |VV 089MR |degC.m^3/s |Meridional Diffusive Flux of Pot.
→˓Temperature
DFrI_TH | 15 |WM LR |degC.m^3/s |Vertical Diffusive Flux of Pot.
→˓Temperature (Implicit part)

(continues on next page)
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(continued from previous page)

ADVr_SLT| 15 |WM LR |psu.m^3/s |Vertical Advective Flux of Salinity
ADVx_SLT| 15 |UU 094MR |psu.m^3/s |Zonal Advective Flux of Salinity
ADVy_SLT| 15 |VV 093MR |psu.m^3/s |Meridional Advective Flux of Salinity
DFrE_SLT| 15 |WM LR |psu.m^3/s |Vertical Diffusive Flux of Salinity
→˓ (Explicit part)
DIFx_SLT| 15 |UU 097MR |psu.m^3/s |Zonal Diffusive Flux of Salinity
DIFy_SLT| 15 |VV 096MR |psu.m^3/s |Meridional Diffusive Flux of Salinity
DFrI_SLT| 15 |WM LR |psu.m^3/s |Vertical Diffusive Flux of Salinity
→˓ (Implicit part)

8.2.1.4 Experiments and tutorials that use GAD

• Baroclinic gyre experiment, in tutorial_baroclinic_gyre verification directory.

• Tracer Sensitivity tutorial, in tutorial_tracer_adjsens verification directory.

8.2.2 Momentum Packages

CPP Flag Name Default Description
ALLOW_SMAG_3D #undef allow isotropic 3D Smagorinsky viscosity

(MOM_COMMON_OPTIONS.h)
ALLOW_3D_VISCAH #undef allow full 3D specification of horizontal Laplacian

viscosity (MOM_COMMON_OPTIONS.h)
ALLOW_3D_VISCA4 #undef allow full 3D specification of horizontal biharmonic

viscosity (MOM_COMMON_OPTIONS.h)
MOM_BOUNDARY_CONSERVE #undef conserve 𝑢, 𝑣 momentum next to a step (vertical plane)

or a coastline edge (horizontal plane)
(MOM_FLUXFORM_OPTIONS.h)

8.2.3 Shapiro Filter

(in directory: pkg/shap_filt/)

8.2.3.1 Key subroutines, parameters and files

Implementation of filter is described in Section 2.18.

8.2.3.2 Experiments and tutorials that use shap filter

• Held Suarez tutorial, in verification/tutorial_held_suarez_cs.

• Other Held Suarez verification experiments (hs94.128x64x5, hs94.1x64x5, hs94.cs-32x32x5)

• AIM verification experiments (aim.5l_cs, aim.5l_Equatorial_Channel, aim.5l_LatLon)

• Fizhi verification experiments (fizhi-cs-32x32x40, fizhi-cs-aqualev20, fizhi-gridalt-hs)

400 Chapter 8. Packages I - Physical Parameterizations

https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_baroclinic_gyre
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_tracer_adjsens
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_SMAG_3D
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/MOM_COMMON_OPTIONS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_3D_VISCAH
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/MOM_COMMON_OPTIONS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=ALLOW_3D_VISCA4
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/MOM_COMMON_OPTIONS.h
http://mitgcm.org/lxr/ident/MITgcm?_i=MOM_BOUNDARY_CONSERVE
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/MOM_FLUXFORM_OPTIONS.h
https://github.com/MITgcm/MITgcm/blob/master/pkg/shap_filt/
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_held_suarez_cs
https://github.com/MITgcm/MITgcm/blob/master/verification/hs94.128x64x5
https://github.com/MITgcm/MITgcm/blob/master/verification/hs94.1x64x5
https://github.com/MITgcm/MITgcm/blob/master/verification/hs94.cs-32x32x5
https://github.com/MITgcm/MITgcm/blob/master/verification/aim.5l_cs
https://github.com/MITgcm/MITgcm/blob/master/verification/aim.5l_Equatorial_Channel
https://github.com/MITgcm/MITgcm/blob/master/verification/aim.5l_LatLon
https://github.com/MITgcm/MITgcm/blob/master/verification/fizhi-cs-32x32x40
https://github.com/MITgcm/MITgcm/blob/master/verification/fizhi-cs-aqualev20
https://github.com/MITgcm/MITgcm/blob/master/verification/fizhi-gridalt-hs


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

8.2.4 FFT Filtering Code

(in directory: pkg/zonal_filt/)

8.2.4.1 Key subroutines, parameters and files

8.2.4.2 Experiments and tutorials that use zonal filter

• Held Suarez verification experiment (hs94.128x64x5)

• AIM verification experiment (aim.5l_LatLon)

8.2.5 exch2: Extended Cubed Sphere Topology

(in directory: pkg/exch2/)

8.2.5.1 Introduction

The exch2 package extends the original cubed sphere topology configuration to allow more flexible domain decom-
position and parallelization. Cube faces (also called subdomains) may be divided into any number of tiles that divide
evenly into the grid point dimensions of the subdomain. Furthermore, the tiles can run on separate processors indi-
vidually or in groups, which provides for manual compile-time load balancing across a relatively arbitrary number of
processors.

The exchange parameters are declared in W2_EXCH_TOPOLOGY.h and assigned in w2_e2setup.F. The validity of
the cube topology depends on the SIZE.h file as detailed below. The default files provided in the release configure a
cubed sphere topology of six tiles, one per subdomain, each with 32 × 32 grid points, with all tiles running on a single
processor. Both files are generated by Matlab scripts in utils/exch2/matlab-topology-generator; see Section 8.2.5.3 for
details on creating alternate topologies. Pregenerated examples of these files with alternate topologies are provided
under utils/exch2/code-mods along with the appropriate SIZE.h file for single-processor execution.

8.2.5.2 Invoking exch2

To use exch2 with the cubed sphere, the following conditions must be met:

• The exch2 package is included when genmake2 is run. The easiest way to do this is to add the line exch2 to
the packages.conf file – see Section Building the model for general details.

• An example of W2_EXCH2_TOPOLOGY.h and w2_e2setup.F must reside in a directory containing files
symbolically linked by the genmake2 script. The safest place to put these is the directory indicated in the
-mods=DIR command line modifier (typically ../code), or the build directory. The default versions of these
files reside in pkg/exch2 and are linked automatically if no other versions exist elsewhere in the build path, but
they should be left untouched to avoid breaking configurations other than the one you intend to modify.

• Files containing grid parameters, named tile00$n$.mitgrid where n=(1:6) (one per subdomain), must
be in the working directory when the MITgcm executable is run. These files are provided in the example
experiments for cubed sphere configurations with 32 × 32 cube sides – please contact MITgcm support if you
want to generate files for other configurations.

• As always when compiling MITgcm, the file SIZE.h must be placed where genmake2 will find it. In partic-
ular for exch2, the domain decomposition specified in SIZE.h must correspond with the particular configura-
tion’s topology specified in W2_EXCH2_TOPOLOGY.h and w2_e2setup.F. Domain decomposition issues
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particular to exch2 are addressed in Section Generating Topology Files for exch2 and exch2, SIZE.h, and Mul-
tiprocessing a more general background on the subject relevant to MITgcm is presented in Section Using the
WRAPPER.

At the time of this writing the following examples use exch2 and may be used for guidance:

• verification/adjust_nlfs.cs-32x32x1

• verification/adjustment.cs-32x32x1

• verification/aim.5l_cs

• verification/global_ocean.cs32x15

• verification/hs94.cs-32x32x5

8.2.5.3 Generating Topology Files for exch2

Alternate cubed sphere topologies may be created using the Matlab scripts in utils/exch2/matlab-topology-generator.
Running the m-file driver.m from the Matlab prompt (there are no parameters to pass) generates exch2 topology files
W2_EXCH2_TOPOLOGY.h and w2_e2setup.F in the working directory and displays a figure of the topology via
Matlab – Figure 8.4, Figure 8.3, and Figure 8.2 are examples of the generated diagrams. The other m-files in the
directory are subroutines called from driver.m and should not be run ‘’bare” except for development purposes.

The parameters that determine the dimensions and topology of the generated configuration are nr, nb, ng, tnx and
tny, and all are assigned early in the script.

The first three determine the height and width of the subdomains and hence the size of the overall domain. Each
one determines the number of grid points, and therefore the resolution, along the subdomain sides in a ‘’great circle”
around each the three spatial axes of the cube. At the time of this writing MITgcm requires these three parameters to
be equal, but they provide for future releases to accomodate different resolutions around the axes to allow subdomains
with differing resolutions.

The parameters tnx and tny determine the width and height of the tiles into which the subdomains are decomposed,
and must evenly divide the integer assigned to nr, nb and ng. The result is a rectangular tiling of the subdomain.
Figure 8.2 shows one possible topology for a twenty-four-tile cube, and Figure 8.4 shows one for six tiles.

Tiles can be selected from the topology to be omitted from being allocated memory and processors. This tuning
is useful in ocean modeling for omitting tiles that fall entirely on land. The tiles omitted are specified in the file
blanklist.txt by their tile number in the topology, separated by a newline.

8.2.5.4 exch2, SIZE.h, and Multiprocessing

Once the topology configuration files are created, each Fortran PARAMETER in SIZE.h must be configured to match.
Section 6.3 povides a general description of domain decomposition within MITgcm and its relation to SIZE.h. The
current section specifies constraints that the exch2 package imposes and describes how to enable parallel execution
with MPI.

As in the general case, the parameters sNx and sNy define the size of the individual tiles, and so must be assigned the
same respective values as tnx and tny in driver.m.

The halo width parameters OLx and OLy have no special bearing on exch2 and may be assigned as in the general case.
The same holds for Nr, the number of vertical levels in the model.

The parameters nSx, nSy, nPx, and nPy relate to the number of tiles and how they are distributed on processors. When
using exch2, the tiles are stored in the x dimension, and so nSy =1 in all cases. Since the tiles as configured by exch2
cannot be split up accross processors without regenerating the topology, nPy = 1 as well.
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Figure 8.2: Plot of a cubed sphere topology with a 32 × 192 domain divided into six 32 × 32 subdomains, each of
which is divided into eight tiles of width tnx=16 and height tny=8 for a total of forty-eight tiles. The colored borders
of the subdomains represent the parameters nr (red), ng (green), and nb (blue). This tiling is used in the example
verification/adjustment.cs-32x32x1/ with the option (blanklist.txt) to remove the land-only 4 tiles (11,12,13,14) which
are filled in red on the plot.
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Figure 8.3: Plot of a non-square cubed sphere topology with 6 subdomains of different size (nr=90,ng=360,nb=90),
divided into one to four tiles each (tnx=90, tny=90), resulting in a total of 18 tiles.
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Figure 8.4: Plot of a cubed sphere topology with a 32 × 192 domain divided into six 32 × 32 subdomains with one
tile each (tnx=32, tny=32). This is the default configuration.

The number of tiles MITgcm allocates and how they are distributed between processors depends on nPx and nSx. nSx
is the number of tiles per processor and nPx is the number of processors. The total number of tiles in the topology
minus those listed in blanklist.txt must equal nSx*nPx. Note that in order to obtain maximum usage from
a given number of processors in some cases, this restriction might entail sharing a processor with a tile that would
otherwise be excluded because it is topographically outside of the domain and therefore in blanklist.txt. For
example, suppose you have five processors and a domain decomposition of thirty-six tiles that allows you to exclude
seven tiles. To evenly distribute the remaining twenty-nine tiles among five processors, you would have to run one
‘’dummy” tile to make an even six tiles per processor. Such dummy tiles are not listed in blanklist.txt.

The following is an example of SIZE.h for the six-tile configuration illustrated in Figure 8.4 running on one proces-
sor:

PARAMETER (
& sNx = 32,
& sNy = 32,
& OLx = 2,
& OLy = 2,
& nSx = 6,
& nSy = 1,
& nPx = 1,
& nPy = 1,
& Nx = sNx*nSx*nPx,
& Ny = sNy*nSy*nPy,
& Nr = 5)

The following is an example for the forty-eight-tile topology in Figure 8.2 running on six processors:

PARAMETER (
& sNx = 16,

(continues on next page)
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(continued from previous page)

& sNy = 8,
& OLx = 2,
& OLy = 2,
& nSx = 8,
& nSy = 1,
& nPx = 6,
& nPy = 1,
& Nx = sNx*nSx*nPx,
& Ny = sNy*nSy*nPy,
& Nr = 5)

8.2.5.5 Key Variables

The descriptions of the variables are divided up into scalars, one-dimensional arrays indexed to the tile number, and
two and three-dimensional arrays indexed to tile number and neighboring tile. This division reflects the functionality
of these variables: The scalars are common to every part of the topology, the tile-indexed arrays to individual tiles,
and the arrays indexed by tile and neighbor to relationships between tiles and their neighbors.

Scalars:

The number of tiles in a particular topology is set with the parameter exch2_nTiles, and the maximum number of
neighbors of any tiles by W2_maxNeighbours. These parameters are used for defining the size of the various one and
two dimensional arrays that store tile parameters indexed to the tile number and are assigned in the files generated by
driver.m.

The scalar parameters exch2_domain_nxt and exch2_domain_nyt express the number of tiles in the x
and y global indices. For example, the default setup of six tiles (Figure 8.4) has exch2_domain_nxt=6 and
exch2_domain_nyt=1. A topology of forty-eight tiles, eight per subdomain (as in Figure 8.2), will have
exch2_domain_nxt=12 and exch2_domain_nyt=4. Note that these parameters express the tile layout in
order to allow global data files that are tile-layout-neutral. They have no bearing on the internal storage of the arrays.
The tiles are stored internally in a range from bi = (1:exch2_nTiles) in the x axis, and the y axis variable bj
is assumed to equal 1 throughout the package.

Arrays indexed to tile number:

The following arrays are of length exch2_nTiles and are indexed to the tile number, which is indicated in the
diagrams with the notation tn. The indices are omitted in the descriptions.

The arrays exch2_tnx and exch2_tny express the x and y dimensions of each tile. At present for each tile
exch2_tnx`=``sNx` and exch2_tny = sNy, as assigned in SIZE.h and described in Section 8.2.5.4. Fu-
ture releases of MITgcm may allow varying tile sizes.

The arrays exch2_tbasex and exch2_tbasey determine the tiles’ Cartesian origin within a subdomain and locate the
edges of different tiles relative to each other. As an example, in the default six-tile topology (Figure 8.4) each index
in these arrays is set to 0 since a tile occupies its entire subdomain. The twenty-four-tile case discussed above will
have values of 0 or 16, depending on the quadrant of the tile within the subdomain. The elements of the arrays
exch2_txglobalo and exch2_txglobalo are similar to exch2_tbasex and exch2_tbasey, but locate the tile edges within
the global address space, similar to that used by global output and input files.

The array exch2_myFace contains the number of the subdomain of each tile, in a range (1:6) in the case of the
standard cube topology and indicated by fn in Figure 8.4 and Figure 8.2. exch2_nNeighbours contains a count of the
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neighboring tiles each tile has, and sets the bounds for looping over neighboring tiles. exch2_tProc holds the process
rank of each tile, and is used in interprocess communication.

The arrays exch2_isWedge, exch2_isEedge, exch2_isSedge, and exch2_isNedge are set to 1 if the indexed tile lies on
the edge of its subdomain, 0 if not. The values are used within the topology generator to determine the orientation
of neighboring tiles, and to indicate whether a tile lies on the corner of a subdomain. The latter case requires special
exchange and numerical handling for the singularities at the eight corners of the cube.

Arrays Indexed to Tile Number and Neighbor:

The following arrays have vectors of length W2_maxNeighbours and exch2_nTiles and describe the orientations be-
tween the the tiles.

The array exch2_neighbourId(a,T) holds the tile number Tn for each of the tile number T’s neighboring tiles
a. The neighbor tiles are indexed 1:exch2_nNeighbours(T) in the order right to left on the north then south
edges, and then top to bottom on the east then west edges.

The exch2_opposingSend_record(a,T) array holds the index b of the element in
exch2_neighbourId(b,Tn) that holds the tile number T, given Tn=exch2_neighborId(a,T). In
other words,

exch2_neighbourId( exch2_opposingSend_record(a,T),
exch2_neighbourId(a,T) ) = T

This provides a back-reference from the neighbor tiles.

The arrays exch2_pi and exch2_pj specify the transformations of indices in exchanges between the neighboring tiles.
These transformations are necessary in exchanges between subdomains because a horizontal dimension in one subdo-
main may map to other horizonal dimension in an adjacent subdomain, and may also have its indexing reversed. This
swapping arises from the ‘’folding” of two-dimensional arrays into a three-dimensional cube.

The dimensions of exch2_pi(t,N,T) and exch2_pj(t,N,T) are the neighbor ID N and the tile number T as
explained above, plus a vector of length 2 containing transformation factors t. The first element of the transformation
vector holds the factor to multiply the index in the same dimension, and the second element holds the the same for the
orthogonal dimension. To clarify, exch2_pi(1,N,T) holds the mapping of the x axis index of tile T to the x axis
of tile T’s neighbor N, and exch2_pi(2,N,T) holds the mapping of T’s x index to the neighbor N’s y index.

One of the two elements of exch2_pi or exch2_pj for a given tile T and neighbor N will be 0, reflecting the fact
that the two axes are orthogonal. The other element will be 1 or -1, depending on whether the axes are indexed in
the same or opposite directions. For example, the transform vector of the arrays for all tile neighbors on the same
subdomain will be (1,0), since all tiles on the same subdomain are oriented identically. An axis that corresponds
to the orthogonal dimension with the same index direction in a particular tile-neighbor orientation will have (0,1).
Those with the opposite index direction will have (0,-1) in order to reverse the ordering.

The arrays exch2_oi, exch2_oj, exch2_oi_f, and exch2_oj_f are indexed to tile number and neighbor and specify the
relative offset within the subdomain of the array index of a variable going from a neighboring tile N to a local tile T.
Consider T=1 in the six-tile topology (Figure 8.4), where

exch2_oi(1,1)=33
exch2_oi(2,1)=0
exch2_oi(3,1)=32
exch2_oi(4,1)=-32

The simplest case is exch2_oi(2,1), the southern neighbor, which is Tn=6. The axes of T and Tn have the same
orientation and their x axes have the same origin, and so an exchange between the two requires no changes to the x
index. For the western neighbor (Tn=5), code_oi(3,1)=32 since the x=0 vector on T corresponds to the y=32
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vector on Tn. The eastern edge of T shows the reverse case (exch2_oi(4,1)=-32)), where x=32 on T exchanges
with x=0 on Tn=2.

The most interesting case, where exch2_oi(1,1)=33 and Tn=3, involves a reversal of indices. As in every case,
the offset exch2_oi is added to the original x index of T multiplied by the transformation factor exch2_pi(t,N,
T). Here exch2_pi(1,1,1)=0 since the x axis of T is orthogonal to the x axis of Tn. exch2_pi(2,1,1)=-1
since the x axis of T corresponds to the y axis of Tn, but the index is reversed. The result is that the index of the
northern edge of T, which runs (1:32), is transformed to (-1:-32). exch2_oi(1,1) is then added to this range
to get back (32:1) – the index of the y axis of Tn relative to T. This transformation may seem overly convoluted for
the six-tile case, but it is necessary to provide a general solution for various topologies.

Finally, exch2_itlo_c, exch2_ithi_c, exch2_jtlo_c and exch2_jthi_c hold the location and index bounds of the edge
segment of the neighbor tile N’s subdomain that gets exchanged with the local tile T. To take the example of tile T=2
in the forty-eight-tile topology (Figure 8.2):

exch2_itlo_c(4,2)=17
exch2_ithi_c(4,2)=17
exch2_jtlo_c(4,2)=0
exch2_jthi_c(4,2)=33

Here N=4, indicating the western neighbor, which is Tn=1. Tn resides on the same subdomain as T, so the tiles
have the same orientation and the same x and y axes. The x axis is orthogonal to the western edge and the tile is
16 points wide, so exch2_itlo_c and exch2_ithi_c indicate the column beyond Tn’s eastern edge, in that
tile’s halo region. Since the border of the tiles extends through the entire height of the subdomain, the y axis bounds
exch2_jtlo_c to exch2_jthi_c cover the height of (1:32), plus 1 in either direction to cover part of the halo.

For the north edge of the same tile T=2 where N=1 and the neighbor tile is Tn=5:

exch2_itlo_c(1,2)=0
exch2_ithi_c(1,2)=0
exch2_jtlo_c(1,2)=0
exch2_jthi_c(1,2)=17

T’s northern edge is parallel to the x axis, but since Tn’s y axis corresponds to T’s x axis, T’s northern edge ex-
changes with Tn’s western edge. The western edge of the tiles corresponds to the lower bound of the x axis, so
exch2_itlo_c and exch2_ithi_c are 0, in the western halo region of Tn. The range of exch2_jtlo_c and
exch2_jthi_c correspond to the width of T’s northern edge, expanded by one into the halo.

8.2.5.6 Key Routines

Most of the subroutines particular to exch2 handle the exchanges themselves and are of the same format as those
described in Cube sphere communication. Like the original routines, they are written as templates which the local
Makefile converts from RX into RL and RS forms.

The interfaces with the core model subroutines are EXCH_UV_XY_RX, EXCH_UV_XYZ_RX and EXCH_XY_RX.
They override the standard exchange routines when genmake2 is run with exch2 option. They in turn call the local
exch2 subroutines EXCH2_UV_XY_RX and EXCH2_UV_XYZ_RX for two and three-dimensional vector quantities,
and EXCH2_XY_RX and EXCH2_XYZ_RX for two and three-dimensional scalar quantities. These subroutines set the
dimensions of the area to be exchanged, call EXCH2_RX1_CUBE for scalars and EXCH2_RX2_CUBE for vectors,
and then handle the singularities at the cube corners.

The separate scalar and vector forms of EXCH2_RX1_CUBE and EXCH2_RX2_CUBE reflect that the vector-handling
subroutine needs to pass both the $u$ and $v$ components of the physical vectors. This swapping arises from the
topological folding discussed above, where the x and y axes get swapped in some cases, and is not an issue with the
scalar case. These subroutines call EXCH2_SEND_RX1 and EXCH2_SEND_RX2, which do most of the work using
the variables discussed above.
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8.2.5.7 Experiments and tutorials that use exch2

• Held Suarez tutorial, in verification/tutorial_held_suarez_cs verification directory.

8.2.6 Gridalt - Alternate Grid Package

8.2.6.1 Introduction

The gridalt package [Mol09] is designed to allow different components of MITgcm to be run using horizontal and/or
vertical grids which are different from the main model grid. The gridalt routines handle the definition of the all
the various alternative grid(s) and the mappings between them and the MITgcm grid. The implementation of the
gridalt package which allows the high end atmospheric physics (fizhi) to be run on a high resolution and quasi terrain-
following vertical grid is documented here. The package has also (with some user modifications) been used for other
calculations within the GCM.

The rationale for implementing the atmospheric physics on a high resolution vertical grid involves the fact that the
MITgcm 𝑝* (or any pressure-type) coordinate cannot maintain the vertical resolution near the surface as the bottom
topography rises above sea level. The vertical length scales near the ground are small and can vary on small time scales,
and the vertical grid must be adequate to resolve them. Many studies with both regional and global atmospheric models
have demonstrated the improvements in the simulations when the vertical resolution near the surface is increased ().
Some of the benefit of increased resolution near the surface is realized by employing the higher resolution for the
computation of the forcing due to turbulent and convective processes in the atmosphere.

The parameterizations of atmospheric subgrid scale processes are all essentially one-dimensional in nature, and the
computation of the terms in the equations of motion due to these processes can be performed for the air column over
one grid point at a time. The vertical grid on which these computations take place can therefore be entirely independant
of the grid on which the equations of motion are integrated, and the ’tendency’ terms can be interpolated to the vertical
grid on which the equations of motion are integrated. A modified 𝑝* coordinate, which adjusts to the local terrain
and adds additional levels between the lower levels of the existing 𝑝* grid (and perhaps between the levels near the
tropopause as well), is implemented. The vertical discretization is different for each grid point, although it consist of
the same number of levels. Additional ’sponge’ levels aloft are added when needed. The levels of the physics grid are
constrained to fit exactly into the existing 𝑝* grid, simplifying the mapping between the two vertical coordinates. This
is illustrated as follows:

The algorithm presented here retains the state variables on the high resolution ’physics’ grid as well as on the coarser
resolution ’dynamics‘ grid, and ensures that the two estimates of the state ’agree’ on the coarse resolution grid. It
would have been possible to implement a technique in which the tendencies due to atmospheric physics are computed
on the high resolution grid and the state variables are retained at low resolution only. This, however, for the case of the
turbulence parameterization, would mean that the turbulent kinetic energy source terms, and all the turbulence terms
that are written in terms of gradients of the mean flow, cannot really be computed making use of the fine structure in
the vertical.

8.2.6.2 Equations on Both Grids

In addition to computing the physical forcing terms of the momentum, thermodynamic and humidity equations on the
modified (higher resolution) grid, the higher resolution structure of the atmosphere (the boundary layer) is retained
between physics calculations. This neccessitates a second set of evolution equations for the atmospheric state variables
on the modified grid. If the equation for the evolution of 𝑈 on 𝑝* can be expressed as:

𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑡𝑜𝑡𝑎𝑙
𝑝*

=
𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

𝑝*
+
𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑝ℎ𝑦𝑠𝑖𝑐𝑠
𝑝*
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Figure 8.5: Vertical discretization for MITgcm (dark grey lines) and for the atmospheric physics (light grey lines). In
this implementation, all MITgcm level interfaces must coincide with atmospheric physics level interfaces.

where the physics forcing terms on 𝑝* have been mapped from the modified grid, then an additional equation to govern
the evolution of 𝑈 (for example) on the modified grid is written:

𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑡𝑜𝑡𝑎𝑙
𝑝*𝑚

=
𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

𝑝*𝑚
+
𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑝ℎ𝑦𝑠𝑖𝑐𝑠
𝑝*𝑚

+ 𝛾(𝑈 |𝑝* − 𝑈 |𝑝*𝑚)

where 𝑝*𝑚 refers to the modified higher resolution grid, and the dynamics forcing terms have been mapped from 𝑝*

space. The last term on the RHS is a relaxation term, meant to constrain the state variables on the modified vertical
grid to ‘track’ the state variables on the 𝑝* grid on some time scale, governed by 𝛾. In the present implementation,
𝛾 = 1, requiring an immediate agreement between the two ’states’.

8.2.6.3 Time stepping Sequence

If we write 𝑇𝑝ℎ𝑦𝑠 as the temperature (or any other state variable) on the high resolution physics grid, and 𝑇𝑑𝑦𝑛 as the
temperature on the coarse vertical resolution dynamics grid, then:

1. Compute the tendency due to physics processes.

2. Advance the physics state: 𝑇𝑛+1**
𝑝ℎ𝑦𝑠(𝑙) = 𝑇𝑛

𝑝ℎ𝑦𝑠(𝑙) + 𝛿𝑇𝑝ℎ𝑦𝑠.

3. Interpolate the physics tendency to the dynamics grid, and advance the dynamics state by physics and dynamics
tendencies: 𝑇𝑛+1

𝑑𝑦𝑛(𝐿) = 𝑇𝑛
𝑑𝑦𝑛(𝐿) + 𝛿𝑇𝑑𝑦𝑛(𝐿) + [𝛿𝑇𝑝ℎ𝑦𝑠(𝑙)](𝐿).

4. Interpolate the dynamics tendency to the physics grid, and update the physics grid due to dynamics tendencies:
𝑇𝑛+1*

𝑝ℎ𝑦𝑠(𝑙) = 𝑇𝑛+1**
𝑝ℎ𝑦𝑠(𝑙) + 𝛿𝑇𝑑𝑦𝑛(𝐿)(𝑙).

5. Apply correction term to physics state to account for divergence from dynamics state: 𝑇𝑛+1
𝑝ℎ𝑦𝑠(𝑙) =

𝑇𝑛+1*
𝑝ℎ𝑦𝑠(𝑙) + 𝛾{𝑇𝑑𝑦𝑛(𝐿) − [𝑇𝑝ℎ𝑦𝑠(𝑙)](𝐿)}(𝑙). Where 𝛾 = 1 here.
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8.2.6.4 Interpolation

In order to minimize the correction terms for the state variables on the alternative, higher resolution grid, the vertical
interpolation scheme must be constructed so that a dynamics-to-physics interpolation can be exactly reversed with a
physics-to-dynamics mapping. The simple scheme employed to achieve this is:

Coarse to fine: For all physics layers l in dynamics layer L, 𝑇𝑝ℎ𝑦𝑠(𝑙) = {𝑇𝑑𝑦𝑛(𝐿)} = 𝑇𝑑𝑦𝑛(𝐿).

Fine to coarse: For all physics layers l in dynamics layer L, 𝑇𝑑𝑦𝑛(𝐿) = [𝑇𝑝ℎ𝑦𝑠(𝑙)] =
∫︀
𝑇𝑝ℎ𝑦𝑠𝑑𝑝.

Where {} is defined as the dynamics-to-physics operator and [] is the physics-to-dynamics operator, 𝑇 stands for any
state variable, and the subscripts 𝑝ℎ𝑦𝑠 and 𝑑𝑦𝑛 stand for variables on the physics and dynamics grids, respectively.

8.2.6.5 Key subroutines, parameters and files

One of the central elements of the gridalt package is the routine which is called from subroutine gridalt_initialise to
define the grid to be used for the high end physics calculations. Routine make_phys_grid passes back the parameters
which define the grid, ultimately stored in the common block gridalt_mapping.

subroutine make_phys_grid(drF,hfacC,im1,im2,jm1,jm2,Nr,
. Nsx,Nsy,i1,i2,j1,j2,bi,bj,Nrphys,Lbot,dpphys,numlevphys,nlperdyn)

c***********************************************************************
c Purpose: Define the grid that the will be used to run the high-end
c atmospheric physics.
c
c Algorithm: Fit additional levels of some (~) known thickness in
c between existing levels of the grid used for the dynamics
c
c Need: Information about the dynamics grid vertical spacing
c
c Input: drF - delta r (p*) edge-to-edge
c hfacC - fraction of grid box above topography
c im1, im2 - beginning and ending i - dimensions
c jm1, jm2 - beginning and ending j - dimensions
c Nr - number of levels in dynamics grid
c Nsx,Nsy - number of processes in x and y direction
c i1, i2 - beginning and ending i - index to fill
c j1, j2 - beginning and ending j - index to fill
c bi, bj - x-dir and y-dir index of process
c Nrphys - number of levels in physics grid
c
c Output: dpphys - delta r (p*) edge-to-edge of physics grid
c numlevphys - number of levels used in the physics
c nlperdyn - physics level number atop each dynamics layer
c
c NOTES: 1) Pressure levs are built up from bottom, using p0, ps and dp:
c p(i,j,k)=p(i,j,k-1) + dp(k)*ps(i,j)/p0(i,j)
c 2) Output dp's are aligned to fit EXACTLY between existing
c levels of the dynamics vertical grid
c 3) IMPORTANT! This routine assumes the levels are numbered
c from the bottom up, ie, level 1 is the surface.
c IT WILL NOT WORK OTHERWISE!!!
c 4) This routine does NOT work for surface pressures less
c (ie, above in the atmosphere) than about 350 mb
c***********************************************************************

In the case of the grid used to compute the atmospheric physical forcing (Fizhi: High-end Atmospheric Physics), the
locations of the grid points move in time with the MITgcm 𝑝* coordinate, and subroutine gridalt_update is called
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during the run to update the locations of the grid points:

subroutine gridalt_update(myThid)
c***********************************************************************
c Purpose: Update the pressure thicknesses of the layers of the
c alternative vertical grid (used now for atmospheric physics).
c
c Calculate: dpphys - new delta r (p*) edge-to-edge of physics grid
c using dpphys0 (initial value) and rstarfacC
c***********************************************************************

The gridalt package also supplies utility routines which perform the mappings from one grid to the other. These
routines are called from the code which computes the fields on the alternative (fizhi) grid.

subroutine dyn2phys(qdyn,pedyn,im1,im2,jm1,jm2,lmdyn,Nsx,Nsy,
. idim1,idim2,jdim1,jdim2,bi,bj,windphy,pephy,Lbot,lmphy,nlperdyn,
. flg,qphy)

C***********************************************************************
C Purpose:
C To interpolate an arbitrary quantity from the 'dynamics' eta (pstar)
C grid to the higher resolution physics grid
C Algorithm:
C Routine works one layer (edge to edge pressure) at a time.
C Dynamics -> Physics retains the dynamics layer mean value,
C weights the field either with the profile of the physics grid
C wind speed (for U and V fields), or uniformly (T and Q)
C
C Input:
C qdyn..... [im,jm,lmdyn] Arbitrary Quantity on Input Grid
C pedyn.... [im,jm,lmdyn+1] Pressures at bottom edges of input levels
C im1,2 ... Limits for Longitude Dimension of Input
C jm1,2 ... Limits for Latitude Dimension of Input
C lmdyn.... Vertical Dimension of Input
C Nsx...... Number of processes in x-direction
C Nsy...... Number of processes in y-direction
C idim1,2.. Beginning and ending i-values to calculate
C jdim1,2.. Beginning and ending j-values to calculate
C bi....... Index of process number in x-direction
C bj....... Index of process number in x-direction
C windphy.. [im,jm,lmphy] Magnitude of the wind on the output levels
C pephy.... [im,jm,lmphy+1] Pressures at bottom edges of output levels
C lmphy.... Vertical Dimension of Output
C nlperdyn. [im,jm,lmdyn] Highest Physics level in each dynamics level
C flg...... Flag to indicate field type (0 for T or Q, 1 for U or V)
C
C Output:
C qphy..... [im,jm,lmphy] Quantity at output grid (physics grid)
C
C Notes:
C 1) This algorithm assumes that the output (physics) grid levels
C fit exactly into the input (dynamics) grid levels
C***********************************************************************

And similarly, gridalt contains subroutine phys2dyn.
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8.2.6.6 Gridalt Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
DPPHYS | 20 |SM ML |Pascal |Pressure Thickness of Layers on Fizhi
→˓Grid

8.2.6.7 Dos and donts

8.2.6.8 Gridalt Reference

8.2.6.9 Experiments and tutorials that use gridalt

• Fizhi experiment, in verification/fizhi-cs-32x32x10 verification directory

8.3 General purpose numerical infrastructure packages

8.3.1 OBCS: Open boundary conditions for regional modeling

Authors: Alistair Adcroft, Patrick Heimbach, Samar Katiwala, Martin Losch

8.3.1.1 Introduction

The OBCS-package (pkg/obcs) is fundamental to regional ocean modeling with the MITgcm, but there are so many
details to be considered in regional ocean modeling that this package cannot accommodate all imaginable and possible
options. Therefore, for a regional simulation with very particular details it is recommended to familiarize oneself
not only with the compile-time and run-time options of this package, but also with the code itself. In many cases
it will be necessary to adapt the obcs-code (in particular S/R OBCS_CALC) to the application in question; in these
cases pkg/obcs (together with the pkg/rbcs, see Section 8.3.2) is a very useful infrastructure for implementing special
regional models.

8.3.1.2 OBCS configuration and compiling

As with all MITgcm packages, OBCS can be turned on or off at compile-time

• using the packages.conf file by adding obcs to it

• or using genmake2 adding -enable=obcs or -disable=obcs switches

• Required packages and CPP options:

– Two alternatives are available for prescribing open boundary values, which differ in the way how OB’s are
treated in time:

* Simple time-management (e.g., constant in time, or cyclic with fixed frequency) is provided through
S/R OBCS_FIELDS_LOAD

* More sophisticated ‘real-time’ (i.e. calendar time) management is available through S/R
OBCS_PRESCRIBE_READ

– The latter case requires packages pkg/cal and pkg/exf to be enabled.
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Parts of the OBCS code can be enabled or disabled at compile-time via CPP preprocessor flags. These options are set
in OBCS_OPTIONS.h. Table 8.1 summarizes these options.

Table 8.1: CPP flags for the obcs package
CPP option Default Description
ALLOW_OBCS_NORTH #define enable Northern OB
ALLOW_OBCS_SOUTH #define enable Southern OB
ALLOW_OBCS_EAST #define enable Eastern OB
ALLOW_OBCS_WEST #define enable Western OB
ALLOW_OBCS_PRESCRIBE #define enable code for prescribing OB’s
ALLOW_OBCS_SPONGE #undef enable sponge layer code
ALLOW_OBCS_BALANCE #define enable code for balancing transports through OB’s
ALLOW_ORLANSKI #define enable Orlanski radiation conditions at OB’s
ALLOW_OBCS_STEVENS #undef enable Stevens (1990) boundary conditions at

OB’s (currently NOT implemented for ptracers)
ALLOW_OBCS_SEAICE_SPONGE #undef Include hooks to sponge layer treatment of

pkg/seaice variables
ALLOW_OBCS_TIDES #undef Add tidal contributions to normal OB flow (At the

moment tidal forcing is applied only to “normal”
flow)

8.3.1.3 Run-time parameters

Run-time parameters are set in files data.pkg, data.obcs, and data.exf if ‘real-time’ prescription is requested
(i.e., pkg/exf enabled). These parameter files are read in S/Rs PACKAGES_READPARMS, OBCS_READPARMS,
and EXF_READPARMS, respectively. Run-time parameters may be broken into three categories:

1. switching on/off the package at runtime

2. OBCS package flags and parameters

3. additional timing flags in data.exf if selected.

Enabling the package

The OBCS package is switched on at runtime by setting useOBCS = .TRUE. in data.pkg.

Package flags and parameters

Table 8.2 summarizes the runtime flags that are set in data.obcs and their default values.
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Table 8.2: OBCS runtime parameters
Flag/parameter default Description
OB_Jnorth 0 Nx-vector of J-indices (w.r.t. Ny) of Northern OB at

each I-position (w.r.t. Nx)
OB_Jsouth 0 Nx-vector of J-indices (w.r.t. Ny) of Southern OB at

each I-position (w.r.t. Nx)
OB_Ieast 0 Ny-vector of I-indices (w.r.t. Nx) of Eastern OB at each

J-position (w.r.t. Ny)
OB_Iwest 0 Ny-vector of I-indices (w.r.t. Nx) of Western OB at each

J-position (w.r.t. Ny)
useOBCSprescribe FALSE
useOBCSsponge FALSE
useOBCSbalance FALSE
OBCS_balanceFacN,
OBCS_balanceFacS,
OBCS_balanceFacE,
OBCS_balanceFacW

1 Factor(s) determining the details of the balancing code

OBCSbalanceSurf FALSE include surface mass flux in balance
useOrlanskiNorth, useOrlan-
skiSouth, useOrlanskiEast, useOr-
lanskiWest

FALSE Turn on Orlanski boundary conditions for individual
boundary.

useStevensNorth, useStevensSouth,
useStevensEast, useStevensWest

FALSE Turn on Stevens boundary conditions for individual
boundary

OBXyFile ' ' File name of OB field:
X: N(orth), S(outh), E(ast), W(est)
y: t(emperature), s(salinity), eta (sea surface height),
u(-velocity), v(-velocity), w(-velocity), a (seaice area),
h (sea ice thickness), sn (snow thickness), sl (sea ice
salinity )

Orlanski Parameters OBCS_PARM02
cvelTimeScale 2000.0 Averaging period for phase speed (seconds)
CMAX 0.45 Maximum allowable phase speed-CFL for AB-II (m/s)
CFIX 0.8 Fixed boundary phase speed (m/s)
useFixedCEast FALSE
useFixedCWest FALSE
Sponge layer parameters OBCS_PARM03
spongeThickness 0 sponge layer thickness (in grid points)
Urelaxobcsinner 0.0 relaxation time scale at the innermost sponge layer point

of a meridional OB (s)
Vrelaxobcsinner 0.0 relaxation time scale at the innermost sponge layer point

of a zonal OB (s)
Urelaxobcsbound 0.0 relaxation time scale at the outermost sponge layer point

of a meridional OB (s)
Vrelaxobcsbound 0.0 relaxation time scale at the outermost sponge layer point

of a zonal OB (s)
Stevens parameters OBCS_PARM04
TrelaxStevens SrelaxStevens 0 Relaxation time scale for temperature/salinity (s)
useStevensPhaseVel TRUE
useStevensAdvection TRUE
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8.3.1.4 Defining open boundary positions

There are up to four open boundaries (OBs): Northern, Southern, Eastern, and Western. All OB locations are specified
by their absolute meridional (Northern/Southern) or zonal (Eastern/Western) indices. Thus, for each zonal position
𝑖 = 1 . . . 𝑁𝑥 a meridional index 𝑗 specifies the Northern/Southern OB position, and for each meridional position
𝑗 = 1 . . . 𝑁𝑦 a zonal index 𝑖 specifies the Eastern/Western OB position. For Northern/Southern OB this defines an
𝑁𝑥-dimensional “row” array OB_Jnorth(Nx) / OB_Jsouth(Nx) and an 𝑁𝑦-dimenisonal “column” array OB_Ieast(Ny)
/ OB_Iwest(Ny). Positions determined in this way allows Northern/Southern OBs to be at variable 𝑗 (or 𝑦) positions
and Eastern/Western OBs at variable 𝑖 (or 𝑥) positions. Here indices refer to tracer points on the C-grid. A zero (0)
element in OB_I... / OB_J... means there is no corresponding OB in that column/row. By default all elements
in OB_I... / OB_J... are zero. For a Northern/Southern OB, the OB V-point is to the South/North. For an
Eastern/Western OB, the OB U-point is to the West/East. For example

OB_Jnorth(3)=34 means that:

• T(3,34) is a an OB point

• U(3,34) is a an OB point

• V(3,34) is a an OB point

OB_Jsouth(3)=1 means that:

• T(3,1) is a an OB point

• U(3,1) is a an OB point

• V(3,2) is a an OB point

OB_Ieast(10)=69 means that:

• T(69,10) is a an OB point

• U(69,10) is a an OB point

• V(69,10) is a an OB point

OB_Iwest(10)=1 means that:

• T(1,10) is a an OB point

• U(2,10) is a an OB point

• V(1,10) is a an OB point

For convenience, negative values for OB_Jnorth / OB_Ieast refer to points relative to the Northern/Eastern edges of
the model, e.g. OB_Jnorth(3)=-1 means that the point (3,Ny) is a northern OB and OB_Ieast(3)=-5 means
that the point (3,Nx-5) is an eastern OB.

Simple examples

For a model grid with 𝑁𝑥 ×𝑁𝑦 = 120× 144 horizontal grid points with four open boundaries along the four edges of
the domain, the simplest way of specifying the boundary points:

OB_Ieast = 144*-1,
# or OB_Ieast = 144*120,

OB_Iwest = 144*1,
OB_Jnorth = 120*-1,

# or OB_Jnorth = 120*144,
OB_Jsouth = 120*1,
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When the boundaries are in single rows or columns as in the above example, the same can be achieved with the
convenient parameters OB_singleJnorth / OB_singleJsouth / OB_singleIeast / OB_singleIwest:

OB_singleIeast = -1,
OB_singleIwest = 1,
OB_singleJnorth = -1,
OB_singleJsouth = 1,

If only the first 50 grid points of the southern boundary are boundary points:

OB_Jsouth(1:50) = 50*1,

A more complex example

Open boundaries are not restricted to single rows or columns. Each OB can be distributed in different rows and
columns resulting in OBs consisting of the combination of different types of open boundaries (i.e., N, S, E and W).
Figure 8.6 displays such an OB located on the left-bottom corner of a domain. Note there are five boundary points
defined by southern and western boundaries. In particular, there are five southern boundary (blue lines) and two
western boundaries points (red lines). For the boundary displayed in Figure 8.6 and the same dimensions as in the
previous example (i.e. 120 × 144 grid points), the namelist looks like this:

OB_Iwest = 1*0,1*5,142*0,
OB_Jsouth = 2*3,3*2,115*0,

i=1 i=2 i=3 i=4 i=5 i=6

j=1

j=2

j=3

j=4

j=5

j=Ny

i=Nx

2

Figure 8.6: Example boundary with more than one row. The dark grey, light grey, and white boxes are points outside
the domain, OB points, and ocean points, respectively. The black dots mark the OB index to write into the namelist.

For an even more complicated open boundary geometry, e.g., delimiting a concave interior domain (OB_Ieast ≤
OB_Iwest), one might need to also specify the interior domain through an additional input file insideOBmaskFile for
the interior mask (= 1 inside, = 0 outside).
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8.3.1.5 Equations and key routines

OBCS_READPARMS:

Set OB positions through arrays OB_Jnorth(Nx), OB_Jsouth(Nx), OB_Ieast(Ny), OB_Iwest(Ny) and runtime flags
(see Table Table 8.2).

OBCS_CALC:

Top-level routine for filling values to be applied at OB for 𝑇, 𝑆, 𝑈, 𝑉, 𝜂 into corresponding “slice” arrays (𝑥, 𝑧) (𝑦, 𝑧)
for each OB: OB[N/S/E/W][t/s/u/v]; e.g. for the salinity array at the Southern OB, the array name is OBSs.
Values filled are either

• constant vertical 𝑇, 𝑆 profiles as specified in file data (tRef(Nr), sRef(Nr)) with zero velocities 𝑈, 𝑉

• 𝑇, 𝑆, 𝑈, 𝑉 values determined via Orlanski radiation conditions (see below)

• prescribed time-constant or time-varying fields (see below).

• prescribed boundary fields to compute Stevens boundary conditions.

ORLANSKI:

Orlanski radiation conditions [Orl76] examples can be found in example configurations verification/dome and verifi-
cation/tutorial_plume_on_slope (as described in detail in Section 4.9).

OBCS_PRESCRIBE_READ:

When useOBCSprescribe = .TRUE. the model tries to read temperature, salinity, u- and v-velocities from files spec-
ified in the runtime parameters OB[N/S/E/W][t/s/u/v]File. These files are the usual IEEE, big-endian files
with dimensions of a section along an open boundary:

• For North/South boundary files the dimensions are (𝑁𝑥 × 𝑁𝑟 × time levels), for East/West boundary files the
dimensions are (𝑁𝑦 ×𝑁𝑟 × time levels).

• If a non-linear free surface is used (Section 2.10.2), additional files OB[N/S/E/W]etaFile for the sea surface
height 𝜂 with dimension (𝑁𝑥/𝑦 × time levels) may be specified.

• If non-hydrostatic dynamics are used (Section 2.9), additional files OB[N/S/E/W]wFile for the vertical ve-
locity 𝑤 with dimensions (𝑁𝑥/𝑦 ×𝑁𝑟 × time levels) can be specified.

• If useSEAICE = .TRUE. then additional files OB[N/S/E/W][a,h,sl,sn,uice,vice] for sea ice area,
thickness (HEFF), seaice salinity, snow and ice velocities (𝑁𝑥/𝑦 × time levels) can be specified.

As in external_fields_load.F or as done in pkg/exf, the code reads two time levels for each variable, e.g., OBNu0 and
OBNu1, and interpolates linearly between these time levels to obtain the value OBNu at the current model time (step).
When pkg/exf is used, the time levels are controlled for each boundary separately in the same way as the pkg/exf
fields in data.exf, namelist EXF_NML_OBCS. The run-time flags follow the above naming conventions, e.g., for
the western boundary the corresponding flags are OBCSWstartdate1, OBCSWstartdate2 and OBCSWperiod. Sea-ice
boundary values are controlled separately with siobWstartdate1, siobWstartdate2 and siobWperiod. When pkg/exf is
not used the time levels are controlled by the runtime flags externForcingPeriod and externForcingCycle in data; see
verification/exp4/input/data for an example.
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OBCS_CALC_STEVENS:

The boundary conditions following [Ste90] require the vertically averaged normal velocity (originally specified as a
stream function along the open boundary) 𝑢̄𝑜𝑏 and the tracer fields 𝜒𝑜𝑏 (note: passive tracers are currently not imple-
mented and the code stops when package ptracers is used together with this option). Currently the code vertically
averages the normal velocity as specified in OB[E,W]u or OB[N,S]v. From these prescribed values the code com-
putes the boundary values for the next timestep 𝑛+ 1 as follows (as an example, we use the notation for an eastern or
western boundary):

• 𝑢𝑛+1(𝑦, 𝑧) = 𝑢̄𝑜𝑏(𝑦)+(𝑢′)𝑛(𝑦, 𝑧) where (𝑢′)𝑛 is the deviation from the vertically averaged velocity at timestep
𝑛 on the boundary. (𝑢′)𝑛 is computed in the previous time step 𝑛 from the intermediate velocity 𝑢* prior to
the correction step (see Section 2.2 equation (2.12)). (This velocity is not available at the beginning of the
next time step 𝑛 + 1, when S/Rs OBCS_CALC and OBCS_CALC_STEVENS are called, therefore it needs
to be saved in S/R DYNAMICS by calling S/R OBCS_SAVE_UV_N and also stored in a separate restart files
pickup_stevens[N/S/E/W].${iteration}.data)

• If 𝑢𝑛+1 is directed into the model domain, the boudary value for tracer 𝜒 is restored to the prescribed values:

𝜒𝑛+1 = 𝜒𝑛 +
∆𝑡

𝜏𝜒
(𝜒𝑜𝑏 − 𝜒𝑛)

where 𝜏𝜒 is the relaxation time scale (either TrelaxStevens or SrelaxStevens). The new 𝜒𝑛+1 is then subject to
the advection by 𝑢𝑛+1.

• If 𝑢𝑛+1 is directed out of the model domain, the tracer 𝜒𝑛+1 on the boundary at timestep 𝑛+1 is estimated from
advection out of the domain with 𝑢𝑛+1 + 𝑐, where 𝑐 is a phase velocity estimated as 1

2
𝜕𝜒
𝜕𝑡 /

𝜕𝜒
𝜕𝑥 . The numerical

scheme is (as an example for an eastern boundary):

𝜒𝑛+1
𝑖𝑏,𝑗,𝑘

= 𝜒𝑛
𝑖𝑏,𝑗,𝑘

+ ∆𝑡(𝑢𝑛+1 + 𝑐)𝑖𝑏,𝑗,𝑘
𝜒𝑛
𝑖𝑏,𝑗,𝑘

− 𝜒𝑛
𝑖𝑏−1,𝑗,𝑘

∆𝑥𝐶𝑖𝑏𝑗
if 𝑢𝑛+1

𝑖𝑏𝑗𝑘
> 0

where 𝑖𝑏 is the boundary index. For test purposes, the phase velocity contribution or the entire advection can be
turned off by setting the corresponding parameters useStevensPhaseVel and useStevensAdvection to .FALSE..

See [Ste90] for details. With this boundary condition specifying the exact net transport across the open boundary is
simple, so that balancing the flow with (S/R OBCS_BALANCE_FLOW see next paragraph) is usually not necessary.

Special cases where the current implementation is not complete:

• When you use the non-linear free surface option (parameter nonlinFreeSurf > 1), the current implementation
just assumes that the gradient normal to the open boundary is zero ( 𝜕𝜂𝜕𝑛 = 0). Although this is inconsistent with
geostrophic dynamics and the possibility to specify a non-zero tangent velocity together with Stevens BCs for
normal velocities, it seems to work. Recommendation: Always specify zero tangential velocities with Stevens
BCs.

• There is no code for passive tracers, just a commented template in S/R OBCS_CALC_STEVENS. This means
that passive tracers can be specified independently and are fluxed with the velocities that the Stevens BCs
compute, but without the restoring term.

• There are no specific Stevens BCs for sea ice, e.g., pkg/seaice. The model uses the default boundary conditions
for the sea ice packages.
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OBCS_BALANCE_FLOW:

When turned on (CPP option ALLOW_OBCS_BALANCE defined in OBCS_OPTIONS.h and useOBCSbalance set
to .TRUE. in data.obcs/OBCS_PARM01), this routine balances the net flow across the open boundaries. By
default the net flow across the boundaries is computed and all normal velocities on boundaries are adjusted to obtain
zero net inflow.

This behavior can be controlled with the runtime flags OBCS_balanceFacN, OBCS_balanceFacS,
OBCS_balanceFacE, and OBCS_balanceFacW. The values of these flags determine how the net inflow is re-
distributed as small correction velocities between the individual sections. A value -1 balances an individual boundary,
values >0 determine the relative size of the correction. For example, the values

OBCS_balanceFacE = 1.,
OBCS_balanceFacW = -1.,
OBCS_balanceFacN = 2.,
OBCS_balanceFacS = 0.,

make the model

• correct Western OBWu by substracting a uniform velocity to ensure zero net transport through the Western open
boundary;

• correct Eastern and Northern normal flow, with the Northern velocity correction two times larger than the Eastern
correction, but not the Southern normal flow, to ensure that the total inflow through East, Northern, and Southern
open boundary is balanced.

The old method of balancing the net flow for all sections individually can be recovered by setting all flags to -1. Then
the normal velocities across each of the four boundaries are modified separately, so that the net volume transport across
each boundary is zero. For example, for the western boundary at 𝑖 = 𝑖𝑏, the modified velocity is:

𝑢(𝑦, 𝑧) −
∫︁

western boundary
𝑢𝑑𝑦𝑑𝑧 ≈ 𝑂𝐵𝑁𝑢(𝑗𝑘) −

∑︁
𝑗𝑘

𝑂𝐵𝑁𝑢(𝑗𝑘)ℎ𝑤(𝑖𝑏𝑗𝑘)∆𝑦𝐺(𝑖𝑏𝑗)∆𝑧(𝑘).

This also ensures a net total inflow of zero through all boundaries, but this combination of flags is not useful if you
want to simulate, for example, a sector of the Southern Ocean with a strong ACC entering through the western and
leaving through the eastern boundary, because the value of -1 for these flags will make sure that the strong inflow is
removed. Clearly, global balancing with OBCS_balanceFacE/W/N/S ≥ 0 is the preferred method.

Setting runtime parameter OBCSbalanceSurf to TRUE., the surface mass flux contribution, say, from surface fresh-
water flux EmPmR is included in the balancing scheme.

OBCS_APPLY_*:

OBCS_SPONGE:

The sponge layer code (turned on with CPP option ALLOW_OBCS_SPONGE and run-time parameter useOBC-
Ssponge) adds a relaxation term to the right-hand-side of the momentum and tracer equations. The variables are
relaxed towards the boundary values with a relaxation time scale that increases linearly with distance from the bound-
ary

𝐺
(sponge)
𝜒 = −𝜒− [(𝐿− 𝛿𝐿)𝜒𝐵𝐶 + 𝛿𝐿𝜒]/𝐿

[(𝐿− 𝛿𝐿)𝜏𝑏 + 𝛿𝐿𝜏𝑖]/𝐿
= −𝜒− [(1 − 𝑙)𝜒𝐵𝐶 + 𝑙𝜒]

[(1 − 𝑙)𝜏𝑏 + 𝑙𝜏𝑖]

where 𝜒 is the model variable (U/V/T/S) in the interior, 𝜒𝐵𝐶 the boundary value, 𝐿 the thickness of the sponge
layer (runtime parameter spongeThickness in number of grid points), 𝛿𝐿 ∈ [0, 𝐿] ( 𝛿𝐿𝐿 = 𝑙 ∈ [0, 1]) the distance
from the boundary (also in grid points), and 𝜏𝑏 (runtime parameters Urelaxobcsbound and Vrelaxobcsbound) and
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𝜏𝑖 (runtime parameters Urelaxobcsinner and Vrelaxobcsinner) the relaxation time scales on the boundary and at the
interior termination of the sponge layer. The parameters Urelaxobcsbound and Urelaxobcsinner set the relaxation time
scales for the Eastern and Western boundaries, Vrelaxobcsbound and Vrelaxobcsinner for the Northern and Southern
boundaries.

OB’s with nonlinear free surface

OB’s with sea ice

8.3.1.6 Flow chart

C !CALLING SEQUENCE:
c ...

8.3.1.7 OBCS diagnostics

Diagnostics output is available via the diagnostics package (see Section 9.1). Available output fields are summarized
below:

------------------------------------------------------
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

------------------------------------------------------

8.3.1.8 Experiments and tutorials that use obcs

In the directory verification the following experiments use pkg/obcs:

• exp4: box with 4 open boundaries, simulating flow over a Gaussian bump based on also tests Stevens-boundary
conditions;

• dome: based on the project “Dynamics of Overflow Mixing and Entrainment” uses Orlanski-BCs;

• internal_wave: uses a heavily modified S/R OBCS_CALC

• seaice_obcs: simple example who to use the sea-ice related code based on lab_sea;

• Tutorial Gravity Plume On a Continental Slope: uses Orlanski-BCs.

8.3.2 RBCS Package

8.3.2.1 Introduction

A package which provides the flexibility to relax fields (temperature, salinity, ptracers, horizontal velocities) in any
3-D location: so could be used as a sponge layer, or as a “source” anywhere in the domain.

For a field (𝑇 ) at every grid point the tendency is modified so that:

𝑑𝑇

𝑑𝑡
=
𝑑𝑇

𝑑𝑡
− 𝑀𝑟𝑏𝑐

𝜏𝑇
(𝑇 − 𝑇𝑟𝑏𝑐)

where 𝑀𝑟𝑏𝑐 is a 3-D mask (no time dependence) with values between 0 and 1. Where 𝑀𝑟𝑏𝑐 is 1, relaxing timescale is
1/𝜏𝑇 . Where it is 0 there is no relaxing. The value relaxed to is a 3-D (potentially varying in time) field given by 𝑇𝑟𝑏𝑐.

A seperate mask can be used for T,S and ptracers and each of these can be relaxed or not and can have its own timescale
𝜏𝑇 . These are set in data.rbcs (see below).

420 Chapter 8. Packages I - Physical Parameterizations

http://mitgcm.org/lxr/ident/MITgcm?_i=Urelaxobcsinner
http://mitgcm.org/lxr/ident/MITgcm?_i=Vrelaxobcsinner
http://mitgcm.org/lxr/ident/MITgcm?_i=Urelaxobcsbound
http://mitgcm.org/lxr/ident/MITgcm?_i=Urelaxobcsinner
http://mitgcm.org/lxr/ident/MITgcm?_i=Vrelaxobcsbound
http://mitgcm.org/lxr/ident/MITgcm?_i=Vrelaxobcsinner
https://github.com/MITgcm/MITgcm/blob/master/verification
https://github.com/MITgcm/MITgcm/blob/master/pkg/obcs
https://github.com/MITgcm/MITgcm/blob/master/verification/exp4
https://github.com/MITgcm/MITgcm/blob/master/verification/dome
https://github.com/MITgcm/MITgcm/blob/master/verification/internal_wave
https://github.com/MITgcm/MITgcm/blob/master/verification/internal_wave/code/obcs_calc.F
https://github.com/MITgcm/MITgcm/blob/master/verification/seaice_obcs
https://github.com/MITgcm/MITgcm/blob/master/verification/lab_sea


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

8.3.2.2 Key subroutines and parameters

The only compile-time parameter you are likely to have to change is in RBCS_SIZE.h, the number of masks, PA-
RAMETER(maskLEN = 3 ), see below.

Table 8.3 summarizes the runtime flags that are set in data.rbcs, and their default values.

Table 8.3: RBCS runtime parameters
Flag/Parameter Group Default Description
rbcsForcingPeriod PARM01 0.0 Time interval between forcing fields (in seconds), zero means

constant-in-time forcing.
rbcsForcingCycle PARM01 0.0 Repeat cycle of forcing fields (in seconds), zero means non-

cyclic forcing.
rbcsForcingOffset PARM01 0.0 Time offset of forcing fields (in seconds, default 0); this is rel-

ative to time averages starting at 𝑡 = 0, i.e., the first forcing
record/file is placed at (rbcsForcingOffset + rbcsForcingPe-
riod )/2 ; see below for examples.

rbcsSingleTimeFiles PARM01 FALSE If .TRUE., forcing fields are given 1 file per rbcsForcingPe-
riod.

deltaTrbcs PARM01 deltaTclock Time step used to compute the iteration numbers for rbcsSin-
gleTimeFiles = .TRUE..

rbcsVanishingTime PARM01 0.0 If rbcsVanishingTime > 0, the relaxation strength reduces lin-
early to vanish at myTime == rbcsVanishingTime.

rbcsIter0 PARM01 0 Shift in iteration numbers used to label files if rbcsSingle-
TimeFiles = .TRUE. (see below for examples).

useRBCtemp, useRBCsalt,
useRBCuVel, useRCvVel

PARM01 FALSE Whether to use RBCS for T/S/U/V.

tauRelaxT, tauRelaxT, tauRe-
laxT, tauRelaxT

PARM01 0.0 Timescales in seconds of relaxing in T/S/U/V (𝜏𝑇 in equation
above). Where mask is 1, relax rate will be 1/tauRelaxT. Must
be set if the corresponding useRBCxxx is TRUE.

relaxMaskFile (irbc) PARM01 ' ' Filename of 3-D file with mask (𝑀𝑟𝑏𝑐 in equation above).
Need a file for each irbc (1=temperature, 2=salinity,
3=ptracer1, 4=ptracer2, etc). If maskLEN is les than the num-
ber of tracers, then relaxMaskFile(maskLEN) is used
for all remaining tracers.

relaxMaskUFile, relaxMaskV-
File

PARM01 ' ' Filename of 3-D file with mask for U/V.

relaxTFile, relaxSFile, relax-
UFile, relaxVFile

PARM01 ' ' Name of file where the field that need to be relaxed to (𝑇𝑟𝑏𝑐 in
equation above) is stored. The file must contain 3-D records
to match the model domain. If rbcsSingleTimeFiles = .
FALSE., it must have one record for each forcing period.
Otherwise there must be a separate file for each period and
a 10-digit iteration number is appended to the file name (see
Table [Timing of RBCS relaxation fields] and examples be-
low).

useRBCptracers PARM02 FALSE DEPRECATED Use one useRBCpTrNum per tracer instead.
useRBCpTrNum (iTrc) PARM02 FALSE Whether to use RBCS for the corresponding passive tracer.
tauRelaxPTR (iTrc) PARM02 0.0 Relaxing timescale for the corresponding ptracer.
relaxPtracerFile (iTrc) PARM02 ' ' File with relax fields for the corresponding ptracer.
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8.3.2.3 Timing of relaxation forcing fields

For constant-in-time relaxation, set rbcsForcingPeriod =0. For time-varying relaxation, Table Table 8.4 illustrates the
relation between model time and forcing fields (either records in one big file or, for rbcsSingleTimeFiles = .TRUE.
, individual files labeled with an iteration number). With rbcsSingleTimeFiles = .TRUE. , this is the same as in the
offline package, except that the forcing offset is in seconds.

Table 8.4: Timing of RBCS relaxation fields
rbcsSingleTimeFiles = T F
𝑐 = 0 𝑐 ̸= 0 𝑐 ̸= 0

model time file number file number record
𝑡0 − 𝑝/2 𝑖0 𝑖0 + 𝑐/∆𝑡rbcs 𝑐/𝑝
𝑡0 + 𝑝/2 𝑖0 + 𝑝/∆𝑡rbcs 𝑖0 + 𝑝/∆𝑡rbcs 1
𝑡0 + 𝑝+ 𝑝/2 𝑖0 + 2𝑝/∆𝑡rbcs 𝑖0 + 2𝑝/∆𝑡rbcs 2
. . . . . . . . . . . .
𝑡0 + 𝑐− 𝑝/2 . . . 𝑖0 + 𝑐/∆𝑡rbcs 𝑐/𝑝
. . . . . . . . . . . .

where

𝑝 = rbcsForcingPeriod

𝑐 = rbcsForcingCycle

𝑡0 = rbcsForcingOffset

𝑖0 = rbcsIter0

∆𝑡rbcs = deltaTrbcs

8.3.2.4 Example 1: forcing with time averages starting at 𝑡 = 0

Cyclic data in a single file

Set rbcsSingleTimeFiles = .FALSE. and rbcsForcingOffset = 0, and the model will start by interpolating the last
and first records of rbcs data, placed at −𝑝/2 and 𝑝/2, resp., as appropriate for fields averaged over the time intervals
[−𝑝, 0] and [0, 𝑝].

Non-cyclic data, multiple files

Set rbcsForcingCycle = 0 and rbcsSingleTimeFiles = .TRUE. . With rbcsForcingOffset = 0, rbcsIter0 = 0 and deltaTr-
bcs = rbcsForcingPeriod, the model would then start by interpolating data from files relax\*File.0000000000.
data and relax\*File.0000000001.data, . . . , again placed at −𝑝/2 and 𝑝/2.
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8.3.2.5 Example 2: forcing with snapshots starting at 𝑡 = 0

Cyclic data in a single file

Set rbcsSingleTimeFiles = .FALSE. and rbcsForcingOffset =−𝑝/2, and the model will start forcing with the first
record at 𝑡 = 0.

Non-cyclic data, multiple files

Set rbcsForcingCycle = 0 and rbcsSingleTimeFiles = .TRUE.. In this case, it is more natural to set rbcsForcingOffset
=+𝑝/2. With rbcsIter0 = 0 and deltaTrbcs = rbcsForcingPeriod, the model would then start with data from files
relax\*File.0000000000.data at 𝑡 = 0. It would then proceed to interpolate between this file and files
relax\*File.0000000001.data at 𝑡 = rbcsForcingPeriod.

8.3.2.6 Do’s and Don’ts

8.3.2.7 Reference Material

8.3.2.8 Experiments and tutorials that use rbcs

In the directory, the following experiments use rbcs:

• exp4 : box with 4 open boundaries, simulating flow over a Gaussian bump based on [AHM97]

8.3.3 PTRACERS Package

8.3.3.1 Introduction

This is a ‘’passive” tracer package. Passive here means that the tracers don’t affect the density of the water (as opposed
to temperature and salinity) so no not actively affect the physics of the ocean. Tracers are initialized, advected, diffused
and various outputs are taken care of in this package. For methods to add additional sources and sinks of tracers use
the gchem Package.

Can use up tp 3843 tracers. But can not use the diagnostics package with more than about 90 tracers. Use
utils/matlab/ioLb2num.m and num2ioLb.m to find correspondence between tracer number and tracer designation in
the code for more than 99 tracers (since tracers only have two digit designations).

8.3.3.2 Equations

8.3.3.3 Key subroutines and parameters

The only code you should have to modify is: PTRACERS_SIZE.h where you need to set in the number of tracers to
be used in the experiment: PTRACERS_num.

Run time parameters set in data.ptracers:

• PTRACERS_Iter0 which is the integer timestep when the tracer experiment is initialized. If nIter0
= PTRACERS_Iter0 then the tracers are initialized to zero or from initial files. If nIter0 >
PTRACERS_Iter0 then tracers (and previous timestep tendency terms) are read in from a the ptracers pickup
file. Note that tracers of zeros will be carried around if nIter0 < PTRACERS_Iter0.

• PTRACERS_numInUse: number of tracers to be used in the run (needs to be <= PTRACERS_num set in
PTRACERS_SIZE.h)
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• PTRACERS_dumpFreq: defaults to dumpFreq (set in data)

• PTRACERS_taveFreq: defaults to taveFreq (set in data)

• PTRACERS_monitorFreq: defaults to monitorFreq (set in data)

• PTRACERS_timeave_mnc: needs useMNC, timeave_mnc, default to false

• PTRACERS_snapshot_mnc: needs useMNC , snapshot_mnc, default to false

• PTRACERS_monitor_mnc: needs useMNC, monitor_mnc, default to false

• PTRACERS_pickup_write_mnc: needs useMNC, pickup_write_mnc, default to false

• PTRACERS_pickup_read_mnc: needs useMNC, pickup_read_mnc, default to false

• PTRACERS_useRecords: defaults to false. If true, will write all tracers in a single file, otherwise each tracer in
a seperate file.

The following can be set for each tracer (tracer number iTrc):

• PTRACERS_advScheme (iTrc) will default to saltAdvScheme (set in data). For other options see Table MITgcm
Advection Schemes.

• PTRACERS_ImplVertAdv (iTrc): implicit vertical advection flag, defaults to false.

• PTRACERS_diffKh (iTrc): horizontal Laplacian Diffusivity, defaults to diffKhS (set in data).

• PTRACERS_diffK4 (iTrc): Biharmonic Diffusivity, defaults to diffK4S (set in data).

• PTRACERS_diffKr (iTrc): vertical diffusion, defaults to un-set.

• PTRACERS_diffKrNr (k,iTrc): level specific vertical diffusion, defaults to diffKrNrS. Will be set to PTRAC-
ERS_diffKr if this is set.

• PTRACERS_ref (k,iTrc): reference tracer value for each level k, defaults to 0. Currently only used for dilu-
tion/concentration of tracers at surface if PTRACERS_EvPrRn (iTrc) is set and convertFW2Salt (set in data) is
set to something other than -1 (note default is convertFW2Salt = 35).

• PTRACERS_EvPrRn (iTrc): tracer concentration in freshwater. Needed for calculation of dilu-
tion/concentration in surface layer due to freshwater addition/evaporation. Defaults to un-set in which case
no dilution/concentration occurs.

• PTRACERS_useGMRedi (iTrc): apply GM or not. Defaults to useGMREdi.

• PTRACERS_useKPP (iTrc): apply KPP or not. Defaults to useKPP.

• PTRACERS_initialFile (iTrc): file with initial tracer concentration. Will be used if PTRACERS_Iter0 =
nIter0. Default is no name, in which case tracer is initialised as zero. If PTRACERS_Iter0 < nIter0,
then tracer concentration will come from pickup_ptracer.

• PTRACERS_names (iTrc): tracer name. Needed for netcdf. Defaults to nothing.

• PTRACERS_long_names (iTrc): optional name in long form of tracer.

• PTRACERS_units (iTrc): optional units of tracer.
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8.3.3.4 PTRACERS Diagnostics

Note that beyond 99 ptracers, diagnostics will be labeled with letters in addition to numbers, e.g., the diagnostic for
the 100th ptracer is TRAC0a, etc.

---------------------------------------------------------------
<-Name->|<- code ->|<-- Units -->|<- Tile (max=80c)
---------------------------------------------------------------
TRAC01 |SMR MR|mol/m^3 |Dissolved Inorganic Carbon (DIC) [mol C/m^3]
→˓concentration
UTRAC01 |UUr MR|mol/m^3.m/s |Zonal Mass-Weighted Transp of DIC
VTRAC01 |VVr MR|mol/m^3.m/s |Merid Mass-Weighted Transp of DIC
WTRAC01 |WM MR|mol/m^3.m/s |Vert Mass-Weighted Transp of DIC
ForcTr01|SMR MR|mol/m^3/s |DIC forcing tendency
AB_gTr01|SMR MR|mol/m^3/s |DIC tendency from Adams-Bashforth
Tp_gTr01|SMR MR|mol/m^3/s |DIC total transport tendency (before gchem_
→˓forcing_sep)
ADVrTr01|WM LR|mol/m^3.m^3/s |Vertical Advective Flux of DIC
ADVxTr01|UU MR|mol/m^3.m^3/s |Zonal Advective Flux of DIC
ADVyTr01|VV MR|mol/m^3.m^3/s |Meridional Advective Flux of DIC
DFrETr01|WM LR|mol/m^3.m^3/s |Vertical Diffusive Flux of DIC (Explicit part)
DFxETr01|UU MR|mol/m^3.m^3/s |Zonal Diffusive Flux of DIC
DFyETr01|VV MR|mol/m^3.m^3/s |Meridional Diffusive Flux of DIC
DFrITr01|WM LR|mol/m^3.m^3/s |Vertical Diffusive Flux of DIC (Implicit part)
TRAC02 |SMR MR|mol/m^3 |Alkalinity (Alk) [mol eq/m^3] concentration
UTRAC02 |UUr MR|mol/m^3.m/s |Zonal Mass-Weighted Transp of Alk
VTRAC02 |VVr MR|mol/m^3.m/s |Merid Mass-Weighted Transp of Alk
WTRAC02 |WM MR|mol/m^3.m/s |Vert Mass-Weighted Transp of Alk
ForcTr02|SMR MR|mol/m^3/s |Alk forcing tendency
AB_gTr02|SMR MR|mol/m^3/s |Alk tendency from Adams-Bashforth
Tp_gTr02|SMR MR|mol/m^3/s |Alk total transport tendency (before gchem_
→˓forcing_sep)
ADVrTr02|WM LR|mol/m^3.m^3/s |Vertical Advective Flux of Alk
ADVxTr02|UU MR|mol/m^3.m^3/s |Zonal Advective Flux of Alk
ADVyTr02|VV MR|mol/m^3.m^3/s |Meridional Advective Flux of Alk
DFrETr02|WM LR|mol/m^3.m^3/s |Vertical Diffusive Flux of Alk (Explicit part)
DFxETr02|UU MR|mol/m^3.m^3/s |Zonal Diffusive Flux of Alk
DFyETr02|VV MR|mol/m^3.m^3/s |Meridional Diffusive Flux of Alk
DFrITr02|WM LR|mol/m^3.m^3/s |Vertical Diffusive Flux of Alk (Implicit part)
TRAC03 |SMR MR|mol/m^3 |Phosphate (PO4) [mol P/m^3] concentration
UTRAC03 |UUr MR|mol/m^3.m/s |Zonal Mass-Weighted Transp of PO4
VTRAC03 |VVr MR|mol/m^3.m/s |Merid Mass-Weighted Transp of PO4
WTRAC03 |WM MR|mol/m^3.m/s |Vert Mass-Weighted Transp of PO4
ForcTr03|SMR MR|mol/m^3/s |PO4 forcing tendency
AB_gTr03|SMR MR|mol/m^3/s |PO4 tendency from Adams-Bashforth
Tp_gTr03|SMR MR|mol/m^3/s |PO4 total transport tendency (before gchem_
→˓forcing_sep)
ADVrTr03|WM LR|mol/m^3.m^3/s |Vertical Advective Flux of PO4
ADVxTr03|UU MR|mol/m^3.m^3/s |Zonal Advective Flux of PO4
ADVyTr03|VV MR|mol/m^3.m^3/s |Meridional Advective Flux of PO4
DFrETr03|WM LR|mol/m^3.m^3/s |Vertical Diffusive Flux of PO4 (Explicit part)
DFxETr03|UU MR|mol/m^3.m^3/s |Zonal Diffusive Flux of PO4
DFyETr03|VV MR|mol/m^3.m^3/s |Meridional Diffusive Flux of PO4
DFrITr03|WM LR|mol/m^3.m^3/s |Vertical Diffusive Flux of PO4 (Implicit part)
TRAC04 |SMR MR|mol/m^3 |Dissolved Organic Phosphorus (DOP) [mol P/m^3]
→˓concentration
UTRAC04 |UUr MR|mol/m^3.m/s |Zonal Mass-Weighted Transp of DOP
VTRAC04 |VVr MR|mol/m^3.m/s |Merid Mass-Weighted Transp of DOP

(continues on next page)
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(continued from previous page)

WTRAC04 |WM MR|mol/m^3.m/s |Vert Mass-Weighted Transp of DOP
ForcTr04|SMR MR|mol/m^3/s |DOP forcing tendency
AB_gTr04|SMR MR|mol/m^3/s |DOP tendency from Adams-Bashforth
Tp_gTr04|SMR MR|mol/m^3/s |DOP total transport tendency (before gchem_
→˓forcing_sep)
ADVrTr04|WM LR|mol/m^3.m^3/s |Vertical Advective Flux of DOP
ADVxTr04|UU MR|mol/m^3.m^3/s |Zonal Advective Flux of DOP
ADVyTr04|VV MR|mol/m^3.m^3/s |Meridional Advective Flux of DOP
DFrETr04|WM LR|mol/m^3.m^3/s |Vertical Diffusive Flux of DOP (Explicit part)
DFxETr04|UU MR|mol/m^3.m^3/s |Zonal Diffusive Flux of DOP
DFyETr04|VV MR|mol/m^3.m^3/s |Meridional Diffusive Flux of DOP
DFrITr04|WM LR|mol/m^3.m^3/s |Vertical Diffusive Flux of DOP (Implicit part)
TRAC05 |SMR MR|mol/m^3 |Dissolved Oxygen (O2) [mol O/m^3] concentration
UTRAC05 |UUr MR|mol/m^3.m/s |Zonal Mass-Weighted Transp of O2
VTRAC05 |VVr MR|mol/m^3.m/s |Merid Mass-Weighted Transp of O2
WTRAC05 |WM MR|mol/m^3.m/s |Vert Mass-Weighted Transp of O2
ForcTr05|SMR MR|mol/m^3/s |O2 forcing tendency
AB_gTr05|SMR MR|mol/m^3/s |O2 tendency from Adams-Bashforth
Tp_gTr05|SMR MR|mol/m^3/s |O2 total transport tendency (before gchem_
→˓forcing_sep)
ADVrTr05|WM LR|mol/m^3.m^3/s |Vertical Advective Flux of O2
ADVxTr05|UU MR|mol/m^3.m^3/s |Zonal Advective Flux of O2
ADVyTr05|VV MR|mol/m^3.m^3/s |Meridional Advective Flux of O2
DFrETr05|WM LR|mol/m^3.m^3/s |Vertical Diffusive Flux of O2 (Explicit part)
DFxETr05|UU MR|mol/m^3.m^3/s |Zonal Diffusive Flux of O2
DFyETr05|VV MR|mol/m^3.m^3/s |Meridional Diffusive Flux of O2
DFrITr05|WM LR|mol/m^3.m^3/s |Vertical Diffusive Flux of O2 (Implicit part)

8.3.3.5 Do’s and Don’ts

8.3.3.6 Reference Material

8.4 Ocean Packages

8.4.1 GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization

There are two parts to the Redi/GM parameterization of geostrophic eddies. The first, the Redi scheme [Red82], aims
to mix tracer properties along isentropes (neutral surfaces) by means of a diffusion operator oriented along the local
isentropic surface. The second part, GM [GM90][GWMM95] , adiabatically re-arranges tracers through an advective
flux where the advecting flow is a function of slope of the isentropic surfaces.

The first GCM implementation of the Redi scheme was by [Cox87] in the GFDL ocean circulation model. The
original approach failed to distinguish between isopycnals and surfaces of locally referenced potential density (now
called neutral surfaces) which are proper isentropes for the ocean. As will be discussed later, it also appears that the
Cox implementation is susceptible to a computational mode. Due to this mode, the Cox scheme requires a background
lateral diffusion to be present to conserve the integrity of the model fields.

The GM parameterization was then added to the GFDL code in the form of a non-divergent bolus velocity. The method
defines two stream-functions expressed in terms of the isoneutral slopes subject to the boundary condition of zero value
on upper and lower boundaries. The horizontal bolus velocities are then the vertical derivative of these functions. Here
in lies a problem highlighted by [GGP+98]: the bolus velocities involve multiple derivatives on the potential density
field, which can consequently give rise to noise. Griffies et al. point out that the GM bolus fluxes can be identically
written as a skew flux which involves fewer differential operators. Further, combining the skew flux formulation and
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Redi scheme, substantial cancellations take place to the point that the horizontal fluxes are unmodified from the lateral
diffusion parameterization.

8.4.1.1 Redi scheme: Isopycnal diffusion

The Redi scheme diffuses tracers along isopycnals and introduces a term in the tendency (rhs) of such a tracer (here
𝜏 ) of the form:

∇ · 𝜅𝜌KRedi∇𝜏

where 𝜅𝜌 is the along isopycnal diffusivity and KRedi is a rank 2 tensor that projects the gradient of 𝜏 onto the
isopycnal surface. The unapproximated projection tensor is:

KRedi =
1

1 + |S|2

⎛⎝ 1 + 𝑆2
𝑦 −𝑆𝑥𝑆𝑦 𝑆𝑥

−𝑆𝑥𝑆𝑦 1 + 𝑆2
𝑥 𝑆𝑦

𝑆𝑥 𝑆𝑦 |𝑆|2

⎞⎠
Here, 𝑆𝑥 = −𝜕𝑥𝜎/𝜕𝑧𝜎 and 𝑆𝑦 = −𝜕𝑦𝜎/𝜕𝑧𝜎 are the components of the isoneutral slope.

The first point to note is that a typical slope in the ocean interior is small, say of the order 10−4. A maximum slope
might be of order 10−2 and only exceeds such in unstratified regions where the slope is ill defined. It is therefore jus-
tifiable, and customary, to make the small slope approximation, |𝑆| << 1. The Redi projection tensor then becomes:

KRedi =

⎛⎝ 1 0 𝑆𝑥

0 1 𝑆𝑦

𝑆𝑥 𝑆𝑦 |𝑆|2

⎞⎠
8.4.1.2 GM parameterization

The GM parameterization aims to represent the “advective” or “transport” effect of geostrophic eddies by means of a
“bolus” velocity, u⋆. The divergence of this advective flux is added to the tracer tendency equation (on the rhs):

−∇ · 𝜏u⋆

The bolus velocity u⋆ is defined as the rotational of a streamfunction F⋆=(𝐹 ⋆
𝑥 , 𝐹

⋆
𝑦 , 0):

u⋆ = ∇× F⋆ =

⎛⎝ −𝜕𝑧𝐹 ⋆
𝑦

+𝜕𝑧𝐹
⋆
𝑥

𝜕𝑥𝐹
⋆
𝑦 − 𝜕𝑦𝐹

⋆
𝑥

⎞⎠ ,

and thus is automatically non-divergent. In the GM parameterization, the streamfunction is specified in terms of the
isoneutral slopes 𝑆𝑥 and 𝑆𝑦:

𝐹 ⋆
𝑥 = −𝜅𝐺𝑀𝑆𝑦

𝐹 ⋆
𝑦 = 𝜅𝐺𝑀𝑆𝑥

with boundary conditions 𝐹 ⋆
𝑥 = 𝐹 ⋆

𝑦 = 0 on upper and lower boundaries. In the end, the bolus transport in the GM
parameterization is given by:

u⋆ =

⎛⎝ 𝑢⋆

𝑣⋆

𝑤⋆

⎞⎠ =

⎛⎝ −𝜕𝑧(𝜅𝐺𝑀𝑆𝑥)
−𝜕𝑧(𝜅𝐺𝑀𝑆𝑦)

𝜕𝑥(𝜅𝐺𝑀𝑆𝑥) + 𝜕𝑦(𝜅𝐺𝑀𝑆𝑦)

⎞⎠
This is the form of the GM parameterization as applied by Donabasaglu, 1997, in MOM versions 1 and 2.

Note that in the MITgcm, the variables containing the GM bolus streamfunction are:(︂
𝐺𝑀_𝑃𝑠𝑖𝑋
𝐺𝑀_𝑃𝑠𝑖𝑌

)︂
=

(︂
𝜅𝐺𝑀𝑆𝑥

𝜅𝐺𝑀𝑆𝑦

)︂
=

(︂
𝐹 ⋆
𝑦

−𝐹 ⋆
𝑥

)︂
.
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8.4.1.3 Griffies Skew Flux

[Gri98] notes that the discretisation of bolus velocities involves multiple layers of differencing and interpolation that
potentially lead to noisy fields and computational modes. He pointed out that the bolus flux can be re-written in terms
of a non-divergent flux and a skew-flux:

u⋆𝜏 =

⎛⎝ −𝜕𝑧(𝜅𝐺𝑀𝑆𝑥)𝜏
−𝜕𝑧(𝜅𝐺𝑀𝑆𝑦)𝜏

(𝜕𝑥𝜅𝐺𝑀𝑆𝑥 + 𝜕𝑦𝜅𝐺𝑀𝑆𝑦)𝜏

⎞⎠
=

⎛⎝ −𝜕𝑧(𝜅𝐺𝑀𝑆𝑥𝜏)
−𝜕𝑧(𝜅𝐺𝑀𝑆𝑦𝜏)

𝜕𝑥(𝜅𝐺𝑀𝑆𝑥𝜏) + 𝜕𝑦(𝜅𝐺𝑀𝑆𝑦𝜏)

⎞⎠+

⎛⎝ 𝜅𝐺𝑀𝑆𝑥𝜕𝑧𝜏
𝜅𝐺𝑀𝑆𝑦𝜕𝑧𝜏

−𝜅𝐺𝑀𝑆𝑥𝜕𝑥𝜏 − 𝜅𝐺𝑀𝑆𝑦𝜕𝑦𝜏

⎞⎠
The first vector is non-divergent and thus has no effect on the tracer field and can be dropped. The remaining flux can
be written:

u⋆𝜏 = −𝜅GMKGM∇𝜏

where

KGM =

⎛⎝ 0 0 −𝑆𝑥

0 0 −𝑆𝑦

𝑆𝑥 𝑆𝑦 0

⎞⎠
is an anti-symmetric tensor.

This formulation of the GM parameterization involves fewer derivatives than the original and also involves only terms
that already appear in the Redi mixing scheme. Indeed, a somewhat fortunate cancellation becomes apparent when we
use the GM parameterization in conjunction with the Redi isoneutral mixing scheme:

𝜅𝜌KRedi∇𝜏 − u⋆𝜏 = (𝜅𝜌KRedi + 𝜅GMKGM)∇𝜏

In the instance that 𝜅𝐺𝑀 = 𝜅𝜌 then

𝜅𝜌KRedi + 𝜅GMKGM = 𝜅𝜌

⎛⎝ 1 0 0
0 1 0

2𝑆𝑥 2𝑆𝑦 |𝑆|2

⎞⎠
which differs from the variable Laplacian diffusion tensor by only two non-zero elements in the 𝑧-row.

Subroutine

S/R GMREDI_CALC_TENSOR (pkg/gmredi/gmredi_calc_tensor.F)

𝜎𝑥: SlopeX (argument on entry)

𝜎𝑦: SlopeY (argument on entry)

𝜎𝑧: SlopeY (argument)

𝑆𝑥: SlopeX (argument on exit)

𝑆𝑦: SlopeY (argument on exit)
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8.4.1.4 Variable 𝜅𝐺𝑀

[VMHS97] suggest making the eddy coefficient, 𝜅𝐺𝑀 , a function of the Eady growth rate, |𝑓 |/
√
𝑅𝑖. The formula

involves a non-dimensional constant, 𝛼, and a length-scale 𝐿:

𝜅𝐺𝑀 = 𝛼𝐿2 |𝑓 |√
𝑅𝑖

𝑧

where the Eady growth rate has been depth averaged (indicated by the over-line). A local Richardson number is
defined 𝑅𝑖 = 𝑁2/(𝜕𝑢/𝜕𝑧)2 which, when combined with thermal wind gives:

1

𝑅𝑖
=

(𝜕𝑢
𝜕𝑧 )2

𝑁2
=

( 𝑔
𝑓𝜌𝑜

|∇𝜎|)2

𝑁2
=

𝑀4

|𝑓 |2𝑁2

where 𝑀2 is defined 𝑀2 = 𝑔
𝜌𝑜
|∇𝜎|. Substituting into the formula for 𝜅𝐺𝑀 gives:

𝜅𝐺𝑀 = 𝛼𝐿2𝑀
2

𝑁

𝑧

= 𝛼𝐿2𝑀
2

𝑁2
𝑁

𝑧

= 𝛼𝐿2|𝑆|𝑁
𝑧

8.4.1.5 Tapering and stability

Experience with the GFDL model showed that the GM scheme has to be matched to the convective parameterization.
This was originally expressed in connection with the introduction of the KPP boundary layer scheme [LMD94] but in
fact, as subsequent experience with the MIT model has found, is necessary for any convective parameterization.

Subroutine

S/R GMREDI_SLOPE_LIMIT (pkg/gmredi/gmredi_slope_limit.F)

𝜎𝑥, 𝑠𝑥: SlopeX (argument)

𝜎𝑦, 𝑠𝑦: SlopeY (argument)

𝜎𝑧: dSigmadRReal (argument)

𝑧*𝜎: dRdSigmaLtd (argument)

8.4.1.6 Slope clipping

Deep convection sites and the mixed layer are indicated by homogenized, unstable or nearly unstable stratification. The
slopes in such regions can be either infinite, very large with a sign reversal or simply very large. From a numerical point
of view, large slopes lead to large variations in the tensor elements (implying large bolus flow) and can be numerically
unstable. This was first recognized by [Cox87] who implemented “slope clipping” in the isopycnal mixing tensor.
Here, the slope magnitude is simply restricted by an upper limit:

|∇𝜎| =
√︁
𝜎2
𝑥 + 𝜎2

𝑦

𝑆𝑙𝑖𝑚 = − |∇𝜎|
𝑆𝑚𝑎𝑥

where 𝑆𝑚𝑎𝑥 is a parameter

𝜎⋆
𝑧 = min(𝜎𝑧, 𝑆𝑙𝑖𝑚)

[𝑠𝑥, 𝑠𝑦] = − [𝜎𝑥, 𝜎𝑦]

𝜎⋆
𝑧
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Figure 8.7: Taper functions used in GKW91 and DM95.
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Figure 8.8: Effective slope as a function of ‘true’ slope using Cox slope clipping, GKW91 limiting and DM95 limiting.

430 Chapter 8. Packages I - Physical Parameterizations



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

Notice that this algorithm assumes stable stratification through the “min” function. In the case where the fluid is well
stratified (𝜎𝑧 < 𝑆𝑙𝑖𝑚) then the slopes evaluate to:

[𝑠𝑥, 𝑠𝑦] = − [𝜎𝑥, 𝜎𝑦]

𝜎𝑧

while in the limited regions (𝜎𝑧 > 𝑆𝑙𝑖𝑚) the slopes become:

[𝑠𝑥, 𝑠𝑦] =
[𝜎𝑥, 𝜎𝑦]

|∇𝜎|/𝑆𝑚𝑎𝑥

so that the slope magnitude is limited
√︁
𝑠2𝑥 + 𝑠2𝑦 = 𝑆𝑚𝑎𝑥.

The slope clipping scheme is activated in the model by setting GM_taper_scheme = ’clipping’ in data.gmredi.

Even using slope clipping, it is normally the case that the vertical diffusion term (with coefficient 𝜅𝜌K33 = 𝜅𝜌𝑆
2
𝑚𝑎𝑥)

is large and must be time-stepped using an implicit procedure (see section on discretisation and code later). Fig. [fig-
mixedlayer] shows the mixed layer depth resulting from a) using the GM scheme with clipping and b) no GM scheme
(horizontal diffusion). The classic result of dramatically reduced mixed layers is evident. Indeed, the deep convection
sites to just one or two points each and are much shallower than we might prefer. This, it turns out, is due to the
over zealous re-stratification due to the bolus transport parameterization. Limiting the slopes also breaks the adiabatic
nature of the GM/Redi parameterization, re-introducing diabatic fluxes in regions where the limiting is in effect.

8.4.1.7 Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991

The tapering scheme used in [GKW91] addressed two issues with the clipping method: the introduction of large
vertical fluxes in addition to convective adjustment fluxes is avoided by tapering the GM/Redi slopes back to zero in
low-stratification regions; the adjustment of slopes is replaced by a tapering of the entire GM/Redi tensor. This means
the direction of fluxes is unaffected as the amplitude is scaled.

The scheme inserts a tapering function, 𝑓1(𝑆), in front of the GM/Redi tensor:

𝑓1(𝑆) = min

[︃
1,

(︂
𝑆𝑚𝑎𝑥

|𝑆|

)︂2
]︃

where 𝑆𝑚𝑎𝑥 is the maximum slope you want allowed. Where the slopes, |𝑆| < 𝑆𝑚𝑎𝑥 then 𝑓1(𝑆) = 1 and the tensor
is un-tapered but where |𝑆| ≥ 𝑆𝑚𝑎𝑥 then 𝑓1(𝑆) scales down the tensor so that the effective vertical diffusivity term
𝜅𝑓1(𝑆)|𝑆|2 = 𝜅𝑆2

𝑚𝑎𝑥.

The GKW91 tapering scheme is activated in the model by setting GM_taper_scheme = ’gkw91’ in data.gmredi.

8.4.1.8 Tapering: Danabasoglu and McWilliams, J. Clim. 1995

The tapering scheme used by followed a similar procedure but used a different tapering function, 𝑓1(𝑆):

𝑓1(𝑆) =
1

2

(︂
1 + tanh

[︂
𝑆𝑐 − |𝑆|
𝑆𝑑

]︂)︂
where 𝑆𝑐 = 0.004 is a cut-off slope and 𝑆𝑑 = 0.001 is a scale over which the slopes are smoothly tapered. Function-
ally, the operates in the same way as the GKW91 scheme but has a substantially lower cut-off, turning off the GM/Redi
SGS parameterization for weaker slopes.

The DM95 tapering scheme is activated in the model by setting GM_taper_scheme = ’dm95’ in data.gmredi.
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8.4.1.9 Tapering: Large, Danabasoglu and Doney, JPO 1997

The tapering used in [LDDM97] is based on the DM95 tapering scheme, but also tapers the scheme with an additional
function of height, 𝑓2(𝑧), so that the GM/Redi SGS fluxes are reduced near the surface:

𝑓2(𝑧) =
1

2

(︁
1 + sin(𝜋

𝑧

𝐷
− 𝜋

2
)
)︁

where𝐷 = 𝐿𝜌|𝑆| is a depth-scale and 𝐿𝜌 = 𝑐/𝑓 with 𝑐 = 2 m s:math:^{-1}. This tapering with height was introduced
to fix some spurious interaction with the mixed-layer KPP parameterization.

The LDD97 tapering scheme is activated in the model by setting GM_taper_scheme = ’ldd97’ in data.gmredi.

8.4.1.10 Package Reference

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
GM_VisbK| 1 |SM P M1 |m^2/s |Mixing coefficient from Visbeck etal
→˓parameterization
GM_Kux | 15 |UU P 177MR |m^2/s |K_11 element (U.point, X.dir) of GM-
→˓Redi tensor
GM_Kvy | 15 |VV P 176MR |m^2/s |K_22 element (V.point, Y.dir) of GM-
→˓Redi tensor
GM_Kuz | 15 |UU 179MR |m^2/s |K_13 element (U.point, Z.dir) of GM-
→˓Redi tensor
GM_Kvz | 15 |VV 178MR |m^2/s |K_23 element (V.point, Z.dir) of GM-
→˓Redi tensor
GM_Kwx | 15 |UM 181LR |m^2/s |K_31 element (W.point, X.dir) of GM-
→˓Redi tensor
GM_Kwy | 15 |VM 180LR |m^2/s |K_32 element (W.point, Y.dir) of GM-
→˓Redi tensor
GM_Kwz | 15 |WM P LR |m^2/s |K_33 element (W.point, Z.dir) of GM-
→˓Redi tensor
GM_PsiX | 15 |UU 184LR |m^2/s |GM Bolus transport stream-function :
→˓X component
GM_PsiY | 15 |VV 183LR |m^2/s |GM Bolus transport stream-function :
→˓Y component
GM_KuzTz| 15 |UU 186MR |degC.m^3/s |Redi Off-diagonal Tempetature flux: X
→˓component
GM_KvzTz| 15 |VV 185MR |degC.m^3/s |Redi Off-diagonal Tempetature flux: Y
→˓component

8.4.1.11 Experiments and tutorials that use gmredi

• Global Ocean tutorial, in tutorial_global_oce_latlon verification directory, described in section [sec:eg-global]

• Front Relax experiment, in front_relax verification directory.

• Ideal 2D Ocean experiment, in ideal_2D_oce verification directory.
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8.4.2 KPP: Nonlocal K-Profile Parameterization for Vertical Mixing

Authors: Dimitris Menemenlis and Patrick Heimbach

8.4.2.1 Introduction

The nonlocal K-Profile Parameterization (KPP) scheme of [LMD94] unifies the treatment of a variety of unresolved
processes involved in vertical mixing. To consider it as one mixing scheme is, in the view of the authors, somewhat
misleading since it consists of several entities to deal with distinct mixing processes in the ocean’s surface boundary
layer, and the interior:

1. mixing in the interior is goverened by shear instability (modeled as function of the local gradient Richardson
number), internal wave activity (assumed constant), and double-diffusion (not implemented here).

2. a boundary layer depth ℎ or hbl is determined at each grid point, based on a critical value of turbulent processes
parameterized by a bulk Richardson number;

3. mixing is strongly enhanced in the boundary layer under the stabilizing or destabilizing influence of surface
forcing (buoyancy and momentum) enabling boundary layer properties to penetrate well into the thermocline;
mixing is represented through a polynomial profile whose coefficients are determined subject to several con-
traints;

4. the boundary-layer profile is made to agree with similarity theory of turbulence and is matched, in the asymptotic
sense (function and derivative agree at the boundary), to the interior thus fixing the polynomial coefficients;
matching allows for some fraction of the boundary layer mixing to affect the interior, and vice versa;

5. a “non-local” term 𝛾 or ghat which is independent of the vertical property gradient further enhances mixing
where the water column is unstable

The scheme has been extensively compared to observations (see e.g. [LDDM97]) and is now common in many ocean
models.

The current code originates in the NCAR NCOM 1-D code and was kindly provided by Bill Large and Jan Morzel.
It has been adapted first to the MITgcm vector code and subsequently to the current parallel code. Adjustment were
mainly in conjunction with WRAPPER requirements (domain decomposition and threading capability), to enable
automatic differentiation of tangent linear and adjoint code via TAMC.

The following sections will describe the KPP package configuration and compiling ([sec:pkg:kpp:comp]),
the settings and choices of runtime parameters ([sec:pkg:kpp:runtime]), more detailed description of equa-
tions to which these parameters relate ([sec:pkg:kpp:equations]), and key subroutines where they are used
([sec:pkg:kpp:flowchart]), and diagnostics output of KPP-derived diffusivities, viscosities and boundary-layer/mixed-
layer depths ([sec:pkg:kpp:diagnostics]).

8.4.2.2 KPP configuration and compiling

As with all MITgcm packages, KPP can be turned on or off at compile time

• using the packages.conf file by adding kpp to it,

• or using genmake2 adding -enable=kpp or -disable=kpp switches

• Required packages and CPP options: No additional packages are required, but the MITgcm kernel flag enabling
the penetration of shortwave radiation below the surface layer needs to be set in CPP_OPTIONS.h as follows:
#define SHORTWAVE_HEATING

(see Section [sec:buildingCode]).

Parts of the KPP code can be enabled or disabled at compile time via CPP preprocessor flags. These options are set in
KPP_OPTIONS.h. Table Table 8.5 summarizes them.
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Table 8.5: CPP flags for KPP
CPP option Description
_KPP_RL
FRUGAL_KPP
KPP_SMOOTH_SHSQ
KPP_SMOOTH_DVSQ
KPP_SMOOTH_DENS
KPP_SMOOTH_VISC
KPP_SMOOTH_DIFF
KPP_ESTIMATE_UREF
INCLUDE_DIAGNOSTICS_INTERFACE_CODE
KPP_GHAT
EXCLUDE_KPP_SHEAR_MIX

8.4.2.3 Run-time parameters

Run-time parameters are set in files data.pkg and data.kpp which are read in kpp_readparms.F. Run-time
parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) required MITgcm flags,
(iii) package flags and parameters.

Enabling the package

The KPP package is switched on at runtime by setting useKPP = .TRUE. in data.pkg.

Required MITgcm flags

The following flags/parameters of the MITgcm dynamical kernel need to be set in conjunction with KPP:

implicitViscosity = .TRUE. enable implicit vertical viscosity
implicitDiffusion = .TRUE. enable implicit vertical diffusion

Package flags and parameters

Table 8.6 summarizes the runtime flags that are set in data.pkg, and their default values.

Table 8.6: Runtime flags for KPP
Flag/parameter default Description
I/O related parameters
kpp_freq deltaTClock Recomputation frequency for KPP

fields
kpp_dumpFreq dumpFreq Dump frequency of KPP field snap-

shots
kpp_taveFreq taveFreq Averaging and dump frequency of

KPP fields
KPPmixingMaps .FALSE. include KPP diagnostic maps in

STDOUT
continues on next page
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Table 8.6 – continued from previous page
Flag/parameter default Description
KPPwriteState .FALSE. write KPP state to file
KPP_ghatUseTotalDiffus .FALSE. if .T. compute non-local term us-

ing
total vertical diffusivity
if .F. use KPP vertical diffusivity

General KPP parameters
minKPPhbl delRc(1) Minimum boundary layer depth
epsilon 0.1 nondimensional extent of the sur-

face layer
vonk 0.4 von Karman constant
dB_dz 5.2E-5 s–2 maximum dB/dz in mixed layer

hMix
concs 98.96
concv 1.8
Boundary layer parameters (S/R bldepth)
Ricr 0.3 critical bulk Richardson number
cekman 0.7 coefficient for Ekman depth
cmonob 1.0 coefficient for Monin-Obukhov

depth
concv 1.8 ratio of interior to entrainment depth

buoyancy frequency
hbf 1.0 fraction of depth to which absorbed

solar radiation contributes to surface
buoyancy forcing

Vtc non-dim. coeff. for velocity scale of
turbulant velocity shear ( = function
of concv,concs,epsilon,vonk,Ricr)

Boundary layer mixing parameters (S/R blmix)
cstar

10.
proportionality coefficient for non-
local transport

cg non-dimensional coefficient for
counter-gradient term ( = function
of cstar,vonk,concs,epsilon)

Interior mixing parameters (S/R Ri_iwmix)
Riinfty 0.7 gradient Richardson number limit

for shear instability
BVDQcon -0.2E-4 s–2 Brunt-Väisalä squared
difm0 0.005 m2 s–1 viscosity max. due to shear instabil-

ity
difs0 0.005 m2/s tracer diffusivity max. due to shear

instability
dift0 0.005 m2/s heat diffusivity max. due to shear

instability
difmcon 0.1 viscosity due to convective instabil-

ity
difscon 0.1 tracer diffusivity due to convective

instability
diftcon 0.1 heat diffusivity due to convective in-

stability
continues on next page
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Table 8.6 – continued from previous page
Flag/parameter default Description
Rrho0 not used limit for double diffusive density ra-

tio
dsfmax not used maximum diffusivity in case of salt

fingering

8.4.2.4 Equations and key routines

We restrict ourselves to writing out only the essential equations that relate to main processes and parameters mentioned
above. We closely follow the notation of [LMD94].

KPP_CALC:

Top-level routine.

KPP_MIX:

Intermediate-level routine

BLMIX: Mixing in the boundary layer

The vertical fluxes 𝑤𝑥 of momentum and tracer properties 𝑋 is composed of a gradient-flux term (proportional to the
vertical property divergence 𝜕𝑧𝑋), and a “nonlocal” term 𝛾𝑥 that enhances the gradient-flux mixing coefficient 𝐾𝑥

𝑤𝑥(𝑑) = −𝐾𝑥

(︂
𝜕𝑋

𝜕𝑧
− 𝛾𝑥

)︂
• Boundary layer mixing profile It is expressed as the product of the boundary layer depth ℎ, a depth-dependent

turbulent velocity scale 𝑤𝑥(𝜎) and a non-dimensional shape function 𝐺(𝜎)

𝐾𝑥(𝜎) = ℎ𝑤𝑥(𝜎)𝐺(𝜎)

with dimensionless vertical coordinate 𝜎 = 𝑑/ℎ. For details of :math:` w_x(sigma)` and 𝐺(𝜎) we refer to .

• Nonlocal mixing term The nonlocal transport term 𝛾 is nonzero only for tracers in unstable (convective) forcing
conditions. Thus, depending on the stability parameter 𝜁 = 𝑑/𝐿 (with depth 𝑑, Monin-Obukhov length scale 𝐿)
it has the following form:

𝛾𝑥 = 0 𝜁 ≥ 0

𝛾𝑚 = 0

𝛾𝑠 = 𝐶𝑠
𝑤𝑠0

𝑤𝑠(𝜎)ℎ

𝛾𝜃 = 𝐶𝑠
𝑤𝜃0+𝑤𝜃𝑅
𝑤𝑠(𝜎)ℎ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
𝜁 < 0

In practice, the routine peforms the following tasks:

1. compute velocity scales at hbl

2. find the interior viscosities and derivatives at hbl
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3. compute turbulent velocity scales on the interfaces

4. compute the dimensionless shape functions at the interfaces

5. compute boundary layer diffusivities at the interfaces

6. compute nonlocal transport term

7. find diffusivities at kbl-1 grid level

RI_IWMIX: Mixing in the interior

Compute interior viscosity and diffusivity coefficients due to

• shear instability (dependent on a local gradient Richardson number),

• to background internal wave activity, and

• to static instability (local Richardson number < 0).

TO BE CONTINUED.

BLDEPTH: Boundary layer depth calculation:

The oceanic planetary boundary layer depth, hbl, is determined as the shallowest depth where the bulk Richardson
number is equal to the critical value, Ricr.

Bulk Richardson numbers are evaluated by computing velocity and buoyancy differences between values at zgrid(kl)
< 0 and surface reference values. In this configuration, the reference values are equal to the values in the surface layer.
When using a very fine vertical grid, these values should be computed as the vertical average of velocity and buoyancy
from the surface down to epsilon*zgrid(kl).

When the bulk Richardson number at k exceeds Ricr, hbl is linearly interpolated between grid levels zgrid(k) and
zgrid(k-1).

The water column and the surface forcing are diagnosed for stable/ustable forcing conditions, and where hbl is relative
to grid points (caseA), so that conditional branches can be avoided in later subroutines.

TO BE CONTINUED.

KPP_CALC_DIFF_T/_S, KPP_CALC_VISC:

Add contribution to net diffusivity/viscosity from KPP diffusivity/viscosity.

TO BE CONTINUED.

KPP_TRANSPORT_T/_S/_PTR:

Add non local KPP transport term (ghat) to diffusive temperature/salinity/passive tracer flux. The nonlocal transport
term is nonzero only for scalars in unstable (convective) forcing conditions.

TO BE CONTINUED.
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Implicit time integration

TO BE CONTINUED.

Penetration of shortwave radiation

TO BE CONTINUED.

8.4.2.5 Flow chart

C !CALLING SEQUENCE:
c ...
c kpp_calc (TOP LEVEL ROUTINE)
c |
c |-- statekpp: o compute all EOS/density-related arrays
c | o uses S/R FIND_ALPHA, FIND_BETA, FIND_RHO
c |
c |-- kppmix
c | |--- ri_iwmix (compute interior mixing coefficients due to constant
c | | internal wave activity, static instability,
c | | and local shear instability).
c | |
c | |--- bldepth (diagnose boundary layer depth)
c | |
c | |--- blmix (compute boundary layer diffusivities)
c | |
c | |--- enhance (enhance diffusivity at interface kbl - 1)
c | o
c |
c |-- swfrac
c o

8.4.2.6 KPP diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized here:

------------------------------------------------------
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

------------------------------------------------------
KPPviscA| 23 |SM |m^2/s |KPP vertical eddy viscosity coefficient
KPPdiffS| 23 |SM |m^2/s |Vertical diffusion coefficient for salt & tracers
KPPdiffT| 23 |SM |m^2/s |Vertical diffusion coefficient for heat
KPPghat | 23 |SM |s/m^2 |Nonlocal transport coefficient
KPPhbl | 1 |SM |m |KPP boundary layer depth, bulk Ri criterion
KPPmld | 1 |SM |m |Mixed layer depth, dT=.8degC density criterion
KPPfrac | 1 |SM | |Short-wave flux fraction penetrating mixing layer
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8.4.2.7 Reference experiments

lab_sea:

natl_box:

8.4.2.8 References

8.4.2.9 Experiments and tutorials that use kpp

• Labrador Sea experiment, in lab_sea verification directory

8.4.3 GGL90: a TKE vertical mixing scheme

(in directory: pkg/ggl90/ )

8.4.3.1 Key subroutines, parameters and files

see [GGL90]

8.4.3.2 Experiments and tutorials that use GGL90

• Vertical mixing verification experiment (vermix/input.ggl90)

8.4.4 OPPS: Ocean Penetrative Plume Scheme

(in directory: pkg/opps/ )

8.4.4.1 Key subroutines, parameters and files

See [PR97]

8.4.4.2 Experiments and tutorials that use OPPS

• Vertical mixing verification experiment (vermix/input.opps)

8.4.5 KL10: Vertical Mixing Due to Breaking Internal Waves

(in directory: pkg/kl10/ )

Authors: Jody M. Klymak
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8.4.5.1 Introduction

The [KL10] parameterization for breaking internal waves is meant to represent mixing in the ocean “interior” due to
convective instability. Many mixing schemes in the presence of unstable stratification simply turn on an arbitrarily
large diffusivity and viscosity in the overturning region. This assumes the fluid completely mixes, which is proba-
bly not a terrible assumption, but it also makes estimating the turbulence dissipation rate in the overturning region
meaningless.

The KL10 scheme overcomes this limitation by estimating the viscosity and diffusivity from a combination of the
Ozmidov relation and the Osborn relation, assuming a turbulent Prandtl number of one. The Ozmidov relation says
that outer scale of turbulence in an overturn will scale with the strength of the turbulence 𝜖, and the stratification 𝑁 , as

𝐿2
𝑂 ≈ 𝜖𝑁−3. (8.1)

The Osborn relation relates the strength of the dissipation to the vertical diffusivity as

𝐾𝑣 = Γ𝜖𝑁−2,

where Γ ≈ 0.2 is the mixing ratio of buoyancy flux to thermal dissipation due to the turbulence. Combining the two
gives us

𝐾𝑣 ≈ Γ𝐿2
𝑂𝑁.

The ocean turbulence community often approximates the Ozmidov scale by the root-mean-square of the Thorpe dis-
placement, 𝛿𝑧 , in an overturn [Tho77]. The Thorpe displacement is the distance one would have to move a water parcel
for the water column to be stable, and is readily measured in a measured profile by sorting the profile and tracking
how far each parcel moves during the sorting procedure. This method gives an imperfect estimate of the turbulence,
but it has been found to agree on average over a large range of overturns [WG94][SG94][Mou96].

The algorithm coded here is a slight simplification of the usual Thorpe method for estimating turbulence in overturning
regions. Usually, overturns are identified and 𝑁 is averaged over the overturn. Here, instead we estimate

𝐾𝑣(𝑧) ≈ Γ𝛿2𝑧 𝑁𝑠(𝑧).

where 𝑁𝑠(𝑧) is the local sorted stratification. This saves complexity in the code and adds a slight inaccuracy, but we
don’t believe is biased.

We assume a turbulent Prandtl number of 1, so 𝐴𝑣 = 𝐾𝑣 .

We also calculate and output a turbulent dissipation from this scheme. We do not simply evaluate the overturns for 𝜖
using ([eq:pkg:kl10:Lo]). Instead we compute the vertical shear terms that the viscosity is acting on:

𝜖𝑣 = 𝐴𝑣

(︃(︂
𝜕𝑢

𝜕𝑧

)︂2

+

(︂
𝜕𝑣

𝜕𝑧

)︂2
)︃
.

There are straightforward caveats to this approach, covered in [KL10].

• If your resolution is too low to resolve the breaking internal waves, you won’t have any turbulence.

• If the model resolution is too high, the estimates of 𝜖𝑣 will start to be exaggerated, particularly if the run in
non-hydrostatic. That is because there will be significant shear at small scales that represents the turbulence
being parameterized in the scheme. At very high resolutions direct numerical simulation or more sophisticated
large-eddy schemes should be used.

• We find that grid cells of approximately 10 to 1 aspect ratio are a good rule of thumb for achieving good
results are usual oceanic scales. For a site like the Hawaiian Ridge, and Luzon Strait, this means 10-m vertical
resolusion and approximately 100-m horizontal. The 10-m resolution can be relaxed if the stratification drops,
and we often WKB-stretch the grid spacing with depth.

• The dissipation estimate is useful for pinpoiting the location of turbulence, but again, is grid size dependent to
some extent, and should be treated with a grain of salt. It will also not include any numerical dissipation such
as you may find with higher order advection schemes.
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8.4.5.2 KL10 configuration and compiling

As with all MITgcm packages, KL10 can be turned on or off at compile time

• using the packages.conf file by adding kl10 to it,

• or using genmake2 adding -enable=kl10 or -disable=kl10 switches

• Required packages and CPP options: No additional packages are required.

(see Section [sec:buildingCode]).

KL10 has no compile-time options (KL10_OPTIONS.h is empty).

8.4.5.3 Run-time parameters

Run-time parameters are set in files data.pkg and data.kl10 which are read in kl10_readparms.F. Run-
time parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) required MITgcm
flags, (iii) package flags and parameters.

Enabling the package

The KL10 package is switched on at runtime by setting useKL10 = .TRUE. in data.pkg.

Required MITgcm flags

The following flags/parameters of the MITgcm dynamical kernel need to be set in conjunction with KL10:

implicitViscosity = .TRUE. enable implicit vertical viscosity
implicitDiffusion = .TRUE. enable implicit vertical diffusion

Package flags and parameters

Table 8.7 summarizes the runtime flags that are set in data.kl10, and their default values.

Table 8.7: KL10 runtime parameters.
Flag/parameter default Description
KLviscMax 300 m2 s–1 Maximum viscosity the scheme will ever give (useful

for stability)
KLdumpFreq dumpFreq Dump frequency of KL10 field snapshots
KLtaveFreq taveFreq Averaging and dump frequency of KL10 fields
KLwriteState .FALSE. write KL10 state to file
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8.4.5.4 Equations and key routines

KL10_CALC:

Top-level routine. Calculates viscosity and diffusivity on the grid cell centers. Note that the runtime parameters
viscAz and diffKzT act as minimum viscosity and diffusivities. So if there are no overturns (or they are weak)
then these will be returned.

KL10_CALC_VISC:

Calculates viscosity on the W and S grid faces for U and V respectively.

KL10_CALC_DIFF:

Calculates the added diffusion from KL10.

8.4.5.5 KL10 diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized here:

------------------------------------------------------
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

------------------------------------------------------
KLviscAr| Nr |SM |m^2/s |KL10 vertical eddy viscosity coefficient
KLdiffKr| Nr |SM |m^2/s |Vertical diffusion coefficient for salt,
→˓temperature, & tracers
KLeps | Nr |SM |m^3/s^3 |Turbulence dissipation estimate.

8.4.5.6 References

Klymak and Legg, 2010, Oc. Modell..

8.4.5.7 Experiments and tutorials that use KL10

• Modified Internal Wave experiment, in internal_wave verification directory

8.4.6 BULK_FORCE: Bulk Formula Package

author: Stephanie Dutkiewicz

Instead of forcing the model with heat and fresh water flux data, this package calculates these fluxes using the changing
sea surface temperature. We need to read in some atmospheric data: air temperature, air humidity, down shortwave
radiation, down longwave radiation, precipitation, wind speed. The current setup also reads in wind stress, but
this can be changed so that the stresses are calculated from the wind speed.

The current setup requires that there is the thermodynamic-seaice package (pkg/thsice, also refered below as seaice) is
also used. It would be useful though to have it also setup to run with some very simple parametrization of the sea ice.

The heat and fresh water fluxes are calculated in bulkf_forcing.F called from forward_step.F. These fluxes are used
over open water, fluxes over seaice are recalculated in the sea-ice package. Before the call to bulkf_forcing.F we call
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bulkf_fields_load.F to find the current atmospheric conditions. The only other changes to the model code come from
the initializing and writing diagnostics of these fluxes.

8.4.6.1 subroutine BULKF_FIELDS_LOAD

Here we find the atmospheric data needed for the bulk formula calculations. These are read in at periodic intervals and
values are interpolated to the current time. The data file names come from data.blk. The values that can be read in
are: air temperature, air humidity, precipitation, down solar radiation, down long wave radiation, zonal and meridional
wind speeds, total wind speed, net heat flux, net freshwater forcing, cloud cover, snow fall, zonal and meridional wind
stresses, and SST and SSS used for relaxation terms. Not all these files are necessary or used. For instance cloud cover
and snow fall are not used in the current bulk formula calculation. If total wind speed is not supplied, wind speed is
calculate from the zonal and meridional components. If wind stresses are not read in, then the stresses are calculated
from the wind speed. Net heat flux and net freshwater can be read in and used over open ocean instead of the bulk
formula calculations (but over seaice the bulkf formula is always used). This is “hardwired” into bulkf_forcing and the
“ch” in the variable names suggests that this is “cheating”. SST and SSS need to be read in if there is any relaxation
used.

8.4.6.2 subroutine BULKF_FORCING

In bulkf_forcing.F, we calculate heat and fresh water fluxes (and wind stress, if necessary) for each grid cell. First
we determine if the grid cell is open water or seaice and this information is carried by iceornot. There is a provision
here for a different designation if there is snow cover (but currently this does not make any difference). We then call
bulkf_formula_lanl.F which provides values for: up long wave radiation, latent and sensible heat fluxes, the derivative
of these three with respect to surface temperature, wind stress, evaporation. Net long wave radiation is calculated from
the combination of the down long wave read in and the up long wave calculated.

We then find the albedo of the surface - with a call to sfc_albedo if there is sea-ice (see the seaice package for
information on the subroutine). If the grid cell is open ocean the albedo is set as 0.1. Note that this is a parameter that
can be used to tune the results. The net short wave radiation is then the down shortwave radiation minus the amount
reflected.

If the wind stress needed to be calculated in bulkf_formula_lanl.F, it was calculated to grid cell center points, so in
bulkf_forcing.F we regrid to u and v points. We let the model know if it has read in stresses or calculated stresses by
the switch readwindstress which is can be set in data.blk, and defaults to .TRUE..

We then calculate Qnet and EmPmR that will be used as the fluxes over the open ocean. There is a provision for
using runoff. If we are “cheating” and using observed fluxes over the open ocean, then there is a provision here to use
read in Qnet and EmPmR.

The final call is to calculate averages of the terms found in this subroutine.

8.4.6.3 subroutine BULKF_FORMULA_LANL

This is the main program of the package where the heat fluxes and freshwater fluxes over ice and open water are
calculated. Note that this subroutine is also called from the seaice package during the iterations to find the ice surface
temperature.

Latent heat (𝐿) used in this subroutine depends on the state of the surface: vaporization for open water, fusion and
vaporization for ice surfaces. Air temperature is converted from Celsius to Kelvin. If there is no wind speed (𝑢𝑠)
given, then the wind speed is calculated from the zonal and meridional components.

We calculate the virtual temperature:

𝑇𝑜 = 𝑇𝑎𝑖𝑟(1 + 𝛾𝑞𝑎𝑖𝑟)
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where 𝑇𝑎𝑖𝑟 is the air temperature at ℎ𝑇 , 𝑞𝑎𝑖𝑟 is humidity at ℎ𝑞 and 𝛾 is a constant.

The saturated vapor pressure is calculate (QQ ref):

𝑞𝑠𝑎𝑡 =
𝑎

𝑝𝑜
𝑒
𝐿(𝑏− 𝑐

𝑇𝑠𝑟𝑓
)

where 𝑎, 𝑏, 𝑐 are constants, 𝑇𝑠𝑟𝑓 is surface temperature and 𝑝𝑜 is the surface pressure.

The two values crucial for the bulk formula calculations are the difference between air at sea surface and sea surface
temperature:

∆𝑇 = 𝑇𝑎𝑖𝑟 − 𝑇𝑠𝑟𝑓 + 𝛼ℎ𝑇

where 𝛼 is adiabatic lapse rate and ℎ𝑇 is the height where the air temperature was taken; and the difference between
the air humidity and the saturated humidity

∆𝑞 = 𝑞𝑎𝑖𝑟 − 𝑞𝑠𝑎𝑡.

We then calculate the turbulent exchange coefficients following Bryan et al (1996) and the numerical scheme of Hunke
and Lipscombe (1998). We estimate initial values for the exchange coefficients, 𝑐𝑢, 𝑐𝑇 and 𝑐𝑞 as

𝜅

𝑙𝑛(𝑧𝑟𝑒𝑓/𝑧𝑟𝑜𝑢)

where 𝜅 is the Von Karman constant, 𝑧𝑟𝑒𝑓 is a reference height and 𝑧𝑟𝑜𝑢 is a roughness length scale which could be a
function of type of surface, but is here set as a constant. Turbulent scales are:

𝑢* = 𝑐𝑢𝑢𝑠

𝑇 * = 𝑐𝑇 ∆𝑇

𝑞* = 𝑐𝑞∆𝑞

We find the “integrated flux profile” for momentum and stability if there are stable QQ conditions (Υ > 0) :

𝜓𝑚 = 𝜓𝑠 = −5Υ

and for unstable QQ conditions (Υ < 0):

𝜓𝑚 = 2𝑙𝑛(0.5(1 + 𝜒)) + 𝑙𝑛(0.5(1 + 𝜒2)) − 2 tan−1 𝜒+ 𝜋/2

𝜓𝑠 = 2𝑙𝑛(0.5(1 + 𝜒2))

where

Υ =
𝜅𝑔𝑧𝑟𝑒𝑓
𝑢*2

(
𝑇 *

𝑇𝑜
+

𝑞*

1/𝛾 + 𝑞𝑎
)

and 𝜒 = (1 − 16Υ)1/2.

The coefficients are updated through 5 iterations as:

𝑐𝑢 =
𝑐𝑢

1 + 𝑐𝑢(𝜆− 𝜓𝑚)/𝜅

𝑐𝑇 =
𝑐𝑇

1 + 𝑐𝑇 (𝜆− 𝜓𝑠)/𝜅

𝑐𝑞 = 𝑐′𝑇

where 𝜆 = 𝑙𝑛(ℎ𝑇 /𝑧𝑟𝑒𝑓 ).

We can then find the bulk formula heat fluxes:
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Sensible heat flux:

𝑄𝑠 = 𝜌𝑎𝑖𝑟𝑐𝑝𝑎𝑖𝑟
𝑢𝑠𝑐𝑢𝑐𝑇 ∆𝑇

Latent heat flux:

𝑄𝑙 = 𝜌𝑎𝑖𝑟𝐿𝑢𝑠𝑐𝑢𝑐𝑞∆𝑞

Up long wave radiation

𝑄𝑢𝑝
𝑙𝑤 = 𝜖𝜎𝑇 4

𝑠𝑟𝑓

where 𝜖 is emissivity (which can be different for open ocean, ice and snow), 𝜎 is Stefan-Boltzman constant.

We calculate the derivatives of the three above functions with respect to surface temperature

𝑑𝑄𝑠

𝑑𝑇
= 𝜌𝑎𝑖𝑟𝑐𝑝𝑎𝑖𝑟𝑢𝑠𝑐𝑢𝑐𝑇

𝑑𝑄𝑙

𝑑𝑇
=

𝜌𝑎𝑖𝑟𝐿
2𝑢𝑠𝑐𝑢𝑐𝑞𝑐

𝑇 2
𝑠𝑟𝑓

𝑑𝑄𝑢𝑝
]𝑙𝑤

𝑑𝑇
= 4𝜖𝜎𝑡3𝑠𝑟𝑓

And total derivative 𝑑𝑄𝑜

𝑑𝑇 = 𝑑𝑄𝑠

𝑑𝑇 + 𝑑𝑄𝑙

𝑑𝑇 +
𝑑𝑄𝑢𝑝

𝑙𝑤

𝑑𝑇 .

If we do not read in the wind stress, it is calculated here.

8.4.6.4 Initializing subroutines

bulkf_init.F: Set bulkf variables to zero.

bulkf_readparms.F: Reads data.blk

8.4.6.5 Diagnostic subroutines

bulkf_ave.F: Keeps track of means of the bulkf variables

bulkf_diags.F: Finds averages and writes out diagnostics

8.4.6.6 Common Blocks

BULKF.h: BULKF Variables, data file names, and logicals readwindstress and readsurface

BULKF_DIAGS.h: matrices for diagnostics: averages of fields from bulkf_diags.F

BULKF_ICE_CONSTANTS.h: all the parameters needed by the ice model and in the bulkf formula calculations.

8.4.6.7 Input file DATA.ICE

We read in the file names of atmospheric data used in the bulk formula calculations. Here we can also set the logicals:
readwindstress if we read in the wind stress rather than calculate it from the wind speed; and readsurface to read in
the surface temperature and salinity if these will be used as part of a relaxing term.
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8.4.6.8 Important Notes

1. heat fluxes have different signs in the ocean and ice models.

2. StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).

8.4.6.9 References

Bryan F.O., B.G Kauffman, W.G. Large, P.R. Gent, 1996: The NCAR CSM flux coupler. Technical note TN-425+STR,
NCAR.

Hunke, E.C and W.H. Lipscomb, circa 2001: CICE: the Los Alamos Sea Ice Model Documentation and Software
User’s Manual. LACC-98-16v.2. (note: this documentation is no longer available as CICE has progressed to a very
different version 3)

8.4.6.10 Experiments and tutorials that use bulk_force

• Global ocean experiment in global_ocean.cs32x15 verification directory, input from input.thsice directory.

8.4.7 EXF: The external forcing package

Authors: Patrick Heimbach and Dimitris Menemenlis

8.4.7.1 Introduction

The external forcing package, in conjunction with the calendar package (cal), enables the handling of real-time (or
“model-time”) forcing fields of differing temporal forcing patterns. It comprises climatological restoring and re-
laxation. Bulk formulae are implemented to convert atmospheric fields to surface fluxes. An interpolation routine
provides on-the-fly interpolation of forcing fields an arbitrary grid onto the model grid.

CPP options enable or disable different aspects of the package (Section 8.4.7.2). Runtime options, flags, filenames and
field-related dates/times are set in data.exf (Section 8.4.7.3). A description of key subroutines is given in Section
8.4.7.6. Input fields, units and sign conventions are summarized in Section 8.4.7.5, and available diagnostics output is
listed in Section 8.4.7.7.

8.4.7.2 EXF configuration, compiling & running

Compile-time options

As with all MITgcm packages, EXF can be turned on or off at compile time

• using the packages.conf file by adding exf to it,

• or using genmake2 adding -enable=exf or -disable=exf switches

• required packages and CPP options: EXF (only) requires the calendar package cal to be enabled if the julian
calendar will be used with the data ; no additional CPP options are required.

(see Section 3.5).

Parts of the EXF code can be enabled or disabled at compile time via CPP preprocessor flags. These options are set in
either EXF_OPTIONS.h or in ECCO_CPPOPTIONS.h. Table 8.8 summarizes these options.
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Table 8.8: EXF CPP options
CPP option Description
EXF_VERBOSE verbose mode (recommended only for testing)
ALLOW_ATM_TEMP compute heat/freshwater fluxes from atmos. state input
ALLOW_ATM_WIND compute wind stress from wind speed input
ALLOW_BULKFORMULAE is used if ALLOW_ATM_TEMP or ALLOW_ATM_WIND

is enabled
EXF_READ_EVAP read evaporation instead of computing it
ALLOW_RUNOFF read time-constant river/glacier run-off field
ALLOW_DOWNWARD_RADIATION compute net from downward or downward from net ra-

diation
USE_EXF_INTERPOLATION enable on-the-fly bilinear or bicubic interpolation of in-

put fields
used in conjunction with relaxation to prescribed (climatological) fields
ALLOW_CLIMSST_RELAXATION relaxation to 2-D SST climatology
ALLOW_CLIMSSS_RELAXATION relaxation to 2-D SSS climatology
these are set outside of EXF in CPP_OPTIONS.h
SHORTWAVE_HEATING enable shortwave radiation
ATMOSPHERIC_LOADING enable surface pressure forcing

8.4.7.3 Run-time parameters

Run-time parameters are set in files data.pkg and data.exf which is read in exf_readparms.F. Run-time
parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) general flags and param-
eters, and (iii) attributes for each forcing and climatological field.

Enabling the package

A package is switched on/off at runtime by setting (e.g. for EXF) useEXF = .TRUE. in data.pkg.

General flags and parameters

Table 8.9: EXF runtime options
Flag/parameter default Description
useExfCheckRange .TRUE. check range of input fields and stop if out of range
useExfYearlyFields .FALSE. append current year postfix of form _YYYY on filename
twoDigitYear .FALSE. instead of appending _YYYY append YY
repeatPeriod 0.0 > 0: cycle through all input fields at the same period (in seconds)

= 0: use period assigned to each field
exf_offset_atemp 0.0 set to 273.16 to convert from deg. Kelvin (assumed input) to Celsius
windstressmax 2.0 max. allowed wind stress N m–2

exf_albedo 0.1 surface albedo used to compute downward vs. net radiative fluxes
climtempfreeze -1.9 ???
ocean_emissivity longwave ocean-surface emissivity
ice_emissivity longwave seaice emissivity
snow_emissivity longwave snow emissivity
exf_iceCd 1.63E-3 drag coefficient over sea-ice

continues on next page
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Table 8.9 – continued from previous page
Flag/parameter default Description
exf_iceCe 1.63E-3 evaporation transfer coeff. over sea-ice
exf_iceCh 1.63E-3 sensible heat transfer coeff. over sea-ice
exf_scal_BulkCdn 1.0 overall scaling of neutral drag coeff.
useStabilityFct_overIce .FALSE. compute turbulent transfer coeff. over sea-ice
readStressOnAgrid .FALSE. read wind-streess located on model-grid, A-grid point
readStressOnCgrid .FALSE. read wind-streess located on model-grid, C-grid point
useRelativeWind .FALSE. subtract [U/V]VEL or [U/VICE from U/V]WIND before computing [U/V]STRESS
zref 10.0 reference height
hu 10.0 height of mean wind
ht 2.0 height of mean temperature and rel. humidity
umin 0.5 minimum absolute wind speed for computing Cd
atmrho 1.2 mean atmospheric density [kg/m^3]
atmcp 1005.0 mean atmospheric specific heat [J/kg/K]
cdrag_[n] ??? n = 1,2,3; parameters for drag coeff. function
cstanton_[n] ??? n = 1,2; parameters for Stanton number function
cdalton ??? parameter for Dalton number function
flamb 2500000.0 latent heat of evaporation [J/kg]
flami 334000.0 latent heat of melting of pure ice [J/kg]
zolmin -100.0 minimum stability parameter
cvapor_fac 640380.0
cvapor_exp 5107.4
cvapor_fac_ice 11637800.0
cvapor_fac_ice 5897.8
humid_fac 0.606 parameter for virtual temperature calculation
gamma_blk 0.010 adiabatic lapse rate
saltsat 0.980 reduction of saturation vapor pressure over salt-water
psim_fac 5.0
exf_monFreq monitorFreq output frequency [s]
exf_iprec 32 precision of input fields (32-bit or 64-bit)
exf_yftype ‘RL’ precision of arrays (‘RL’ vs. ‘RS’)

Field attributes

All EXF fields are listed in Section 8.4.7.5. Each field has a number of attributes which can be customized. They are
summarized in Table 8.10. To obtain an attribute for a specific field, e.g. uwind prepend the field name to the listed
attribute, e.g. for attribute period this yields uwindperiod:

field & attribute −→ parameter
e.g. uwind & period −→ uwindperiod
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Table 8.10: EXF runtime attributes Note there is one exception for the
default of atempconst = celsius2K = 273.16

attribute Default Description
field file ‘ ‘ filename; if left empty no file will be read; const will

be used instead
field const 0.0 constant that will be used if no file is read
field startdate1 0.0 format: YYYYMMDD; start year (YYYY), month (MM),

day (YY)
of field to determine record number

field startdate2 0.0 format: HHMMSS; start hour (HH), minute (MM), sec-
ond(SS)
of field to determine record number

field period 0.0 interval in seconds between two records
exf_inscal_field optional rescaling of input fields to comply with EXF

units
exf_outscal_field optional rescaling of EXF fields when mapped onto

MITgcm fields
used in conjunction with EXF_USE_INTERPOLATION
field _lon0 xgOrigin+delX/2 starting longitude of input
field _lon_inc delX increment in longitude of input
field _lat0 ygOrigin+delY/2 starting latitude of input
field _lat_inc delY increment in latitude of input
field _nlon Nx number of grid points in longitude of input
field _nlat Ny number of grid points in longitude of input

Example configuration

The following block is taken from the data.exf file of the verification experiment global_with_exf/. It
defines attributes for the heat flux variable hflux:

hfluxfile = 'ncep_qnet.bin',
hfluxstartdate1 = 19920101,
hfluxstartdate2 = 000000,
hfluxperiod = 2592000.0,
hflux_lon0 = 2
hflux_lon_inc = 4
hflux_lat0 = -78
hflux_lat_inc = 39*4
hflux_nlon = 90
hflux_nlat = 40

EXF will read a file of name ’ncep_qnet.bin’. Its first record represents January 1st, 1992 at 00:00 UTC. Next record
is 2592000 seconds (or 30 days) later. Note that the first record read and used by the EXF package corresponds to
the value ’startDate1’ set in data.cal. Therefore if you want to start the EXF forcing from later in the ’ncep_qnet.bin’
file, it suffices to specify startDate1 in data.cal as a date later than 19920101 (for example, startDate1 = 19940101,
for starting January 1st, 1994). For this to work, ’ncep_qnet.bin’ must have at least 2 years of data because in this
configuration EXF will read 2 years into the file to find the 1994 starting value. Interpolation on-the-fly is used (in
the present case trivially on the same grid, but included nevertheless for illustration), and input field grid starting
coordinates and increments are supplied as well.
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8.4.7.4 EXF bulk formulae

T.B.D. (cross-ref. to parameter list table)

8.4.7.5 EXF input fields and units

The following list is taken from the header file EXF_FIELDS.h. It comprises all EXF input fields.

Output fields which EXF provides to the MITgcm are fields fu, fv, Qnet, Qsw, EmPmR, and pload. They are defined
in FFIELDS.h.

c----------------------------------------------------------------------
c |
c field :: Description
c |
c----------------------------------------------------------------------
c ustress :: Zonal surface wind stress in N/m^2
c | > 0 for increase in uVel, which is west to
c | east for cartesian and spherical polar grids
c | Typical range: -0.5 < ustress < 0.5
c | Southwest C-grid U point
c | Input field
c----------------------------------------------------------------------
c vstress :: Meridional surface wind stress in N/m^2
c | > 0 for increase in vVel, which is south to
c | north for cartesian and spherical polar grids
c | Typical range: -0.5 < vstress < 0.5
c | Southwest C-grid V point
c | Input field
c----------------------------------------------------------------------
c hs :: sensible heat flux into ocean in W/m^2
c | > 0 for increase in theta (ocean warming)
c----------------------------------------------------------------------
c hl :: latent heat flux into ocean in W/m^2
c | > 0 for increase in theta (ocean warming)
c----------------------------------------------------------------------
c hflux :: Net upward surface heat flux in W/m^2
c | (including shortwave)
c | hflux = latent + sensible + lwflux + swflux
c | > 0 for decrease in theta (ocean cooling)
c | Typical range: -250 < hflux < 600
c | Southwest C-grid tracer point
c | Input field
c----------------------------------------------------------------------
c sflux :: Net upward freshwater flux in m/s
c | sflux = evap - precip - runoff
c | > 0 for increase in salt (ocean salinity)
c | Typical range: -1e-7 < sflux < 1e-7
c | Southwest C-grid tracer point
c | Input field
c----------------------------------------------------------------------
c swflux :: Net upward shortwave radiation in W/m^2
c | swflux = - ( swdown - ice and snow absorption - reflected )
c | > 0 for decrease in theta (ocean cooling)
c | Typical range: -350 < swflux < 0
c | Southwest C-grid tracer point
c | Input field

(continues on next page)
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(continued from previous page)

c----------------------------------------------------------------------
c uwind :: Surface (10-m) zonal wind velocity in m/s
c | > 0 for increase in uVel, which is west to
c | east for cartesian and spherical polar grids
c | Typical range: -10 < uwind < 10
c | Southwest C-grid U point
c | Input or input/output field
c----------------------------------------------------------------------
c vwind :: Surface (10-m) meridional wind velocity in m/s
c | > 0 for increase in vVel, which is south to
c | north for cartesian and spherical polar grids
c | Typical range: -10 < vwind < 10
c | Southwest C-grid V point
c | Input or input/output field
c----------------------------------------------------------------------
c wspeed :: Surface (10-m) wind speed in m/s
c | >= 0 sqrt(u^2+v^2)
c | Typical range: 0 < wspeed < 10
c | Input or input/output field
c----------------------------------------------------------------------
c atemp :: Surface (2-m) air temperature in deg K
c | Typical range: 200 < atemp < 300
c | Southwest C-grid tracer point
c | Input or input/output field
c----------------------------------------------------------------------
c aqh :: Surface (2m) specific humidity in kg/kg
c | Typical range: 0 < aqh < 0.02
c | Southwest C-grid tracer point
c | Input or input/output field
c----------------------------------------------------------------------
c lwflux :: Net upward longwave radiation in W/m^2
c | lwflux = - ( lwdown - ice and snow absorption - emitted )
c | > 0 for decrease in theta (ocean cooling)
c | Typical range: -20 < lwflux < 170
c | Southwest C-grid tracer point
c | Input field
c----------------------------------------------------------------------
c evap :: Evaporation in m/s
c | > 0 for increase in salt (ocean salinity)
c | Typical range: 0 < evap < 2.5e-7
c | Southwest C-grid tracer point
c | Input, input/output, or output field
c----------------------------------------------------------------------
c precip :: Precipitation in m/s
c | > 0 for decrease in salt (ocean salinity)
c | Typical range: 0 < precip < 5e-7
c | Southwest C-grid tracer point
c | Input or input/output field
c----------------------------------------------------------------------
c snowprecip :: snow in m/s
c | > 0 for decrease in salt (ocean salinity)
c | Typical range: 0 < precip < 5e-7
c | Input or input/output field
c----------------------------------------------------------------------
c runoff :: River and glacier runoff in m/s
c | > 0 for decrease in salt (ocean salinity)
c | Typical range: 0 < runoff < 5e-7

(continues on next page)
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(continued from previous page)

c | Southwest C-grid tracer point
c | Input or input/output field
c----------------------------------------------------------------------
c swdown :: Downward shortwave radiation in W/m^2
c | > 0 for increase in theta (ocean warming)
c | Typical range: 0 < swdown < 450
c | Southwest C-grid tracer point
c | Input/output field
c----------------------------------------------------------------------
c lwdown :: Downward longwave radiation in W/m^2
c | > 0 for increase in theta (ocean warming)
c | Typical range: 50 < lwdown < 450
c | Southwest C-grid tracer point
c | Input/output field
c----------------------------------------------------------------------
c apressure :: Atmospheric pressure field in N/m^2
c | Typical range: 88000 < apressure < 108000
c | Southwest C-grid tracer point
c | Input field
c----------------------------------------------------------------------

8.4.7.6 Key subroutines

Top-level routine: exf_getforcing.F

C !CALLING SEQUENCE:
c ...
c exf_getforcing (TOP LEVEL ROUTINE)
c |
c |-- exf_getclim (get climatological fields used e.g. for relax.)
c | |--- exf_set_climsst (relax. to 2-D SST field)
c | |--- exf_set_climsss (relax. to 2-D SSS field)
c | o
c |
c |-- exf_getffields <- this one does almost everything
c | | 1. reads in fields, either flux or atmos. state,
c | | depending on CPP options (for each variable two fields
c | | consecutive in time are read in and interpolated onto
c | | current time step).
c | | 2. If forcing is atmos. state and control is atmos. state,
c | | then the control variable anomalies are read here via ctrl_get_gen
c | | (atemp, aqh, precip, swflux, swdown, uwind, vwind).
c | | If forcing and control are fluxes, then
c | | controls are added later.
c | o
c |
c |-- exf_radiation
c | | Compute net or downwelling radiative fluxes via
c | | Stefan-Boltzmann law in case only one is known.
c | o
c |-- exf_wind
c | | Computes wind speed and stresses, if required.
c | o
c |
c |-- exf_bulkformulae

(continues on next page)
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(continued from previous page)

c | | Compute air-sea buoyancy fluxes from
c | | atmospheric state following Large and Pond, JPO, 1981/82
c | o
c |
c |-- < hflux is sum of sensible, latent, longwave rad. >
c |-- < sflux is sum of evap. minus precip. minus runoff >
c |
c |-- exf_getsurfacefluxes
c | If forcing and control is flux, then the
c | control vector anomalies are read here via ctrl_get_gen
c | (hflux, sflux, ustress, vstress)
c |
c |-- < update tile edges here >
c |
c |-- exf_check_range
c | | Check whether read fields are within assumed range
c | | (may capture mismatches in units)
c | o
c |
c |-- < add shortwave to hflux for diagnostics >
c |
c |-- exf_diagnostics_fill
c | | Do EXF-related diagnostics output here.
c | o
c |
c |-- exf_mapfields
c | | Forcing fields from exf package are mapped onto
c | | mitgcm forcing arrays.
c | | Mapping enables a runtime rescaling of fields
c | o
C o

Radiation calculation: exf_radiation.F

Wind speed and stress calculation: exf_wind.F

Bulk formula: exf_bulkformulae.F

Generic I/O: exf_set_gen.F

Interpolation: exf_interp.F

Header routines

8.4.7.7 EXF diagnostics

Diagnostics output is available via the diagnostics package (see Section 9.1). Available output fields are summarized
below.

---------+----+----+----------------+-----------------
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

---------+----+----+----------------+-----------------
EXFhs | 1 | SM | W/m^2 | Sensible heat flux into ocean, >0 increases
→˓theta
EXFhl | 1 | SM | W/m^2 | Latent heat flux into ocean, >0 increases theta
EXFlwnet| 1 | SM | W/m^2 | Net upward longwave radiation, >0 decreases
→˓theta

(continues on next page)
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(continued from previous page)

EXFswnet| 1 | SM | W/m^2 | Net upward shortwave radiation, >0 decreases
→˓theta
EXFlwdn | 1 | SM | W/m^2 | Downward longwave radiation, >0 increases theta
EXFswdn | 1 | SM | W/m^2 | Downward shortwave radiation, >0 increases theta
EXFqnet | 1 | SM | W/m^2 | Net upward heat flux (turb+rad), >0 decreases
→˓theta
EXFtaux | 1 | SU | N/m^2 | zonal surface wind stress, >0 increases uVel
EXFtauy | 1 | SV | N/m^2 | meridional surface wind stress, >0 increases
→˓vVel
EXFuwind| 1 | SM | m/s | zonal 10-m wind speed, >0 increases uVel
EXFvwind| 1 | SM | m/s | meridional 10-m wind speed, >0 increases uVel
EXFwspee| 1 | SM | m/s | 10-m wind speed modulus ( >= 0 )
EXFatemp| 1 | SM | degK | surface (2-m) air temperature
EXFaqh | 1 | SM | kg/kg | surface (2-m) specific humidity
EXFevap | 1 | SM | m/s | evaporation, > 0 increases salinity
EXFpreci| 1 | SM | m/s | evaporation, > 0 decreases salinity
EXFsnow | 1 | SM | m/s | snow precipitation, > 0 decreases salinity
EXFempmr| 1 | SM | m/s | net upward freshwater flux, > 0 increases
→˓salinity
EXFpress| 1 | SM | N/m^2 | atmospheric pressure field

8.4.7.8 References

8.4.7.9 Experiments and tutorials that use exf

• Global Ocean experiment, in global_with_exf verification directory

• Labrador Sea experiment, in lab_sea verification directory

8.4.8 CAL: The calendar package

Authors: Christian Eckert and Patrick Heimbach

This calendar tool was originally intended to enable the use of absolute dates (Gregorian Calendar dates) in MITgcm.
There is, however, a fair number of routines that can be used independently of the main MITgcm executable. After
some minor modifications the whole package can be used either as a stand-alone calendar or in connection with any
dynamical model that needs calendar dates. Some straightforward extensions are still pending e.g. the availability of
the Julian Calendar, to be able to resolve fractions of a second, and to have a time- step that is longer than one day.

8.4.8.1 Basic assumptions for the calendar tool

It is assumed that the SMALLEST TIME INTERVAL to be resolved is ONE SECOND.

Further assumptions are that there is an INTEGER NUMBER OF MODEL STEPS EACH DAY, and that AT LEAST
ONE STEP EACH DAY is made.

Not each individual routine depends on these assumptions; there are only a few places where they enter.
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8.4.8.2 Format of calendar dates

In this calendar tool a complete date specification is defined as the following integer array:

c integer date(4)
c
c ( yyyymmdd, hhmmss, leap_year, dayofweek )
c
c date(1) = yyyymmdd <-- Year-Month-Day
c date(2) = hhmmss <-- Hours-Minutes-Seconds
c date(3) = leap_year <-- Leap Year/No Leap Year
c date(4) = dayofweek <-- Day of the Week
c
c leap_year is either equal to 1 (normal year)
c or equal to 2 (leap year)
c
c dayofweek has a range of 1 to 7.

In case the Gregorian Calendar is used, the first day of the week is Friday, since day of the Gregorian Calendar was
Friday, 15 Oct. 1582. As a date array this date would be specified as

c refdate(1) = 15821015
c refdate(2) = 0
c refdate(3) = 1
c refdate(4) = 1

8.4.8.3 Calendar dates and time intervals

Subtracting calendar dates yields time intervals. Time intervals have the following format:

c integer datediff(4)
c
c datediff(1) = # Days
c datediff(2) = hhmmss
c datediff(3) = 0
c datediff(4) = -1

Such time intervals can be added to or can be subtracted from calendar dates. Time intervals can be added to and be
subtracted from each other.

8.4.8.4 Using the calendar together with MITgcm

Each routine has as an argument the thread number that it is belonging to, even if this number is not used in the routine
itself.

In order to include the calendar tool into the MITgcm setup the MITgcm subroutine “initialise.F” or the routine
“initilise_fixed.F”, depending on the MITgcm release, has to be modified in the following way:

c #ifdef ALLOW_CALENDAR
c C-- Initialise the calendar package.
c #ifdef USE_CAL_NENDITER
c CALL cal_Init(
c I startTime,
c I endTime,
c I deltaTclock,

(continues on next page)
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c I nIter0,
c I nEndIter,
c I nTimeSteps,
c I myThid
c & )
c #else
c CALL cal_Init(
c I startTime,
c I endTime,
c I deltaTclock,
c I nIter0,
c I nTimeSteps,
c I myThid
c & )
c #endif
c _BARRIER
c #endif

It is useful to have the CPP flag ALLOW_CALENDAR in order to switch from the usual MITgcm setup to the one
that includes the calendar tool. The CPP flag USE_CAL_NENDITER has been introduced in order to enable the use
of the calendar for MITgcm releases earlier than checkpoint 25 which do not have the global variable *nEndIter*.

8.4.8.5 The individual calendars

Simple model calendar:

This calendar can be used by defining

c TheCalendar='model'

in the calendar’s data file “data.cal”.

In this case a year is assumed to have 360 days. The model year is divided into 12 months with 30 days each.

Gregorian Calendar:

This calendar can be used by defining

c TheCalendar='gregorian'

in the calendar’s data file “data.cal”.

8.4.8.6 Short routine description

c o cal_Init - Initialise the calendar. This is the interface
c to MITgcm.
c
c o cal_Set - Sets the calendar according to the user
c specifications.
c
c o cal_GetDate - Given the model's current timestep or the
c model's current time return the corresponding
c calendar date.
c
c o cal_FullDate - Complete a date specification (leap year and

(continues on next page)

456 Chapter 8. Packages I - Physical Parameterizations



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

(continued from previous page)

c day of the week).
c
c o cal_IsLeap - Determine whether a given year is a leap year.
c
c o cal_TimePassed - Determine the time passed between two dates.
c
c o cal_AddTime - Add a time interval either to a time interval
c or to a date.
c
c o cal_TimeInterval - Given a time interval return the corresponding
c date array.
c
c o cal_SubDates - Determine the time interval between two dates
c or between two time intervals.
c
c o cal_ConvDate - Decompose a date array or a time interval
c array into its components.
c
c o cal_CopyDate - Copy a date array or a time interval array to
c another array.
c
c o cal_CompDates - Compare two calendar dates or time intervals.
c
c o cal_ToSeconds - Given a time interval array return the number
c of seconds.
c
c o cal_WeekDay - Return the weekday as a string given the
c calendar date.
c
c o cal_NumInts - Return the number of time intervals between two
c given dates.
c
c o cal_StepsPerDay - Given an iteration number or the current
c integration time return the number of time
c steps to integrate in the current calendar day.
c
c o cal_DaysPerMonth - Given an iteration number or the current
c integration time return the number of days
c to integrate in this calendar month.
c
c o cal_MonthsPerYear - Given an iteration number or the current
c integration time return the number of months
c to integrate in the current calendar year.
c
c o cal_StepsForDay - Given the integration day return the number
c of steps to be integrated, the first step,
c and the last step in the day specified. The
c first and the last step refer to the total
c number of steps (1, ... , cal_IntSteps).
c
c o cal_DaysForMonth - Given the integration month return the number
c of days to be integrated, the first day,
c and the last day in the month specified. The
c first and the last day refer to the total
c number of steps (1, ... , cal_IntDays).
c
c o cal_MonthsForYear - Given the integration year return the number

(continues on next page)
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c of months to be integrated, the first month,
c and the last month in the year specified. The
c first and the last step refer to the total
c number of steps (1, ... , cal_IntMonths).
c
c o cal_Intsteps - Return the number of calendar years that are
c affected by the current integration.
c
c o cal_IntDays - Return the number of calendar days that are
c affected by the current integration.
c
c o cal_IntMonths - Return the number of calendar months that are
c affected by the current integration.
c
c o cal_IntYears - Return the number of calendar years that are
c affected by the current integration.
c
c o cal_nStepDay - Return the number of time steps that can be
c performed during one calendar day.
c
c o cal_CheckDate - Do some simple checks on a date array or on a
c time interval array.
c
c o cal_PrintError - Print error messages according to the flags
c raised by the calendar routines.
c
c o cal_PrintDate - Print a date array in some format suitable for
c MITgcm's protocol output.
c
c o cal_TimeStamp - Given the time and the iteration number return
c the date and print all the above numbers.
c
c o cal_Summary - List all the setttings of the calendar tool.

8.4.8.7 Experiments and tutorials that use cal

• Global ocean experiment in global_with_exf verification directory.

• Labrador Sea experiment in lab_sea verification directory.

8.5 Atmosphere Packages

8.5.1 Atmospheric Intermediate Physics: AIM

Note: The folowing document below describes the aim_v23 package that is based on the version v23 of the SPEEDY
code ().
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8.5.1.1 Key subroutines, parameters and files

8.5.1.2 AIM Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
DIABT | 5 |SM ML |K/s |Pot. Temp. Tendency (Mass-Weighted)
→˓from Diabatic Processes
DIABQ | 5 |SM ML |g/kg/s |Spec.Humid. Tendency (Mass-Weighted)
→˓from Diabatic Processes
RADSW | 5 |SM ML |K/s |Temperature Tendency due to Shortwave
→˓Radiation (TT_RSW)
RADLW | 5 |SM ML |K/s |Temperature Tendency due to Longwave
→˓Radiation (TT_RLW)
DTCONV | 5 |SM MR |K/s |Temperature Tendency due to
→˓Convection (TT_CNV)
TURBT | 5 |SM ML |K/s |Temperature Tendency due to
→˓Turbulence in PBL (TT_PBL)
DTLS | 5 |SM ML |K/s |Temperature Tendency due to Large-
→˓scale condens. (TT_LSC)
DQCONV | 5 |SM MR |g/kg/s |Spec. Humidity Tendency due to
→˓Convection (QT_CNV)
TURBQ | 5 |SM ML |g/kg/s |Spec. Humidity Tendency due to
→˓Turbulence in PBL (QT_PBL)
DQLS | 5 |SM ML |g/kg/s |Spec. Humidity Tendency due to Large-
→˓Scale Condens. (QT_LSC)
TSR | 1 |SM P U1 |W/m^2 |Top-of-atm. net Shortwave Radiation
→˓(+=dw)
OLR | 1 |SM P U1 |W/m^2 |Outgoing Longwave Radiation (+=up)
RADSWG | 1 |SM P L1 |W/m^2 |Net Shortwave Radiation at the Ground
→˓(+=dw)
RADLWG | 1 |SM L1 |W/m^2 |Net Longwave Radiation at the Ground
→˓(+=up)
HFLUX | 1 |SM L1 |W/m^2 |Sensible Heat Flux (+=up)
EVAP | 1 |SM L1 |g/m^2/s |Surface Evaporation (g/m2/s)
PRECON | 1 |SM P L1 |g/m^2/s |Convective Precipitation (g/m2/s)
PRECLS | 1 |SM M1 |g/m^2/s |Large Scale Precipitation (g/m2/s)
CLDFRC | 1 |SM P M1 |0-1 |Total Cloud Fraction (0-1)
CLDPRS | 1 |SM PC167M1 |0-1 |Cloud Top Pressure (normalized)
CLDMAS | 5 |SM P LL |kg/m^2/s |Cloud-base Mass Flux (kg/m^2/s)
DRAG | 5 |SM P LL |kg/m^2/s |Surface Drag Coefficient (kg/m^2/s)
WINDS | 1 |SM P L1 |m/s |Surface Wind Speed (m/s)
TS | 1 |SM L1 |K |near Surface Air Temperature (K)
QS | 1 |SM P L1 |g/kg |near Surface Specific Humidity (g/kg)
ENPREC | 1 |SM M1 |W/m^2 |Energy flux associated with precip.
→˓(snow, rain Temp)
ALBVISDF| 1 |SM P L1 |0-1 |Surface Albedo (Visible band) (0-1)
DWNLWG | 1 |SM P L1 |W/m^2 |Downward Component of Longwave Flux
→˓at the Ground (+=dw)
SWCLR | 5 |SM ML |K/s |Clear Sky Temp. Tendency due to
→˓Shortwave Radiation
LWCLR | 5 |SM ML |K/s |Clear Sky Temp. Tendency due to
→˓Longwave Radiation
TSRCLR | 1 |SM P U1 |W/m^2 |Clear Sky Top-of-atm. net Shortwave
→˓Radiation (+=dw)
OLRCLR | 1 |SM P U1 |W/m^2 |Clear Sky Outgoing Longwave
→˓Radiation (+=up)

(continues on next page)
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SWGCLR | 1 |SM P L1 |W/m^2 |Clear Sky Net Shortwave Radiation at
→˓the Ground (+=dw)
LWGCLR | 1 |SM L1 |W/m^2 |Clear Sky Net Longwave Radiation at
→˓the Ground (+=up)
UFLUX | 1 |UM 184L1 |N/m^2 |Zonal Wind Surface Stress (N/m^2)
VFLUX | 1 |VM 183L1 |N/m^2 |Meridional Wind Surface Stress (N/m^
→˓2)
DTSIMPL | 1 |SM P L1 |K |Surf. Temp Change after 1 implicit
→˓time step

8.5.1.3 Experiments and tutorials that use aim

• Global atmosphere experiment in aim.5l_cs verification directory.

8.5.2 Land package

8.5.2.1 Introduction

This package provides a simple land model based on Rong Zhang [e-mail:roz@gfdl.noaa.gov] 2 layers model (see
documentation below).

It is primarily implemented for AIM (_v23) atmospheric physics but could be adapted to work with a different atmo-
spheric physics. Two subroutines (aim_aim2land.F aim_land2aim.F in pkg/aim_v23) are used as interface with AIM
physics.

Number of layers is a parameter (land_nLev in LAND_SIZE.h) and can be changed.

Note on Land Model date: June 1999 author: Rong Zhang

8.5.2.2 Equations and Key Parameters

This is a simple 2-layer land model. The top layer depth 𝑧1 = 0.1𝑚, the second layer depth 𝑧2 = 4𝑚.

Let 𝑇𝑔1, 𝑇𝑔2 be the temperature of each layer, 𝑊1,𝑊2 be the soil moisture of each layer. The field capacity 𝑓1, 𝑓2 are
the maximum water amount in each layer, so 𝑊𝑖 is the ratio of available water to field capacity. 𝑓𝑖 = 𝛾𝑧𝑖, 𝛾 = 0.24 is
the field capapcity per meter soil, so 𝑓1 = 0.024𝑚, 𝑓2 = 0.96𝑚.

The land temperature is determined by total surface downward heat flux 𝐹,

𝑧1𝐶1
𝑑𝑇𝑔1
𝑑𝑡

= 𝐹 − 𝜆
𝑇𝑔1 − 𝑇𝑔2

(𝑧1 + 𝑧2)/2

𝑧2𝐶2
𝑑𝑇𝑔2
𝑑𝑡

= 𝜆
𝑇𝑔1 − 𝑇𝑔2

(𝑧1 + 𝑧2)/2

here 𝐶1, 𝐶2 are the heat capacity of each layer , 𝜆lambda =0.42Wm^{-1}K^{-1}.`

𝐶1 = 𝐶𝑤𝑊1𝛾 + 𝐶𝑠

𝐶2 = 𝐶𝑤𝑊2𝛾 + 𝐶𝑠

𝐶𝑤, 𝐶𝑠 are the heat capacity of water and dry soil respectively. 𝐶𝑤 = 4.2 × 106𝐽𝑚−3𝐾−1, 𝐶𝑠 = 1.13 ×
106𝐽𝑚−3𝐾−1.
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The soil moisture is determined by precipitation 𝑃 (𝑚/𝑠),surface evaporation 𝐸(𝑚/𝑠) and runoff 𝑅(𝑚/𝑠).

𝑑𝑊1

𝑑𝑡
=
𝑃 − 𝐸 −𝑅

𝑓1
+
𝑊2 −𝑊1

𝜏

𝜏 = 2 𝑑𝑎𝑦𝑠 is the time constant for diffusion of moisture between layers.

𝑑𝑊2

𝑑𝑡
=
𝑓1
𝑓2

𝑊1 −𝑊2

𝜏

In the code, 𝑅 = 0 gives better result, 𝑊1,𝑊2 are set to be within [0, 1]. If 𝑊1 is greater than 1, then let 𝛿𝑊1 =
𝑊1 − 1,𝑊1 = 1 and 𝑊2 = 𝑊2 + 𝑝𝛿𝑊1

𝑓1
𝑓2

, i.e. the runoff of top layer is put into second layer. 𝑝 = 0.5 is the fraction
of top layer runoff that is put into second layer.

The time step is 1 hour, it takes several years to reach equalibrium offline.

8.5.2.3 Land diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
GrdSurfT| 1 |SM Lg |degC |Surface Temperature over land
GrdTemp | 2 |SM MG |degC |Ground Temperature at each level
GrdEnth | 2 |SM MG |J/m3 |Ground Enthalpy at each level
GrdWater| 2 |SM P MG |0-1 |Ground Water (vs Field Capacity)
→˓Fraction at each level
LdSnowH | 1 |SM P Lg |m |Snow Thickness over land
LdSnwAge| 1 |SM P Lg |s |Snow Age over land
RUNOFF | 1 |SM L1 |m/s |Run-Off per surface unit
EnRunOff| 1 |SM L1 |W/m^2 |Energy flux associated with run-Off
landHFlx| 1 |SM Lg |W/m^2 |net surface downward Heat flux over
→˓land
landPmE | 1 |SM Lg |kg/m^2/s |Precipitation minus Evaporation over
→˓land
ldEnFxPr| 1 |SM Lg |W/m^2 |Energy flux (over land) associated
→˓with Precip (snow,rain)

8.5.2.4 References

Hansen J. et al. Efficient three-dimensional global models for climate studies: models I and II. Monthly Weather
Review, vol.111, no.4, pp. 609-62, 1983

8.5.2.5 Experiments and tutorials that use land

• Global atmosphere experiment in aim.5l_cs verification directory.
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8.5.3 Fizhi: High-end Atmospheric Physics

8.5.3.1 Introduction

The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art physical parameterizations
for atmospheric radiation, cumulus convection, atmospheric boundary layer turbulence, and land surface processes.
The collection of atmospheric physics parameterizations were originally used together as part of the GEOS-3 (God-
dard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling and Assimilation Office
(GMAO).

8.5.3.2 Equations

Moist Convective Processes:

Sub-grid and Large-scale Convection

Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa Schubert (RAS) scheme of [MS92],
which is a linearized Arakawa Schubert type scheme. RAS predicts the mass flux from an ensemble of clouds. Each
subensemble is identified by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale
properties.

The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are the dry static energy,
𝑠 = 𝑐𝑝𝑇 + 𝑔𝑧, and the moist static energy, ℎ = 𝑐𝑝𝑇 + 𝑔𝑧 + 𝐿𝑞. The conceptual model behind RAS depicts each
subensemble as a rising plume cloud, entraining mass from the environment during ascent, and detraining all cloud air
at the level of neutral buoyancy. RAS assumes that the normalized cloud mass flux, 𝜂, normalized by the cloud base
mass flux, is a linear function of height, expressed as:

𝜕𝜂(𝑧)

𝜕𝑧
= 𝜆 𝑜𝑟

𝜕𝜂(𝑃𝜅)

𝜕𝑃𝜅
= −𝑐𝑝

𝑔
𝜃𝜆

where we have used the hydrostatic equation written in the form:

𝜕𝑧

𝜕𝑃𝜅
= −𝑐𝑝

𝑔
𝜃

The entrainment parameter, 𝜆, characterizes a particular subensemble based on its detrainment level, and is obtained
by assuming that the level of detrainment is the level of neutral buoyancy, ie., the level at which the moist static energy
of the cloud, ℎ𝑐, is equal to the saturation moist static energy of the environment, ℎ*. Following [MS92], 𝜆 may be
written as

𝜆 =
ℎ𝐵 − ℎ*𝐷

𝑐𝑝
𝑔

∫︀ 𝑃𝐵

𝑃𝐷
𝜃(ℎ*𝐷 − ℎ)𝑑𝑃𝜅

,

where the subscript 𝐵 refers to cloud base, and the subscript 𝐷 refers to the detrainment level.

The convective instability is measured in terms of the cloud work function 𝐴, defined as the rate of change of cumulus
kinetic energy. The cloud work function is related to the buoyancy, or the difference between the moist static energy
in the cloud and in the environment:

𝐴 =

∫︁ 𝑃𝐵

𝑃𝐷

𝜂

1 + 𝛾

[︂
ℎ𝑐 − ℎ*

𝑃𝜅

]︂
𝑑𝑃𝜅

where 𝛾 is 𝐿
𝑐𝑝

𝜕𝑞*

𝜕𝑇 obtained from the Claussius Clapeyron equation, and the subscript 𝑐 refers to the value inside the
cloud.
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To determine the cloud base mass flux, the rate of change of 𝐴 in time due to dissipation by the clouds is assumed to
approximately balance the rate of change of 𝐴 due to the generation by the large scale. This is the quasi-equilibrium
assumption, and results in an expression for 𝑚𝐵 :

𝑚𝐵 =
− 𝑑𝐴

𝑑𝑡

⃒⃒
𝑙𝑠

𝐾

where 𝐾 is the cloud kernel, defined as the rate of change of the cloud work function per unit cloud base mass flux,
and is currently obtained by analytically differentiating the expression for 𝐴 in time. The rate of change of 𝐴 due to
the generation by the large scale can be written as the difference between the current 𝐴(𝑡 + ∆𝑡) and its equillibrated
value after the previous convective time step 𝐴(𝑡), divided by the time step. 𝐴(𝑡) is approximated as some critical
𝐴𝑐𝑟𝑖𝑡, computed by Lord (1982) from 𝑖𝑛𝑠𝑖𝑡𝑢 observations.

The predicted convective mass fluxes are used to solve grid-scale temperature and moisture budget equations to de-
termine the impact of convection on the large scale fields of temperature (through latent heating and compensating
subsidence) and moisture (through precipitation and detrainment):

𝜕𝜃

𝜕𝑡

⃒⃒⃒⃒
𝑐

= 𝛼
𝑚𝐵

𝑐𝑝𝑃𝜅
𝜂
𝜕𝑠

𝜕𝑝

and

𝜕𝑞

𝜕𝑡

⃒⃒⃒⃒
𝑐

= 𝛼
𝑚𝐵

𝐿
𝜂(
𝜕ℎ

𝜕𝑝
− 𝜕𝑠

𝜕𝑝
)

where 𝜃 = 𝑇
𝑃𝜅 , 𝑃 = (𝑝/𝑝0), and 𝛼 is the relaxation parameter.

As an approximation to a full interaction between the different allowable subensembles, many clouds are simulated
frequently, each modifying the large scale environment some fraction 𝛼 of the total adjustment. The parameterization
thereby “relaxes” the large scale environment towards equillibrium.

In addition to the RAS cumulus convection scheme, the fizhi package employs a Kessler-type scheme for the re-
evaporation of falling rain [SM88], which correspondingly adjusts the temperature assuming ℎ is conserved. RAS in
its current formulation assumes that all cloud water is deposited into the detrainment level as rain. All of the rain is
available for re-evaporation, which begins in the level below detrainment. The scheme accounts for some microphysics
such as the rainfall intensity, the drop size distribution, as well as the temperature, pressure and relative humidity of
the surrounding air. The fraction of the moisture deficit in any model layer into which the rain may re-evaporate is
controlled by a free parameter, which allows for a relatively efficient re-evaporation of liquid precipitate and larger
rainout for frozen precipitation.

Due to the increased vertical resolution near the surface, the lowest model layers are averaged to provide a 50 mb thick
sub-cloud layer for RAS. Each time RAS is invoked (every ten simulated minutes), a number of randomly chosen
subensembles are checked for the possibility of convection, from just above cloud base to 10 mb.

Supersaturation or large-scale precipitation is initiated in the fizhi package whenever the relative humidity in any grid-
box exceeds a critical value, currently 100 %. The large-scale precipitation re-evaporates during descent to partially
saturate lower layers in a process identical to the re-evaporation of convective rain.

Cloud Formation

Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined diagnostically
as part of the cumulus and large-scale parameterizations. Convective cloud fractions produced by RAS are proportional
to the detrained liquid water amount given by

𝐹𝑅𝐴𝑆 = min

[︂
𝑙𝑅𝐴𝑆

𝑙𝑐
, 1.0

]︂
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where 𝑙𝑐 is an assigned critical value equal to 1.25 g/kg. A memory is associated with convective clouds defined by:

𝐹𝑛
𝑅𝐴𝑆 = min

[︂
𝐹𝑅𝐴𝑆 + (1 − ∆𝑡𝑅𝐴𝑆

𝜏
)𝐹𝑛−1

𝑅𝐴𝑆 , 1.0

]︂
where 𝐹𝑅𝐴𝑆 is the instantanious cloud fraction and 𝐹𝑛−1

𝑅𝐴𝑆 is the cloud fraction from the previous RAS timestep. The
memory coefficient is computed using a RAS cloud timescale, 𝜏 , equal to 1 hour. RAS cloud fractions are cleared
when they fall below 5 %.

Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative humidity:

𝐹𝐿𝑆 = min

[︃(︂
𝑅𝐻 −𝑅𝐻𝑐

1 −𝑅𝐻𝑐

)︂2

, 1.0

]︃

where

RHc & = & 1-s(1-s)(2-+2 s)r s & = & p/psurf r & = & ( ) RHmin & = & 0.75 & = & 0.573285 .

These cloud fractions are suppressed, however, in regions where the convective sub-cloud layer is conditionally unsta-
ble. The functional form of 𝑅𝐻𝑐 is shown in Figure 8.9

The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:

𝐹𝐶𝐿𝐷 = max [𝐹𝑅𝐴𝑆 , 𝐹𝐿𝑆 ] .

Finally, cloud fractions are time-averaged between calls to the radiation packages.

Radiation:

The parameterization of radiative heating in the fizhi package includes effects from both shortwave and longwave
processes. Radiative fluxes are calculated at each model edge-level in both up and down directions. The heating
rates/cooling rates are then obtained from the vertical divergence of the net radiative fluxes.

The net flux is

𝐹 = 𝐹 ↑ − 𝐹 ↓

where 𝐹 is the net flux, 𝐹 ↑ is the upward flux and 𝐹 ↓ is the downward flux.

The heating rate due to the divergence of the radiative flux is given by

𝜕𝜌𝑐𝑝𝑇

𝜕𝑡
= −𝜕𝐹

𝜕𝑧

or

𝜕𝑇

𝜕𝑡
=

𝑔

𝑐𝑝𝜋

𝜕𝐹

𝜕𝜎

where 𝑔 is the accelation due to gravity and 𝑐𝑝 is the heat capacity of air at constant pressure.

The time tendency for Longwave Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is
updated once every three hours assuming a normalized incident solar radiation, and subsequently modified at every
model time step by the true incident radiation. The solar constant value used in the package is equal to 1365 𝑊/𝑚2

and a𝐶𝑂2 mixing ratio of 330 ppm. For the ozone mixing ratio, monthly mean zonally averaged climatological values
specified as a function of latitude and height [RSG87] are linearly interpolated to the current time.
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Figure 8.9: Critical Relative Humidity for Clouds.
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Shortwave Radiation

The shortwave radiation package used in the package computes solar radiative heating due to the absoption by wa-
ter vapor, ozone, carbon dioxide, oxygen, clouds, and aerosols and due to the scattering by clouds, aerosols, and
gases. The shortwave radiative processes are described by [Cho90][Cho92]. This shortwave package uses the Delta-
Eddington approximation to compute the bulk scattering properties of a single layer following King and Harshvardhan
(JAS, 1986). The transmittance and reflectance of diffuse radiation follow the procedures of Sagan and Pollock (JGR,
1967) and [LH74].

Highly accurate heating rate calculations are obtained through the use of an optimal grouping strategy of spectral
bands. By grouping the UV and visible regions as indicated in Table 8.11, the Rayleigh scattering and the ozone
absorption of solar radiation can be accurately computed in the ultraviolet region and the photosynthetically active
radiation (PAR) region. The computation of solar flux in the infrared region is performed with a broadband param-
eterization using the spectrum regions shown in Table 8.12. The solar radiation algorithm used in the fizhi package
can be applied not only for climate studies but also for studies on the photolysis in the upper atmosphere and the
photosynthesis in the biosphere.

Table 8.11: UV and Visible Spectral Regions used in shortwave radiation
package.

UV and Visible Spectral Regions
Region Band Wavelength (micron)
UV-C

1.
.175 - .225

2.
.225 - .245

.260 - .280

3.
.245 - .260

UV-B
4.

.280 - .295

5.
.295 - .310

6.
.310 - .320

UV-A
7.

.320 - .400

PAR
8.

.400 - .700

Table 8.12: Infrared Spectral Regions used in shortwave radiation pack-
age.

Infrared Spectral Regions
Band Wavenumber (cm–1) Wavelength (micron)
1 1000-4400 2.27-10.0
2 4400-8200 1.22-2.27
3 8200-14300 0.70-1.22
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Within the shortwave radiation package, both ice and liquid cloud particles are allowed to co-exist in any of the model
layers. Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles. Cloud parameters
are defined as the cloud optical thickness and the effective cloud particle size. In the fizhi package, the effective radius
for water droplets is given as 10 microns, while 65 microns is used for ice particles. The absorption due to aerosols is
currently set to zero.

To simplify calculations in a cloudy atmosphere, clouds are grouped into low (𝑝 > 700 mb), middle (700 mb ≥ 𝑝 >
400 mb), and high (𝑝 < 400 mb) cloud regions. Within each of the three regions, clouds are assumed maximally
overlapped, and the cloud cover of the group is the maximum cloud cover of all the layers in the group. The optical
thickness of a given layer is then scaled for both the direct (as a function of the solar zenith angle) and diffuse beam
radiation so that the grouped layer reflectance is the same as the original reflectance. The solar flux is computed
for each of eight cloud realizations possible within this low/middle/high classification, and appropriately averaged to
produce the net solar flux.

Longwave Radiation

The longwave radiation package used in the fizhi package is thoroughly described by . As described in that document,
IR fluxes are computed due to absorption by water vapor, carbon dioxide, and ozone. The spectral bands together with
their absorbers and parameterization methods, configured for the fizhi package, are shown in Table 8.13.

Table 8.13: IR Spectral Bands, Absorbers, and Parameterization Method
(from [chsz:94])

IR Spectral Bands
Band Spectral Range (cm–1) Absorber Method
1 0-340 H2O line T
2 340-540 H2O line T
3a 540-620 H2O line K
3b 620-720 H2O continuum S
3b 720-800 CO2 T
4 800-980 H2O line K

H2O continuum S
H2O line K

5 980-1100 H2O continuum S
O3 T

6 1100-1380 H2O line K
H2O continuum S

7 1380-1900 H2O line T
8 1900-3000 H2O line K
K: 𝑘-distribution method with linear pressure scaling
T: Table look-up with temperature and pressure scaling
S: One-parameter temperature scaling

The longwave radiation package accurately computes cooling rates for the middle and lower atmosphere from 0.01 mb
to the surface. Errors are < 0.4 C day−1 in cooling rates and < 1% in fluxes. From Chou and Suarez, it is estimated
that the total effect of neglecting all minor absorption bands and the effects of minor infrared absorbers such as nitrous
oxide (N:math:_2O), methane (CH:math:_4), and the chlorofluorocarbons (CFCs), is an underestimate of ≈ 5 W/m2

in the downward flux at the surface and an overestimate of ≈ 3 W/m2 in the upward flux at the top of the atmosphere.

Similar to the procedure used in the shortwave radiation package, clouds are grouped into three regions catagorized as
low/middle/high. The net clear line-of-site probability (𝑃 ) between any two levels, 𝑝1 and 𝑝2 (𝑝2 > 𝑝1), assuming
randomly overlapped cloud groups, is simply the product of the probabilities within each group:

𝑃𝑛𝑒𝑡 = 𝑃𝑙𝑜𝑤 × 𝑃𝑚𝑖𝑑 × 𝑃ℎ𝑖.
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Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within a group is
given by:

𝑃𝑔𝑟𝑜𝑢𝑝 = 1 − 𝐹𝑚𝑎𝑥,

where 𝐹𝑚𝑎𝑥 is the maximum cloud fraction encountered between 𝑝1 and 𝑝2 within that group. For groups and/or
levels outside the range of 𝑝1 and 𝑝2, a clear line-of-site probability equal to 1 is assigned.

Cloud-Radiation Interaction

The cloud fractions and diagnosed cloud liquid water produced by moist processes within the fizhi package are used
in the radiation packages to produce cloud-radiative forcing. The cloud optical thickness associated with large-scale
cloudiness is made proportional to the diagnosed large-scale liquid water, ℓ, detrained due to super-saturation. Two
values are used corresponding to cloud ice particles and water droplets. The range of optical thickness for these clouds
is given as

0.0002 ≤ 𝜏𝑖𝑐𝑒(𝑚𝑏
−1) ≤ 0.002 for 0 ≤ ℓ ≤ 2 mg/kg,

0.02 ≤ 𝜏ℎ2𝑜(𝑚𝑏−1) ≤ 0.2 for 0 ≤ ℓ ≤ 10 mg/kg.

The partitioning, 𝛼, between ice particles and water droplets is achieved through a linear scaling in temperature:

0 ≤ 𝛼 ≤ 1 for 233.15 ≤ 𝑇 ≤ 253.15.

The resulting optical depth associated with large-scale cloudiness is given as

𝜏𝐿𝑆 = 𝛼𝜏ℎ2𝑜 + (1 − 𝛼)𝜏𝑖𝑐𝑒.

The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as

𝜏𝑅𝐴𝑆 = 0.16 𝑚𝑏−1.

The total optical depth in a given model layer is computed as a weighted average between the large-scale and sub-grid
scale optical depths, normalized by the total cloud fraction in the layer:

𝜏 =

(︂
𝐹𝑅𝐴𝑆 𝜏𝑅𝐴𝑆 + 𝐹𝐿𝑆 𝜏𝐿𝑆

𝐹𝑅𝐴𝑆 + 𝐹𝐿𝑆

)︂
∆𝑝,

where 𝐹𝑅𝐴𝑆 and 𝐹𝐿𝑆 are the time-averaged cloud fractions associated with RAS and large-scale processes described
in Section [sec:fizhi:clouds]. The optical thickness for the longwave radiative feedback is assumed to be 75 % of these
values.

The entire Moist Convective Processes Module is called with a frequency of 10 minutes. The cloud fraction values
are time-averaged over the period between Radiation calls (every 3 hours). Therefore, in a time-averaged sense, both
convective and large-scale cloudiness can exist in a given grid-box.

Turbulence

Turbulence is parameterized in the fizhi package to account for its contribution to the vertical exchange of heat,
moisture, and momentum. The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit
iterative time scheme with an internal time step of 5 minutes. The tendencies of atmospheric state variables due to
turbulent diffusion are calculated using the diffusion equations:

𝜕𝑢

𝜕𝑡 𝑡𝑢𝑟𝑏
=

𝜕

𝜕𝑧
(−𝑢′𝑤′) =

𝜕

𝜕𝑧
(𝐾𝑚

𝜕𝑢

𝜕𝑧
)
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𝜕𝑣

𝜕𝑡 𝑡𝑢𝑟𝑏
=

𝜕

𝜕𝑧
(−𝑣′𝑤′) =

𝜕

𝜕𝑧
(𝐾𝑚

𝜕𝑣

𝜕𝑧
)

𝜕𝑇

𝜕𝑡
= 𝑃𝜅 𝜕𝜃

𝜕𝑡 𝑡𝑢𝑟𝑏
= 𝑃𝜅 𝜕

𝜕𝑧
(−𝑤′𝜃′) = 𝑃𝜅 𝜕

𝜕𝑧
(𝐾ℎ

𝜕𝜃𝑣
𝜕𝑧

)

𝜕𝑞

𝜕𝑡 𝑡𝑢𝑟𝑏
=

𝜕

𝜕𝑧
(−𝑤′𝑞′) =

𝜕

𝜕𝑧
(𝐾ℎ

𝜕𝑞

𝜕𝑧
)

Within the atmosphere, the time evolution of second turbulent moments is explicitly modeled by representing the third
moments in terms of the first and second moments. This approach is known as a second-order closure modeling.
To simplify and streamline the computation of the second moments, the level 2.5 assumption of Mellor and Yamada
(1974) and [Yam77] is employed, in which only the turbulent kinetic energy (TKE),

1

2
𝑞2 = 𝑢′2 + 𝑣′2 + 𝑤′2,

is solved prognostically and the other second moments are solved diagnostically. The prognostic equation for TKE
allows the scheme to simulate some of the transient and diffusive effects in the turbulence. The TKE budget equation
is solved numerically using an implicit backward computation of the terms linear in 𝑞2 and is written:

𝑑

𝑑𝑡
(
1

2
𝑞2) − 𝜕

𝜕𝑧
(
5

3
𝜆1𝑞

𝜕

𝜕𝑧
(
1

2
𝑞2)) = −𝑢′𝑤′ 𝜕𝑈

𝜕𝑧
− 𝑣′𝑤′ 𝜕𝑉

𝜕𝑧
+

𝑔

Θ0
𝑤′𝜃𝑣

′ − 𝑞3

Λ1

where 𝑞 is the turbulent velocity, 𝑢′, 𝑣′, 𝑤′ and 𝜃′ are the fluctuating parts of the velocity components and potential
temperature, 𝑈 and 𝑉 are the mean velocity components, Θ0

−1 is the coefficient of thermal expansion, and 𝜆1 and
Λ1 are constant multiples of the master length scale, ℓ, which is designed to be a characteristic measure of the vertical
structure of the turbulent layers.

The first term on the left-hand side represents the time rate of change of TKE, and the second term is a representation
of the triple correlation, or turbulent transport term. The first three terms on the right-hand side represent the sources
of TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation of TKE.

In the level 2.5 approach, the vertical fluxes of the scalars 𝜃𝑣 and 𝑞 and the wind components 𝑢 and 𝑣 are expressed in
terms of the diffusion coefficients 𝐾ℎ and 𝐾𝑚, respectively. In the statisically realizable level 2.5 turbulence scheme
of [HL88], these diffusion coefficients are expressed as

𝐾ℎ =

{︃
𝑞 ℓ 𝑆𝐻(𝐺𝑀 , 𝐺𝐻) for decaying turbulence
𝑞2

𝑞𝑒
ℓ 𝑆𝐻(𝐺𝑀𝑒

, 𝐺𝐻𝑒
) for growing turbulence

and

𝐾𝑚 =

{︃
𝑞 ℓ 𝑆𝑀 (𝐺𝑀 , 𝐺𝐻) for decaying turbulence
𝑞2

𝑞𝑒
ℓ 𝑆𝑀 (𝐺𝑀𝑒 , 𝐺𝐻𝑒) for growing turbulence

where the subscript 𝑒 refers to the value under conditions of local equillibrium (obtained from the Level 2.0 Model), ℓ
is the master length scale related to the vertical structure of the atmosphere, and 𝑆𝑀 and 𝑆𝐻 are functions of 𝐺𝐻 and
𝐺𝑀 , the dimensionless buoyancy and wind shear parameters, respectively. Both 𝐺𝐻 and 𝐺𝑀 , and their equilibrium
values 𝐺𝐻𝑒

and 𝐺𝑀𝑒
, are functions of the Richardson number:

RI =

𝑔
𝜃𝑣

𝜕𝜃𝑣
𝜕𝑧

(𝜕𝑢
𝜕𝑧 )2 + (𝜕𝑣

𝜕𝑧 )2
=

𝑐𝑝
𝜕𝜃𝑣
𝜕𝑧

𝜕𝑃𝜅

𝜕𝑧

(𝜕𝑢
𝜕𝑧 )2 + (𝜕𝑣

𝜕𝑧 )2
.

Negative values indicate unstable buoyancy and shear, small positive values (< 0.2) indicate dominantly unstable
shear, and large positive values indicate dominantly stable stratification.

Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer, which corresponds to
the lowest GCM level (see — missing table —), are calculated using stability-dependant functions based on Monin-
Obukhov theory:

𝐾𝑚(𝑠𝑢𝑟𝑓𝑎𝑐𝑒) = 𝐶𝑢 × 𝑢* = 𝐶𝐷𝑊𝑠
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and

𝐾ℎ(𝑠𝑢𝑟𝑓𝑎𝑐𝑒) = 𝐶𝑡 × 𝑢* = 𝐶𝐻𝑊𝑠

where 𝑢* = 𝐶𝑢𝑊𝑠 is the surface friction velocity, 𝐶𝐷 is termed the surface drag coefficient, 𝐶𝐻 the heat transfer
coefficient, and 𝑊𝑠 is the magnitude of the surface layer wind.

𝐶𝑢 is the dimensionless exchange coefficient for momentum from the surface layer similarity functions:

𝐶𝑢 =
𝑢*
𝑊𝑠

=
𝑘

𝜓𝑚

where k is the Von Karman constant and 𝜓𝑚 is the surface layer non-dimensional wind shear given by

𝜓𝑚 =

∫︁ 𝜁

𝜁0

𝜑𝑚
𝜁
𝑑𝜁.

Here 𝜁 is the non-dimensional stability parameter, and 𝜑𝑚 is the similarity function of 𝜁 which expresses the stability
dependance of the momentum gradient. The functional form of 𝜑𝑚 is specified differently for stable and unstable
layers.

𝐶𝑡 is the dimensionless exchange coefficient for heat and moisture from the surface layer similarity functions:

𝐶𝑡 = − (𝑤′𝜃′)

𝑢*∆𝜃
= − (𝑤′𝑞′)

𝑢*∆𝑞
=

𝑘

(𝜓ℎ + 𝜓𝑔)

where 𝜓ℎ is the surface layer non-dimensional temperature gradient given by

𝜓ℎ =

∫︁ 𝜁

𝜁0

𝜑ℎ
𝜁
𝑑𝜁.

Here 𝜑ℎ is the similarity function of 𝜁, which expresses the stability dependance of the temperature and moisture
gradients, and is specified differently for stable and unstable layers according to [HS95].

𝜓𝑔 is the non-dimensional temperature or moisture gradient in the viscous sublayer, which is the mosstly laminar
region between the surface and the tops of the roughness elements, in which temperature and moisture gradients can
be quite large. Based on [YK74]:

𝜓𝑔 =
0.55(𝑃𝑟2/3 − 0.2)

𝜈1/2
(ℎ0𝑢* − ℎ0𝑟𝑒𝑓𝑢*𝑟𝑒𝑓

)1/2

where Pr is the Prandtl number for air, 𝜈 is the molecular viscosity, 𝑧0 is the surface roughness length, and the subscript
ref refers to a reference value. ℎ0 = 30𝑧0 with a maximum value over land of 0.01

The surface roughness length over oceans is is a function of the surface-stress velocity,

𝑧0 = 𝑐1𝑢
3
* + 𝑐2𝑢

2
* + 𝑐3𝑢* + 𝑐4 +

𝑐5
𝑢*

where the constants are chosen to interpolate between the reciprocal relation of [Kon75] for weak winds, and the
piecewise linear relation of [LP81] for moderate to large winds. Roughness lengths over land are specified from the
climatology of [DS89].

For an unstable surface layer, the stability functions, chosen to interpolate between the condition of small values of 𝛽
and the convective limit, are the KEYPS function [Pan73] for momentum, and its generalization for heat and moisture:

𝜑𝑚
4 − 18𝜁𝜑𝑚

3 = 1 ; 𝜑ℎ
2 − 18𝜁𝜑ℎ

3 = 1 .

The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind speed approaches zero.
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For a stable surface layer, the stability functions are the observationally based functions of [Cla70], slightly modified
for the momemtum flux:

𝜑𝑚 =
1 + 5𝜁1

1 + 0.00794𝜁1(1 + 5𝜁1)
; 𝜑ℎ =

1 + 5𝜁1
1 + 0.00794𝜁(1 + 5𝜁1)

.

The moisture flux also depends on a specified evapotranspiration coefficient, set to unity over oceans and dependant
on the climatological ground wetness over land.

Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically using an implicit
backward operator.

Atmospheric Boundary Layer

The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the level at which the
turbulent kinetic energy is reduced to a tenth of its maximum near surface value. The vertical structure of the ABL is
explicitly resolved by the lowest few (3-8) model layers.

Surface Energy Budget

The ground temperature equation is solved as part of the turbulence package using a backward implicit time differenc-
ing scheme:

𝐶𝑔
𝜕𝑇𝑔
𝜕𝑡

= 𝑅𝑠𝑤 −𝑅𝑙𝑤 +𝑄𝑖𝑐𝑒 −𝐻 − 𝐿𝐸

where 𝑅𝑠𝑤 is the net surface downward shortwave radiative flux and 𝑅𝑙𝑤 is the net surface upward longwave radiative
flux.

𝐻 is the upward sensible heat flux, given by:

𝐻 = 𝑃𝜅𝜌𝑐𝑝𝐶𝐻𝑊𝑠(𝜃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝜃𝑁𝐿𝐴𝑌 ) 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐻 = 𝐶𝑢𝐶𝑡

where 𝜌 = the atmospheric density at the surface, 𝑐𝑝 is the specific heat of air at constant pressure, and 𝜃 represents the
potential temperature of the surface and of the lowest 𝜎-level, respectively.

The upward latent heat flux, 𝐿𝐸, is given by

𝐿𝐸 = 𝜌𝛽𝐿𝐶𝐻𝑊𝑠(𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑞𝑁𝐿𝐴𝑌 ) 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐻 = 𝐶𝑢𝐶𝑡

where 𝛽 is the fraction of the potential evapotranspiration actually evaporated, L is the latent heat of evaporation, and
𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and 𝑞𝑁𝐿𝐴𝑌 are the specific humidity of the surface and of the lowest 𝜎-level, respectively.

The heat conduction through sea ice, 𝑄𝑖𝑐𝑒, is given by

𝑄𝑖𝑐𝑒 =
𝐶𝑡𝑖

𝐻𝑖
(𝑇𝑖 − 𝑇𝑔)

where 𝐶𝑡𝑖 is the thermal conductivity of ice, 𝐻𝑖 is the ice thickness, assumed to be 3 𝑚 where sea ice is present, 𝑇𝑖 is
273 degrees Kelvin, and 𝑇𝑔 is the surface temperature of the ice.

𝐶𝑔 is the total heat capacity of the ground, obtained by solving a heat diffusion equation for the penetration of the
diurnal cycle into the ground (), and is given by:

𝐶𝑔 =

√︂
𝜆𝐶𝑠

2𝜔
=

√︂
(0.386 + 0.536𝑊 + 0.15𝑊 2)2 × 10−3

86400

2𝜋
.

Here, the thermal conductivity, 𝜆, is equal to 2× 10−3 𝑙𝑦
𝑠𝑒𝑐

𝑐𝑚
𝐾 , the angular velocity of the earth, 𝜔, is written as 86400

𝑠𝑒𝑐/𝑑𝑎𝑦 divided by 2𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑑𝑎𝑦, and the expression for 𝐶𝑠, the heat capacity per unit volume at the surface, is a
function of the ground wetness, 𝑊 .

Land Surface Processes:
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Surface Type

The fizhi package surface Types are designated using the Koster-Suarez [KS91][KS92] Land Surface Model (LSM)
mosaic philosophy which allows multiple “tiles”, or multiple surface types, in any one grid cell. The Koster-Suarez
LSM surface type classifications are shown in Table 8.14. The surface types and the percent of the grid cell occupied
by any surface type were derived from the surface classification of [DT94], and information about the location of
permanent ice was obtained from the classifications of [DS89]. The surface type map for a 1∘ grid is shown in Figure
8.10. The determination of the land or sea category of surface type was made from NCAR’s 10 minute by 10 minute
Navy topography dataset, which includes information about the percentage of water-cover at any point. The data were
averaged to the model’s grid resolutions, and any grid-box whose averaged water percentage was ≥ 60% was defined
as a water point. The Land-Water designation was further modified subjectively to ensure sufficient representation
from small but isolated land and water regions.

Table 8.14: Surface Type Designation
Type Vegetation Designation
1 Broadleaf Evergreen Trees
2 Broadleaf Deciduous Trees
3 Needleleaf Trees
4 Ground Cover
5 Broadleaf Shrubs
6 Dwarf Trees (Tundra)
7 Bare Soil
8 Desert (Bright)
9 Glacier
10 Desert (Dark)
100 Ocean

Surface Roughness

The surface roughness length over oceans is computed iteratively with the wind stress by the surface layer parameter-
ization [HS95]. It employs an interpolation between the functions of [LP81] for high winds and of [Kon75] for weak
winds.

Albedo

The surface albedo computation, described in , employs the “two stream” approximation used in Sellers’ (1987) Simple
Biosphere (SiB) Model which distinguishes between the direct and diffuse albedos in the visible and in the near infra-
red spectral ranges. The albedos are functions of the observed leaf area index (a description of the relative orientation
of the leaves to the sun), the greenness fraction, the vegetation type, and the solar zenith angle. Modifications are made
to account for the presence of snow, and its depth relative to the height of the vegetation elements.
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Figure 8.10: Surface type combinations
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Gravity Wave Drag

The fizhi package employs the gravity wave drag scheme of [ZSL95]. This scheme is a modified version of Vernekar
et al. (1992), which was based on Alpert et al. (1988) and Helfand et al. (1987). In this version, the gravity wave
stress at the surface is based on that derived by Pierrehumbert (1986) and is given by:

|𝜏⃗𝑠𝑓𝑐| =
𝜌𝑈3

𝑁ℓ*

(︂
𝐹 2
𝑟

1 + 𝐹 2
𝑟

)︂
,

where 𝐹𝑟 = 𝑁ℎ/𝑈 is the Froude number, 𝑁 is the Brunt - Väisälä frequency, 𝑈 is the surface wind speed, ℎ is the
standard deviation of the sub-grid scale orography, and ℓ* is the wavelength of the monochromatic gravity wave in the
direction of the low-level wind. A modification introduced by Zhou et al. allows for the momentum flux to escape
through the top of the model, although this effect is small for the current 70-level model. The subgrid scale standard
deviation is defined by ℎ, and is not allowed to exceed 400 m.

The effects of using this scheme within a GCM are shown in [TS96]. Experiments using the gravity wave drag
parameterization yielded significant and beneficial impacts on both the time-mean flow and the transient statistics of
the a GCM climatology, and have eliminated most of the worst dynamically driven biases in the a GCM simulation.
An examination of the angular momentum budget during climate runs indicates that the resulting gravity wave torque
is similar to the data-driven torque produced by a data assimilation which was performed without gravity wave drag.
It was shown that the inclusion of gravity wave drag results in large changes in both the mean flow and in eddy
fluxes. The result is a more accurate simulation of surface stress (through a reduction in the surface wind strength),
of mountain torque (through a redistribution of mean sea-level pressure), and of momentum convergence (through a
reduction in the flux of westerly momentum by transient flow eddies).

Boundary Conditions and other Input Data:

Required fields which are not explicitly predicted or diagnosed during model execution must either be prescribed
internally or obtained from external data sets. In the fizhi package these fields include: sea surface temperature, sea ice
estent, surface geopotential variance, vegetation index, and the radiation-related background levels of: ozone, carbon
dioxide, and stratospheric moisture.

Boundary condition data sets are available at the model’s resolutions for either climatological or yearly varying con-
ditions. Any frequency of boundary condition data can be used in the fizhi package; however, the current selection of
data is summarized in Table 8.15. The time mean values are interpolated during each model timestep to the current
time.

Table 8.15: Boundary conditions and other input data used in the fizhi
package. Also noted are the current years and frequencies available.

Fizhi Input Datasets
Sea Ice Extent monthly 1979-current, climatology
Sea Ice Extent weekly 1982-current, climatology
Sea Surface Temperature monthly 1979-current, climatology
Sea Surface Temperature weekly 1982-current, climatology
Zonally Averaged Upper-Level Moisture monthly climatology
Zonally Averaged Ozone Concentration monthly climatology
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Topography and Topography Variance

Surface geopotential heights are provided from an averaging of the Navy 10 minute by 10 minute dataset supplied by
the National Center for Atmospheric Research (NCAR) to the model’s grid resolution. The original topography is first
rotated to the proper grid-orientation which is being run, and then averages the data to the model resolution.

The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute data to the model’s
resolution and re-interpolating back to the 10 minute by 10 minute resolution. The sub-grid scale variance is con-
structed based on this smoothed dataset.

Upper Level Moisture

The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas Ex-
periment (SAGE) as input into the model’s radiation packages. The SAGE data is archived as monthly zonal means
at 5∘ latitudinal resolution. The data is interpolated to the model’s grid location and current time, and blended with
the GCM’s moisture data. Below 300 mb, the model’s moisture data is used. Above 100 mb, the SAGE data is used.
Between 100 and 300 mb, a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.

8.5.3.3 Fizhi Diagnostics

Fizhi Diagnostic Menu: [sec:pkg:fizhi:diagnostics]

NAME UNITS LEVELS DESCRIPTION
UFLUX N m–2 1 Surface U-Wind Stress on the atmosphere
VFLUX N m–2 1 Surface V-Wind Stress on the atmosphere
HFLUX W m–2 1 Surface Flux of Sensible Heat
EFLUX W m–2 1 Surface Flux of Latent Heat
QICE W m–2 1 Heat Conduction through Sea-Ice
RADLWG W m–2 1 Net upward LW flux at the ground
RADSWG W m–2 1 Net downward SW flux at the ground
RI dimensionless Nrphys Richardson Number
CT dimensionless 1 Surface Drag coefficient for T and Q
CU dimensionless 1 Surface Drag coefficient for U and V
ET m2 s–1 Nrphys Diffusivity coefficient for T and Q
EU m2 s–1 Nrphys Diffusivity coefficient for U and V
TURBU m s–1 day–1 Nrphys U-Momentum Changes due to Turbulence
TURBV m s–1 day–1 Nrphys V-Momentum Changes due to Turbulence
TURBT deg day–1 Nrphys Temperature Changes due to Turbulence
TURBQ g/kg/day Nrphys Specific Humidity Changes due to Turbulence
MOISTT deg day–1 Nrphys Temperature Changes due to Moist Processes
MOISTQ g/kg/day Nrphys Specific Humidity Changes due to Moist Processes
RADLW deg day–1 Nrphys Net Longwave heating rate for each level
RADSW deg day–1 Nrphys Net Shortwave heating rate for each level
PREACC mm/day 1 Total Precipitation
PRECON mm/day 1 Convective Precipitation
TUFLUX N m–2 Nrphys Turbulent Flux of U-Momentum
TVFLUX N m–2 Nrphys Turbulent Flux of V-Momentum
TTFLUX W m–2 Nrphys Turbulent Flux of Sensible Heat
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NAME UNITS LEVELS DESCRIPTION
TQFLUX W m–2 Nrphys Turbulent Flux of Latent Heat
CN dimensionless 1 Neutral Drag Coefficient
WINDS m s–1 1 Surface Wind Speed
DTSRF deg 1 Air/Surface virtual temperature difference
TG deg 1 Ground temperature
TS deg 1 Surface air temperature (Adiabatic from lowest model

layer)
DTG deg 1 Ground temperature adjustment
QG g kg–1 1 Ground specific humidity
QS g kg–1 1 Saturation surface specific humidity
TGRLW deg 1 Instantaneous ground temperature used as input to the

Longwave radiation subroutine
ST4 W m–2 1 Upward Longwave flux at the ground (𝜎𝑇 4)
OLR W m–2 1 Net upward Longwave flux at the top of the model
OLRCLR W m–2 1 Net upward clearsky Longwave flux at the top of the

model
LWGCLR W m–2 1 Net upward clearsky Longwave flux at the ground
LWCLR deg day–1 Nrphys Net clearsky Longwave heating rate for each level
TLW deg Nrphys Instantaneous temperature used as input to the Long-

wave radiation subroutine
SHLW g g–1 Nrphys Instantaneous specific humidity used as input to the

Longwave radiation subroutine
OZLW g g–1 Nrphys Instantaneous ozone used as input to the Longwave ra-

diation subroutine
CLMOLW 0 − 1 Nrphys Maximum overlap cloud fraction used in the Longwave

radiation subroutine
CLDTOT 0 − 1 Nrphys Total cloud fraction used in the Longwave and Short-

wave radiation subroutines
LWGDOWN W m–2 1 Downwelling Longwave radiation at the ground
GWDT deg day–1 Nrphys Temperature tendency due to Gravity Wave Drag
RADSWT W m–2 1 Incident Shortwave radiation at the top of the atmo-

sphere
TAUCLD per 100 mb Nrphys Counted Cloud Optical Depth (non-dimensional) per

100 mb
TAUCLDC Number Nrphys Cloud Optical Depth Counter
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NAME UNITS LEVELS Description
CLDLOW 0-1 Nrphys Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)
EVAP mm/day 1 Surface evaporation
DPDT hPa/day 1 Surface Pressure time-tendency
UAVE m/sec Nrphys Average U-Wind
VAVE m/sec Nrphys Average V-Wind
TAVE deg Nrphys Average Temperature
QAVE g/kg Nrphys Average Specific Humidity
OMEGA hPa/day Nrphys Vertical Velocity
DUDT m/sec/day Nrphys Total U-Wind tendency
DVDT m/sec/day Nrphys Total V-Wind tendency
DTDT deg/day Nrphys Total Temperature tendency
DQDT g/kg/day Nrphys Total Specific Humidity tendency
VORT 10^{-4}/sec Nrphys Relative Vorticity
DTLS deg/day Nrphys Temperature tendency due to Stratiform Cloud Forma-

tion
DQLS g/kg/day Nrphys Specific Humidity tendency due to Stratiform Cloud

Formation
USTAR m/sec 1 Surface USTAR wind
Z0 m 1 Surface roughness
FRQTRB 0-1 Nrphys-1 Frequency of Turbulence
PBL mb 1 Planetary Boundary Layer depth
SWCLR deg/day Nrphys Net clearsky Shortwave heating rate for each level
OSR W m–2 1 Net downward Shortwave flux at the top of the model
OSRCLR W m–2 1 Net downward clearsky Shortwave flux at the top of the

model
CLDMAS kg / m^2 Nrphys Convective cloud mass flux
UAVE m/sec Nrphys Time-averaged 𝑢-Wind

NAME UNITS LEVELS DESCRIPTION
VAVE m/sec Nrphys Time-averaged 𝑣-Wind
TAVE deg Nrphys Time-averaged Temperature`
QAVE g/g Nrphys Time-averaged Specific Humidity
RFT deg/day Nrphys Temperature tendency due Rayleigh Friction
PS mb 1 Surface Pressure
QQAVE (m/sec)2 Nrphys Time-averaged Turbulent Kinetic Energy
SWGCLR W m–2 1 Net downward clearsky Shortwave flux at the ground
PAVE mb 1 Time-averaged Surface Pressure
DIABU m/sec/day Nrphys Total Diabatic forcing on 𝑢-Wind
DIABV m/sec/day Nrphys Total Diabatic forcing on 𝑣-Wind
DIABT deg/day Nrphys Total Diabatic forcing on Temperature
DIABQ g/kg/day Nrphys Total Diabatic forcing on Specific Humidity
RFU m/sec/day Nrphys U-Wind tendency due to Rayleigh Friction
RFV m/sec/day Nrphys V-Wind tendency due to Rayleigh Friction
GWDU m/sec/day Nrphys U-Wind tendency due to Gravity Wave Drag
GWDU m/sec/day Nrphys V-Wind tendency due to Gravity Wave Drag
GWDUS N m–2 1 U-Wind Gravity Wave Drag Stress at Surface
GWDVS N m–2 1 V-Wind Gravity Wave Drag Stress at Surface
GWDUT N m–2 1 U-Wind Gravity Wave Drag Stress at Top
GWDVT N m–2 1 V-Wind Gravity Wave Drag Stress at Top
LZRAD mg/kg Nrphys Estimated Cloud Liquid Water used in Radiation
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NAME UNITS LEVELS DESCRIPTION
SLP mb 1 Time-averaged Sea-level Pressure
CLDFRC 0-1 1 Total Cloud Fraction
TPW gm cm–2 1 Precipitable water
U2M m/sec 1 U-Wind at 2 meters
V2M m/sec 1 V-Wind at 2 meters
T2M deg 1 Temperature at 2 meters
Q2M g/kg 1 Specific Humidity at 2 meters
U10M m/sec 1 U-Wind at 10 meters
V10M m/sec 1 V-Wind at 10 meters
T10M deg 1 Temperature at 10 meters
Q10M g/kg 1 Specific Humidity at 10 meters
DTRAIN kg m–2 Nrphys Detrainment Cloud Mass Flux
QFILL g/kg/day Nrphys Filling of negative specific humidity
DTCONV deg/sec Nr Temp Change due to Convection
DQCONV g/kg/sec Nr Specific Humidity Change due to Convection
RELHUM percent Nr Relative Humidity
PRECLS g/m^2/sec 1 Large Scale Precipitation
ENPREC J/g 1 Energy of Precipitation (snow, rain Temp)

8.5.3.4 Fizhi Diagnostic Description

In this section we list and describe the diagnostic quantities available within the GCM. The diagnostics are listed in
the order that they appear in the Diagnostic Menu, Section [sec:pkg:fizhi:diagnostics]. In all cases, each diagnostic as
currently archived on the output datasets is time-averaged over its diagnostic output frequency:

DIAGNOSTIC =
1

𝑇𝑇𝑂𝑇

𝑡=𝑇𝑇𝑂𝑇∑︁
𝑡=1

𝑑𝑖𝑎𝑔(𝑡)

where 𝑇𝑇𝑂𝑇 = NQDIAG
Δ𝑡 , NQDIAG is the output frequency of the diagnostic, and ∆𝑡 is the timestep over which

the diagnostic is updated.

Surface Zonal Wind Stress on the Atmosphere (𝑁𝑒𝑤𝑡𝑜𝑛/𝑚2)

The zonal wind stress is the turbulent flux of zonal momentum from the surface.

UFLUX = −𝜌𝐶𝐷𝑊𝑠𝑢 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐷 = 𝐶2
𝑢

where 𝜌 = the atmospheric density at the surface, 𝐶𝐷 is the surface drag coefficient, 𝐶𝑢 is the dimensionless surface
exchange coefficient for momentum (see diagnostic number 10), 𝑊𝑠 is the magnitude of the surface layer wind, and 𝑢
is the zonal wind in the lowest model layer.
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Surface Meridional Wind Stress on the Atmosphere (𝑁𝑒𝑤𝑡𝑜𝑛/𝑚2)

The meridional wind stress is the turbulent flux of meridional momentum from the surface.

VFLUX = −𝜌𝐶𝐷𝑊𝑠𝑣 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐷 = 𝐶2
𝑢

where 𝜌 = the atmospheric density at the surface, 𝐶𝐷 is the surface drag coefficient, 𝐶𝑢 is the dimensionless surface
exchange coefficient for momentum (see diagnostic number 10), 𝑊𝑠 is the magnitude of the surface layer wind, and 𝑣
is the meridional wind in the lowest model layer.

Surface Flux of Sensible Heat (W m–2)

The turbulent flux of sensible heat from the surface to the atmosphere is a function of the gradient of virtual potential
temperature and the eddy exchange coefficient:

HFLUX = 𝑃𝜅𝜌𝑐𝑝𝐶𝐻𝑊𝑠(𝜃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝜃𝑁𝑟𝑝ℎ𝑦𝑠) 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐻 = 𝐶𝑢𝐶𝑡

where 𝜌 = the atmospheric density at the surface, 𝑐𝑝 is the specific heat of air, 𝐶𝐻 is the dimensionless surface
heat transfer coefficient, 𝑊𝑠 is the magnitude of the surface layer wind, 𝐶𝑢 is the dimensionless surface exchange
coefficient for momentum (see diagnostic number 10), 𝐶𝑡 is the dimensionless surface exchange coefficient for heat
and moisture (see diagnostic number 9), and 𝜃 is the potential temperature at the surface and at the bottom model level.

Surface Flux of Latent Heat (𝑊𝑎𝑡𝑡𝑠/𝑚2)

The turbulent flux of latent heat from the surface to the atmosphere is a function of the gradient of moisture, the
potential evapotranspiration fraction and the eddy exchange coefficient:

EFLUX = 𝜌𝛽𝐿𝐶𝐻𝑊𝑠(𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑞𝑁𝑟𝑝ℎ𝑦𝑠) 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐻 = 𝐶𝑢𝐶𝑡

where 𝜌 = the atmospheric density at the surface, 𝛽 is the fraction of the potential evapotranspiration actually evapo-
rated, L is the latent heat of evaporation, 𝐶𝐻 is the dimensionless surface heat transfer coefficient,𝑊𝑠 is the magnitude
of the surface layer wind, 𝐶𝑢 is the dimensionless surface exchange coefficient for momentum (see diagnostic num-
ber 10), 𝐶𝑡 is the dimensionless surface exchange coefficient for heat and moisture (see diagnostic number 9), and
𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and 𝑞𝑁𝑟𝑝ℎ𝑦𝑠 are the specific humidity at the surface and at the bottom model level, respectively.

Heat Conduction Through Sea Ice (𝑊𝑎𝑡𝑡𝑠/𝑚2)

Over sea ice there is an additional source of energy at the surface due to the heat conduction from the relatively warm
ocean through the sea ice. The heat conduction through sea ice represents an additional energy source term for the
ground temperature equation.

QICE =
𝐶𝑡𝑖

𝐻𝑖
(𝑇𝑖 − 𝑇𝑔)

where 𝐶𝑡𝑖 is the thermal conductivity of ice, 𝐻𝑖 is the ice thickness, assumed to be 3 𝑚 where sea ice is present, 𝑇𝑖 is
273 degrees Kelvin, and 𝑇𝑔 is the temperature of the sea ice.

NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.
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Net upward Longwave Flux at the surface (𝑊𝑎𝑡𝑡𝑠/𝑚2)

RADLWG = 𝐹𝑁𝑒𝑡
𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

= 𝐹 ↑
𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1 − 𝐹 ↓

𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

where Nrphys+1 indicates the lowest model edge-level, or 𝑝 = 𝑝𝑠𝑢𝑟𝑓 . 𝐹 ↑
𝐿𝑊 is the upward Longwave flux and 𝐹 ↓

𝐿𝑊 is
the downward Longwave flux.

Net downard shortwave Flux at the surface (𝑊𝑎𝑡𝑡𝑠/𝑚2)

RADSWG = 𝐹𝑁𝑒𝑡
𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

= 𝐹 ↓
𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1 − 𝐹 ↑

𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

where Nrphys+1 indicates the lowest model edge-level, or 𝑝 = 𝑝𝑠𝑢𝑟𝑓 . 𝐹 ↓
𝑆𝑊 is the downward Shortwave flux and 𝐹 ↑

𝑆𝑊

is the upward Shortwave flux.

Richardson number (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)

The non-dimensional stability indicator is the ratio of the buoyancy to the shear:

RI =

𝑔
𝜃𝑣

𝜕𝜃𝑣
𝜕𝑧

(𝜕𝑢
𝜕𝑧 )2 + (𝜕𝑣

𝜕𝑧 )2
=

𝑐𝑝
𝜕𝜃𝑣
𝜕𝑧

𝜕𝑃𝜅

𝜕𝑧

(𝜕𝑢
𝜕𝑧 )2 + (𝜕𝑣

𝜕𝑧 )2

where we used the hydrostatic equation:

𝜕Φ

𝜕𝑃𝜅
= 𝑐𝑝𝜃𝑣

Negative values indicate unstable buoyancy AND shear, small positive values (< 0.4) indicate dominantly unstable
shear, and large positive values indicate dominantly stable stratification.

CT - Surface Exchange Coefficient for Temperature and Moisture (dimensionless)

The surface exchange coefficient is obtained from the similarity functions for the stability dependant flux profile
relationships:

CT = − (𝑤′𝜃′)

𝑢*∆𝜃
= − (𝑤′𝑞′)

𝑢*∆𝑞
=

𝑘

(𝜓ℎ + 𝜓𝑔)

where 𝜓ℎ is the surface layer non-dimensional temperature change and 𝜓𝑔 is the viscous sublayer non-dimensional
temperature or moisture change:

𝜓ℎ =

∫︁ 𝜁

𝜁0

𝜑ℎ
𝜁
𝑑𝜁 𝑎𝑛𝑑 𝜓𝑔 =

0.55(𝑃𝑟2/3 − 0.2)

𝜈1/2
(ℎ0𝑢* − ℎ0𝑟𝑒𝑓𝑢*𝑟𝑒𝑓

)1/2

and: ℎ0 = 30𝑧0 with a maximum value over land of 0.01

𝜑ℎ is the similarity function of 𝜁, which expresses the stability dependance of the temperature and moisture gra-
dients, specified differently for stable and unstable layers according to . k is the Von Karman constant, 𝜁 is the
non-dimensional stability parameter, Pr is the Prandtl number for air, 𝜈 is the molecular viscosity, 𝑧0 is the surface
roughness length, 𝑢* is the surface stress velocity (see diagnostic number 67), and the subscript ref refers to a reference
value.
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CU - Surface Exchange Coefficient for Momentum (dimensionless)

The surface exchange coefficient is obtained from the similarity functions for the stability dependant flux profile
relationships:

CU =
𝑢*
𝑊𝑠

=
𝑘

𝜓𝑚

where 𝜓𝑚 is the surface layer non-dimensional wind shear:

𝜓𝑚 =

∫︁ 𝜁

𝜁0

𝜑𝑚
𝜁
𝑑𝜁

𝜑𝑚 is the similarity function of 𝜁, which expresses the stability dependance of the temperature and moisture gradi-
ents, specified differently for stable and unstable layers according to . k is the Von Karman constant, 𝜁 is the non-
dimensional stability parameter, 𝑢* is the surface stress velocity (see diagnostic number 67), and 𝑊𝑠 is the magnitude
of the surface layer wind.

ET - Diffusivity Coefficient for Temperature and Moisture (m^2/sec)

In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or moisture flux for the atmosphere
above the surface layer can be expressed as a turbulent diffusion coefficient 𝐾ℎ times the negative of the gradient of
potential temperature or moisture. In the [HL88] adaptation of this closure, 𝐾ℎ takes the form:

ET = 𝐾ℎ = − (𝑤′𝜃′𝑣)
𝜕𝜃𝑣
𝜕𝑧

=

{︃
𝑞 ℓ 𝑆𝐻(𝐺𝑀 , 𝐺𝐻) for decaying turbulence
𝑞2

𝑞𝑒
ℓ 𝑆𝐻(𝐺𝑀𝑒

, 𝐺𝐻𝑒
) for growing turbulence

where 𝑞 is the turbulent velocity, or
√

2 * 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑞𝑒 is the turbulence velocity derived from the
more simple level 2.0 model, which describes equilibrium turbulence, ℓ is the master length scale related to the layer
depth, 𝑆𝐻 is a function of 𝐺𝐻 and 𝐺𝑀 , the dimensionless buoyancy and wind shear parameters, respectively, or a
function of 𝐺𝐻𝑒 and 𝐺𝑀𝑒 , the equilibrium dimensionless buoyancy and wind shear parameters. Both 𝐺𝐻 and 𝐺𝑀 ,
and their equilibrium values 𝐺𝐻𝑒 and 𝐺𝑀𝑒 , are functions of the Richardson number.

For the detailed equations and derivations of the modified level 2.5 closure scheme, see [HL88].

In the surface layer, ET is the exchange coefficient for heat and moisture, in units of 𝑚/𝑠𝑒𝑐, given by:

ETNrphys = 𝐶𝑡 * 𝑢* = 𝐶𝐻𝑊𝑠

where 𝐶𝑡 is the dimensionless exchange coefficient for heat and moisture from the surface layer similarity functions
(see diagnostic number 9), 𝑢* is the surface friction velocity (see diagnostic number 67), 𝐶𝐻 is the heat transfer
coefficient, and 𝑊𝑠 is the magnitude of the surface layer wind.

EU - Diffusivity Coefficient for Momentum (m^2/sec)

In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat momentum flux for the atmosphere
above the surface layer can be expressed as a turbulent diffusion coefficient 𝐾𝑚 times the negative of the gradient of
the u-wind. In the [HL88] adaptation of this closure, 𝐾𝑚 takes the form:

EU = 𝐾𝑚 = − (𝑢′𝑤′)
𝜕𝑈
𝜕𝑧

=

{︃
𝑞 ℓ 𝑆𝑀 (𝐺𝑀 , 𝐺𝐻) for decaying turbulence
𝑞2

𝑞𝑒
ℓ 𝑆𝑀 (𝐺𝑀𝑒

, 𝐺𝐻𝑒
) for growing turbulence

where 𝑞 is the turbulent velocity, or
√

2 * 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑞𝑒 is the turbulence velocity derived from the
more simple level 2.0 model, which describes equilibrium turbulence, ℓ is the master length scale related to the layer
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depth, 𝑆𝑀 is a function of 𝐺𝐻 and 𝐺𝑀 , the dimensionless buoyancy and wind shear parameters, respectively, or a
function of 𝐺𝐻𝑒 and 𝐺𝑀𝑒 , the equilibrium dimensionless buoyancy and wind shear parameters. Both 𝐺𝐻 and 𝐺𝑀 ,
and their equilibrium values 𝐺𝐻𝑒

and 𝐺𝑀𝑒
, are functions of the Richardson number.

For the detailed equations and derivations of the modified level 2.5 closure scheme, see [HL88].

In the surface layer, EU is the exchange coefficient for momentum, in units of 𝑚/𝑠𝑒𝑐, given by:

EUNrphys = 𝐶𝑢 * 𝑢* = 𝐶𝐷𝑊𝑠

where 𝐶𝑢 is the dimensionless exchange coefficient for momentum from the surface layer similarity functions (see
diagnostic number 10), 𝑢* is the surface friction velocity (see diagnostic number 67),𝐶𝐷 is the surface drag coefficient,
and 𝑊𝑠 is the magnitude of the surface layer wind.

TURBU - Zonal U-Momentum changes due to Turbulence (m/sec/day)

The tendency of U-Momentum due to turbulence is written:

TURBU =
𝜕𝑢

𝜕𝑡 𝑡𝑢𝑟𝑏
=

𝜕

𝜕𝑧
(−𝑢′𝑤′) =

𝜕

𝜕𝑧
(𝐾𝑚

𝜕𝑢

𝜕𝑧
)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of u-momentum in terms of𝐾𝑚, and the equation
has the form of a diffusion equation.

TURBV - Meridional V-Momentum changes due to Turbulence (m/sec/day)

The tendency of V-Momentum due to turbulence is written:

TURBV =
𝜕𝑣

𝜕𝑡 𝑡𝑢𝑟𝑏
=

𝜕

𝜕𝑧
(−𝑣′𝑤′) =

𝜕

𝜕𝑧
(𝐾𝑚

𝜕𝑣

𝜕𝑧
)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of v-momentum in terms of𝐾𝑚, and the equation
has the form of a diffusion equation.

TURBT - Temperature changes due to Turbulence (deg/day)

The tendency of temperature due to turbulence is written:

TURBT =
𝜕𝑇

𝜕𝑡
= 𝑃𝜅 𝜕𝜃

𝜕𝑡 𝑡𝑢𝑟𝑏
= 𝑃𝜅 𝜕

𝜕𝑧
(−𝑤′𝜃′) = 𝑃𝜅 𝜕

𝜕𝑧
(𝐾ℎ

𝜕𝜃𝑣
𝜕𝑧

)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of temperature in terms of 𝐾ℎ, and the equation
has the form of a diffusion equation.

TURBQ - Specific Humidity changes due to Turbulence (g/kg/day)

The tendency of specific humidity due to turbulence is written:

TURBQ =
𝜕𝑞

𝜕𝑡 𝑡𝑢𝑟𝑏
=

𝜕

𝜕𝑧
(−𝑤′𝑞′) =

𝜕

𝜕𝑧
(𝐾ℎ

𝜕𝑞

𝜕𝑧
)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of temperature in terms of 𝐾ℎ, and the equation
has the form of a diffusion equation.
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MOISTT - Temperature Changes Due to Moist Processes (deg/day)

MOISTT =
𝜕𝑇

𝜕𝑡

⃒⃒⃒⃒
𝑐

+
𝜕𝑇

𝜕𝑡

⃒⃒⃒⃒
𝑙𝑠

where:

𝜕𝑇

𝜕𝑡

⃒⃒⃒⃒
𝑐

= 𝑅
∑︁
𝑖

(︂
𝛼
𝑚𝐵

𝑐𝑝
Γ𝑠

)︂
𝑖

𝑎𝑛𝑑
𝜕𝑇

𝜕𝑡

⃒⃒⃒⃒
𝑙𝑠

=
𝐿

𝑐𝑝
(𝑞* − 𝑞)

𝑎𝑛𝑑

Γ𝑠 = 𝑔𝜂
𝜕𝑠

𝜕𝑝

The subscript 𝑐 refers to convective processes, while the subscript 𝑙𝑠 refers to large scale precipitation processes, or
supersaturation rain. The summation refers to contributions from each cloud type called by RAS. The dry static energy
is given as 𝑠, the convective cloud base mass flux is given as 𝑚𝐵 , and the cloud entrainment is given as 𝜂, which are
explicitly defined in Section 8.5.3.2, the description of the convective parameterization. The fractional adjustment, or
relaxation parameter, for each cloud type is given as 𝛼, while 𝑅 is the rain re-evaporation adjustment.

MOISTQ - Specific Humidity Changes Due to Moist Processes (g/kg/day)

MOISTQ =
𝜕𝑞

𝜕𝑡

⃒⃒⃒⃒
𝑐

+
𝜕𝑞

𝜕𝑡

⃒⃒⃒⃒
𝑙𝑠

where:

𝜕𝑞

𝜕𝑡

⃒⃒⃒⃒
𝑐

= 𝑅
∑︁
𝑖

(︁
𝛼
𝑚𝐵

𝐿
(Γℎ − Γ𝑠)

)︁
𝑖

𝑎𝑛𝑑
𝜕𝑞

𝜕𝑡

⃒⃒⃒⃒
𝑙𝑠

= (𝑞* − 𝑞)

and

Γ𝑠 = 𝑔𝜂
𝜕𝑠

𝜕𝑝
𝑎𝑛𝑑 Γℎ = 𝑔𝜂

𝜕ℎ

𝜕𝑝

The subscript 𝑐 refers to convective processes, while the subscript 𝑙𝑠 refers to large scale precipitation processes,
or supersaturation rain. The summation refers to contributions from each cloud type called by RAS. The dry static
energy is given as 𝑠, the moist static energy is given as ℎ, the convective cloud base mass flux is given as 𝑚𝐵 , and
the cloud entrainment is given as 𝜂, which are explicitly defined in Section 8.5.3.2, the description of the convective
parameterization. The fractional adjustment, or relaxation parameter, for each cloud type is given as 𝛼, while 𝑅 is the
rain re-evaporation adjustment.

RADLW - Heating Rate due to Longwave Radiation (deg/day)

The net longwave heating rate is calculated as the vertical divergence of the net terrestrial radiative fluxes. Both the
clear-sky and cloudy-sky longwave fluxes are computed within the longwave routine. The subroutine calculates the
clear-sky flux, 𝐹 𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦

𝐿𝑊 , first. For a given cloud fraction, the clear line-of-sight probability 𝐶(𝑝, 𝑝′) is computed from
the current level pressure 𝑝 to the model top pressure, 𝑝′ = 𝑝𝑡𝑜𝑝, and the model surface pressure, 𝑝′ = 𝑝𝑠𝑢𝑟𝑓 , for the
upward and downward radiative fluxes. (see Section [sec:fizhi:radcloud]). The cloudy-sky flux is then obtained as:

𝐹𝐿𝑊 = 𝐶(𝑝, 𝑝′) · 𝐹 𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦
𝐿𝑊 ,
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Finally, the net longwave heating rate is calculated as the vertical divergence of the net terrestrial radiative fluxes:

𝜕𝜌𝑐𝑝𝑇

𝜕𝑡
= − 𝜕

𝜕𝑧
𝐹𝑁𝐸𝑇
𝐿𝑊 ,

or

RADLW =
𝑔

𝑐𝑝𝜋

𝜕

𝜕𝜎
𝐹𝑁𝐸𝑇
𝐿𝑊 .

where 𝑔 is the accelation due to gravity, 𝑐𝑝 is the heat capacity of air at constant pressure, and

𝐹𝑁𝐸𝑇
𝐿𝑊 = 𝐹 ↑

𝐿𝑊 − 𝐹 ↓
𝐿𝑊

RADSW - Heating Rate due to Shortwave Radiation (deg/day)

The net Shortwave heating rate is calculated as the vertical divergence of the net solar radiative fluxes. The clear-sky
and cloudy-sky shortwave fluxes are calculated separately. For the clear-sky case, the shortwave fluxes and heating
rates are computed with both CLMO (maximum overlap cloud fraction) and CLRO (random overlap cloud fraction)
set to zero (see Section [sec:fizhi:radcloud]). The shortwave routine is then called a second time, for the cloudy-sky
case, with the true time-averaged cloud fractions CLMO and CLRO being used. In all cases, a normalized incident
shortwave flux is used as input at the top of the atmosphere.

The heating rate due to Shortwave Radiation under cloudy skies is defined as:

𝜕𝜌𝑐𝑝𝑇

𝜕𝑡
= − 𝜕

𝜕𝑧
𝐹 (𝑐𝑙𝑜𝑢𝑑𝑦)𝑁𝐸𝑇

𝑆𝑊 · RADSWT,

or

RADSW =
𝑔

𝑐𝑝𝜋

𝜕

𝜕𝜎
𝐹 (𝑐𝑙𝑜𝑢𝑑𝑦)𝑁𝐸𝑇

𝑆𝑊 · RADSWT.

where 𝑔 is the accelation due to gravity, 𝑐𝑝 is the heat capacity of air at constant pressure, RADSWT is the true incident
shortwave radiation at the top of the atmosphere (See Diagnostic #48), and

𝐹 (𝑐𝑙𝑜𝑢𝑑𝑦)𝑁𝑒𝑡
𝑆𝑊 = 𝐹 (𝑐𝑙𝑜𝑢𝑑𝑦)↑𝑆𝑊 − 𝐹 (𝑐𝑙𝑜𝑢𝑑𝑦)↓𝑆𝑊

PREACC - Total (Large-scale + Convective) Accumulated Precipition (mm/day)

For a change in specific humidity due to moist processes, ∆𝑞𝑚𝑜𝑖𝑠𝑡, the vertical integral or total precipitable amount is
given by:

PREACC =

∫︁ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓

𝜌∆𝑞𝑚𝑜𝑖𝑠𝑡𝑑𝑧 = −
∫︁ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓

∆𝑞𝑚𝑜𝑖𝑠𝑡
𝑑𝑝

𝑔
=

1

𝑔

∫︁ 1

0

∆𝑞𝑚𝑜𝑖𝑠𝑡𝑑𝑝

A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes time step, scaled to
𝑚𝑚/𝑑𝑎𝑦.

PRECON - Convective Precipition (mm/day)

For a change in specific humidity due to sub-grid scale cumulus convective processes, ∆𝑞𝑐𝑢𝑚, the vertical integral or
total precipitable amount is given by:

PRECON =

∫︁ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓

𝜌∆𝑞𝑐𝑢𝑚𝑑𝑧 = −
∫︁ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓

∆𝑞𝑐𝑢𝑚
𝑑𝑝

𝑔
=

1

𝑔

∫︁ 1

0

∆𝑞𝑐𝑢𝑚𝑑𝑝

A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes time step, scaled to
𝑚𝑚/𝑑𝑎𝑦.
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TUFLUX - Turbulent Flux of U-Momentum (Newton/m^2)

The turbulent flux of u-momentum is calculated for 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑝𝑢𝑟𝑝𝑜𝑠𝑒𝑠 𝑜𝑛𝑙𝑦 from the eddy coefficient for mo-
mentum:

TUFLUX = 𝜌(𝑢′𝑤′) = 𝜌(−𝐾𝑚
𝜕𝑈

𝜕𝑧
)

where 𝜌 is the air density, and 𝐾𝑚 is the eddy coefficient.

TVFLUX - Turbulent Flux of V-Momentum (Newton/m^2)

The turbulent flux of v-momentum is calculated for 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑝𝑢𝑟𝑝𝑜𝑠𝑒𝑠 𝑜𝑛𝑙𝑦 from the eddy coefficient for mo-
mentum:

TVFLUX = 𝜌(𝑣′𝑤′) = 𝜌(−𝐾𝑚
𝜕𝑉

𝜕𝑧
)

where 𝜌 is the air density, and 𝐾𝑚 is the eddy coefficient.

TTFLUX - Turbulent Flux of Sensible Heat (Watts/m^2)

The turbulent flux of sensible heat is calculated for 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑝𝑢𝑟𝑝𝑜𝑠𝑒𝑠 𝑜𝑛𝑙𝑦 from the eddy coefficient for heat
and moisture:

TTFLUX = 𝑐𝑝𝜌𝑃
𝜅(𝑤′𝜃′) = 𝑐𝑝𝜌𝑃

𝜅(−𝐾ℎ
𝜕𝜃𝑣
𝜕𝑧

)

where 𝜌 is the air density, and 𝐾ℎ is the eddy coefficient.

TQFLUX - Turbulent Flux of Latent Heat (Watts/m^2)

The turbulent flux of latent heat is calculated for 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑝𝑢𝑟𝑝𝑜𝑠𝑒𝑠 𝑜𝑛𝑙𝑦 from the eddy coefficient for heat and
moisture:

TQFLUX = 𝐿𝜌(𝑤′𝑞′) = 𝐿𝜌(−𝐾ℎ
𝜕𝑞

𝜕𝑧
)

where 𝜌 is the air density, and 𝐾ℎ is the eddy coefficient.

CN - Neutral Drag Coefficient (dimensionless)

The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:

CN =
𝑘

ln( ℎ
𝑧0

)

where 𝑘 is the Von Karman constant, ℎ is the height of the surface layer, and 𝑧0 is the surface roughness.

NOTE: CN is not available through model version 5.3, but is available in subsequent versions.
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WINDS - Surface Wind Speed (meter/sec)

The surface wind speed is calculated for the last internal turbulence time step:

WINDS =
√︁
𝑢2𝑁𝑟𝑝ℎ𝑦𝑠 + 𝑣2𝑁𝑟𝑝ℎ𝑦𝑠

where the subscript 𝑁𝑟𝑝ℎ𝑦𝑠 refers to the lowest model level.

The air/surface virtual temperature difference measures the stability of the surface layer:

DTSRF = (𝜃𝑣𝑁𝑟𝑝ℎ𝑦𝑠+1 − 𝜃𝑣𝑁𝑟𝑝ℎ𝑦𝑠)𝑃
𝜅
𝑠𝑢𝑟𝑓

where

𝜃𝑣𝑁𝑟𝑝ℎ𝑦𝑠+1 =
𝑇𝑔

𝑃𝜅
𝑠𝑢𝑟𝑓

(1 + .609𝑞𝑁𝑟𝑝ℎ𝑦𝑠+1) 𝑎𝑛𝑑 𝑞𝑁𝑟𝑝ℎ𝑦𝑠+1 = 𝑞𝑁𝑟𝑝ℎ𝑦𝑠 + 𝛽(𝑞*(𝑇𝑔, 𝑃𝑠) − 𝑞𝑁𝑟𝑝ℎ𝑦𝑠)

𝛽 is the surface potential evapotranspiration coefficient (𝛽 = 1 over oceans), 𝑞*(𝑇𝑔, 𝑃𝑠) is the saturation specific
humidity at the ground temperature and surface pressure, level 𝑁𝑟𝑝ℎ𝑦𝑠 refers to the lowest model level and level
𝑁𝑟𝑝ℎ𝑦𝑠+ 1 refers to the surface.

TG - Ground Temperature (deg K)

The ground temperature equation is solved as part of the turbulence package using a backward implicit time differenc-
ing scheme:

TG 𝑖𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 : 𝐶𝑔
𝜕𝑇𝑔
𝜕𝑡

= 𝑅𝑠𝑤 −𝑅𝑙𝑤 +𝑄𝑖𝑐𝑒 −𝐻 − 𝐿𝐸

where 𝑅𝑠𝑤 is the net surface downward shortwave radiative flux, 𝑅𝑙𝑤 is the net surface upward longwave radiative
flux, 𝑄𝑖𝑐𝑒 is the heat conduction through sea ice, 𝐻 is the upward sensible heat flux, 𝐿𝐸 is the upward latent heat flux,
and 𝐶𝑔 is the total heat capacity of the ground. 𝐶𝑔 is obtained by solving a heat diffusion equation for the penetration
of the diurnal cycle into the ground (), and is given by:

𝐶𝑔 =

√︂
𝜆𝐶𝑠

2𝜔
=

√︂
(0.386 + 0.536𝑊 + 0.15𝑊 2)2𝑥10−3

86400.

2𝜋
.

Here, the thermal conductivity, 𝜆, is equal to 2𝑥10−3 𝑙𝑦
𝑠𝑒𝑐

𝑐𝑚
𝐾 , the angular velocity of the earth, 𝜔, is written as 86400

𝑠𝑒𝑐/𝑑𝑎𝑦 divided by 2𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑑𝑎𝑦, and the expression for 𝐶𝑠, the heat capacity per unit volume at the surface, is a
function of the ground wetness, 𝑊 .

TS - Surface Temperature (deg K)

The surface temperature estimate is made by assuming that the model’s lowest layer is well-mixed, and therefore that
𝜃 is constant in that layer. The surface temperature is therefore:

TS = 𝜃𝑁𝑟𝑝ℎ𝑦𝑠𝑃
𝜅
𝑠𝑢𝑟𝑓
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DTG - Surface Temperature Adjustment (deg K)

The change in surface temperature from one turbulence time step to the next, solved using the Ground Temperature
Equation (see diagnostic number 30) is calculated:

DTG = 𝑇𝑔
𝑛 − 𝑇𝑔

𝑛−1

where superscript 𝑛 refers to the new, updated time level, and the superscript 𝑛− 1 refers to the value at the previous
turbulence time level.

QG - Ground Specific Humidity (g/kg)

The ground specific humidity is obtained by interpolating between the specific humidity at the lowest model level
and the specific humidity of a saturated ground. The interpolation is performed using the potential evapotranspiration
function:

QG = 𝑞𝑁𝑟𝑝ℎ𝑦𝑠+1 = 𝑞𝑁𝑟𝑝ℎ𝑦𝑠 + 𝛽(𝑞*(𝑇𝑔, 𝑃𝑠) − 𝑞𝑁𝑟𝑝ℎ𝑦𝑠)

where 𝛽 is the surface potential evapotranspiration coefficient (𝛽 = 1 over oceans), and 𝑞*(𝑇𝑔, 𝑃𝑠) is the saturation
specific humidity at the ground temperature and surface pressure.

QS - Saturation Surface Specific Humidity (g/kg)

The surface saturation specific humidity is the saturation specific humidity at the ground temprature and surface
pressure:

QS = 𝑞*(𝑇𝑔, 𝑃𝑠)

TGRLW - Instantaneous ground temperature used as input to the Longwave radiation subroutine
(deg)

TGRLW = 𝑇𝑔(𝜆, 𝜑, 𝑛)

where 𝑇𝑔 is the model ground temperature at the current time step 𝑛.

ST4 - Upward Longwave flux at the surface (Watts/m^2)

ST4 = 𝜎𝑇 4

where 𝜎 is the Stefan-Boltzmann constant and T is the temperature.
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OLR - Net upward Longwave flux at 𝑝 = 𝑝𝑡𝑜𝑝 (Watts/m^2)

OLR = 𝐹𝑁𝐸𝑇
𝐿𝑊,𝑡𝑜𝑝

where top indicates the top of the first model layer. In the GCM, 𝑝𝑡𝑜𝑝 = 0.0 mb.

OLRCLR - Net upward clearsky Longwave flux at 𝑝 = 𝑝𝑡𝑜𝑝 (Watts/m^2)

OLRCLR = 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝐸𝑇
𝐿𝑊,𝑡𝑜𝑝

where top indicates the top of the first model layer. In the GCM, 𝑝𝑡𝑜𝑝 = 0.0 mb.

LWGCLR - Net upward clearsky Longwave flux at the surface (Watts/m^2)

LWGCLR = 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝑒𝑡
𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

= 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↑𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1 − 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↓𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

where Nrphys+1 indicates the lowest model edge-level, or 𝑝 = 𝑝𝑠𝑢𝑟𝑓 . 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↑𝐿𝑊 is the upward clearsky
Longwave flux and the 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↓𝐿𝑊 is the downward clearsky Longwave flux.

LWCLR - Heating Rate due to Clearsky Longwave Radiation (deg/day)

The net longwave heating rate is calculated as the vertical divergence of the net terrestrial radiative fluxes. Both the
clear-sky and cloudy-sky longwave fluxes are computed within the longwave routine. The subroutine calculates the
clear-sky flux, 𝐹 𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦

𝐿𝑊 , first. For a given cloud fraction, the clear line-of-sight probability 𝐶(𝑝, 𝑝′) is computed from
the current level pressure 𝑝 to the model top pressure, 𝑝′ = 𝑝𝑡𝑜𝑝, and the model surface pressure, 𝑝′ = 𝑝𝑠𝑢𝑟𝑓 , for the
upward and downward radiative fluxes. (see Section [sec:fizhi:radcloud]). The cloudy-sky flux is then obtained as:

𝐹𝐿𝑊 = 𝐶(𝑝, 𝑝′) · 𝐹 𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦
𝐿𝑊 ,

Thus, LWCLR is defined as the net longwave heating rate due to the vertical divergence of the clear-sky longwave
radiative flux:

𝜕𝜌𝑐𝑝𝑇

𝜕𝑡 𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦
= − 𝜕

𝜕𝑧
𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝐸𝑇

𝐿𝑊 ,

or

LWCLR =
𝑔

𝑐𝑝𝜋

𝜕

𝜕𝜎
𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝐸𝑇

𝐿𝑊 .

where 𝑔 is the accelation due to gravity, 𝑐𝑝 is the heat capacity of air at constant pressure, and

𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝑒𝑡
𝐿𝑊 = 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↑𝐿𝑊 − 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↓𝐿𝑊
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TLW - Instantaneous temperature used as input to the Longwave radiation subroutine (deg)

TLW = 𝑇 (𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑛)

where 𝑇 is the model temperature at the current time step 𝑛.

SHLW - Instantaneous specific humidity used as input to the Longwave radiation subroutine (kg/kg)

SHLW = 𝑞(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑛)

where 𝑞 is the model specific humidity at the current time step 𝑛.

OZLW - Instantaneous ozone used as input to the Longwave radiation subroutine (kg/kg)

OZLW = OZ(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑛)

where OZ is the interpolated ozone data set from the climatological monthly mean zonally averaged ozone data set.

CLMOLW - Maximum Overlap cloud fraction used in LW Radiation (0-1)

CLMOLW is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are convec-
tive clouds whose radiative characteristics are assumed to be correlated in the vertical. For a complete description of
cloud/radiative interactions, see Section [sec:fizhi:radcloud].

CLMOLW = 𝐶𝐿𝑀𝑂𝑅𝐴𝑆,𝐿𝑊 (𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙)

CLDTOT - Total cloud fraction used in LW and SW Radiation (0-1)

CLDTOT is the time-averaged total cloud fraction that has been filled by the Relaxed Arakawa/Schubert and Large-
scale Convection schemes and will be used in the Longwave and Shortwave Radiation packages. For a complete
description of cloud/radiative interactions, see Section [sec:fizhi:radcloud].

CLDTOT = 𝐹𝑅𝐴𝑆 + 𝐹𝐿𝑆

where 𝐹𝑅𝐴𝑆 is the time-averaged cloud fraction due to sub-grid scale convection, and 𝐹𝐿𝑆 is the time-averaged cloud
fraction due to precipitating and non-precipitating large-scale moist processes.
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CLMOSW - Maximum Overlap cloud fraction used in SW Radiation (0-1)

CLMOSW is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are convec-
tive clouds whose radiative characteristics are assumed to be correlated in the vertical. For a complete description of
cloud/radiative interactions, see Section [sec:fizhi:radcloud].

CLMOSW = 𝐶𝐿𝑀𝑂𝑅𝐴𝑆,𝑆𝑊 (𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙)

CLROSW - Random Overlap cloud fraction used in SW Radiation (0-1)

CLROSW is the time-averaged random overlap cloud fraction that has been filled by the Relaxed Arakawa/Schubert
and Large-scale Convection schemes and will be used in the Shortwave Radiation algorithm. These are convective
and large-scale clouds whose radiative characteristics are not assumed to be correlated in the vertical. For a complete
description of cloud/radiative interactions, see Section [sec:fizhi:radcloud].

CLROSW = 𝐶𝐿𝑅𝑂𝑅𝐴𝑆,𝐿𝑎𝑟𝑔𝑒𝑆𝑐𝑎𝑙𝑒,𝑆𝑊 (𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙)

RADSWT - Incident Shortwave radiation at the top of the atmosphere (Watts/m^2)

RADSWT =
𝑆0

𝑅2
𝑎

· 𝑐𝑜𝑠𝜑𝑧

where 𝑆0, is the extra-terrestial solar contant, 𝑅𝑎 is the earth-sun distance in Astronomical Units, and 𝑐𝑜𝑠𝜑𝑧 is the
cosine of the zenith angle. It should be noted that RADSWT, as well as OSR and OSRCLR, are calculated at the top
of the atmosphere (p=0 mb). However, the OLR and OLRCLR diagnostics are currently calculated at 𝑝 = 𝑝𝑡𝑜𝑝 (0.0
mb for the GCM).

EVAP - Surface Evaporation (mm/day)

The surface evaporation is a function of the gradient of moisture, the potential evapotranspiration fraction and the eddy
exchange coefficient:

EVAP = 𝜌𝛽𝐾ℎ(𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑞𝑁𝑟𝑝ℎ𝑦𝑠)

where 𝜌 = the atmospheric density at the surface, 𝛽 is the fraction of the potential evapotranspiration actually evapo-
rated (𝛽 = 1 over oceans), 𝐾ℎ is the turbulent eddy exchange coefficient for heat and moisture at the surface in𝑚/𝑠𝑒𝑐
and 𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and 𝑞𝑁𝑟𝑝ℎ𝑦𝑠 are the specific humidity at the surface (see diagnostic number 34) and at the bottom model
level, respectively.

DUDT - Total Zonal U-Wind Tendency (m/sec/day)

DUDT is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic, and Analysis forcing.

DUDT =
𝜕𝑢

𝜕𝑡 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠
+
𝜕𝑢

𝜕𝑡𝑀𝑜𝑖𝑠𝑡
+
𝜕𝑢

𝜕𝑡 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
+
𝜕𝑢

𝜕𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

490 Chapter 8. Packages I - Physical Parameterizations



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

DVDT - Total Zonal V-Wind Tendency (m/sec/day)

DVDT is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic, and Analysis forcing.

DVDT =
𝜕𝑣

𝜕𝑡 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠
+
𝜕𝑣

𝜕𝑡𝑀𝑜𝑖𝑠𝑡
+
𝜕𝑣

𝜕𝑡 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
+
𝜕𝑣

𝜕𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

DTDT - Total Temperature Tendency (deg/day)

DTDT is the total time-tendency of Temperature due to Hydrodynamic, Diabatic, and Analysis forcing.

DTDT =
𝜕𝑇

𝜕𝑡 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠
+
𝜕𝑇

𝜕𝑡 𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠
+
𝜕𝑇

𝜕𝑡 𝑆ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

+
𝜕𝑇

𝜕𝑡 𝐿𝑜𝑛𝑔𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
+
𝜕𝑇

𝜕𝑡 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
+
𝜕𝑇

𝜕𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

DQDT - Total Specific Humidity Tendency (g/kg/day)

DQDT is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic, and Analysis forcing.

DQDT =
𝜕𝑞

𝜕𝑡𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠
+
𝜕𝑞

𝜕𝑡𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠
+
𝜕𝑞

𝜕𝑡 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
+
𝜕𝑞

𝜕𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

USTAR - Surface-Stress Velocity (m/sec)

The surface stress velocity, or the friction velocity, is the wind speed at the surface layer top impeded by the surface
drag:

USTAR = 𝐶𝑢𝑊𝑠 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝑢 =
𝑘

𝜓𝑚

𝐶𝑢 is the non-dimensional surface drag coefficient (see diagnostic number 10), and 𝑊𝑠 is the surface wind speed (see
diagnostic number 28).

Z0 - Surface Roughness Length (m)

Over the land surface, the surface roughness length is interpolated to the local time from the monthly mean data of .
Over the ocean, the roughness length is a function of the surface-stress velocity, 𝑢*.

Z0 = 𝑐1𝑢
3
* + 𝑐2𝑢

2
* + 𝑐3𝑢* + 𝑐4 + 𝑐5𝑢*

where the constants are chosen to interpolate between the reciprocal relation of for weak winds, and the piecewise
linear relation of for moderate to large winds.
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FRQTRB - Frequency of Turbulence (0-1)

The fraction of time when turbulence is present is defined as the fraction of time when the turbulent kinetic energy
exceeds some minimum value, defined here to be 0.005 𝑚2/𝑠𝑒𝑐2. When this criterion is met, a counter is incremented.
The fraction over the averaging interval is reported.

PBL - Planetary Boundary Layer Depth (mb)

The depth of the PBL is defined by the turbulence parameterization to be the depth at which the turbulent kinetic
energy reduces to ten percent of its surface value.

PBL = 𝑃𝑃𝐵𝐿 − 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒

where 𝑃𝑃𝐵𝐿 is the pressure in 𝑚𝑏 at which the turbulent kinetic energy reaches one tenth of its surface value, and 𝑃𝑠

is the surface pressure.

SWCLR - Clear sky Heating Rate due to Shortwave Radiation (deg/day)

The net Shortwave heating rate is calculated as the vertical divergence of the net solar radiative fluxes. The clear-sky
and cloudy-sky shortwave fluxes are calculated separately. For the clear-sky case, the shortwave fluxes and heating
rates are computed with both CLMO (maximum overlap cloud fraction) and CLRO (random overlap cloud fraction)
set to zero (see Section [sec:fizhi:radcloud]). The shortwave routine is then called a second time, for the cloudy-sky
case, with the true time-averaged cloud fractions CLMO and CLRO being used. In all cases, a normalized incident
shortwave flux is used as input at the top of the atmosphere.

The heating rate due to Shortwave Radiation under clear skies is defined as:

𝜕𝜌𝑐𝑝𝑇

𝜕𝑡
= − 𝜕

𝜕𝑧
𝐹 (𝑐𝑙𝑒𝑎𝑟)𝑁𝐸𝑇

𝑆𝑊 · RADSWT,

or

SWCLR =
𝑔

𝑐𝑝

𝜕

𝜕𝑝
𝐹 (𝑐𝑙𝑒𝑎𝑟)𝑁𝐸𝑇

𝑆𝑊 · RADSWT.

where 𝑔 is the accelation due to gravity, 𝑐𝑝 is the heat capacity of air at constant pressure, RADSWT is the true incident
shortwave radiation at the top of the atmosphere (See Diagnostic #48), and

𝐹 (𝑐𝑙𝑒𝑎𝑟)𝑁𝑒𝑡
𝑆𝑊 = 𝐹 (𝑐𝑙𝑒𝑎𝑟)↑𝑆𝑊 − 𝐹 (𝑐𝑙𝑒𝑎𝑟)↓𝑆𝑊

OSR - Net upward Shortwave flux at the top of the model (Watts/m^2)

OSR = 𝐹𝑁𝐸𝑇
𝑆𝑊,𝑡𝑜𝑝

where top indicates the top of the first model layer used in the shortwave radiation routine. In the GCM, 𝑝𝑆𝑊𝑡𝑜𝑝
= 0

mb.
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OSRCLR - Net upward clearsky Shortwave flux at the top of the model (Watts/m^2)

OSRCLR = 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝐸𝑇
𝑆𝑊,𝑡𝑜𝑝

where top indicates the top of the first model layer used in the shortwave radiation routine. In the GCM, 𝑝𝑆𝑊𝑡𝑜𝑝
= 0

mb.

CLDMAS - Convective Cloud Mass Flux (kg/m^2)

The amount of cloud mass moved per RAS timestep from all convective clouds is written:

CLDMAS = 𝜂𝑚𝐵

where 𝜂 is the entrainment, normalized by the cloud base mass flux, and 𝑚𝐵 is the cloud base mass flux. 𝑚𝐵 and 𝜂
are defined explicitly in Section 8.5.3.2, the description of the convective parameterization.

UAVE - Time-Averaged Zonal U-Wind (m/sec)

The diagnostic UAVE is simply the time-averaged Zonal U-Wind over the NUAVE output frequency. This is contrasted
to the instantaneous Zonal U-Wind which is archived on the Prognostic Output data stream.

UAVE = 𝑢(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

Note, UAVE is computed and stored on the staggered C-grid.

VAVE - Time-Averaged Meridional V-Wind (m/sec)

The diagnostic VAVE is simply the time-averaged Meridional V-Wind over the NVAVE output frequency. This is
contrasted to the instantaneous Meridional V-Wind which is archived on the Prognostic Output data stream.

VAVE = 𝑣(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

Note, VAVE is computed and stored on the staggered C-grid.

TAVE - Time-Averaged Temperature (Kelvin)

The diagnostic TAVE is simply the time-averaged Temperature over the NTAVE output frequency. This is contrasted
to the instantaneous Temperature which is archived on the Prognostic Output data stream.

TAVE = 𝑇 (𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

QAVE - Time-Averaged Specific Humidity (g/kg)

The diagnostic QAVE is simply the time-averaged Specific Humidity over the NQAVE output frequency. This is
contrasted to the instantaneous Specific Humidity which is archived on the Prognostic Output data stream.

QAVE = 𝑞(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)
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PAVE - Time-Averaged Surface Pressure - PTOP (mb)

The diagnostic PAVE is simply the time-averaged Surface Pressure - PTOP over the NPAVE output frequency. This
is contrasted to the instantaneous Surface Pressure - PTOP which is archived on the Prognostic Output data stream.

PAVE = 𝜋(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

= 𝑝𝑠(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡) − 𝑝𝑇

QQAVE - Time-Averaged Turbulent Kinetic Energy (m/sec)^2

The diagnostic QQAVE is simply the time-averaged prognostic Turbulent Kinetic Energy produced by the GCM
Turbulence parameterization over the NQQAVE output frequency. This is contrasted to the instantaneous Turbulent
Kinetic Energy which is archived on the Prognostic Output data stream.

QQAVE = 𝑞𝑞(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

Note, QQAVE is computed and stored at the “mass-point” locations on the staggered C-grid.

SWGCLR - Net downward clearsky Shortwave flux at the surface (Watts/m^2)

SWGCLR = 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝑒𝑡
𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

= 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↓𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1 − 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↑𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

where Nrphys+1 indicates the lowest model edge-level, or 𝑝 = 𝑝𝑠𝑢𝑟𝑓 . 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑆𝑊 ↓ is the downward clearsky
Shortwave flux and 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↑𝑆𝑊 is the upward clearsky Shortwave flux.

DIABU - Total Diabatic Zonal U-Wind Tendency (m/sec/day)

DIABU is the total time-tendency of the Zonal U-Wind due to Diabatic processes and the Analysis forcing.

DIABU =
𝜕𝑢

𝜕𝑡𝑀𝑜𝑖𝑠𝑡
+
𝜕𝑢

𝜕𝑡 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
+
𝜕𝑢

𝜕𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

DIABV - Total Diabatic Meridional V-Wind Tendency (m/sec/day)

DIABV is the total time-tendency of the Meridional V-Wind due to Diabatic processes and the Analysis forcing.

DIABV =
𝜕𝑣

𝜕𝑡𝑀𝑜𝑖𝑠𝑡
+
𝜕𝑣

𝜕𝑡 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
+
𝜕𝑣

𝜕𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

DIABT Total Diabatic Temperature Tendency (deg/day)

DIABT is the total time-tendency of Temperature due to Diabatic processes and the Analysis forcing.

DIABT =
𝜕𝑇

𝜕𝑡 𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠
+
𝜕𝑇

𝜕𝑡 𝑆ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

+
𝜕𝑇

𝜕𝑡 𝐿𝑜𝑛𝑔𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
+
𝜕𝑇

𝜕𝑡 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
+
𝜕𝑇

𝜕𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠
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If we define the time-tendency of Temperature due to Diabatic processes as

𝜕𝑇

𝜕𝑡 𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐
=

𝜕𝑇

𝜕𝑡 𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠
+
𝜕𝑇

𝜕𝑡 𝑆ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

+
𝜕𝑇

𝜕𝑡 𝐿𝑜𝑛𝑔𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
+
𝜕𝑇

𝜕𝑡 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒

then, since there are no surface pressure changes due to Diabatic processes, we may write

𝜕𝑇

𝜕𝑡 𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐
=
𝑝𝜅

𝜋

𝜕𝜋𝜃

𝜕𝑡 𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐

where 𝜃 = 𝑇/𝑝𝜅. Thus, DIABT may be written as

DIABT =
𝑝𝜅

𝜋

(︂
𝜕𝜋𝜃

𝜕𝑡 𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐
+
𝜕𝜋𝜃

𝜕𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

)︂

DIABQ - Total Diabatic Specific Humidity Tendency (g/kg/day)

DIABQ is the total time-tendency of Specific Humidity due to Diabatic processes and the Analysis forcing.

DIABQ =
𝜕𝑞

𝜕𝑡𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠
+
𝜕𝑞

𝜕𝑡 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
+
𝜕𝑞

𝜕𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

If we define the time-tendency of Specific Humidity due to Diabatic processes as

𝜕𝑞

𝜕𝑡𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐
=
𝜕𝑞

𝜕𝑡𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠
+
𝜕𝑞

𝜕𝑡 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒

then, since there are no surface pressure changes due to Diabatic processes, we may write

𝜕𝑞

𝜕𝑡𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐
=

1

𝜋

𝜕𝜋𝑞

𝜕𝑡 𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐

𝑇ℎ𝑢𝑠, * *𝐷𝐼𝐴𝐵𝑄 * *𝑚𝑎𝑦𝑏𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝑎𝑠

DIABQ =
1

𝜋

(︂
𝜕𝜋𝑞

𝜕𝑡 𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐
+
𝜕𝜋𝑞

𝜕𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

)︂

VINTUQ - Vertically Integrated Moisture Flux (m/sec g/kg)

The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating 𝑢𝑞 over the depth of the
atmosphere at each model timestep, and dividing by the total mass of the column.

VINTUQ =

∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝑢𝑞𝜌𝑑𝑧∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝜌𝑑𝑧

Using 𝜌𝛿𝑧 = − 𝛿𝑝
𝑔 = − 1

𝑔 𝛿𝑝, we have

VINTUQ =

∫︁ 1

0

𝑢𝑞𝑑𝑝
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VINTVQ - Vertically Integrated Moisture Flux (m/sec g/kg)

The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating 𝑣𝑞 over the depth of the
atmosphere at each model timestep, and dividing by the total mass of the column.

VINTVQ =

∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝑣𝑞𝜌𝑑𝑧∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝜌𝑑𝑧

Using 𝜌𝛿𝑧 = − 𝛿𝑝
𝑔 = − 1

𝑔 𝛿𝑝, we have

VINTVQ =

∫︁ 1

0

𝑣𝑞𝑑𝑝

VINTUT - Vertically Integrated Heat Flux (m/sec deg)

The vertically integrated heat flux due to the zonal u-wind is obtained by integrating 𝑢𝑇 over the depth of the atmo-
sphere at each model timestep, and dividing by the total mass of the column.

VINTUT =

∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝑢𝑇𝜌𝑑𝑧∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝜌𝑑𝑧

Or,

VINTUT =

∫︁ 1

0

𝑢𝑇𝑑𝑝

VINTVT - Vertically Integrated Heat Flux (m/sec deg)

The vertically integrated heat flux due to the meridional v-wind is obtained by integrating 𝑣𝑇 over the depth of the
atmosphere at each model timestep, and dividing by the total mass of the column.

VINTVT =

∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝑣𝑇𝜌𝑑𝑧∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝜌𝑑𝑧

Using 𝜌𝛿𝑧 = − 𝛿𝑝
𝑔 , we have

VINTVT =

∫︁ 1

0

𝑣𝑇𝑑𝑝

CLDFRC - Total 2-Dimensional Cloud Fracton (0-1)

If we define the time-averaged random and maximum overlapped cloudiness as CLRO and CLMO respectively, then
the probability of clear sky associated with random overlapped clouds at any level is (1-CLRO) while the probability
of clear sky associated with maximum overlapped clouds at any level is (1-CLMO). The total clear sky probability
is given by (1-CLRO)*(1-CLMO), thus the total cloud fraction at each level may be obtained by 1-(1-CLRO)*(1-
CLMO).

At any given level, we may define the clear line-of-site probability by appropriately accounting for the maximum
and random overlap cloudiness. The clear line-of-site probability is defined to be equal to the product of the clear
line-of-site probabilities associated with random and maximum overlap cloudiness. The clear line-of-site probability
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𝐶(𝑝, 𝑝′) associated with maximum overlap clouds, from the current pressure 𝑝 to the model top pressure, 𝑝′ = 𝑝𝑡𝑜𝑝,
or the model surface pressure, 𝑝′ = 𝑝𝑠𝑢𝑟𝑓 , is simply 1.0 minus the largest maximum overlap cloud value along the
line-of-site, ie.

1 −𝑀𝐴𝑋𝑝′

𝑝 (𝐶𝐿𝑀𝑂𝑝)

Thus, even in the time-averaged sense it is assumed that the maximum overlap clouds are correlated in the vertical.
The clear line-of-site probability associated with random overlap clouds is defined to be the product of the clear sky
probabilities at each level along the line-of-site, ie.

𝑝′∏︁
𝑝

(1 − 𝐶𝐿𝑅𝑂𝑝)

The total cloud fraction at a given level associated with a line- of-site calculation is given by

1 −
(︁

1 −𝑀𝐴𝑋𝑝′

𝑝 [𝐶𝐿𝑀𝑂𝑝]
)︁ 𝑝′∏︁

𝑝

(1 − 𝐶𝐿𝑅𝑂𝑝)

The 2-dimensional net cloud fraction as seen from the top of the atmosphere is given by

CLDFRC = 1 −
(︁

1 −𝑀𝐴𝑋𝑁𝑟𝑝ℎ𝑦𝑠
𝑙=𝑙1

[𝐶𝐿𝑀𝑂𝑙]
)︁𝑁𝑟𝑝ℎ𝑦𝑠∏︁

𝑙=𝑙1

(1 − 𝐶𝐿𝑅𝑂𝑙)

For a complete description of cloud/radiative interactions, see Section [sec:fizhi:radcloud].

QINT - Total Precipitable Water (gm/cm^2)

The Total Precipitable Water is defined as the vertical integral of the specific humidity, given by:

QINT =

∫︁ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓

𝜌𝑞𝑑𝑧

=
𝜋

𝑔

∫︁ 1

0

𝑞𝑑𝑝

where we have used the hydrostatic relation 𝜌𝛿𝑧 = − 𝛿𝑝
𝑔 .

U2M Zonal U-Wind at 2 Meter Depth (m/sec)

The u-wind at the 2-meter depth is determined from the similarity theory:

U2M =
𝑢*
𝑘
𝜓𝑚2𝑚

𝑢𝑠𝑙
𝑊𝑠

=
𝜓𝑚2𝑚

𝜓𝑚𝑠𝑙

𝑢𝑠𝑙

where 𝜓𝑚(2𝑚) is the non-dimensional wind shear at two meters, and the subscript 𝑠𝑙 refers to the height of the top of
the surface layer. If the roughness height is above two meters, U2M is undefined.
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V2M - Meridional V-Wind at 2 Meter Depth (m/sec)

The v-wind at the 2-meter depth is a determined from the similarity theory:

V2M =
𝑢*
𝑘
𝜓𝑚2𝑚

𝑣𝑠𝑙
𝑊𝑠

=
𝜓𝑚2𝑚

𝜓𝑚𝑠𝑙

𝑣𝑠𝑙

where 𝜓𝑚(2𝑚) is the non-dimensional wind shear at two meters, and the subscript 𝑠𝑙 refers to the height of the top of
the surface layer. If the roughness height is above two meters, V2M is undefined.

T2M - Temperature at 2 Meter Depth (deg K)

The temperature at the 2-meter depth is a determined from the similarity theory:

T2M = 𝑃𝜅(
𝜃*
𝑘

(𝜓ℎ2𝑚
+ 𝜓𝑔) + 𝜃𝑠𝑢𝑟𝑓 ) = 𝑃𝜅(𝜃𝑠𝑢𝑟𝑓 +

𝜓ℎ2𝑚
+ 𝜓𝑔

𝜓ℎ𝑠𝑙
+ 𝜓𝑔

(𝜃𝑠𝑙 − 𝜃𝑠𝑢𝑟𝑓 ))

where:

𝜃* = − (𝑤′𝜃′)

𝑢*

where 𝜓ℎ(2𝑚) is the non-dimensional temperature gradient at two meters, 𝜓𝑔 is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript 𝑠𝑙 refers to the height of the top of the surface layer. If the roughness
height is above two meters, T2M is undefined.

Q2M - Specific Humidity at 2 Meter Depth (g/kg)

The specific humidity at the 2-meter depth is determined from the similarity theory:

Q2M = 𝑃𝜅 (

𝑞*
𝑘(𝜓ℎ2𝑚

+ 𝜓𝑔) + 𝑞𝑠𝑢𝑟𝑓 ) = 𝑃𝜅(𝑞𝑠𝑢𝑟𝑓 +
𝜓ℎ2𝑚

+ 𝜓𝑔

𝜓ℎ𝑠𝑙
+ 𝜓𝑔

(𝑞𝑠𝑙 − 𝑞𝑠𝑢𝑟𝑓 ))

where:

𝑞* = − (𝑤′𝑞′)

𝑢*

where 𝜓ℎ(2𝑚) is the non-dimensional temperature gradient at two meters, 𝜓𝑔 is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript 𝑠𝑙 refers to the height of the top of the surface layer. If the roughness
height is above two meters, Q2M is undefined.

U10M - Zonal U-Wind at 10 Meter Depth (m/sec)

The u-wind at the 10-meter depth is an interpolation between the surface wind and the model lowest level wind using
the ratio of the non-dimensional wind shear at the two levels:

U10M =
𝑢*
𝑘
𝜓𝑚10𝑚

𝑢𝑠𝑙
𝑊𝑠

=
𝜓𝑚10𝑚

𝜓𝑚𝑠𝑙

𝑢𝑠𝑙

where 𝜓𝑚(10𝑚) is the non-dimensional wind shear at ten meters, and the subscript 𝑠𝑙 refers to the height of the top
of the surface layer.
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V10M - Meridional V-Wind at 10 Meter Depth (m/sec)

The v-wind at the 10-meter depth is an interpolation between the surface wind and the model lowest level wind using
the ratio of the non-dimensional wind shear at the two levels:

V10M =
𝑢*
𝑘
𝜓𝑚10𝑚

𝑣𝑠𝑙
𝑊𝑠

=
𝜓𝑚10𝑚

𝜓𝑚𝑠𝑙

𝑣𝑠𝑙

where 𝜓𝑚(10𝑚) is the non-dimensional wind shear at ten meters, and the subscript 𝑠𝑙 refers to the height of the top
of the surface layer.

T10M - Temperature at 10 Meter Depth (deg K)

The temperature at the 10-meter depth is an interpolation between the surface potential temperature and the model
lowest level potential temperature using the ratio of the non-dimensional temperature gradient at the two levels:

T10M = 𝑃𝜅(
𝜃*
𝑘

(𝜓ℎ10𝑚
+ 𝜓𝑔) + 𝜃𝑠𝑢𝑟𝑓 ) = 𝑃𝜅(𝜃𝑠𝑢𝑟𝑓 +

𝜓ℎ10𝑚
+ 𝜓𝑔

𝜓ℎ𝑠𝑙
+ 𝜓𝑔

(𝜃𝑠𝑙 − 𝜃𝑠𝑢𝑟𝑓 ))

where:

𝜃* = − (𝑤′𝜃′)

𝑢*

where 𝜓ℎ(10𝑚) is the non-dimensional temperature gradient at two meters, 𝜓𝑔 is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript 𝑠𝑙 refers to the height of the top of the surface layer.

Q10M - Specific Humidity at 10 Meter Depth (g/kg)

The specific humidity at the 10-meter depth is an interpolation between the surface specific humidity and the model
lowest level specific humidity using the ratio of the non-dimensional temperature gradient at the two levels:

Q10M = 𝑃𝜅(
𝑞*
𝑘

(𝜓ℎ10𝑚 + 𝜓𝑔) + 𝑞𝑠𝑢𝑟𝑓 ) = 𝑃𝜅(𝑞𝑠𝑢𝑟𝑓 +
𝜓ℎ10𝑚

+ 𝜓𝑔

𝜓ℎ𝑠𝑙
+ 𝜓𝑔

(𝑞𝑠𝑙 − 𝑞𝑠𝑢𝑟𝑓 ))

where:

𝑞* = − (𝑤′𝑞′)

𝑢*

where 𝜓ℎ(10𝑚) is the non-dimensional temperature gradient at two meters, 𝜓𝑔 is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript 𝑠𝑙 refers to the height of the top of the surface layer.

DTRAIN - Cloud Detrainment Mass Flux (kg/m^2)

The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:

DTRAIN = 𝜂𝑟𝐷𝑚𝐵

where 𝑟𝐷 is the detrainment level, 𝑚𝐵 is the cloud base mass flux, and 𝜂 is the entrainment, defined in Section 8.5.3.2.
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QFILL - Filling of negative Specific Humidity (g/kg/day)

Due to computational errors associated with the numerical scheme used for the advection of moisture, negative values
of specific humidity may be generated. The specific humidity is checked for negative values after every dynamics
timestep. If negative values have been produced, a filling algorithm is invoked which redistributes moisture from
below. Diagnostic QFILL is equal to the net filling needed to eliminate negative specific humidity, scaled to a per-day
rate:

QFILL = 𝑞𝑛+1
𝑓𝑖𝑛𝑎𝑙 − 𝑞𝑛+1

𝑖𝑛𝑖𝑡𝑖𝑎𝑙

where

𝑞𝑛+1 = (𝜋𝑞)𝑛+1/𝜋𝑛+1

8.5.3.5 Key subroutines, parameters and files

8.5.3.6 Dos and don’ts

8.5.3.7 Fizhi Reference

8.5.3.8 Experiments and tutorials that use fizhi

• Global atmosphere experiment with realistic SST and topography in fizhi-cs-32x32x10 verification directory.

• Global atmosphere aqua planet experiment in fizhi-cs-aqualev20 verification directory.

8.6 Ice and Sea Ice Packages

8.6.1 THSICE: The Thermodynamic Sea Ice Package

Important note: This document has been written by Stephanie Dutkiewicz and describes an earlier implementation
of the sea-ice package. This needs to be updated to reflect the recent changes (JMC).

This thermodynamic ice model is based on the 3-layer model by Winton (2000). and the energy-conserving LANL
CICE model (Bitz and Lipscomb, 1999). The model considers two equally thick ice layers; the upper layer has a
variable specific heat resulting from brine pockets, the lower layer has a fixed heat capacity. A zero heat capacity snow
layer lies above the ice. Heat fluxes at the top and bottom surfaces are used to calculate the change in ice and snow
layer thickness. Grid cells of the ocean model are either fully covered in ice or are open water. There is a provision to
parametrize ice fraction (and leads) in this package. Modifications are discussed in small font following the subroutine
descriptions.

8.6.1.1 Key parameters and Routines

The ice model is called from thermodynamics.F, subroutine ice_forcing.F is called in place of external_forcing_surf.F.

In ice_forcing.F, we calculate the freezing potential of the ocean model surface layer of water:

frzmlt = (𝑇𝑓 − 𝑆𝑆𝑇 )
𝑐𝑠𝑤𝜌𝑠𝑤∆𝑧

∆𝑡

where 𝑐𝑠𝑤 is seawater heat capacity, 𝜌𝑠𝑤 is the seawater density, ∆𝑧 is the ocean model upper layer thickness and ∆𝑡
is the model (tracer) timestep. The freezing temperature, 𝑇𝑓 = 𝜇𝑆 is a function of the salinity.
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1. Provided there is no ice present and frzmlt is less than 0, the surface tendencies of wind, heat and freshwater
are calculated as usual (ie. as in external_forcing_surf.F).

2. If there is ice present in the grid cell we call the main ice model routine ice_therm.F (see below). Output from
this routine gives net heat and freshwater flux affecting the top of the ocean.

Subroutine ice_forcing.F uses these values to find the sea surface tendencies in grid cells. When there is ice present,
the surface stress tendencies are set to zero; the ice model is purely thermodynamic and the effect of ice motion on the
sea-surface is not examined.

Relaxation of surface 𝑇 and 𝑆 is only allowed equatorward of relaxlat (see DATA.ICE below), and no relaxation is
allowed under the ice at any latitude.

(Note that there is provision for allowing grid cells to have both open water and seaice; if compact is between 0 and
1)

subroutine ICE_FREEZE

This routine is called from thermodynamics.F after the new temperature calculation, calc_gt.F, but before calc_gs.F.
In ice_freeze.F, any ocean upper layer grid cell with no ice cover, but with temperature below freezing, 𝑇𝑓 = 𝜇𝑆
has ice initialized. We calculate frzmlt from all the grid cells in the water column that have a temperature less than
freezing. In this routine, any water below the surface that is below freezing is set to 𝑇𝑓 . A call to ice_start.F is made
if frzmlt > 0, and salinity tendancy is updated for brine release.

(There is a provision for fractional ice: In the case where the grid cell has less ice coverage than icemaskmax we
allow ice_start.F to be called)

subroutine ICE_START

The energy available from freezing the sea surface is brought into this routine as esurp. The enthalpy of the 2 layers
of any new ice is calculated as:

𝑞1 = −𝑐𝑖 * 𝑇𝑓 + 𝐿𝑖

𝑞2 = −𝑐𝑓𝑇𝑚𝑙𝑡 + 𝑐𝑖(𝑇𝑚𝑙𝑡 − 𝑇𝑓) + 𝐿𝑖(1 − 𝑇𝑚𝑙𝑡

𝑇𝑓
)

where 𝑐𝑓 is specific heat of liquid fresh water, 𝑐𝑖 is the specific heat of fresh ice, 𝐿𝑖 is latent heat of freezing, 𝜌𝑖 is
density of ice and 𝑇𝑚𝑙𝑡 is melting temperature of ice with salinity of 1. The height of a new layer of ice is

ℎ𝑖𝑛𝑒𝑤 =
esurp∆𝑡

𝑞𝑖0𝑎𝑣

where 𝑞𝑖0𝑎𝑣 = −𝜌𝑖

2 (𝑞1 + 𝑞2).

The surface skin temperature 𝑇𝑠 and ice temperatures 𝑇1, 𝑇2 and the sea surface temperature are set at 𝑇𝑓 .

(There is provision for fractional ice: new ice is formed over open water; the first freezing in the cell must have a
height of himin0; this determines the ice fraction compact. If there is already ice in the grid cell, the new ice must
have the same height and the new ice fraction is

𝑖𝑓 = (1 − 𝑖𝑓 )
ℎ𝑖𝑛𝑒𝑤
ℎ𝑖

where 𝑖𝑓 is ice fraction from previous timestep and ℎ𝑖 is current ice height. Snow is redistributed over the new ice
fraction. The ice fraction is not allowed to become larger than iceMaskmax and if the ice height is above hihig then
freezing energy comes from the full grid cell, ice growth does not occur under orginal ice due to freezing water.)
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subroutine ICE_THERM

The main subroutine of this package is ice_therm.F where the ice temperatures are calculated and the changes in ice
and snow thicknesses are determined. Output provides the net heat and fresh water fluxes that force the top layer of
the ocean model.

If the current ice height is less than himin then the ice layer is set to zero and the ocean model upper layer temperature
is allowed to drop lower than its freezing temperature; and atmospheric fluxes are allowed to effect the grid cell. If the
ice height is greater than himin we proceed with the ice model calculation.

We follow the procedure of Winton (1999) – see equations 3 to 21 – to calculate the surface and internal ice tem-
peratures. The surface temperature is found from the balance of the flux at the surface 𝐹𝑠, the shortwave heat flux
absorbed by the ice, fswint, and the upward conduction of heat through the snow and/or ice, 𝐹𝑢. We linearize 𝐹𝑠

about the surface temperature, 𝑇𝑠, at the previous timestep (whereˆindicates the value at the previous timestep):

𝐹𝑠(𝑇𝑠) = 𝐹𝑠(𝑇𝑠) +
𝜕𝐹𝑠(𝑇𝑠)

𝜕𝑇𝑠
(𝑇𝑠 − 𝑇𝑠)

where,

𝐹𝑠 = 𝐹𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 + 𝐹𝑙𝑎𝑡𝑒𝑛𝑡 + 𝐹 𝑑𝑜𝑤𝑛
𝑙𝑜𝑛𝑔𝑤𝑎𝑣𝑒 + 𝐹𝑢𝑝

𝑙𝑜𝑛𝑔𝑤𝑎𝑣𝑒 + (1 − 𝛼)𝐹𝑠ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒

and

𝑑𝐹𝑠

𝑑𝑇
=
𝑑𝐹𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒

𝑑𝑇
+
𝑑𝐹𝑙𝑎𝑡𝑒𝑛𝑡

𝑑𝑇
+
𝑑𝐹𝑢𝑝

𝑙𝑜𝑛𝑔𝑤𝑎𝑣𝑒

𝑑𝑇
.

𝐹𝑠 and 𝑑𝐹𝑠

𝑑𝑇 are currently calculated from the BULKF package described separately, but could also be provided by
an atmospheric model. The surface albedo is calculated from the ice height and/or surface temperature (see below,
srf_albedo.F) and the shortwave flux absorbed in the ice is

fswint = (1 − 𝑒𝜅𝑖ℎ𝑖)(1 − 𝛼)𝐹𝑠ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒

where 𝜅𝑖 is bulk extinction coefficient.

The conductive flux to the surface is

𝐹𝑢 = 𝐾1/2(𝑇1 − 𝑇𝑠)

where 𝐾1/2 is the effective conductive coupling of the snow-ice layer between the surface and the mid-point of the
upper layer of ice :math:` K_{1/2}=frac{4 K_i K_s}{K_s h_i + 4 K_i h_s} . :math:`K_i and 𝐾𝑠 are constant thermal
conductivities of seaice and snow.

From the above equations we can develop a system of equations to find the skin surface temperature, 𝑇𝑠 and the two
ice layer temperatures (see Winton, 1999, for details). We solve these equations iteratively until the change in 𝑇𝑠
is small. When the surface temperature is greater then the melting temperature of the surface, the temperatures are
recalculated setting 𝑇𝑠 to 0. The enthalpy of the ice layers are calculated in order to keep track of the energy in the
ice model. Enthalpy is defined, here, as the energy required to melt a unit mass of seaice with temperature 𝑇 . For the
upper layer (1) with brine pockets and the lower fresh layer (2):

𝑞1 = −𝑐𝑓𝑇𝑓 + 𝑐𝑖(𝑇𝑓 − 𝑇 ) + 𝐿𝑖(1 − 𝑇𝑓
𝑇

)

𝑞2 = −𝑐𝑖𝑇 + 𝐿𝑖

where 𝑐𝑓 is specific heat of liquid fresh water, 𝑐𝑖 is the specific heat of fresh ice, and 𝐿𝑖 is latent heat of melting fresh
ice.
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From the new ice temperatures, we can calculate the energy flux at the surface available for melting (if 𝑇𝑠=0) and the
energy at the ocean-ice interface for either melting or freezing.

𝐸𝑡𝑜𝑝 = (𝐹𝑠 −𝐾1/2(𝑇𝑠 − 𝑇1))∆𝑡

𝐸𝑏𝑜𝑡 = (
4𝐾𝑖(𝑇2 − 𝑇𝑓 )

ℎ𝑖
− 𝐹𝑏)∆𝑡

where 𝐹𝑏 is the heat flux at the ice bottom due to the sea surface temperature variations from freezing. If 𝑇𝑠𝑠𝑡 is above
freezing, 𝐹𝑏 = 𝑐𝑠𝑤𝜌𝑠𝑤𝛾(𝑇𝑠𝑠𝑡 − 𝑇𝑓 )𝑢*, 𝛾 is the heat transfer coefficient and 𝑢* = 𝑄𝑄 is frictional velocity between
ice and water. If 𝑇𝑠𝑠𝑡 is below freezing, 𝐹𝑏 = (𝑇𝑓 − 𝑇𝑠𝑠𝑡)𝑐𝑓𝜌𝑓∆𝑧/∆𝑡 and set 𝑇𝑠𝑠𝑡 to 𝑇𝑓 . We also include the energy
from lower layers that drop below freezing, and set those layers to 𝑇𝑓 .

If 𝐸𝑡𝑜𝑝 > 0 we melt snow from the surface, if all the snow is melted and there is energy left, we melt the ice. If the
ice is all gone and there is still energy left, we apply the left over energy to heating the ocean model upper layer (See
Winton, 1999, equations 27-29). Similarly if 𝐸𝑏𝑜𝑡 > 0 we melt ice from the bottom. If all the ice is melted, the snow
is melted (with energy from the ocean model upper layer if necessary). If 𝐸𝑏𝑜𝑡 < 0 we grow ice at the bottom

∆ℎ𝑖 =
−𝐸𝑏𝑜𝑡

(𝑞𝑏𝑜𝑡𝜌𝑖)

where 𝑞𝑏𝑜𝑡 = −𝑐𝑖𝑇𝑓 +𝐿𝑖 is the enthalpy of the new ice, The enthalpy of the second ice layer, 𝑞2 needs to be modified:

𝑞2 =
ℎ̂𝑖/2𝑞2 + ∆ℎ𝑖𝑞𝑏𝑜𝑡

ℎ̂𝑖/2 + ∆ℎ𝑖

If there is a ice layer and the overlying air temperature is below 0𝑜C then any precipitation, 𝑃 joins the snow layer:

∆ℎ𝑠 = −𝑃 𝜌𝑓
𝜌𝑠

∆𝑡,

𝜌𝑓 and 𝜌𝑠 are the fresh water and snow densities. Any evaporation, similarly, removes snow or ice from the surface.
We also calculate the snow age here, in case it is needed for the surface albedo calculation (see srf_albedo.F below).

For practical reasons we limit the ice growth to hilim and snow is limited to hslim. We converts any ice and/or
snow above these limits back to water, maintaining the salt balance. Note however, that heat is not conserved in this
conversion; sea surface temperatures below the ice are not recalculated.

If the snow/ice interface is below the waterline, snow is converted to ice (see Winton, 1999, equations 35 and 36). The
subroutine new_layers_winton.F, described below, repartitions the ice into equal thickness layers while conserving
energy.

The subroutine ice_therm.F now calculates the heat and fresh water fluxes affecting the ocean model surface layer.
The heat flux:

𝑞𝑛𝑒𝑡 = fswocn− 𝐹𝑏 −
esurp

∆𝑡

is composed of the shortwave flux that has passed through the ice layer and is absorbed by the water, fswocn= 𝑄𝑄, the
ocean flux to the ice 𝐹𝑏, and the surplus energy left over from the melting, esurp. The fresh water flux is determined
from the amount of fresh water and salt in the ice/snow system before and after the timestep.

(There is a provision for fractional ice: If ice height is above hihig then all energy from freezing at sea surface is used
only in the open water aparts of the cell (ie. 𝐹𝑏 will only have the conduction term). The melt energy is partitioned by
frac_energy between melting ice height and ice extent. However, once ice height drops below himon0 then all energy
melts ice extent.)
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subroutine SFC_ALBEDO

The routine ice_therm.F calls this routine to determine the surface albedo. There are two calculations provided here:

1. from LANL CICE model

𝛼 = 𝑓𝑠𝛼𝑠 + (1 − 𝑓𝑠)(𝛼𝑖𝑚𝑖𝑛 + (𝛼𝑖𝑚𝑎𝑥 − 𝛼𝑖𝑚𝑖𝑛)(1 − 𝑒−ℎ𝑖/ℎ𝛼))

where 𝑓𝑠 is 1 if there is snow, 0 if not; the snow albedo, 𝛼𝑠 has two values depending on whether 𝑇𝑠 < 0 or not;
𝛼𝑖𝑚𝑖𝑛

and 𝛼𝑖𝑚𝑎𝑥
are ice albedos for thin melting ice, and thick bare ice respectively, and ℎ𝛼 is a scale height.

2. From GISS model (Hansen et al 1983)

𝛼 = 𝛼𝑖𝑒
−ℎ𝑠/ℎ𝑎 + 𝛼𝑠(1 − 𝑒−ℎ𝑠/ℎ𝑎)

where 𝛼𝑖 is a constant albedo for bare ice, ℎ𝑎 is a scale height and 𝛼𝑠 is a variable snow albedo.

𝛼𝑠 = 𝛼1 + 𝛼2𝑒
−𝜆𝑎𝑎𝑠

where 𝛼1 is a constant, 𝛼2 depends on 𝑇𝑠, 𝑎𝑠 is the snow age, and 𝜆𝑎 is a scale frequency. The snow age is
calculated in ice_therm.F and is given in equation 41 in Hansen et al (1983).

subroutine NEW_LAYERS_WINTON

The subroutine new_layers_winton.F repartitions the ice into equal thickness layers while conserving energy. We pass
to this subroutine, the ice layer enthalpies after melting/growth and the new height of the ice layers. The ending layer
height should be half the sum of the new ice heights from ice_therm.F. The enthalpies of the ice layers are adjusted
accordingly to maintain total energy in the ice model. If layer 2 height is greater than layer 1 height then layer 2 gives
ice to layer 1 and:

𝑞1 = 𝑓1𝑞1 + (1 − 𝑓1)𝑞2

where 𝑓1 is the fraction of the new to old upper layer heights. 𝑇1 will therefore also have changed. Similarly for when
ice layer height 2 is less than layer 1 height, except here we need to to be careful that the new 𝑇2 does not fall below
the melting temperature.

Initializing subroutines

ice_init.F: Set ice variables to zero, or reads in pickup information from pickup.ic (which was written out in check-
point.F)

ice_readparms.F: Reads data.ice

Diagnostic subroutines

ice_ave.F: Keeps track of means of the ice variables

ice_diags.F: Finds averages and writes out diagnostics
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Common Blocks

ICE.h: Ice Varibles, also relaxlat and startIceModel

ICE_DIAGS.h: matrices for diagnostics: averages of fields from ice_diags.F

BULKF_ICE_CONSTANTS.h (in BULKF package): all the parameters need by the ice model

Input file DATA.ICE

Here we need to set StartIceModel: which is 1 if the model starts from no ice; and 0 if there is a pickup file with the
ice matrices (pickup.ic) which is read in ice_init.F and written out in checkpoint.F. The parameter relaxlat defines the
latitude poleward of which there is no relaxing of surface 𝑇 or 𝑆 to observations. This avoids the relaxation forcing
the ice model at these high latitudes.

(Note: hicemin is set to 0 here. If the provision for allowing grid cells to have both open water and seaice is ever
implemented, this would be greater than 0)

8.6.1.2 Important Notes

1. heat fluxes have different signs in the ocean and ice models.

2. StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).

8.6.1.3 THSICE Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
SI_Fract| 1 |SM P M1 |0-1 |Sea-Ice fraction [0-1]
SI_Thick| 1 |SM PC197M1 |m |Sea-Ice thickness (area weighted
→˓average)
SI_SnowH| 1 |SM PC197M1 |m |Snow thickness over Sea-Ice (area
→˓weighted)
SI_Tsrf | 1 |SM C197M1 |degC |Surface Temperature over Sea-Ice
→˓(area weighted)
SI_Tice1| 1 |SM C197M1 |degC |Sea-Ice Temperature, 1srt layer (area
→˓weighted)
SI_Tice2| 1 |SM C197M1 |degC |Sea-Ice Temperature, 2nd layer (area
→˓weighted)
SI_Qice1| 1 |SM C198M1 |J/kg |Sea-Ice enthalpy, 1srt layer (mass
→˓weighted)
SI_Qice2| 1 |SM C198M1 |J/kg |Sea-Ice enthalpy, 2nd layer (mass
→˓weighted)
SIalbedo| 1 |SM PC197M1 |0-1 |Sea-Ice Albedo [0-1] (area weighted
→˓average)
SIsnwAge| 1 |SM P M1 |s |snow age over Sea-Ice
SIsnwPrc| 1 |SM C197M1 |kg/m^2/s |snow precip. (+=dw) over Sea-Ice
→˓(area weighted)
SIflxAtm| 1 |SM M1 |W/m^2 |net heat flux from the Atmosphere
→˓(+=dw)
SIfrwAtm| 1 |SM M1 |kg/m^2/s |fresh-water flux to the Atmosphere
→˓(+=up)
SIflx2oc| 1 |SM M1 |W/m^2 |heat flux out of the ocean (+=up)

(continues on next page)
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(continued from previous page)

SIfrw2oc| 1 |SM M1 |m/s |fresh-water flux out of the ocean
→˓(+=up)
SIsaltFx| 1 |SM M1 |psu.kg/m^2 |salt flux out of the ocean (+=up)
SItOcMxL| 1 |SM M1 |degC |ocean mixed layer temperature
SIsOcMxL| 1 |SM P M1 |psu |ocean mixed layer salinity

8.6.1.4 References

Bitz, C.M. and W.H. Lipscombe, 1999: An Energy-Conserving Thermodynamic Model of Sea Ice. Journal of Geo-
physical Research, 104, 15,669 – 15,677.

Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy and L.Travis, 1983: Efficient Three-
Dimensional Global Models for Climate Studies: Models I and II. Monthly Weather Review, 111, 609 – 662.

Hunke, E.C and W.H. Lipscomb, circa 2001: CICE: the Los Alamos Sea Ice Model Documentation and Software
User’s Manual. LACC-98-16v.2. (note: this documentation is no longer available as CICE has progressed to a very
different version 3)

Winton, M, 2000: A reformulated Three-layer Sea Ice Model. Journal of Atmospheric and Ocean Technology, 17,
525 – 531.

8.6.1.5 Experiments and tutorials that use thsice

• Global atmosphere experiment in aim.5l_cs verification directory, input from input.thsice directory.

• Global ocean experiment in global_ocean.cs32x15 verification directory, input from input.thsice directory.

8.6.2 SEAICE Package

Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin, Patrick Heimbach, Chris Hill and
Jinlun Zhang

8.6.2.1 Introduction

Package seaice provides a dynamic and thermodynamic interactive sea ice model.

CPP options enable or disable different aspects of the package (Section 8.6.2.2). Run-time options, flags, filenames
and field-related dates/times are set in data.seaice (Section 8.6.2.3). A description of key subroutines is given in
Section 8.6.2.5. Available diagnostics output is listed in Section 8.6.2.6.

8.6.2.2 SEAICE configuration and compiling

Compile-time options

As with all MITgcm packages, SEAICE can be turned on or off at compile time (see Section 3.5)

• using the packages.conf file by adding seaice to it

• or using genmake2 adding -enable=seaice or -disable=seaice switches

• required packages and CPP options: seaice requires the external forcing package pkg/exf to be enabled; no
additional CPP options are required.
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Parts of the seaice code can be enabled or disabled at compile time via CPP preprocessor flags. These options are set in
SEAICE_OPTIONS.h. Table 8.16 summarizes the most important ones. For more options see SEAICE_OPTIONS.h.

Table 8.16: Some of the most relevant CPP preporocessor flags in the
seaice package.

CPP option Default Description”
SEAICE_DEBUG #undef enhance STDOUT for debugging
SEAICE_ALLOW_DYNAMICS #define sea ice dynamics code
SEAICE_CGRID #define LSR solver on C-grid (rather than original B-grid)
SEAICE_ALLOW_EVP #define enable use of EVP rheology solver
SEAICE_ALLOW_JFNK #define enable use of JFNK rheology solver
SEAICE_ALLOW_KRYLOV #define enable use of Krylov rheology solver
SEAICE_LSR_ZEBRA #undef use a coloring method for LSR solver
SEAICE_EXTERNAL_FLUXES #define use pkg/exf-computed fluxes as starting point
SEAICE_ZETA_SMOOTHREG #define use differentiable regularization for viscosities
SEAICE_DELTA_SMOOTHREG #undef use differentiable regularization for 1/∆
SEAICE_ALLOW_BOTTOMDRAG #undef enable grounding parameterization for improved fastice in

shallow seas
SEAICE_ITD #undef run with dynamical sea Ice Thickness Distribution (ITD)
SEAICE_VARIABLE_SALINITY #undef enable sea ice with variable salinity
ALLOW_SITRACER #undef enable sea ice tracer package
SEAICE_BICE_STRESS #undef B-grid only for backward compatiblity: turn on ice-stress on

ocean
EXPLICIT_SSH_SLOPE #undef B-grid only for backward compatiblity: use ETAN for tilt

computations rather than geostrophic velocities

8.6.2.3 Run-time parameters

Run-time parameters (see Table 8.17) are set in data.seaice (read in pkg/seaice/seaice_readparms.F).

Enabling the package

seaice package is switched on/off at runtime by setting useSEAICE = .TRUE. in data.pkg.

General flags and parameters

Table 8.17 lists most run-time parameters.

Table 8.17: Run-time parameters and default values
Name Default value Description
SEAICEwriteState FALSE write sea ice state to file
SEAICEuseDYNAMICS TRUE use dynamics
SEAICEuseJFNK FALSE use the JFNK-solver
SEAICEuseTEM FALSE use truncated ellipse method
SEAICEuseStrImpCpl FALSE use strength implicit coupling in LSR/JFNK
SEAICEuseMetricTerms TRUE use metric terms in dynamics
SEAICEuseEVPpickup TRUE use EVP pickups
SEAICEuseFluxForm TRUE use flux form for 2nd central difference advection scheme

continues on next page
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Table 8.17 – continued from previous page
Name Default value Description
SEAICErestoreUnderIce FALSE enable restoring to climatology under ice
SEAICEupdateOceanStress TRUE update ocean surface stress accounting for sea ice cover
SEAICEscaleSurfStress TRUE scale atmosphere and ocean-surface stress on ice by con-

centration (AREA)
SEAICEaddSnowMass TRUE in computing seaiceMass, add snow contribution
useHB87stressCoupling FALSE turn on ice-ocean stress coupling following
usePW79thermodynamics TRUE flag to turn off zero-layer-thermodynamics for testing
SEAICEadvHeff TRUE flag to turn off advection of scalar variable HEFF
SEAICEadvArea TRUE flag to turn off advection of scalar variable AREA
SEAICEadvSnow TRUE flag to turn off advection of scalar variable HSNOW
SEAICEadvSalt TRUE flag to turn off advection of scalar variable HSALT
SEAICEadvScheme 77 set advection scheme for seaice scalar state variables
SEAICEuseFlooding TRUE use flood-freeze algorithm
SEAICE_no_slip FALSE use no-slip boundary conditions instead of free-slip
SEAICE_deltaTtherm dTtracerLev (1) time step for seaice thermodynamics (s)
SEAICE_deltaTdyn dTtracerLev (1) time step for seaice dynamics (s)
SEAICE_deltaTevp 0.0 EVP sub-cycling time step (s); values > 0 turn on EVP
SEAICEuseEVPstar FALSE use modified EVP* instead of EVP, following [LKT+12]
SEAICEuseEVPrev FALSE “revisited form” variation on EVP*, following [BFLM13]
SEAICEnEVPstarSteps unset number of modified EVP* iterations
SEAICE_evpAlpha unset EVP* parameter (non-dim.), to replace

2*SEAICE_evpTauRelax/SEAICE_deltaTevp
SEAICE_evpBeta unset EVP* parameter (non-dim.), to replace

SEAICE_deltaTdyn/SEAICE_deltaTevp
SEAICEaEVPcoeff unset largest stabilized frequency for adaptive EVP (non-dim.)
SEAICEaEVPcStar 4.0 aEVP multiple of stability factor (non-dim.), see [KDL16]

𝛼 * 𝛽 = 𝑐* * 𝛾
SEAICEaEVPalphaMin 5.0 aEVP lower limit of alpha and beta (non-dim.), see

[KDL16]
SEAICE_elasticParm 0.33333333 EVP parameter 𝐸0 (non-dim.), sets relaxation timescale

SEAICE_evpTauRelaxtau = SEAICE_elasticParm *
SEAICE_deltaTdyn

SEAICE_evpTauRelax dTtracerLev (1) *
SEAICE_elasticParm

relaxation time scale 𝑇 for EVP waves (s)

SEAICE_OLx OLx - 2 overlap for LSR-solver or preconditioner, 𝑥-dimension
SEAICE_OLy OLy - 2 overlap for LSR-solver or preconditioner, 𝑦-dimension
SEAICEnonLinIterMax 2/10 maximum number of non-linear (outer loop) iterations

(LSR/JFNK)
SEAICElinearIterMax 1500/10 maximum number of linear iterations (LSR/JFNK)
SEAICE_JFNK_lsIter (off) start line search after “lsIter” Newton iterations
SEAICEnonLinTol 1.0E-05 non-linear tolerance parameter for JFNK solver
JFNKgamma_lin_min 0.10 minimum tolerance parameter for linear JFNK solver
JFNKgamma_lin_max 0.99 maximum tolerance parameter for linear JFNK solver
JFNKres_tFac unset tolerance parameter for FGMRES residual
SEAICE_JFNKepsilon 1.0E-06 step size for the FD-gradient in s/r seaice_jacvec
SEAICE_dumpFreq dumpFreq dump frequency (s)
SEAICE_dump_mdsio TRUE write snapshot using /pkg/mdsio
SEAICE_dump_mnc FALSE write snapshot using /pkg/mnc
SEAICE_initialHEFF 0.0 initial sea ice thickness averaged over grid cell (m)
SEAICE_drag 1.0E-03 air-ice drag coefficient (non-dim.)

continues on next page
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Table 8.17 – continued from previous page
Name Default value Description
OCEAN_drag 1.0E-03 air-ocean drag coefficient (non-dim.)
SEAICE_waterDrag 5.5E-03 water-ice drag coefficient (non-dim.)
SEAICE_dryIceAlb 0.75 winter sea ice albedo
SEAICE_wetIceAlb 0.66 summer sea ice albedo
SEAICE_drySnowAlb 0.84 dry snow albedo
SEAICE_wetSnowAlb 0.70 wet snow albedo
SEAICE_waterAlbedo 0.10 water albedo (not used if #define

SEAICE_EXTERNAL_FLUXES)
SEAICE_strength 2.75E+04 sea ice strength constant 𝑃 * (N/m2)
SEAICE_cStar 20.0 sea ice strength constant 𝐶* (non-dim.)
SEAICE_eccen 2.0 VP rheology ellipse aspect ratio 𝑒
SEAICE_rhoAir 1.3 (or pkg/exf

value)
density of air (kg/m3)

SEAICE_cpAir 1004.0 (or pkg/exf
value)

specific heat of air (J/kg/K)

SEAICE_lhEvap 2.5E+06 (or pkg/exf
value)

latent heat of evaporation (J/kg)

SEAICE_lhFusion 3.34E+05 (or
pkg/exf value)

latent heat of fusion (J/kg)

SEAICE_dalton 1.75E-03 ice-ocean transfer coefficient for latent and sensible heat
(non-dim.)

useMaykutSatVapPoly FALSE use Maykut polynomial to compute saturation vapor pres-
sure

SEAICE_iceConduct 2.16560E+00 sea ice conductivity (W m-1 K-1)
SEAICE_snowConduct 3.10000E-01 snow conductivity (W m-1 K-1)
SEAICE_emissivity 0.970018 (or

pkg/exf value)
longwave ocean surface emissivity (non-dim.)

SEAICE_snowThick 0.15 cutoff snow thickness to use snow albedo (m)
SEAICE_shortwave 0.30 ice penetration shortwave radiation factor (non-dim.)
SEAICE_saltFrac 0.0 salinity newly formed ice (as fraction of ocean surface

salinity)
SEAICE_frazilFrac 1.0 (or computed

from other parms)
frazil to sea ice conversion rate, as fraction (relative to the
local freezing point of sea ice water)

SEAICEstressFactor 1.0 scaling factor for ice area in computing total ocean stress
(non-dim.)

HeffFile unset filename for initial sea ice eff. thickness field HEFF (m)
AreaFile unset filename for initial fraction sea ice cover AREA (non-dim.)
HsnowFile unset filename for initial eff. snow thickness field HSNOW (m)
HsaltFile unset filename for initial eff. sea ice salinity field HSALT (g/m2)
LSR_ERROR 1.0E-04 sets accuracy of LSR solver
DIFF1 0.0 parameter used in advect.F
HO 0.5 lead closing parameter ℎ0 (m); demarcation thickness be-

tween thick and thin ice which determines partition be-
tween vertical and lateral ice growth

MIN_ATEMP -50.0 minimum air temperature (oC)
MIN_LWDOWN 60.0 minimum downward longwave (W/m2)
MIN_TICE -50.0 minimum ice temperature (oC)
IMAX_TICE 10 number of iterations for ice surface temperature solution
SEAICE_EPS 1.0E-10 a “small number” used in various routines
SEAICE_area_reg 1.0E-5 minimum concentration to regularize ice thickness

continues on next page
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Table 8.17 – continued from previous page
Name Default value Description
SEAICE_hice_reg 0.05 minimum ice thickness (m) for regularization
SEAICE_multDim 1 number of ice categories for thermodynamics
SEAICE_useMultDimSnow TRUE use same fixed pdf for snow as for multi-thickness-

category ice

The following dynamical ice thickness distribution and ridging parameters in Table 8.18 are only active with #define
SEAICE_ITD. All parameters are non-dimensional unless indicated.

Table 8.18: Thickness distribution and ridging parameters
Name Default value Description
useHibler79IceStrength TRUE use [Hib79] ice strength; do not use [Rot75] with #define

SEAICE_ITD
SEAICEsimpleRidging TRUE use simple ridging a la [Hib79]
SEAICE_cf 17.0 scaling parameter of [Rot75] ice strength parameterization
SEAICEpartFunc 0 use partition function of [TRMC75]
SEAICEredistFunc 0 use redistribution function of [Hib80]
SEAICEridgingIterMax 10 maximum number of ridging sweeps
SEAICEshearParm 0.5 fraction of shear to be used for ridging
SEAICEgStar 0.15 max. ice conc. that participates in ridging [TRMC75]
SEAICEhStar 25.0 ridging parameter for [TRMC75], [LHMJ07]
SEAICEaStar 0.05 similar to SEAICEgStar for [LHMJ07] participation func-

tion
SEAICEmuRidging 3.0 similar to SEAICEhStar for [LHMJ07] ridging function
SEAICEmaxRaft 1.0 regularization parameter for rafting
SEAICEsnowFracRidge 0.5 fraction of snow that remains on ridged ice
SEAICEuseLinRemapITD TRUE use linear remapping scheme of [Lip01]
Hlimit unset nITD+1-array of ice thickness category limits (m)
Hlimit_c1, Hlimit_c2,
Hlimit_c3

3.0, 15.0, 3.0 when Hlimit is not set, then these parameters determine
Hlimit from a simple function following [Lip01]

8.6.2.4 Description

The MITgcm sea ice model is based on a variant of the viscous-plastic (VP) dynamic-thermodynamic sea ice model
(Zhang and Hibler 1997 [ZH97]) first introduced in Hibler (1979) and Hibler (1980) [Hib79][Hib80]. In order to adapt
this model to the requirements of coupled ice-ocean state estimation, many important aspects of the original code have
been modified and improved, see Losch et al. (2010) [LMC+10]:

• the code has been rewritten for an Arakawa C-grid, both B- and C-grid variants are available; the C-grid code
allows for no-slip and free-slip lateral boundary conditions;

• three different solution methods for solving the nonlinear momentum equations have been adopted: LSOR
(Zhang and Hibler 1997 [ZH97]), EVP (Hunke and Dukowicz 1997 [HD97]), JFNK (Lemieux et al. 2010
[LTSedlavcek+10], Losch et al. 2014 [LFLV14]);

• ice-ocean stress can be formulated as in Hibler and Bryan (1987) [HB87] or as in Campin et al. (2008) [CMF08];

• ice variables are advected by sophisticated, conservative advection schemes with flux limiting;

• growth and melt parameterizations have been refined and extended in order to allow for more stable automatic
differentiation of the code.

The sea ice model is tightly coupled to the ocean compontent of the MITgcm. Heat, fresh water fluxes and surface
stresses are computed from the atmospheric state and, by default, modified by the ice model at every time step.
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The ice dynamics models that are most widely used for large-scale climate studies are the viscous-plastic (VP) model
(Hilber 1979 [Hib79]), the cavitating fluid (CF) model (Flato and Hibler 1992 [FWDH92]), and the elastic-viscous-
plastic (EVP) model (Hunke and Dukowicz 1997 [HD97]). Compared to the VP model, the CF model does not allow
ice shear in calculating ice motion, stress, and deformation. EVP models approximate VP by adding an elastic term
to the equations for easier adaptation to parallel computers. Because of its higher accuracy in plastic solution and
relatively simpler formulation, compared to the EVP model, we decided to use the VP model as the default dynamic
component of our ice model. To do this we extended the line successive over relaxation (LSOR) method of Zhang
and Hibler (1997) [ZH97] for use in a parallel configuration. An EVP model and a free-drift implementation can be
selected with run-time flags.

Compatibility with ice-thermodynamics package pkg/thsice

By default pkg/seaice includes the original so-called zero-layer thermodynamics with a snow cover as in the appendix
of Semtner (1976) [Sem76]. The zero-layer thermodynamic model assumes that ice does not store heat and, therefore,
tends to exaggerate the seasonal variability in ice thickness. This exaggeration can be significantly reduced by using
Winton’s (Winton 2000 [Win00]) three-layer thermodynamic model that permits heat storage in ice.

The Winton (2000) sea-ice thermodynamics have been ported to MITgcm; they currently reside under pkg/thsice,
described in Section 8.6.1. It is fully compatible with the packages seaice and exf. When turned on together with
seaice, the zero-layer thermodynamics are replaced by the Winton thermodynamics. In order to use package seaice
with the thermodynamics of pkg/thsice, compile both packages and turn both package on in data.pkg; see an
example in verification/global_ocean.cs32x15/input.icedyn. Note, that once thsice is turned on, the variables and
diagnostics associated to the default thermodynamics are meaningless, and the diagnostics of thsice must be used
instead.

Surface forcing

The sea ice model requires the following input fields: 10 m winds, 2 m air temperature and specific humidity, down-
ward longwave and shortwave radiations, precipitation, evaporation, and river and glacier runoff. The sea ice model
also requires surface temperature from the ocean model and the top level horizontal velocity. Output fields are surface
wind stress, evaporation minus precipitation minus runoff, net surface heat flux, and net shortwave flux. The sea-ice
model is global: in ice-free regions bulk formulae (by default computed in package exf) are used to estimate oceanic
forcing from the atmospheric fields.

Dynamics

The momentum equation of the sea-ice model is

𝑚
𝐷u

𝐷𝑡
= −𝑚𝑓k× u + 𝜏air + 𝜏ocean −𝑚∇𝜑(0) + F (8.2)

where 𝑚 = 𝑚𝑖 + 𝑚𝑠 is the ice and snow mass per unit area; u = 𝑢i + 𝑣j is the ice velocity vector; i, j, and k are
unit vectors in the 𝑥, 𝑦, and 𝑧 directions, respectively; 𝑓 is the Coriolis parameter; 𝜏air and 𝜏ocean are the wind-ice and
ocean-ice stresses, respectively; 𝑔 is the gravity accelation; ∇𝜑(0) is the gradient (or tilt) of the sea surface height;
𝜑(0) = 𝑔𝜂 + 𝑝𝑎/𝜌0 + 𝑚𝑔/𝜌0 is the sea surface height potential in response to ocean dynamics (𝑔𝜂), to atmospheric
pressure loading (𝑝𝑎/𝜌0, where 𝜌0 is a reference density) and a term due to snow and ice loading ; and F = ∇·𝜎 is the
divergence of the internal ice stress tensor 𝜎𝑖𝑗 . Advection of sea-ice momentum is neglected. The wind and ice-ocean
stress terms are given by

𝜏air =𝜌air𝐶air|Uair − u|𝑅air(Uair − u)

𝜏ocean =𝜌ocean𝐶ocean|Uocean − u|𝑅ocean(Uocean − u)
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where Uair/ocean are the surface winds of the atmosphere and surface currents of the ocean, respectively; 𝐶air/ocean

are air and ocean drag coefficients; 𝜌air/ocean are reference densities; and 𝑅air/ocean are rotation matrices that act on
the wind/current vectors.

Viscous-Plastic (VP) Rheology

For an isotropic system the stress tensor 𝜎𝑖𝑗 (𝑖, 𝑗 = 1, 2) can be related to the ice strain rate and strength by a nonlinear
viscous-plastic (VP) constitutive law:

𝜎𝑖𝑗 = 2𝜂(𝜖̇𝑖𝑗 , 𝑃 )𝜖̇𝑖𝑗 + [𝜁(𝜖̇𝑖𝑗 , 𝑃 ) − 𝜂(𝜖̇𝑖𝑗 , 𝑃 )] 𝜖̇𝑘𝑘𝛿𝑖𝑗 −
𝑃

2
𝛿𝑖𝑗 (8.3)

The ice strain rate is given by

𝜖̇𝑖𝑗 =
1

2

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
The maximum ice pressure 𝑃max, a measure of ice strength, depends on both thickness ℎ and compactness (concen-
tration) 𝑐:

𝑃max = 𝑃 *𝑐 ℎ exp{−𝐶* · (1 − 𝑐)}, (8.4)

with the constants 𝑃 * (run-time parameter SEAICE_strength) and 𝐶* (run-time parameter SEAICE_cStar). The
nonlinear bulk and shear viscosities 𝜁 and 𝜂 are functions of ice strain rate invariants and ice strength such that the
principal components of the stress lie on an elliptical yield curve with the ratio of major to minor axis 𝑒 (run-time
parameter SEAICE_eccen) equal to 2; they are given by:

𝜁 = min

(︂
𝑃max

2 max(∆,∆min)
, 𝜁max

)︂
𝜂 =

𝜁

𝑒2

with the abbreviation

∆ =
[︁
(𝜖̇11 + 𝜖̇22)

2
+ 𝑒−2

(︁
(𝜖̇11 − 𝜖̇22)

2
+ 𝜖̇212

)︁]︁ 1
2

The bulk viscosities are bounded above by imposing both a minimum ∆min (for numerical reasons, run-time pa-
rameter SEAICE_deltaMin is set to a default value of 10−10 s−1, the value of SEAICE_EPS) and a maximum
𝜁max = 𝑃max/(2∆*), where ∆* = (2 × 104/5 × 1012) s−1 = 2 × 10−9 s−1. Obviously, this corresponds to regular-
izing ∆ with the typical value of SEAICE_deltaMin = 2 × 10−9. Clearly, some of this regularization is redundant.
(There is also the option of bounding 𝜁 from below by setting run-time parameter SEAICE_zetaMin > 0, but this is
generally not recommended). For stress tensor computation the replacement pressure 𝑃 = 2 ∆𝜁 is used so that the
stress state always lies on the elliptic yield curve by definition.

Defining the CPP-flag SEAICE_ZETA_SMOOTHREG in SEAICE_OPTIONS.h before compiling replaces the
method for bounding 𝜁 by a smooth (differentiable) expression:

𝜁 = 𝜁max tanh

(︂
𝑃

2 min(∆,∆min) 𝜁max

)︂
=

𝑃

2∆* tanh

(︂
∆*

min(∆,∆min)

)︂ (8.5)

where ∆min = 10−20 s−1 should be chosen to avoid divisions by zero.
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LSR and JFNK solver

In matrix notation, the discretized momentum equations can be written as

A(x)x = b(x). (8.6)

The solution vector x consists of the two velocity components 𝑢 and 𝑣 that contain the velocity variables at all grid
points and at one time level. The standard (and default) method for solving Eq. (8.6) in the sea ice component of
MITgcm is an iterative Picard solver: in the 𝑘-th iteration a linearized form A(x𝑘−1)x𝑘 = b(x𝑘−1) is solved (in the
case of MITgcm it is a Line Successive (over) Relaxation (LSR) algorithm). Picard solvers converge slowly, but in
practice the iteration is generally terminated after only a few nonlinear steps and the calculation continues with the
next time level. This method is the default method in MITgcm. The number of nonlinear iteration steps or pseudo-time
steps can be controlled by the run-time parameter SEAICEnonLinIterMax (default is 2).

In order to overcome the poor convergence of the Picard-solver, Lemieux et al. (2010) [LTSedlavcek+10] introduced a
Jacobian-free Newton-Krylov solver for the sea ice momentum equations. This solver is also implemented in MITgcm
(see Losch et al. 2014 [LFLV14]). The Newton method transforms minimizing the residual F(x) = A(x)x − b(x)
to finding the roots of a multivariate Taylor expansion of the residual F around the previous (𝑘 − 1) estimate x𝑘−1:

F(x𝑘−1 + 𝛿x𝑘) = F(x𝑘−1) + F′(x𝑘−1) 𝛿x𝑘 (8.7)

with the Jacobian J ≡ F′. The root F(x𝑘−1 + 𝛿x𝑘) = 0 is found by solving

J(x𝑘−1) 𝛿x𝑘 = −F(x𝑘−1) (8.8)

for 𝛿x𝑘. The next (𝑘-th) estimate is given by x𝑘 = x𝑘−1+𝑎 𝛿x𝑘. In order to avoid overshoots the factor 𝑎 is iteratively
reduced in a line search (𝑎 = 1, 12 ,

1
4 ,

1
8 , . . .) until ‖F(x𝑘)‖ < ‖F(x𝑘−1)‖, where ‖ · ‖ =

∫︀
· 𝑑𝑥2 is the 𝐿2-norm. In

practice, the line search is stopped at 𝑎 = 1
8 . The line search starts after SEAICE_JFNK_lsIter nonlinear Newton

iterations (off by default).

Forming the Jacobian J explicitly is often avoided as “too error prone and time consuming”. Instead, Krylov methods
only require the action of J on an arbitrary vector w and hence allow a matrix free algorithm for solving (8.8). The
action of J can be approximated by a first-order Taylor series expansion:

J(x𝑘−1)w ≈ F(x𝑘−1 + 𝜖w) − F(x𝑘−1)

𝜖
(8.9)

or computed exactly with the help of automatic differentiation (AD) tools. SEAICE_JFNKepsilon sets the step size 𝜖.

We use the Flexible Generalized Minimum RESidual (FMGRES) method with right-hand side preconditioning to
solve (8.8) iteratively starting from a first guess of 𝛿x𝑘

0 = 0. For the preconditioning matrix P we choose a simplified
form of the system matrix A(x𝑘−1) where x𝑘−1 is the estimate of the previous Newton step 𝑘 − 1. The transformed
equation (8.8) becomes

J(x𝑘−1)P−1𝛿z = −F(x𝑘−1), with 𝛿z = P𝛿x𝑘 (8.10)

The Krylov method iteratively improves the approximate solution to (8.10) in subspace (r0, JP−1r0, (JP−1)2r0, . . .,
(JP−1)𝑚r0) with increasing 𝑚; r0 = −F(x𝑘−1)−J(x𝑘−1) 𝛿x𝑘

0 is the initial residual of (8.8); r0 = −F(x𝑘−1) with
the first guess 𝛿x𝑘

0 = 0. We allow a Krylov-subspace of dimension 𝑚 = 50 and we do allow restarts for more than 50
Krylov iterations. The preconditioning operation involves applying P−1 to the basis vectors v0,v1,v2, . . . ,v𝑚 of the
Krylov subspace. This operation is approximated by solving the linear system Pw = v𝑖. Because P ≈ A(x𝑘−1),
we can use the LSR-algorithm already implemented in the Picard solver. Each preconditioning operation uses a fixed
number of 10 LSR-iterations avoiding any termination criterion. More details and results can be found in Losch et al.
(2014) [LFLV14]).

To use the JFNK-solver set SEAICEuseJFNK = .TRUE., in the namelist file data.seaice; #define
SEAICE_ALLOW_JFNK in SEAICE_OPTIONS.h and we recommend using a smooth regularization of 𝜁 by
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#define SEAICE_ZETA_SMOOTHREG (see above) for better convergence. The nonlinear Newton iteration is
terminated when the 𝐿2-norm of the residual is reduced by 𝛾nl (run-time parameter SEAICEnonLinTol = 1.E-4,
will already lead to expensive simulations) with respect to the initial norm: ‖F(x𝑘)‖ < 𝛾nl‖F(x0)‖. Within a non-
linear iteration, the linear FGMRES solver is terminated when the residual is smaller than 𝛾𝑘‖F(x𝑘−1)‖ where 𝛾𝑘 is
determined by

𝛾𝑘 =

{︃
𝛾0 for ‖F(x𝑘−1)‖ ≥ 𝑟,

max
(︁
𝛾min,

‖F(x𝑘−1)‖
‖F(x𝑘−2)‖

)︁
for ‖F(x𝑘−1)‖ < 𝑟,

(8.11)

so that the linear tolerance parameter 𝛾𝑘 decreases with the nonlinear Newton step as the nonlinear solution is ap-
proached. This inexact Newton method is generally more robust and computationally more efficient than exact meth-
ods. Typical parameter choices are 𝛾0 = JFNKgamma_lin_max = 0.99, 𝛾min = JFNKgamma_lin_min = 0.1, and
𝑟 = JFNKres_tFac ×‖F(x0)‖ with JFNKres_tFac = 0.5. We recommend a maximum number of nonlinear iterations
SEAICEnewtonIterMax = 100 and a maximum number of Krylov iterations SEAICEkrylovIterMax = 50, because
the Krylov subspace has a fixed dimension of 50 (but restarts are allowed for SEAICEkrylovIterMax > 50).

Setting SEAICEuseStrImpCpl = .TRUE., turns on “strength implicit coupling” (see Hutchings et al. 2004 [HJL04])
in the LSR-solver and in the LSR-preconditioner for the JFNK-solver. In this mode, the different contributions of the
stress divergence terms are reordered so as to increase the diagonal dominance of the system matrix. Unfortunately, the
convergence rate of the LSR solver is increased only slightly, while the JFNK-convergence appears to be unaffected.

Elastic-Viscous-Plastic (EVP) Dynamics

Hunke and Dukowicz (1997) [HD97] introduced an elastic contribution to the strain rate in order to regularize (8.3) in
such a way that the resulting elastic-viscous-plastic (EVP) and VP models are identical at steady state,

1

𝐸

𝜕𝜎𝑖𝑗
𝜕𝑡

+
1

2𝜂
𝜎𝑖𝑗 +

𝜂 − 𝜁

4𝜁𝜂
𝜎𝑘𝑘𝛿𝑖𝑗 +

𝑃

4𝜁
𝛿𝑖𝑗 = 𝜖̇𝑖𝑗 . (8.12)

The EVP-model uses an explicit time stepping scheme with a short timestep. According to the recommen-
dation in Hunke and Dukowicz (1997) [HD97], the EVP-model should be stepped forward in time 120 times
(SEAICE_deltaTevp = SEAICE_deltaTdyn /120) within the physical ocean model time step (although this param-
eter is under debate), to allow for elastic waves to disappear. Because the scheme does not require a matrix inversion
it is fast in spite of the small internal timestep and simple to implement on parallel computers. For completeness, we
repeat the equations for the components of the stress tensor 𝜎1 = 𝜎11 + 𝜎22, 𝜎2 = 𝜎11 − 𝜎22, and 𝜎12. Introducing
the divergence 𝐷𝐷 = 𝜖̇11 + 𝜖̇22, and the horizontal tension and shearing strain rates, 𝐷𝑇 = 𝜖̇11 − 𝜖̇22 and 𝐷𝑆 = 2𝜖̇12,
respectively, and using the above abbreviations, the equations (8.12) can be written as:

𝜕𝜎1
𝜕𝑡

+
𝜎1
2𝑇

+
𝑃

2𝑇
=

𝑃

2𝑇∆
𝐷𝐷 (8.13)

𝜕𝜎2
𝜕𝑡

+
𝜎2𝑒

2

2𝑇
=

𝑃

2𝑇∆
𝐷𝑇 (8.14)

𝜕𝜎12
𝜕𝑡

+
𝜎12𝑒

2

2𝑇
=

𝑃

4𝑇∆
𝐷𝑆 (8.15)

Here, the elastic parameter 𝐸 is redefined in terms of a damping timescale 𝑇 for elastic waves

𝐸 =
𝜁

𝑇

𝑇 = 𝐸0∆𝑡 with the tunable parameter 𝐸0 < 1 and the external (long) timestep ∆𝑡. 𝐸0 = 1
3 is the default value in the

code and close to what and recommend.

To use the EVP solver, make sure that both #define SEAICE_CGRID and #define SEAICE_ALLOW_EVP are
set in SEAICE_OPTIONS.h (both are defined by default). The solver is turned on by setting the sub-cycling time step

514 Chapter 8. Packages I - Physical Parameterizations

http://mitgcm.org/lxr/ident/MITgcm?_i=SEAICE_ZETA_SMOOTHREG
http://mitgcm.org/lxr/ident/MITgcm?_i=SEAICEnonLinTol
http://mitgcm.org/lxr/ident/MITgcm?_i=JFNKgamma_lin_max
http://mitgcm.org/lxr/ident/MITgcm?_i=JFNKgamma_lin_min
http://mitgcm.org/lxr/ident/MITgcm?_i=JFNKres_tFac
http://mitgcm.org/lxr/ident/MITgcm?_i=JFNKres_tFac
http://mitgcm.org/lxr/ident/MITgcm?_i=SEAICEnewtonIterMax
http://mitgcm.org/lxr/ident/MITgcm?_i=SEAICEkrylovIterMax
http://mitgcm.org/lxr/ident/MITgcm?_i=SEAICEkrylovIterMax
http://mitgcm.org/lxr/ident/MITgcm?_i=SEAICEuseStrImpCpl
http://mitgcm.org/lxr/ident/MITgcm?_i=SEAICE_deltaTevp
http://mitgcm.org/lxr/ident/MITgcm?_i=SEAICE_deltaTdyn
http://mitgcm.org/lxr/ident/MITgcm?_i=SEAICE_CGRID
http://mitgcm.org/lxr/ident/MITgcm?_i=SEAICE_ALLOW_EVP
https://github.com/MITgcm/MITgcm/blob/master/pkg/seaice/SEAICE_OPTIONS.h


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

SEAICE_deltaTevp to a value larger than zero. The choice of this time step is under debate. Hunke and Dukowicz
(1997) [HD97] recommend order 120 time steps for the EVP solver within one model time step ∆𝑡 (deltaTmom). One
can also choose order 120 time steps within the forcing time scale, but then we recommend adjusting the damping
time scale 𝑇 accordingly, by setting either SEAICE_elasticParm (𝐸0), so that 𝐸0∆𝑡 = forcing time scale, or directly
SEAICE_evpTauRelax (𝑇 ) to the forcing time scale. (NOTE: with the improved EVP variants of the next section, the
above recommendations are obsolete. Use mEVP or aEVP instead.)

More stable variants of Elastic-Viscous-Plastic Dynamics: EVP*, mEVP, and aEVP

The genuine EVP scheme appears to give noisy solutions (see Hunke 2001, Lemieux et al. 2012, Bouillon et a1. 2013
[Hun01][LKT+12][BFLM13]). This has led to a modified EVP or EVP* (Lemieux et al. 2012, Bouillon et a1. 2013,
Kimmritz et al. 2015 [LKT+12][BFLM13][KDL15]); here, we refer to these variants by modified EVP (mEVP) and
adaptive EVP (aEVP). The main idea is to modify the “natural” time-discretization of the momentum equations:

𝑚
𝐷u

𝐷𝑡
≈ 𝑚

u𝑝+1 − u𝑛

∆𝑡
+ 𝛽*u

𝑝+1 − u𝑝

∆𝑡EVP

(8.16)

where 𝑛 is the previous time step index, and 𝑝 is the previous sub-cycling index. The extra “intertial” term 𝑚 (u𝑝+1 −
u𝑛)/∆𝑡) allows the definition of a residual |u𝑝+1−u𝑝| that, as u𝑝+1 → u𝑛+1, converges to 0. In this way EVP can be
re-interpreted as a pure iterative solver where the sub-cycling has no association with time-relation (through ∆𝑡EVP).
Using the terminology of Kimmritz et al. 2015 [KDL15], the evolution equations of stress 𝜎𝑖𝑗 and momentum u can
be written as:

𝜎𝑝+1
𝑖𝑗 = 𝜎𝑝

𝑖𝑗 +
1

𝛼

(︁
𝜎𝑖𝑗(u

𝑝) − 𝜎𝑝
𝑖𝑗

)︁
, (8.17)

u𝑝+1 = u𝑝 +
1

𝛽

(︁∆𝑡

𝑚
∇ · 𝜎𝑝+1 +

∆𝑡

𝑚
R𝑝 + u𝑛 − u𝑝

)︁
(8.18)

R contains all terms in the momentum equations except for the rheology terms and the time derivative; 𝛼 and 𝛽 are
free parameters (SEAICE_evpAlpha, SEAICE_evpBeta) that replace the time stepping parameters SEAICE_deltaTevp
(∆𝑡EVP), SEAICE_elasticParm (𝐸0), or SEAICE_evpTauRelax (𝑇 ). 𝛼 and 𝛽 determine the speed of convergence and
the stability. Usually, it makes sense to use 𝛼 = 𝛽, and SEAICEnEVPstarSteps ≫ (𝛼, 𝛽) (Kimmritz et al. 2015
[KDL15]). Currently, there is no termination criterion and the number of mEVP iterations is fixed to SEAICEnEVP-
starSteps.

In order to use mEVP in MITgcm, set SEAICEuseEVPstar = .TRUE., in data.seaice. If SEAICEuseEVPrev
=.TRUE., the actual form of equations (8.17) and (8.18) is used with fewer implicit terms and the factor of 𝑒2

dropped in the stress equations (8.14) and (8.15). Although this modifies the original EVP-equations, it turns out to
improve convergence (Bouillon et al. 2013 [BFLM13]).

Another variant is the aEVP scheme (Kimmritz et al. 2016 [KDL16]), where the value of 𝛼 is set dynamically based
on the stability criterion

𝛼 = 𝛽 = max

(︃
𝑐𝜋

√︃
𝑐
𝜁

𝐴𝑐

∆𝑡

max(𝑚, 10−4 kg)
, 𝛼min

)︃
(8.19)

with the grid cell area 𝐴𝑐 and the ice and snow mass 𝑚. This choice sacrifices speed of convergence for stability with
the result that aEVP converges quickly to VP where 𝛼 can be small and more slowly in areas where the equations
are stiff. In practice, aEVP leads to an overall better convergence than mEVP (Kimmritz et al. 2016 [KDL16]).
To use aEVP in MITgcm set SEAICEaEVPcoeff = 𝑐; this also sets the default values of SEAICEaEVPcStar (𝑐 =
4) and SEAICEaEVPalphaMin (𝛼min = 5). Good convergence has been obtained with these values (Kimmritz et
al. 2016 [KDL16]): SEAICEaEVPcoeff = 0.5, SEAICEnEVPstarSteps = 500, SEAICEuseEVPstar = .TRUE.,
SEAICEuseEVPrev = .TRUE..

Note, that probably because of the C-grid staggering of velocities and stresses, mEVP may not converge as successfully
as in Kimmritz et al. (2015) [KDL15], see also Kimmritz et al. (2016) [KDL16], and that convergence at very high
resolution (order 5 km) has not been studied yet.
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Truncated ellipse method (TEM) for yield curve

In the so-called truncated ellipse method the shear viscosity 𝜂 is capped to suppress any tensile stress:

𝜂 = min

(︃
𝜁

𝑒2
,

𝑃
2 − 𝜁(𝜖̇11 + 𝜖̇22)√︀

max(∆2
min, (𝜖̇11 − 𝜖̇22)2 + 4𝜖̇212)

)︃
. (8.20)

To enable this method, set #define SEAICE_ALLOW_TEM in SEAICE_OPTIONS.h and turn it on with
SEAICEuseTEM in data.seaice.

Ice-Ocean stress

Moving sea ice exerts a stress on the ocean which is the opposite of the stress 𝜏ocean in (8.2). This stress is applied
directly to the surface layer of the ocean model. An alternative ocean stress formulation is given by Hibler and Bryan
(1987) [HB87]. Rather than applying 𝜏ocean directly, the stress is derived from integrating over the ice thickness to the
bottom of the oceanic surface layer. In the resulting equation for the combined ocean-ice momentum, the interfacial
stress cancels and the total stress appears as the sum of windstress and divergence of internal ice stresses: 𝛿(𝑧)(𝜏air +
F)/𝜌0, see also Eq. (2) of Hibler and Bryan (1987) [HB87]. The disadvantage of this formulation is that now the
velocity in the surface layer of the ocean that is used to advect tracers, is really an average over the ocean surface
velocity and the ice velocity leading to an inconsistency as the ice temperature and salinity are different from the
oceanic variables. To turn on the stress formulation of Hibler and Bryan (1987) [HB87], set useHB87StressCoupling
=.TRUE., in data.seaice.

Finite-volume discretization of the stress tensor divergence

On an Arakawa C grid, ice thickness and concentration and thus ice strength 𝑃 and bulk and shear viscosities 𝜁 and
𝜂 are naturally defined a C-points in the center of the grid cell. Discretization requires only averaging of 𝜁 and 𝜂 to
vorticity or Z-points (or 𝜁-points, but here we use Z in order avoid confusion with the bulk viscosity) at the bottom left
corner of the cell to give 𝜁

𝑍
and 𝜂𝑍 . In the following, the superscripts indicate location at Z or C points, distance across

the cell (F), along the cell edge (G), between 𝑢-points (U), 𝑣-points (V), and C-points (C). The control volumes of the
𝑢- and 𝑣-equations in the grid cell at indices (𝑖, 𝑗) are 𝐴𝑤

𝑖,𝑗 and 𝐴𝑠
𝑖,𝑗 , respectively. With these definitions (which follow

the model code documentation except that 𝜁-points have been renamed to Z-points), the strain rates are discretized as:

𝜖̇11 = 𝜕1𝑢1 + 𝑘2𝑢2

=> (𝜖11)𝐶𝑖,𝑗 =
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

∆𝑥𝐹𝑖,𝑗
+ 𝑘𝐶2,𝑖,𝑗

𝑣𝑖,𝑗+1 + 𝑣𝑖,𝑗
2

𝜖̇22 = 𝜕2𝑢2 + 𝑘1𝑢1

=> (𝜖22)𝐶𝑖,𝑗 =
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

∆𝑦𝐹𝑖,𝑗
+ 𝑘𝐶1,𝑖,𝑗

𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗
2

𝜖̇12 = 𝜖̇21 =
1

2

(︂
𝜕1𝑢2 + 𝜕2𝑢1 − 𝑘1𝑢2 − 𝑘2𝑢1

)︂
=> (𝜖12)𝑍𝑖,𝑗 =

1

2

(︂
𝑣𝑖,𝑗 − 𝑣𝑖−1,𝑗

∆𝑥𝑉𝑖,𝑗
+
𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

∆𝑦𝑈𝑖,𝑗

− 𝑘𝑍1,𝑖,𝑗
𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗

2
− 𝑘𝑍2,𝑖,𝑗

𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

2

)︂
,

so that the diagonal terms of the strain rate tensor are naturally defined at C-points and the symmetric off-diagonal term
at Z-points. No-slip boundary conditions (𝑢𝑖,𝑗−1 +𝑢𝑖,𝑗 = 0 and 𝑣𝑖−1,𝑗 +𝑣𝑖,𝑗 = 0 across boundaries) are implemented
via “ghost-points”; for free slip boundary conditions (𝜖12)𝑍 = 0 on boundaries.
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For a spherical polar grid, the coefficients of the metric terms are 𝑘1 = 0 and 𝑘2 = − tan𝜑/𝑎, with the spherical
radius 𝑎 and the latitude 𝜑; ∆𝑥1 = ∆𝑥 = 𝑎 cos𝜑∆𝜆, and ∆𝑥2 = ∆𝑦 = 𝑎∆𝜑. For a general orthogonal curvilinear
grid, 𝑘1 and 𝑘2 can be approximated by finite differences of the cell widths:

𝑘𝐶1,𝑖,𝑗 =
1

∆𝑦𝐹𝑖,𝑗

∆𝑦𝐺𝑖+1,𝑗 − ∆𝑦𝐺𝑖,𝑗
∆𝑥𝐹𝑖,𝑗

𝑘𝐶2,𝑖,𝑗 =
1

∆𝑥𝐹𝑖,𝑗

∆𝑥𝐺𝑖,𝑗+1 − ∆𝑥𝐺𝑖,𝑗
∆𝑦𝐹𝑖,𝑗

𝑘𝑍1,𝑖,𝑗 =
1

∆𝑦𝑈𝑖,𝑗

∆𝑦𝐶𝑖,𝑗 − ∆𝑦𝐶𝑖−1,𝑗

∆𝑥𝑉𝑖,𝑗

𝑘𝑍2,𝑖,𝑗 =
1

∆𝑥𝑉𝑖,𝑗

∆𝑥𝐶𝑖,𝑗 − ∆𝑥𝐶𝑖,𝑗−1

∆𝑦𝑈𝑖,𝑗

The stress tensor is given by the constitutive viscous-plastic relation 𝜎𝛼𝛽 = 2𝜂𝜖̇𝛼𝛽 + [(𝜁 − 𝜂)𝜖̇𝛾𝛾 − 𝑃/2]𝛿𝛼𝛽 . The
stress tensor divergence (∇𝜎)𝛼 = 𝜕𝛽𝜎𝛽𝛼, is discretized in finite volumes . This conveniently avoids dealing with
further metric terms, as these are “hidden” in the differential cell widths. For the 𝑢-equation (𝛼 = 1) we have:

(∇𝜎)1 :
1

𝐴𝑤
𝑖,𝑗

∫︁
cell

(𝜕1𝜎11 + 𝜕2𝜎21) 𝑑𝑥1 𝑑𝑥2

=
1

𝐴𝑤
𝑖,𝑗

{︂∫︁ 𝑥2+Δ𝑥2

𝑥2

𝜎11𝑑𝑥2

⃒⃒⃒⃒𝑥1+Δ𝑥1

𝑥1

+

∫︁ 𝑥1+Δ𝑥1

𝑥1

𝜎21𝑑𝑥1

⃒⃒⃒⃒𝑥2+Δ𝑥2

𝑥2

}︂
≈ 1

𝐴𝑤
𝑖,𝑗

{︂
∆𝑥2𝜎11

⃒⃒⃒⃒𝑥1+Δ𝑥1

𝑥1

+∆𝑥1𝜎21

⃒⃒⃒⃒𝑥2+Δ𝑥2

𝑥2

}︂
=

1

𝐴𝑤
𝑖,𝑗

{︂
(∆𝑥2𝜎11)𝐶𝑖,𝑗 − (∆𝑥2𝜎11)𝐶𝑖−1,𝑗

+ (∆𝑥1𝜎21)𝑍𝑖,𝑗+1 − (∆𝑥1𝜎21)𝑍𝑖,𝑗

}︂
with

(∆𝑥2𝜎11)𝐶𝑖,𝑗 = ∆𝑦𝐹𝑖,𝑗(𝜁 + 𝜂)𝐶𝑖,𝑗
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

∆𝑥𝐹𝑖,𝑗

+ ∆𝑦𝐹𝑖,𝑗(𝜁 + 𝜂)𝐶𝑖,𝑗𝑘
𝐶
2,𝑖,𝑗

𝑣𝑖,𝑗+1 + 𝑣𝑖,𝑗
2

+ ∆𝑦𝐹𝑖,𝑗(𝜁 − 𝜂)𝐶𝑖,𝑗
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

∆𝑦𝐹𝑖,𝑗

+ ∆𝑦𝐹𝑖,𝑗(𝜁 − 𝜂)𝐶𝑖,𝑗𝑘
𝐶
1,𝑖,𝑗

𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗
2

− ∆𝑦𝐹𝑖,𝑗
𝑃

2

(∆𝑥1𝜎21)𝑍𝑖,𝑗 = ∆𝑥𝑉𝑖,𝑗𝜂
𝑍
𝑖,𝑗

𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

∆𝑦𝑈𝑖,𝑗

+ ∆𝑥𝑉𝑖,𝑗𝜂
𝑍
𝑖,𝑗

𝑣𝑖,𝑗 − 𝑣𝑖−1,𝑗

∆𝑥𝑉𝑖,𝑗

− ∆𝑥𝑉𝑖,𝑗𝜂
𝑍
𝑖,𝑗𝑘

𝑍
2,𝑖,𝑗

𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

2

− ∆𝑥𝑉𝑖,𝑗𝜂
𝑍
𝑖,𝑗𝑘

𝑍
1,𝑖,𝑗

𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗

2
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Similarly, we have for the 𝑣-equation (𝛼 = 2):

(∇𝜎)2 :
1

𝐴𝑠
𝑖,𝑗

∫︁
cell

(𝜕1𝜎12 + 𝜕2𝜎22) 𝑑𝑥1 𝑑𝑥2

=
1

𝐴𝑠
𝑖,𝑗

{︂∫︁ 𝑥2+Δ𝑥2

𝑥2

𝜎12𝑑𝑥2

⃒⃒⃒⃒𝑥1+Δ𝑥1

𝑥1

+

∫︁ 𝑥1+Δ𝑥1

𝑥1

𝜎22𝑑𝑥1

⃒⃒⃒⃒𝑥2+Δ𝑥2

𝑥2

}︂
≈ 1

𝐴𝑠
𝑖,𝑗

{︂
∆𝑥2𝜎12

⃒⃒⃒⃒𝑥1+Δ𝑥1

𝑥1

+∆𝑥1𝜎22

⃒⃒⃒⃒𝑥2+Δ𝑥2

𝑥2

}︂
=

1

𝐴𝑠
𝑖,𝑗

{︂
(∆𝑥2𝜎12)𝑍𝑖+1,𝑗 − (∆𝑥2𝜎12)𝑍𝑖,𝑗

+ (∆𝑥1𝜎22)𝐶𝑖,𝑗 − (∆𝑥1𝜎22)𝐶𝑖,𝑗−1

}︂
with

(∆𝑥1𝜎12)𝑍𝑖,𝑗 = ∆𝑦𝑈𝑖,𝑗𝜂
𝑍
𝑖,𝑗

𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

∆𝑦𝑈𝑖,𝑗

+ ∆𝑦𝑈𝑖,𝑗𝜂
𝑍
𝑖,𝑗

𝑣𝑖,𝑗 − 𝑣𝑖−1,𝑗

∆𝑥𝑉𝑖,𝑗

− ∆𝑦𝑈𝑖,𝑗𝜂
𝑍
𝑖,𝑗𝑘

𝑍
2,𝑖,𝑗

𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

2

− ∆𝑦𝑈𝑖,𝑗𝜂
𝑍
𝑖,𝑗𝑘

𝑍
1,𝑖,𝑗

𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗

2

(∆𝑥2𝜎22)𝐶𝑖,𝑗 = ∆𝑥𝐹𝑖,𝑗(𝜁 − 𝜂)𝐶𝑖,𝑗
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

∆𝑥𝐹𝑖,𝑗

+ ∆𝑥𝐹𝑖,𝑗(𝜁 − 𝜂)𝐶𝑖,𝑗𝑘
𝐶
2,𝑖,𝑗

𝑣𝑖,𝑗+1 + 𝑣𝑖,𝑗
2

+ ∆𝑥𝐹𝑖,𝑗(𝜁 + 𝜂)𝐶𝑖,𝑗
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

∆𝑦𝐹𝑖,𝑗

+ ∆𝑥𝐹𝑖,𝑗(𝜁 + 𝜂)𝐶𝑖,𝑗𝑘
𝐶
1,𝑖,𝑗

𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗
2

− ∆𝑥𝐹𝑖,𝑗
𝑃

2

Again, no-slip boundary conditions are realized via ghost points and 𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗 = 0 and 𝑣𝑖−1,𝑗 + 𝑣𝑖,𝑗 = 0 across
boundaries. For free-slip boundary conditions the lateral stress is set to zeros. In analogy to (𝜖12)𝑍 = 0 on boundaries,
we set 𝜎𝑍

21 = 0, or equivalently 𝜂𝑍𝑖,𝑗 = 0, on boundaries.

Thermodynamics

NOTE: THIS SECTION IS STILL NOT COMPLETE

In its original formulation the sea ice model uses simple 0-layer thermodynamics following the appendix of Semtner
(1976) [Sem76]. This formulation neglects storage of heat, that is, the heat capacity of ice is zero, and all internal heat
sources so that the heat equation reduces to a constant conductive heat flux. This constant upward conductive heat flux
together with a constant ice conductivity implies a linear temperature profile. The boundary conditions for the heat
equations are: at the bottom of the ice 𝑇 |𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑇𝑓𝑟 (freezing point temperature of sea water), and at the surface:
𝑄𝑡𝑜𝑝 = 𝜕𝑇

𝜕𝑧 = (𝐾/ℎ)(𝑇0 − 𝑇𝑓𝑟), where 𝐾 is the ice conductivity, ℎ the ice thickness, and 𝑇0 − 𝑇𝑓𝑟 the difference
between the ice surface temperature and the water temperature at the bottom of the ice (at the freezing point). The
surface heat flux 𝑄𝑡𝑜𝑝 is computed in a similar way to that of Parkinson and Washington (1979) [PW79] and Manabe
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et al. (1979) [MBS79]. The resulting equation for surface temperature is

𝐾

ℎ
(𝑇0 − 𝑇𝑓𝑟) = 𝑄𝑆𝑊↓(1 − albedo)

+ 𝜖𝑄𝐿𝑊↓ −𝑄𝐿𝑊↑(𝑇0)

+𝑄𝐿𝐻(𝑇0) +𝑄𝑆𝐻(𝑇0),

(8.21)

where 𝜖 is the emissivity of the surface (snow or ice), 𝑄𝑆/𝐿𝑊↓ the downwelling shortwave and longwave radiation to
be prescribed, and 𝑄𝐿𝑊↑ = 𝜖𝜎𝐵𝑇

4
0 the emitted long wave radiation with the Stefan-Boltzmann constant 𝜎𝐵 . With

explicit expressions in 𝑇0 for the turbulent fluxes of latent and sensible heat

𝑄𝐿𝐻 = 𝜌air𝐶𝐸(Λ𝑣 + Λ𝑓 )|Uair| [𝑞air − 𝑞sat(𝑇0)]

𝑄𝑆𝐻 = 𝜌air𝑐𝑝𝐶𝐸 |Uair| [𝑇10m − 𝑇0] ,

(8.21) can be solved for 𝑇0 with an iterative Ralphson-Newton method, which usually converges very quickly in less
that 10 iterations. In these equations, 𝜌air is the air density (parameter SEAICE_rhoAir), 𝐶𝐸 is the ice-ocean transfer
coefficient for sensible and latent heat (parameter SEAICE_dalton), Λ𝑣 and Λ𝑓 are the latent heat of vaporization and
fusion, respectively (parameters SEAICE_lhEvap and SEAICE_lhFusion), and 𝑐𝑝 is the specific heat of air (parameter
SEAICE_cpAir). For the latent heat 𝑄𝐿𝐻 a choice can be made between the old polynomial expression for saturation
humidity 𝑞sat(𝑇0) (by setting useMaykutSatVapPoly to .TRUE.) and the default exponential relation approximation
that is more accurate at low temperatures.

In the zero-layer model of Semtner (1976) [Sem76], the conductive heat flux depends strongly on the ice thick-
ness ℎ. However, the ice thickness in the model represents a mean over a potentially very heterogeneous thickness
distribution. In order to parameterize a sub-grid scale distribution for heat flux computations, the mean ice thick-
ness ℎ is split into 𝑁 thickness categories 𝐻𝑛 that are equally distributed between 2ℎ and a minimum imposed ice
thickness of 5 cm by 𝐻𝑛 = 2𝑛−1

7 ℎ for 𝑛 ∈ [1, 𝑁 ]. The heat fluxes computed for each thickness category are area-
averaged to give the total heat flux (see Hibler 1984 [Hib84]). To use this thickness category parameterization set
SEAICE_multDim to the number of desired categories in data.seaice (7 is a good guess, for anything larger than
7 modify SEAICE_SIZE.h). Note that this requires different restart files and switching this flag on in the middle of an
integration is not advised. As an alternative to the flat distribution, the run-time parameter SEAICE_PDF (1D-array of
lenght nITD) can be used to prescribe an arbitrary distribution of ice thicknesses, for example derived from observed
distributions (Castro-Morales et al. 2014 [CMKL+14]). In order to include the ice thickness distribution also for snow,
set SEAICE_useMultDimSnow = .TRUE. (this is the default); only then, the parameterization of always having a
fraction of thin ice is efficient and generally thicker ice is produced (see Castro-Morales et al. 2014 [CMKL+14]).

The atmospheric heat flux is balanced by an oceanic heat flux from below. The oceanic flux is proportional to
𝜌 𝑐𝑝 (𝑇𝑤 − 𝑇𝑓𝑟) where 𝜌 and 𝑐𝑝 are the density and heat capacity of sea water and 𝑇𝑓𝑟 is the local freezing point
temperature that is a function of salinity. This flux is not assumed to instantaneously melt or create ice, but a time
scale of three days (run-time parameter SEAICE_gamma_t) is used to relax 𝑇𝑤 to the freezing point. The parameter-
ization of lateral and vertical growth of sea ice follows that of Hibler (1979) and Hibler (1980) [Hib79][Hib80]; the
so-called lead closing parameter ℎ0 (run-time parameter HO) has a default value of 0.5 meters.

On top of the ice there is a layer of snow that modifies the heat flux and the albedo (Zhang et al. 1998 [ZWDHSR98]).
Snow modifies the effective conductivity according to

𝐾

ℎ
→ 1

ℎ𝑠

𝐾𝑠
+ ℎ

𝐾

,

where 𝐾𝑠 is the conductivity of snow and ℎ𝑠 the snow thickness. If enough snow accumulates so that its weight
submerges the ice and the snow is flooded, a simple mass conserving parameterization of snowice formation (a flood-
freeze algorithm following Archimedes’ principle) turns snow into ice until the ice surface is back at 𝑧 = 0 (see
Leppäranta 1983 [Lepparanta83]). The flood-freeze algorithm is turned on with run-time parameter SEAICEuse-
Flooding=.TRUE..
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Advection of thermodynamic variables

Effective ice thickness (ice volume per unit area, 𝑐·ℎ), concentration 𝑐 and effective snow thickness (𝑐·ℎ𝑠) are advected
by ice velocities:

𝜕𝑋

𝜕𝑡
= −∇ · (u𝑋) + Γ𝑋 +𝐷𝑋 (8.22)

where Γ𝑋 are the thermodynamic source terms and 𝐷𝑋 the diffusive terms for quantities 𝑋 = (𝑐 ·ℎ), 𝑐, (𝑐 ·ℎ𝑠). From
the various advection schemes that are available in MITgcm, we recommend flux-limited schemes to preserve sharp
gradients and edges that are typical of sea ice distributions and to rule out unphysical over- and undershoots (negative
thickness or concentration). These schemes conserve volume and horizontal area and are unconditionally stable, so
that we can set𝐷𝑋 = 0. Run-time flags: SEAICEadvScheme (default=77, is a 2nd-order flux limited scheme), DIFF1
= 𝐷𝑋/∆𝑥 (default=0).

The MITgcm sea ice model provides the option to use the thermodynamics model of Winton (2000) [Win00], which
in turn is based on the 3-layer model of Semtner (1976) [Sem76] which treats brine content by means of enthalpy
conservation; the corresponding package thsice is described in section Section 8.6.1. This scheme requires additional
state variables, namely the enthalpy of the two ice layers (instead of effective ice salinity), to be advected by ice
velocities. The internal sea ice temperature is inferred from ice enthalpy. To avoid unphysical (negative) values for ice
thickness and concentration, a positive 2nd-order advection scheme with a SuperBee flux limiter (Roe 1985 [Roe85])
should be used to advect all sea-ice-related quantities of the Winton (2000) [Win00] thermodynamic model (run-time
flag thSIceAdvScheme = 77 and thSIce_diffK = 𝐷𝑋 = 0 in data.ice, defaults are 0). Because of the nonlinearity
of the advection scheme, care must be taken in advecting these quantities: when simply using ice velocity to advect
enthalpy, the total energy (i.e., the volume integral of enthalpy) is not conserved. Alternatively, one can advect the
energy content (i.e., product of ice-volume and enthalpy) but then false enthalpy extrema can occur, which then leads to
unrealistic ice temperature. In the currently implemented solution, the sea-ice mass flux is used to advect the enthalpy
in order to ensure conservation of enthalpy and to prevent false enthalpy extrema.

Dynamical Ice Thickness Distribution (ITD)

The ice thickness distribution model used by MITgcm follows the implementation in the Los Alamos sea ice model
CICE (https://github.com/CICE-Consortium/CICE). There are two parts to it that are closely connected: the partici-
pation and ridging functions that determine which thickness classes take part in ridging and which thickness classes
receive ice during ridging based on Thorndike et al. (1975) [TRMC75], and the ice strength parameterization by
Rothrock (1975) [Rot75] which uses this information. The following description is slightly modified from Unger-
mann et al. (2017) [UTML17]. Verification experiment seaice_itd uses the ITD model.

Distribution, participation and redistribution functions in ridging

When SEAICE_ITD is defined in SEAICE_OPTIONS.h, the ice thickness is described by the ice thickness distribution
𝑔(ℎ,x, 𝑡) for the subgrid-scale (see Thorndike et al. 1975 [TRMC75]), a probability density function for thickness ℎ
following the evolution equation

𝜕𝑔

𝜕𝑡
= −∇ · (u𝑔) − 𝜕

𝜕ℎ
(𝑓𝑔) + Ψ. (8.23)

Here 𝑓 = dℎ
d𝑡 is the thermodynamic growth rate and Ψ a function describing the mechanical redistribution of sea ice

during ridging or lead opening.

The mechanical redistribution function Ψ generates open water in divergent motion and creates ridged ice during
convergent motion. The ridging process depends on total strain rate and on the ratio between shear (run-time parameter
SEAICEshearParm) and divergent strain. In the single category model, ridge formation is treated implicitly by limiting
the ice concentration to a maximum of one (see Hibler 1979 [Hib79]), so that further volume increase in convergent
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motion leads to thicker ice. (This is also the default for ITD models; to change from the default, set run-time parameter
SEAICEsimpleRidging =.FALSE. in data.seaice). For the ITD model, the ridging mode in convergence

𝜔𝑟(ℎ) =
−𝑎(ℎ) + 𝑛(ℎ)

𝑁

gives the effective change for the ice volume with thickness between ℎ and ℎ+dℎ as the normalized difference between
the ice 𝑛(ℎ) generated by ridging and the ice 𝑎(ℎ) participating in ridging.

The participation function 𝑎(ℎ) = 𝑏(ℎ)𝑔(ℎ) can be computed either following Thorndike et al. (1975) [TRMC75]
(run-time parameter SEAICEpartFunc =0) or Lipscomb et al. (2007) [LHMJ07] (SEAICEpartFunc =1), and similarly
the ridging function 𝑛(ℎ) can be computed following Hilber (1980) [Hib80] (run-time parameter SEAICEredistFunc
=0) or Lipscomb et al. (2007) [LHMJ07] (SEAICEredistFunc =1). As an example, we show here the functions that
Lipscomb et al. (2007) [LHMJ07] suggested to avoid noise in the solutions. These functions are smooth and avoid
non-differentiable discontinuities, but so far we did not find any noise issues as in Lipscomb et al. (2007) [LHMJ07].

With SEAICEpartFunc =1 in data.seaice, the participation function with the relative amount of ice of thickness
ℎ weighted by an exponential function

𝑏(ℎ) = 𝑏0 exp[−𝐺(ℎ)/𝑎*]

where 𝐺(ℎ) =
∫︀ ℎ

0
𝑔(ℎ)dℎ is the cumulative thickness distribution function, 𝑏0 a normalization factor, and 𝑎*

(SEAICEaStar) the exponential constant that determines which relative amount of thicker and thinner ice take part
in ridging.

With SEAICEredistFunc =1 in data.seaice, the ice generated by ridging is calculated as

𝑛(ℎ) =

∫︁ ∞

0

𝑎(ℎ1)𝛾(ℎ1, ℎ)dℎ1

where the density function 𝛾(ℎ1, ℎ) of resulting thickness ℎ for ridged ice with an original thickness of ℎ1 is taken as

𝛾(ℎ1, ℎ) =
1

𝑘𝜆
exp

[︂
−(ℎ− ℎmin)

𝜆

]︂
for ℎ ≥ ℎmin, with 𝛾(ℎ1, ℎ) = 0 for ℎ < ℎmin. In this parameterization, the normalization factor 𝑘 = ℎmin+𝜆

ℎ1
, the

e-folding scale 𝜆 = 𝜇ℎ
1/2
1 and the minimum ridge thickness ℎmin = min(2ℎ1, ℎ1 + ℎraft) all depend on the original

thickness ℎ1. The maximal ice thickness allowed to raft ℎraft is constant (SEAICEmaxRaft, default =1 m) and 𝜇
(SEAICEmuRidging) is a tunable parameter.

In the numerical model these equations are discretized into a set of 𝑛 (nITD defined in SEAICE_SIZE.h) thickness
categories employing the delta function scheme of Bitz et al. (2001) [BHWE01]. For each thickness category in an
ITD configuration, the volume conservation equation (8.22) is evaluated using the heat flux with the category-specific
values for ice and snow thickness, so there are no conceptual differences in the thermodynamics between the single
category and ITD configurations. The only difference is that only in the thinnest category the creation of new ice of
thickness 𝐻0 (run-time parameter HO) is possible, all other categories are limited to basal growth. The conservation
of ice area is replaced by the evolution equation of the ITD (8.23) that is discretized in thickness space with 𝑛 + 1
category limits given by run-time parameter Hlimit. If Hlimit is not set in data.seaice, a simple recursive formula
following Lipscomb (2001) [Lip01] is used to compute Hlimit:

𝐻limit(𝑘) = 𝐻limit(𝑘 − 1) +
𝑐1
𝑛

+
𝑐1𝑐2
𝑛

[1 + tanh 𝑐3(
𝑘 − 1

𝑛
− 1)]

with 𝐻limit(0) = 0 m and 𝐻limit(𝑛) = 999.9 m. The three constants are the run-time parameters Hlimit_c1,
Hlimit_c2, and Hlimit_c3. The total ice concentration and volume can then be calculated by summing up the val-
ues for each category.
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Ice strength parameterization

In the default approach of equation (8.4), the ice strength is parameterized following Hibler (1979) [Hib79] and 𝑃
depends only on average ice concentration and thickness per grid cell and the constant ice strength parameters 𝑃 *

(SEAICE_strength) and 𝐶* (SEAICE_cStar). With an ice thickness distribution, it is possible to use a different
parameterization following Rothrock (1975) [Rot75]

𝑃 = 𝐶𝑓𝐶𝑝

∫︁ ∞

0

ℎ2𝜔𝑟(ℎ)dℎ (8.24)

by considering the production of potential energy and the frictional energy loss in ridging. The physical constant
𝐶𝑝 = 𝜌𝑖(𝜌𝑤 − 𝜌𝑖)𝑔/(2𝜌𝑤) is a combination of the gravitational acceleration 𝑔 and the densities 𝜌𝑖, 𝜌𝑤 of ice and
water, and 𝐶𝑓 (SEAICE_cf) is a scaling factor relating the amount of work against gravity necessary for ridging to
the amount of work against friction. To calculate the integral, this parameterization needs information about the ITD
in each grid cell, while the default parameterization (8.4) can be used for both ITD and single thickness category
models. In contrast to (8.4), which is based on the plausible assumption that thick and compact ice is stronger than
thin and loose drifting ice, this parameterization (8.24) clearly contains the more physical assumptions about energy
conservation. For that reason alone this parameterization is often considered to be more physically realistic than (8.4),
but in practice, the success is not so clear (Ungermann et al. 2007 [UTML17]). Ergo, the default is to use (8.4); set
useHibler79IceStrength =.FALSE. in data.seaice to change this behavior.

8.6.2.5 Key subroutines

Top-level routine: pkg/seaice/seaice_model.F

C !CALLING SEQUENCE:
c ...
c seaice_model (TOP LEVEL ROUTINE)
c |
c |-- #ifdef SEAICE_CGRID
c | SEAICE_DYNSOLVER
c | |
c | |-- < compute proxy for geostrophic velocity >
c | |
c | |-- < set up mass per unit area and Coriolis terms >
c | |
c | |-- < dynamic masking of areas with no ice >
c | |
c | |
c | #ELSE
c | DYNSOLVER
c | #ENDIF
c |
c |-- if ( useOBCS )
c | OBCS_APPLY_UVICE
c |
c |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
c | SEAICE_ADVDIFF
c |
c | SEAICE_REG_RIDGE
c |
c |-- if ( usePW79thermodynamics )
c | SEAICE_GROWTH
c |
c |-- if ( useOBCS )
c | if ( SEAICEadvHeff ) OBCS_APPLY_HEFF

(continues on next page)
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c | if ( SEAICEadvArea ) OBCS_APPLY_AREA
c | if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
c | if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
c |
c |-- < do various exchanges >
c |
c |-- < do additional diagnostics >
c |
c o

8.6.2.6 SEAICE diagnostics

Diagnostics output is available via the diagnostics package (see Section 9.1). Available output fields are summarized
in the following table:

---------+----------+----------------+-----------------
<-Name->|<- grid ->|<-- Units -->|<- Tile (max=80c)

---------+----------+----------------+-----------------
sIceLoad|SM U1|kg/m^2 |sea-ice loading (in Mass of ice+snow / area
→˓unit)
---
SEA ICE STATE:
---
SIarea |SM M1|m^2/m^2 |SEAICE fractional ice-covered area [0 to 1]
SIheff |SM M1|m |SEAICE effective ice thickness
SIhsnow |SM M1|m |SEAICE effective snow thickness
SIhsalt |SM M1|g/m^2 |SEAICE effective salinity
SIuice |UU M1|m/s |SEAICE zonal ice velocity, >0 from West to East
SIvice |VV M1|m/s |SEAICE merid. ice velocity, >0 from South to
→˓North
---
ATMOSPHERIC STATE AS SEEN BY SEA ICE:
---
SItices |SM C M1|K |Surface Temperature over Sea-Ice (area weighted)
SIuwind |UM U1|m/s |SEAICE zonal 10-m wind speed, >0 increases uVel
SIvwind |VM U1|m/s |SEAICE meridional 10-m wind speed, >0 increases
→˓uVel
SIsnPrcp|SM U1|kg/m^2/s |Snow precip. (+=dw) over Sea-Ice (area weighted)

---
FLUXES ACROSS ICE-OCEAN INTERFACE (ATMOS to OCEAN FOR ICE-FREE REGIONS):
---
SIfu |UU U1|N/m^2 |SEAICE zonal surface wind stress, >0 increases
→˓uVel
SIfv |VV U1|N/m^2 |SEAICE merid. surface wind stress, >0 increases
→˓vVel
SIqnet |SM U1|W/m^2 |Ocean surface heatflux, turb+rad, >0 decreases
→˓theta
SIqsw |SM U1|W/m^2 |Ocean surface shortwave radiat., >0 decreases
→˓theta
SIempmr |SM U1|kg/m^2/s |Ocean surface freshwater flux, > 0 increases
→˓salt
SIqneto |SM U1|W/m^2 |Open Ocean Part of SIqnet, turb+rad, >0 decr
→˓theta
SIqneti |SM U1|W/m^2 |Ice Covered Part of SIqnet, turb+rad, >0 decr
→˓theta

(continues on next page)
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---
FLUXES ACROSS ATMOSPHERE-ICE INTERFACE (ATMOS to OCEAN FOR ICE-FREE REGIONS):
---
SIatmQnt|SM U1|W/m^2 |Net atmospheric heat flux, >0 decreases theta
SIatmFW |SM U1|kg/m^2/s |Net freshwater flux from atmosphere & land
→˓(+=down)
SIfwSubl|SM U1|kg/m^2/s |Freshwater flux of sublimated ice, >0 decreases
→˓ice
---
THERMODYNAMIC DIAGNOSTICS:
---
SIareaPR|SM M1|m^2/m^2 |SIarea preceeding ridging process
SIareaPT|SM M1|m^2/m^2 |SIarea preceeding thermodynamic growth/melt
SIheffPT|SM M1|m |SIheff preceeeding thermodynamic growth/melt
SIhsnoPT|SM M1|m |SIhsnow preceeeding thermodynamic growth/melt
SIaQbOCN|SM M1|m/s |Potential HEFF rate of change by ocean ice flux
SIaQbATC|SM M1|m/s |Potential HEFF rate of change by atm flux over
→˓ice
SIaQbATO|SM M1|m/s |Potential HEFF rate of change by open ocn atm
→˓flux
SIdHbOCN|SM M1|m/s |HEFF rate of change by ocean ice flux
SIdSbATC|SM M1|m/s |HSNOW rate of change by atm flux over sea ice
SIdSbOCN|SM M1|m/s |HSNOW rate of change by ocean ice flux
SIdHbATC|SM M1|m/s |HEFF rate of change by atm flux over sea ice
SIdHbATO|SM M1|m/s |HEFF rate of change by open ocn atm flux
SIdHbFLO|SM M1|m/s |HEFF rate of change by flooding snow
SIdAbATO|SM M1|m^2/m^2/s |Potential AREA rate of change by open ocn atm
→˓flux
SIdAbATC|SM M1|m^2/m^2/s |Potential AREA rate of change by atm flux over
→˓ice
SIdAbOCN|SM M1|m^2/m^2/s |Potential AREA rate of change by ocean ice flux
SIdA |SM M1|m^2/m^2/s |AREA rate of change (net)

---
DYNAMIC/RHEOLOGY DIAGNOSTICS:
---
SIpress |SM M1|N/m |SEAICE strength (with upper and lower limit)
SIzeta |SM M1|kg/s |SEAICE nonlinear bulk viscosity
SIeta |SM M1|kg/s |SEAICE nonlinear shear viscosity
SIsig1 |SM M1|no units |SEAICE normalized principle stress, component
→˓one
SIsig2 |SM M1|no units |SEAICE normalized principle stress, component
→˓two
SIshear |SM M1|1/s |SEAICE shear deformation rate
SIdelta |SM M1|1/s |SEAICE Delta deformation rate
SItensil|SM M1|N/m |SEAICE maximal tensile strength

---
ADVECTIVE/DIFFUSIVE FLUXES OF SEA ICE variables:
---
ADVxHEFF|UU M1|m.m^2/s |Zonal Advective Flux of eff ice thickn
ADVyHEFF|VV M1|m.m^2/s |Meridional Advective Flux of eff ice thickn
SIuheff |UU M1|m^2/s |Zonal Transport of eff ice thickn
→˓(centered)
SIvheff |VV M1|m^2/s |Meridional Transport of eff ice thickn
→˓(centered)
DFxEHEFF|UU M1|m^2/s |Zonal Diffusive Flux of eff ice thickn
DFyEHEFF|VV M1|m^2/s |Meridional Diffusive Flux of eff ice thickn
ADVxAREA|UU M1|m^2/m^2.m^2/s |Zonal Advective Flux of fract area

(continues on next page)
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ADVyAREA|VV M1|m^2/m^2.m^2/s |Meridional Advective Flux of fract area
DFxEAREA|UU M1|m^2/m^2.m^2/s |Zonal Diffusive Flux of fract area
DFyEAREA|VV M1|m^2/m^2.m^2/s |Meridional Diffusive Flux of fract area
ADVxSNOW|UU M1|m.m^2/s |Zonal Advective Flux of eff snow thickn
ADVySNOW|VV M1|m.m^2/s |Meridional Advective Flux of eff snow thickn
DFxESNOW|UU M1|m.m^2/s |Zonal Diffusive Flux of eff snow thickn
DFyESNOW|VV M1|m.m^2/s |Meridional Diffusive Flux of eff snow thickn
ADVxSSLT|UU M1|psu.m^2/s |Zonal Advective Flux of seaice salinity
ADVySSLT|VV M1|psu.m^2/s |Meridional Advective Flux of seaice salinity
DFxESSLT|UU M1|psu.m^2/s |Zonal Diffusive Flux of seaice salinity
DFyESSLT|VV M1|psu.m^2/s |Meridional Diffusive Flux of seaice salinity

8.6.2.7 Experiments and tutorials that use seaice

• verification/lab_sea: Labrador Sea experiment

• verification/seaice_obcs, based on lab_sea

• verification/offline_exf_seaice, idealized topography in a zonally re-entrant channel

• verification/seaice_itd, based on offline_exf_seaice, tests ice thickness distribution

• verification/global_ocean.cs32x15, global cubed-sphere-experiment with combinations of pkg/seaice and
pkg/thsice

• verification/1D_ocean_ice_column, just thermodynamics

8.6.3 SHELFICE Package

Authors: Martin Losch, Jean-Michel Campin

8.6.3.1 Introduction

pkg/shelfice provides a thermodynamic model for basal melting underneath floating ice shelves.

CPP options enable or disable different aspects of the package (Section 8.6.3.2). Run-time options, flags, filenames
and field-related dates/times are described in Section 8.6.3.3. A description of key subroutines is given in Section
8.6.3.5. Available diagnostics output is listed in Section 8.6.3.6.

8.6.3.2 SHELFICE configuration

As with all MITgcm packages, pkg/shelfice can be turned on or off at compile time:

• using the packages.conf file by adding shelfice to it,

• or using genmake2 adding -enable=shelfice or disable=shelfice switches

pkg/shelfice does not require any additional packages, but it will only work with conventional vertical 𝑧-coordinates
(pressure coordinates are not implemented). If you use it together with vertical mixing schemes, be aware that non-
local parameterizations are turned off, e.g., such as pkg/kpp.

Parts of the pkg/shelfice code can be enabled or disabled at compile time via CPP preprocessor flags. These options
are set in SHELFICE_OPTIONS.h:
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CPP Flag Name Default Description
ALLOW_SHELFICE_DEBUG #undef include code for enhanced diagnostics and debug

output
ALLOW_ISOMIP_TD #define include code for for simplified ISOMIP thermo-

dynamics
SHI_ALLOW_GAMMAFRICT #define allow friction velocity-dependent transfer coef-

ficient following Holland and Jenkins (1999)
[HJ99]

8.6.3.3 SHELFICE run-time parameters

pkg/shelfice is switched on/off at run-time by setting useSHELFICE to .TRUE. in file data.pkg. Run-time param-
eters are set in file data.shelfice (read in pkg/shelfice/shelfice_readparms.F),as listed below.

The data file specifying under-ice topography of ice shelves (SHELFICEtopoFile) is in meters; upwards is positive,
and as for the bathymetry files, negative values are required for topography below the sea-level. The data file for the
pressure load anomaly at the bottom of the ice shelves SHELFICEloadAnomalyFile is in pressure units (Pa). This
field is absolutely required to avoid large excursions of the free surface during initial adjustment processes, obtained
by integrating an approximate density from the surface at 𝑧 = 0 down to the bottom of the last fully dry cell within the
ice shelf, see (8.28). Note however the file SHELFICEloadAnomalyFile must not be 𝑝𝑡𝑜𝑝, but 𝑝𝑡𝑜𝑝−𝑔

∑︀𝑛−1
𝑘′=1 𝜌0∆𝑧𝑘′ ,

with 𝜌0 = rhoConst, so that in the absence of a 𝜌* that is different from 𝜌0, the anomaly is zero.

Table 8.19: Run-time parameters and default values
Parameter Group Default Description
useISOMIPTD SHELFICE_PARM01 FALSE use simplified ISOMIP thermody-

namics on/off flag
SHELFICEconserve SHELFICE_PARM01 FALSE use conservative form of temperature

boundary conditions on/off flag
SHELFICEboundaryLayer SHELFICE_PARM01 FALSE use simple boundary layer mixing

parameterization on/off flag
SHI_withBL_realFWflux SHELFICE_PARM01 FALSE with SHELFICEboundaryLayer, al-

low to use real-FW flux
SHI_withBL_uStarTopDz SHELFICE_PARM01 FALSE with SHELFICEboundaryLayer,

compute uStar from uVel,vVel
averaged over top Dz thickness

SHELFICEloadAnomalyFile SHELFICE_PARM01 ' ' initial geopotential anomaly
SHELFICEtopoFile SHELFICE_PARM01 ' ' filename for under-ice topography of

ice shelves
SHELFICEmassFile SHELFICE_PARM01 ' ' filename for mass of ice shelves
SHELFICEMassDynTendFile SHELFICE_PARM01 ' ' filename for mass tendency of ice

shelves
SHELFICETransCoeffTFile SHELFICE_PARM01 ' ' filename for spatially varying trans-

fer coefficients
SHELFICElatentHeat SHELFICE_PARM01 334.0E+03 latent heat of fusion (J/kg)
SHELFICEHeatCapacity_Cp SHELFICE_PARM01 2000.0E+00 specific heat capacity of ice (J/kg/K)
rhoShelfIce SHELFICE_PARM01 917.0E+00 (constant) mean density of ice shelf

(kg/m3)
SHELFICEheatTransCoeff SHELFICE_PARM01 1.0E-04 transfer coefficient (exchange veloc-

ity) for temperature (m/s)
continues on next page
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Table 8.19 – continued from previous page
Parameter Group Default Description
SHELFICEsaltTransCoeff SHELFICE_PARM01 5.05E-03 ×

SHELFICEheat-
TransCoeff

transfer coefficient (exchange veloc-
ity) for salinity (m/s)

SHELFICEkappa SHELFICE_PARM01 1.54E-06 temperature diffusion coefficient of
the ice shelf (m2/s)

SHELFICEthetaSurface SHELFICE_PARM01 -20.0E+00 (constant) surface temperature above
the ice shelf (oC)

no_slip_shelfice SHELFICE_PARM01 no_slip_bottom slip along bottom of ice shelf on/off
flag

SHELFICEDragLinear SHELFICE_PARM01 bottomDragLinear linear drag coefficient at bottom ice
shelf (m/s)

SHELFICEDragQuadratic SHELFICE_PARM01 bottomDragQuadratic quadratic drag coefficient at bottom
ice shelf (non-dim.)

SHELFICEselectDragQuadr SHELFICE_PARM01 -1 select form of quadratic drag coeffi-
cient (non-dim.)

SHELFICEMassStepping SHELFICE_PARM01 FALSE recalculate ice shelf mass at every
time step

SHELFICEDynMassOnly SHELFICE_PARM01 FALSE if SHELFICEmassStepping =
TRUE, exclude freshwater flux
contribution

SHELFICEadvDiffHeatFlux SHELFICE_PARM01 FALSE use advective-diffusive heat flux into
ice shelf instead of default diffusive
heat flux

SHELFICEuseGammaFrict SHELFICE_PARM01 FALSE use velocity dependent exchange co-
efficients (Holland and Jenkins 1999
[HJ99])

SHELFICE_oldCalcUStar SHELFICE_PARM01 FALSE use old uStar averaging expression
SHELFICEwriteState SHELFICE_PARM01 FALSE write ice shelf state to file on/off flag
SHELFICE_dumpFreq SHELFICE_PARM01 dumpFreq dump frequency (s)
SHELFICE_dump_mnc SHELFICE_PARM01 snapshot_mnc write snapshot using MNC on/off

flag

8.6.3.4 SHELFICE description

In the light of isomorphic equations for pressure and height coordinates, the ice shelf topography on top of the water
column has a similar role as (and in the language of Marshall et al. (2004) [MAC+04], is isomorphic to) the orogra-
phy and the pressure boundary conditions at the bottom of the fluid for atmospheric and oceanic models in pressure
coordinates. The total pressure 𝑝𝑡𝑜𝑡 in the ocean can be divided into the pressure at the top of the water column 𝑝𝑡𝑜𝑝,
the hydrostatic pressure and the non-hydrostatic pressure contribution 𝑝𝑁𝐻 :

𝑝𝑡𝑜𝑡 = 𝑝𝑡𝑜𝑝 +

∫︁ 𝜂−ℎ

𝑧

𝑔 𝜌 𝑑𝑧 + 𝑝𝑁𝐻 (8.25)

with the gravitational acceleration 𝑔, the density 𝜌, the vertical coordinate 𝑧 (positive upwards), and the dynamic sea-
surface height 𝜂. For the open ocean, 𝑝𝑡𝑜𝑝 = 𝑝𝑎 (atmospheric pressure) and ℎ = 0. Underneath an ice-shelf that is
assumed to be floating in isostatic equilibrium, 𝑝𝑡𝑜𝑝 at the top of the water column is the atmospheric pressure 𝑝𝑎 plus
the weight of the ice-shelf. It is this weight of the ice-shelf that has to be provided as a boundary condition at the top
of the water column (in run-time parameter SHELFICEloadAnomalyFile). The weight is conveniently computed by
integrating a density profile 𝜌*, that is constant in time and corresponds to the sea-water replaced by ice, from 𝑧 = 0
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to a “reference” ice-shelf draft at 𝑧 = −ℎ (Beckmann et al. (1999) [BHT99]), so that

𝑝𝑡𝑜𝑝 = 𝑝𝑎 +

∫︁ 0

−ℎ

𝑔 𝜌* 𝑑𝑧 (8.26)

Underneath the ice shelf, the “sea-surface height” 𝜂 is the deviation from the “reference” ice-shelf draft ℎ. During a
model integration, 𝜂 adjusts so that the isostatic equilibrium is maintained for sufficiently slow and large scale motion.

In MITgcm, the total pressure anomaly 𝑝′𝑡𝑜𝑡 which is used for pressure gradient computations is defined by substracting
a purely depth dependent contribution −𝑔𝜌0𝑧 with a constant reference density 𝜌0 from 𝑝𝑡𝑜𝑡. (8.25) becomes

𝑝𝑡𝑜𝑡 = 𝑝𝑡𝑜𝑝 − 𝑔𝜌0(𝑧 + ℎ) + 𝑔𝜌0𝜂 +

∫︁ 𝜂−ℎ

𝑧

𝑔(𝜌− 𝜌0) 𝑑𝑧 + 𝑝𝑁𝐻 (8.27)

and after rearranging

𝑝′𝑡𝑜𝑡 = 𝑝′𝑡𝑜𝑝 + 𝑔𝜌0𝜂 +

∫︁ 𝜂−ℎ

𝑧

𝑔(𝜌− 𝜌0) 𝑑𝑧 + 𝑝𝑁𝐻

with 𝑝′𝑡𝑜𝑡 = 𝑝𝑡𝑜𝑡 + 𝑔 𝜌0 𝑧 and 𝑝′𝑡𝑜𝑝 = 𝑝𝑡𝑜𝑝 − 𝑔 𝜌0 ℎ. The non-hydrostatic pressure contribution 𝑝𝑁𝐻 is neglected in the
following.

In practice, the ice shelf contribution to 𝑝𝑡𝑜𝑝 is computed by integrating (8.26) from 𝑧 = 0 to the bottom of the last
fully dry cell within the ice shelf:

𝑝𝑡𝑜𝑝 = 𝑔

𝑛−1∑︁
𝑘′=1

𝜌*𝑘′∆𝑧𝑘′ + 𝑝𝑎 (8.28)

where 𝑛 is the vertical index of the first (at least partially) “wet” cell and ∆𝑧𝑘′ is the thickness of the 𝑘′-th layer
(counting downwards). The pressure anomaly for evaluating the pressure gradient is computed in the center of the
“wet” cell 𝑘 as

𝑝′𝑘 = 𝑝′𝑡𝑜𝑝 + 𝑔𝜌𝑛𝜂 + 𝑔

𝑘∑︁
𝑘′=𝑛

(︂
(𝜌𝑘′ − 𝜌0)∆𝑧𝑘′

1 +𝐻(𝑘′ − 𝑘)

2

)︂
(8.29)

where 𝐻(𝑘′ − 𝑘) = 1 for 𝑘′ < 𝑘 and 0 otherwise.

Setting SHELFICEboundaryLayer =.TRUE. introduces a simple boundary layer that reduces the potential noise
problem at the cost of increased vertical mixing. For this purpose the water temperature at the 𝑘-th layer abutting ice
shelf topography for use in the heat flux parameterizations is computed as a mean temperature 𝜃𝑘 over a boundary
layer of the same thickness as the layer thickness ∆𝑧𝑘:

𝜃𝑘 = 𝜃𝑘ℎ𝑘 + 𝜃𝑘+1(1 − ℎ𝑘) (8.30)

where ℎ𝑘 ∈ [0, 1] is the fractional layer thickness of the 𝑘-th layer (see Figure 8.11). The original contributions due to
ice shelf-ocean interaction 𝑔𝜃 to the total tendency terms 𝐺𝜃 in the time-stepping equation 𝜃𝑛+1 = 𝑓(𝜃𝑛,∆𝑡, 𝐺𝑛

𝜃 ) are

𝑔𝜃,𝑘 =
𝑄

𝜌0𝑐𝑝ℎ𝑘∆𝑧𝑘
and 𝑔𝜃,𝑘+1 = 0 (8.31)

for layers 𝑘 and 𝑘+1 (𝑐𝑝 is the heat capacity). Averaging these terms over a layer thickness ∆𝑧𝑘 (e.g., extending from
the ice shelf base down to the dashed line in cell C) and applying the averaged tendency to cell A (in layer 𝑘) and to
the appropriate fraction of cells C (in layer 𝑘 + 1) yields

𝑔*𝜃,𝑘 =
𝑄

𝜌0𝑐𝑝∆𝑧𝑘
(8.32)

𝑔*𝜃,𝑘+1 =
𝑄

𝜌0𝑐𝑝∆𝑧𝑘

∆𝑧𝑘(1 − ℎ𝑘)

∆𝑧𝑘+1
(8.33)

(8.33) describes averaging over the part of the grid cell 𝑘+ 1 that is part of the boundary layer with tendency 𝑔*𝜃,𝑘 and
the part with no tendency. Salinity is treated in the same way. The momentum equations are not modified.
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Figure 8.11: Schematic of a vertical section of the grid at the base of an ice shelf. Grid lines are thin; the thick line is
the model’s representation of the ice shelf-water interface. Plus signs mark the position of pressure points for pressure
gradient computations. The letters A, B, and C mark specific grid cells for reference. ℎ𝑘 is the fractional cell thickness
so that ℎ𝑘∆𝑧𝑘 is the actual cell thickness.

Three-equations thermodynamics

Freezing and melting form a boundary layer between ice shelf and ocean. Phase transitions at the boundary between
saline water and ice imply the following fluxes across the boundary: the freshwater mass flux 𝑞 (< 0 for melting); the
heat flux that consists of the diffusive flux through the ice, the latent heat flux due to melting and freezing and the heat
that is carried by the mass flux; and the salinity that is carried by the mass flux, if the ice has a non-zero salinity 𝑆𝐼 .
Further, the position of the interface between ice and ocean changes because of 𝑞, so that, say, in the case of melting
the volume of sea water increases. As a consequence salinity and temperature are modified.

The turbulent exchange terms for tracers at the ice-ocean interface are generally expressed as diffusive fluxes. Fol-
lowing Jenkins et al. (2001) [JHH01], the boundary conditions for a tracer take into account that this boundary is
not a material surface. The implied upward freshwater flux 𝑞 (in mass units, negative for melting) is included in the
boundary conditions for the temperature and salinity equation as an advective flux:

𝜌𝐾
𝜕𝑋

𝜕𝑧

⃒⃒⃒⃒
𝑏

= (𝜌𝛾𝑋 − 𝑞)(𝑋𝑏 −𝑋) (8.34)

where tracer 𝑋 stands for either temperature 𝑇 or salinity 𝑆. 𝑋𝑏 is the tracer at the interface (taken to be at freezing),
𝑋 is the tracer at the first interior grid point, 𝜌 is the density of seawater, and 𝛾𝑋 is the turbulent exchange coefficient
(in units of an exchange velocity). The left hand side of (8.34) is shorthand for the (downward) flux of tracer 𝑋 across
the boundary. 𝑇𝑏, 𝑆𝑏 and the freshwater flux 𝑞 are obtained from solving a system of three equations that is derived
from the heat and freshwater balance at the ice ocean interface.

In this so-called three-equation-model (e.g., Hellmer and Olbers (1989) [HO89], Jenkins et al. (2001) [JHH01]) the
heat balance at the ice-ocean interface is expressed as

𝑐𝑝𝜌𝛾𝑇 (𝑇 − 𝑇𝑏) + 𝜌𝐼𝑐𝑝,𝐼𝜅
(𝑇𝑆 − 𝑇𝑏)

ℎ
= −𝐿𝑞 (8.35)

where 𝜌 is the density of sea-water, 𝑐𝑝 = 3974 J kg−1K−1 is the specific heat capacity of water and 𝛾𝑇 the turbulent
exchange coefficient of temperature. The value of 𝛾𝑇 is discussed in Holland and Jenkins (1999) [HJ99]. 𝐿 =
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334000 J kg−1 is the latent heat of fusion. 𝜌𝐼 = 920 kg m−3, 𝑐𝑝,𝐼 = 2000 J kg−1K−1, and 𝑇𝑆 are the density, heat
capacity and the surface temperature of the ice shelf; 𝜅 = 1.54 × 10−6 m2s−1 is the heat diffusivity through the
ice-shelf and ℎ is the ice-shelf draft. The second term on the right hand side describes the heat flux through the ice
shelf. A constant surface temperature 𝑇𝑆 = −20∘C is imposed. 𝑇 is the temperature of the model cell adjacent to
the ice-water interface. The temperature at the interface 𝑇𝑏 is assumed to be the in-situ freezing point temperature of
sea-water 𝑇𝑓 which is computed from a linear equation of state

𝑇𝑓 = (0.0901 − 0.0575 𝑆𝑏)
∘ − 7.61 × 10−4 K

dBar
𝑝𝑏 (8.36)

with the salinity 𝑆𝑏 and the pressure 𝑝𝑏 (in dBar) in the cell at the ice-water interface. From the salt budget, the salt
flux across the shelf ice-ocean interface is equal to the salt flux due to melting and freezing:

𝜌𝛾𝑆(𝑆 − 𝑆𝑏) = −𝑞 (𝑆𝑏 − 𝑆𝐼) (8.37)

where 𝛾𝑆 = 5.05 × 10−3𝛾𝑇 is the turbulent salinity exchange coefficient, and 𝑆 and 𝑆𝑏 are defined in analogy to
temperature as the salinity of the model cell adjacent to the ice-water interface and at the interface, respectively. Note,
that the salinity of the ice shelf is generally neglected (𝑆𝐼 = 0). (8.35) to (8.37) can be solved for 𝑆𝑏, 𝑇𝑏, and the
freshwater flux 𝑞 due to melting. These values are substituted into expression (8.34) to obtain the boundary conditions
for the temperature and salinity equations of the ocean model. This formulation tends to yield smaller melt rates than
the simpler formulation of the ISOMIP protocol because the freshwater flux due to melting decreases the salinity which
raises the freezing point temperature and thus leads to less melting at the interface. For a simpler thermodynamics
model where 𝑆𝑏 is not computed explicitly, for example as in the ISOMIP protocol, (8.34) cannot be applied directly.
In this case (8.37) can be used with (8.34) to obtain:

𝜌𝐾
𝜕𝑆

𝜕𝑧

⃒⃒⃒⃒
𝑏

= 𝑞 (𝑆 − 𝑆𝐼)

This formulation can be used for all cases for which (8.37) is valid. Further, in this formulation it is obvious that
melting (𝑞 < 0) leads to a reduction of salinity.

The default value of SHELFICEconserve =.FALSE. removes the contribution 𝑞 (𝑋𝑏 −𝑋) from (8.34), making the
boundary conditions for temperature non-conservative.

Solving the three-equations system

There has been some confusion about the three-equations system, so we document the solution in the code here: We
use (8.36) 𝑇𝑏 = 𝑎0𝑆𝑏 + 𝜖4 to eliminate 𝑇𝑏 from (8.35) and find an expression for the freshwater flux 𝑞:

−𝐿𝑞 = 𝜖1(𝑇 − 𝑎0𝑆𝑏 − 𝜖4) + 𝜖3(𝑇𝑆 − 𝑎0𝑆𝑏 − 𝜖4)

⇔ 𝐿𝑞 = 𝑎0 (𝜖1 + 𝜖3)𝑆𝑏 + 𝜖𝑞
(8.38)

to be substituted into (8.37):

𝜖2 (𝑆 − 𝑆𝑏) = −𝐿𝑞 (𝑆𝑏 − 𝑆𝐼) = −(𝑎0 (𝜖1 + 𝜖3)𝑆𝑏 + 𝜖𝑞) (𝑆𝑏 − 𝑆𝐼)

⇔ 0 = 𝑎0 (𝜖1 + 𝜖3)𝑆2
𝑏 + {𝜖𝑞 − 𝜖2 − 𝑎0 (𝜖1 + 𝜖3)𝑆𝐼}𝑆𝑏 + 𝜖2 𝑆 − 𝜖𝑞 𝑆𝐼

where the abbrevations 𝜖1 = 𝑐𝑝𝜌𝛾𝑇 , 𝜖2 = 𝜌𝐿𝛾𝑆 , 𝜖3 =
𝜌𝐼𝑐𝑝,𝐼𝜅

ℎ , 𝜖4 = 𝑏0𝑝+ 𝑐0, 𝜖𝑞 = 𝜖1 (𝜖4 − 𝑇 ) + 𝜖3 (𝜖4 − 𝑇𝑆) have
been introduced. The quadratic equation in 𝑆𝑏 is solved and the smaller non-negative root is used. In the MITgcm
code, the ice shelf salinity 𝑆𝐼 is always zero and the quadratic equation simplifies to

0 = 𝑎0 (𝜖1 + 𝜖3)𝑆2
𝑏 + (𝜖𝑞 − 𝜖2)𝑆𝑏 + 𝜖2 𝑆

𝑆𝑏 =
𝜖2 − 𝜖𝑞 ∓

√︀
(𝜖𝑞 − 𝜖2)2 − 4 𝑎0 (𝜖1 + 𝜖3) 𝜖2

2 𝑎0 (𝜖1 + 𝜖3)

With 𝑆𝑏, the boundary layer temperature 𝑇𝑏 and the melt rate 𝑞 are known through (8.36) and (8.38).
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ISOMIP thermodynamics

A simpler formulation follows the ISOMIP protocol. The freezing and melting in the boundary layer between ice shelf
and ocean is parameterized following Grosfeld et al. (1997) [GGD97]. In this formulation (8.35) reduces to

𝑐𝑝𝜌𝛾𝑇 (𝑇 − 𝑇𝑏) = −𝐿𝑞 (8.39)

and the fresh water flux 𝑞 is computed from

𝑞 = −𝑐𝑝𝜌𝛾𝑇 (𝑇 − 𝑇𝑏)

𝐿
(8.40)

In order to use this formulation, set run-time parameter useISOMIPTD =.TRUE. in data.shelfice.

Exchange coefficients

The default exchange coefficents 𝛾𝑇/𝑆 are constant and set by the runtime parameters SHELFICEheatTransCo-
eff and SHELFICEsaltTransCoeff (see Table 8.19). If SHELFICEuseGammaFrict =.TRUE., exchange coeffi-
cients are computed from drag laws and friction velocities estimated from ocean speeds following Holland and
Jenkins (1999) [HJ99]. This computation can be modified using runtime parameters and user is referred to S/R
pkg/shelfice/shelfice_readparms.F for details.

Remark

The shelfice package and experiments demonstrating its strengths and weaknesses are also described in Losch (2008)
[Los08]. Unfortunately however, the description of the thermodynamics in the appendix of Losch (2008) is wrong.

8.6.3.5 Key subroutines

The main routine is shelfice_thermodynamics.F but note that /pkg/shelfice routines are also called when solving the
momentum equations.

C !CALLING SEQUENCE:
C ...
C |-FORWARD_STEP :: Step forward a time-step ( AT LAST !!! )
C ...
C | |-DO_OCEANIC_PHY :: Control oceanic physics and parameterization
C ...
C | | |-SHELFICE_THERMODYNAMICS :: main routine for thermodynamics
C with diagnostics
C ...
C | |-THERMODYNAMICS :: theta, salt + tracer equations driver.
C ...
C | | |-EXTERNAL_FORCING_T :: Problem specific forcing for temperature.
C | | |-SHELFICE_FORCING_T :: apply heat fluxes from ice shelf model
C ...
C | | |-EXTERNAL_FORCING_S :: Problem specific forcing for salinity.
C | | |-SHELFICE_FORCING_S :: apply fresh water fluxes from ice shelf model
C ...
C | |-DYNAMICS :: Momentum equations driver.
C ...
C | | |-MOM_FLUXFORM :: Flux form mom eqn. package ( see
C ...

(continues on next page)
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(continued from previous page)

C | | | |-SHELFICE_U_DRAG :: apply drag along ice shelf to u-equation
C with diagnostics
C ...
C | | |-MOM_VECINV :: Vector invariant form mom eqn. package ( see
C ...
C | | | |-SHELFICE_V_DRAG :: apply drag along ice shelf to v-equation
C with diagnostics
C ...
C o

8.6.3.6 SHELFICE diagnostics

Diagnostics output is available via the diagnostics package (see Section 9). Available output fields are summarized as
follows:

---------+----+----+----------------+-----------------
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

---------+----+----+----------------+-----------------
SHIfwFlx| 1 |SM |kg/m^2/s |Ice shelf fresh water flux (positive upward)
SHIhtFlx| 1 |SM |W/m^2 |Ice shelf heat flux (positive upward)
SHIUDrag| 30 |UU |m/s^2 |U momentum tendency from ice shelf drag
SHIVDrag| 30 |VV |m/s^2 |V momentum tendency from ice shelf drag
SHIForcT| 1 |SM |W/m^2 |Ice shelf forcing for theta, >0 increases theta
SHIForcS| 1 |SM |g/m^2/s |Ice shelf forcing for salt, >0 increases salt

8.6.3.7 Experiments and tutorials that use shelfice

See the verification experiment isomip for example usage of pkg/shelfice.

8.6.4 SHELFICE Remeshing

Author: James Jordan and Daniel Goldberg

8.6.4.1 Introduction

This code works the nonlinear free surface feature of the ocean model to allow continuous updating of the ice shelf
draft in a mass-, salt- and heat-conservative fashion. Note ‘Shelfice Remeshing’ is not a separate physical package as
such, but works in conjunction with pkg/shelfice, and all code is contained within pkg/shelfice. However, as a separate
line of development its application and use warrants its own entry in the documentation. By using pkg/streamice at
the same time, remeshing can allow synchronous coupling between ocean and ice shelf.
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8.6.4.2 REMESHING configuration and compiling

Compile-time options

Shelfice remeshing requires that pkg/shelfice be enabled, which is done by adding shelfice to packages.
conf (see Section Section 3.5). Nonlinear free surface is required, which is enabled by adding #define NON-
LIN_FRSURF to CPP_OPTIONS.h. Additionally,

• #define ALLOW_SHELFICE_REMESHING must be added to SHELFICE_OPTIONS.h;

• If SHI_ALLOW_GAMMAFRICT is defined in SHELFICE_OPTIONS.h we recommend also setting run-time
parameter SHI_withBL_uStarTopDz to .true., which will limit spurious features in the melt rate as explained
in Section 8.6.4.5.

8.6.4.3 Run-time parameters

Table 8.20 lists run-time parameters in data.shelfice relevant to shelfice remeshing. In addition, nonlin-
FreeSurf=4 should be set, and select_rstar should be zero (the model default) in file data.

Table 8.20: Run-time parameters and default values
Name Default value Description
SHI_withBL_realFWflux FALSE Necessary for mass/volume-conservative freez-

ing/melting when SHELFICEboundaryLayer =
.true.

SHI_withBL_uStarTopDz FALSE With SHELFICEboundaryLayer = .true. compute
𝑢* from uVel,vVel averaged over top ∆𝑧 thickness

SHELFICEmassFile ' ' Initialization file for ice shelf mass (kg m-2)
SHELFICEMassStepping FALSE Enables ice mass to change in time
SHELFICEMassDynTendFile ' ' Input file to specify non-thermodynamic ice mass

change rate in kg/s (overridden when pkg/streamice en-
abled)

SHELFICEDynMassOnly FALSE Update shelficeMass via non-thermodynamic change
only (overridden when pkg/streamice enabled

SHELFICERemeshFrequency 2592000 Frequency of remeshing operation (seconds)
SHELFICESplitThreshold 1.25 Maximum allowed hFacC for a cell
SHELFICEMergeThreshold 0.26 Minimum allowed hFacC for a cell

8.6.4.4 Description

When pkg/shelfice is enabled, the elevation of the free surface in a grid cell is determined by the mass of the ice
shelf in that cell. In general use of shelfice this mass is held constant, but if it is allowed to change the free surface
adjusts if implicitFreeSurface = .true. through adjustment of the thickness of the top-level cell (Figure 8.12). If
nonlinFreeSurf=4 these changes are fully accounted for in the ocean dynamics and tracer transport. However:

• in the case of ice thinning, the numerical approximation to the governing equations will break down if the
top-level cell becomes too thick, and

• in the case of ice thickening, the top-level cell thickness cannot become negative or the model will fail.

Remeshing addresses these issues. At predefined intervals (set by SHELFICERemeshFrequency), the code checks
every column and flags those where the top-level cell is too thick (ℎ𝑐 is larger than SHELFICESplitThreshold) or
where it is too thin (ℎ𝑐 is smaller than SHELFICEMergeThreshold). In the former case, the cell is split into two cells
as described in Figure 8.13. In the latter case, the top cells is “merged” with the one below it. In both cases, splitting
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and merging conserves mass, heat, and salt. Momentum is conserved where possible but this is more difficult because
velocities live at cell edges.

Ice shelf basal melt and freezing add and remove water from the ocean. useRealFreshWaterFlux = .true.will cause
the ocean volume to be updated - unless SHELFICEboundaryLayer`` = .true.``, which inputs heat and salt fluxes over
a distance ∆𝑧 from the ice-ocean interface, instead of inputting directly into the top cell (Figure 8.12). In this case, an
additional option SHI_withBL_realFWflux=.true. can be set in data.shelfice to allow volume conservation.

(a) (b)

R

ƞ

Ice shelf

Ocean

Bv2

Bv1

Bχ
Δz

Δz

z
z=zsurf

z=d

Figure 8.12: Schematic representation of (a) reference ice-shelf depth, d, vertical position of the ice-ocean interface,
𝑧𝑠𝑢𝑟𝑓 , and the distance between the two, 𝜂, and (b) the extent of the ice-shelf boundary layer used to calculate veloci-
ties, Bv (red), and tracers, B 𝜒 (blue), used in the melt rate calculation. The model grid is represented by dashed lines
with the actual sizeof the cells represented by the solid lines. From Jordan et al. (2018) [JHG+18].

8.6.4.5 Alternate boundary layer formulation

If SHELFICEboundaryLayer= .true., then salt and temperature are averaged over a distance ∆𝑧 from
the ice-ocean interface in order to calculate melt rates, as described in Losch (2008) [Los08]. When
SHI_ALLOW_GAMMAFRICT is defined and SHELFICEuseGammaFrict= .true., near-ice velocities are used
to calculate exchange coefficients of heat and salt, which can lead to spurious features where there is a change
in the level of the top fluid cell. In the default formulation velocities (or rather square velocities) are first aver-
aged horizontally from cell faces to cell centers, and then vertically over a distance ∆𝑧. The run-time parameter
SHI_withBL_uStarTopDz= .true. reverses this order: velocities are first averaged vertically, and then horizon-
tally. In some cases this has been found to give less spurious variability, but either can be used.
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Figure 8.13: Schematic representation of dimensionless vertical grid size, ℎ𝑐, and reference ice-shelf depth, d, at i=2
in (a) a “normal” case, (b) a cell with ℎ𝑐 > ℎ𝑚𝑎𝑥 at i=2, k=2 just before a model remesh check, and (c) the same cell
just after a model remesh has occurred. From Jordan et al. (2018) [JHG+18].

8.6.4.6 Coupling with pkg/streamice

Shelfice remeshing can be used on its own (i.e. without coupling to an ice sheet model), with the effects of ice
dynamics specified via SHELFICEMassDynTendFile. Alternatively it can be coupled to the pkg/streamice. To allow
this, pkg/streamice must be enabled. Please see the verification/shelfice_2d_remesh for an example. (Documentation
on SHELFICE is under construction)

8.6.4.7 Diagnostics

In addition to the diagnostics from pkg/SHELFICE, remeshing adds one additional diagnostic: SHIRshel, the “ref-
erence” elevation of the ice shelf base (d in Figure 8.12).

8.6.4.8 Experiments that use Remeshing

• verification/shelfice_2d_remesh

8.6.5 STREAMICE Package

Author: Daniel Goldberg

8.6.5.1 Introduction

Package STREAMICE provides a dynamic land ice model for MITgcm. It was created primarily to develop a TAF-
and OpenAD-generated ice model adjoint and to provide synchronous ice-ocean coupling through the SHELFICE
package. It solves a set of dynamic equations appropriate for floating ice-shelf flow as well as ice-stream and slower
ice-sheet flow. It has been tested at the scale of one or several ice streams, but has not been tested at the continental
scale.
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8.6.5.2 STREAMICE configuration

Compile-time options

pkg/streamice can be included on at compile time in the packages.conf file by adding a line streamice (see
Section 8.1.1).

Parts of the pkg/streamice code can be enabled or disabled at compile time via CPP flags. These options are set in
STREAMICE_OPTIONS.h.

Table 8.21: CPP flags used by pkg/streamice.
CPP Flag Name Default Description
STREAMICE_CONSTRUCT_MATRIX #define explicit construction of matrix for Picard iteration

for velocity
STREAMICE_HYBRID_STRESS #undef use L1L2 formulation for stress balance (default

shallow shelf approx.)
USE_ALT_RLOW #undef use package array for rLow rather than model
STREAMICE_GEOM_FILE_SETUP #undef use files rather than parameters in STREAM-

ICE_PARM03 to configure boundaries
ALLOW_PETSC #undef enable interface to PETSc for velocity solver ma-

trix solve
STREAMICE_COULOMB_SLIDING #undef enable basal sliding of the form (8.46)

Enabling the package

Once it has been compiled, pkg/streamice is switched on/off at run-time by setting useSTREAMICE to .TRUE. in
file data.pkg.

Runtime parmeters: general flags and parameters

Run-time parameters are set in file data.streamice (read in streamice_readparms.F). General pkg/streamice pa-
rameters are set under STREAMICE_PARM01 as described in Table 8.22.

Table 8.22: Run-time parameters and default values (defined under
STREAMICE_PARM01 namelist)

Parameter Default Description
streamice_density 910 the (uniform) density of land ice (kg/m3)
streamice_density_ocean_avg 1024 the (uniform) density of ocean (kg/m3)
n_glen 3 Glen’s Flow Law exponent (non-dim.)
eps_glen_min 1e-12 minimum strain rate in Glen’s Law (𝜀0, yr-1)
eps_u_min 1e-6 minimum speed in nonlinear sliding law (𝑢0, m/yr)
n_basal_friction 0 exponent in nonlinear sliding law (non-dim.)
streamice_cg_tol 1e-6 tolerance of conjugate gradient of linear solve of Picard iteration for

velocity
streamice_lower_cg_tol TRUE lower CG tolerance when nonlinear residual decreases by fixed fac-

tor
streamice_max_cg_iter 2000 maximum iterations in linear solve
streamice_maxcgiter_cpl 0 as above when coupled with pkg/shelfice
streamice_nonlin_tol 1e-6 tolerance of nonlinear residual for velocity (relative to initial)

continues on next page
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Table 8.22 – continued from previous page
Parameter Default Description
streamice_max_nl_iter 100 maximum Picard iterations in solve for velocity
streamice_maxnliter_cpl 0 as above when coupled with pkg/shelfice
streamice_nonlin_tol_fp 1e-6 tolerance of relative change for velocity iteration (relative to magni-

tude)
streamice_err_norm 0 type of norm evaluated for error (𝑝 in 𝑝-norm; 0 is ∞)
streamice_chkfixedptconvergence FALSE terminate velocity iteration based on relative change per iteration
streamice_chkresidconvergence TRUE terminate velocity iteration based on residual
streamicethickInit FILE method by which to initialize thickness (FILE or PARAM)
streamicethickFile ' ' thickness initialization file, in meters (rather than parameters in

STREAMICE_PARM03)
streamice_move_front FALSE allow ice shelf front to advance
streamice_calve_to_mask FALSE if streamice_move_front TRUE do not allow to advance beyond

streamice_calve_mask
streamicecalveMaskFile ' ' file to initialize streamice_calve_mask
streamice_diagnostic_only FALSE do not update ice thickness (velocity solve only)
streamice_CFL_factor 0.5 CFL factor which determine maximum time step for thickness sub-

cycling
streamice_adjDump 0.0 frequency (s) of writing of adjoint fields to file (TAF only)
streamicebasalTracConfig UNIFORM method by which to initialize basal traction (FILE or UNIFORM)
streamicebasalTracFile ' ' basal trac initialization file (see Units of input files for units)
C_basal_fric_const 31.71 uniform basal traction value (see Units of input files for units)
streamiceGlenConstConfig UNIFORM method by which to initialize Glen’s constant (FILE or UNIFORM)
streamiceGlenConstFile ' ' Glen’s constant initialization file (see Units of input files for units)
B_glen_isothermal 9.461e-18 uniform Glen’s constant value (see Units of input files for units)
streamiceBdotFile ' ' file to initialize time-indep melt rate (m/yr)
streamiceBdotTimeDepFile ' ' file to initialize time-varying melt rate (m/yr), based on stream-

ice_forcing_period
streamiceTopogFile ' ' topography initialization file (m); requires #define

USE_ALT_RLOW
streamiceHmaskFile ' ' streamice_hmask initialization file; requires #define STREAM-

ICE_GEOM_FILE_SETUP
streamiceuFaceBdryFile ' ' streamice`STREAMICE_ufacemask_bdry` initialization file; re-

quires #define STREAMICE_GEOM_FILE_SETUP
streamicevFaceBdryFile ' ' streamice`STREAMICE_vfacemask_bdry`` initialization file; re-

quires #define STREAMICE_GEOM_FILE_SETUP
streamiceuMassFluxFile ' ' mass flux at 𝑢-faces init. file (m2/yr); requires #define STREAM-

ICE_GEOM_FILE_SETUP
streamicevMassFluxFile ' ' mass flux at 𝑣-faces init. file (m2/yr); requires #define STREAM-

ICE_GEOM_FILE_SETUP
streamiceuFluxTimeDepFile ' ' time-depend. mass flux at 𝑢-faces file (m2/yr); requires #define

STREAMICE_GEOM_FILE_SETUP
streamicevFluxTimeDepFile ' ' time-depend. mass flux at 𝑣-faces file (m2/yr); requires #define

STREAMICE_GEOM_FILE_SETUP
streamiceuNormalStressFile ' ' calving front normal stress parm along 𝑢-faces (non-dim.; see

Boundary Stresses)
streamicevNormalStressFile ' ' calving front normal stress parm along 𝑣-faces (non-dim.; see

Boundary Stresses)
streamiceuShearStressFile ' ' calving front normal stress parm along 𝑢-faces (non-dim.; see

Boundary Stresses)
continues on next page
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Table 8.22 – continued from previous page
Parameter Default Description
streamicevShearStressFile ' ' calving front normal stress parm along 𝑣-faces (non-dim.; see

Boundary Stresses)
streamiceuNormalTimeDepFile ' ' time-dependent version of streamiceuNormalStressFile
streamicevNormalTimeDepFile ' ' time-dependent version of streamicevNormalStressFile
streamiceuShearTimeDepFile ' ' time-dependent version of streamiceuShearStressFile
streamicevShearTimeDepFile ' ' time-dependent version of streamicevShearStressFile
streamice_adot_uniform 0 time/space uniform surface accumulation rate (m/yr)
streamice_forcing_period 0 file input frequency for streamice time-dependent forcing fields (s)
streamice_smooth_gl_width 0 thickness range parameter in basal traction smoothing across

grounding line (m)
streamice_allow_reg_coulomb FALSE use regularized Coulomb sliding (8.46). Requires STREAM-

ICE_COULOMB_SLIDING CPP option.

Configuring domain through files

The STREAMICE_GEOM_FILE_SETUP CPP option allows versatility in defining the domain. With this
option, the array streamice_hmask must be initialized through a file (streamiceHmaskFile) as must stream-
ice_ufacemask_bdry and streamice_vfacemask_bdry (through streamiceuFaceBdryFile and streamicevFaceBdryFile)
as well as u_flux_bdry_SI and v_flux_bdry_SI, volume flux at the boundaries, where appropriate (through streamiceu-
MassFluxFile and streamicevMassFluxFile). Thickness must be initialized through a file as well (streamicethickFile);
streamice_hmask is set to zero where ice thickness is zero, and boundaries between in-domain and out-of-domain cells
(according to streamice_hmask) are no-slip by default.

When using this option, it is important that for all internal boundaries, streamice_ufacemask_bdry and stream-
ice_vfacemask_bdry are -1 (this will not be the case if streamiceuFaceBdryFile and streamicevFaceBdryFile are un-
defined).

In fact, if streamice_hmask is configured correctly, streamice_ufacemask_bdry and streamice_vfacemask_bdry can
be set uniformly to -1, UNLESS there are no-stress or flux-condition boundaries in the domain. Where stream-
ice_ufacemask_bdry and streamice_vfacemask_bdry are set to -1, they will be overridden at (a) boundaries where
streamice_hmask changes from 1 to -1 (which become no-slip boundaries), and (b) boundaries where streamice_hmask
changes from 1 to 0 (which become calving front boundaries).

An example of domain configuration through files can be found in verification/halfpipe_streamice. By default, verifi-
cation/halfpipe_streamice is compiled with STREAMICE_GEOM_FILE_SETUP undefined, but the user can modify
this option. The file verification/halfpipe_streamice/input/data.streamice_geomSetup represents an alternative version
of verification/halfpipe_streamice/input/data.streamice in which the appropriate binary files are specified.

Configuring domain through parameters

For a very specific type of domain the boundary conditions and initial thickness can be set via parameters in data.
streamice. Such a domain will be rectangular. In order to use this option, the STREAMICE_GEOM_FILE_SETUP
CPP flag should be undefined.

There are different boundary condition types (denoted within the parameter names) that can be set:

• noflow: 𝑥- and 𝑦-velocity will be zero along this boundary.

• nostress: velocity normal to boundary will be zero; there will be no tangential stress along the boundary.

• fluxbdry: a mass volume flux is specified along this boundary, which becomes a boundary condition for the
thickness advection equation (see Equations Solved). Velocities will be zero. The corresponding parameters
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flux_bdry_val_NORTH, flux_bdry_val_SOUTH, flux_bdry_val_EAST and flux_bdry_val_WEST then set the
values.

• CFBC: calving front boundary condition, a Neumann condition based on ice thickness and bed depth, is imposed
at this boundary (see Equations Solved).

Note the above only apply if there is dynamic ice in the cells at the boundary in question. The boundary conditions
are then set by specifying the above conditions over ranges of each (north/south/east/west) boundary. The division of
each boundary should be exhaustive and the ranges should not overlap. Parameters to initialize boundary conditions
(defined under STREAMICE_PARM03 namelist) are listed in Table 8.23.

Table 8.23: Parameters to initialize boundary conditions (defined under
STREAMICE_PARM03 namelist)

Parameter Default Description
min_x_noflow_NORTH 0 western limit of no-flow region on northern boundary (m)
max_x_noflow_NORTH 0 eastern limit of no-flow region on northern boundary (m)
min_x_noflow_SOUTH 0 western limit of no-flow region on southern boundary (m)
max_x_noflow_SOUTH 0 eastern limit of no-flow region on southern boundary (m)
min_y_noflow_EAST 0 southern limit of no-flow region on eastern boundary (m)
max_y_noflow_EAST 0 northern limit of no-flow region on eastern boundary (m)
min_y_noflow_WEST 0 southern limit of no-flow region on western boundary (m)
max_y_noflow_WEST 0 northern limit of no-flow region on eastern boundary (m)
min_x_nostress_NORTH 0 western limit of no-stress region on northern boundary (m)
max_x_nostress_NORTH 0 eastern limit of no-stress region on northern boundary (m)
min_x_nostress_SOUTH 0 western limit of no-stress region on southern boundary (m)
max_x_nostress_SOUTH 0 eastern limit of no-stress region on southern boundary (m)
min_y_nostress_EAST 0 southern limit of no-stress region on eastern boundary (m)
max_y_nostress_EAST 0 northern limit of no-stress region on eastern boundary (m)
min_y_nostress_WEST 0 southern limit of no-stress region on western boundary (m)
max_y_nostress_WEST 0 northern limit of no-stress region on eastern boundary (m)
min_x_fluxbdry_NORTH 0 western limit of flux-boundary region on northern boundary (m)
max_x_fluxbdry_NORTH 0 eastern limit of flux-boundary region on northern boundary (m)
min_x_fluxbdry_SOUTH 0 western limit of flux-boundary region on southern boundary (m)
max_x_fluxbdry_SOUTH 0 eastern limit of flux-boundary region on southern boundary (m)
min_y_fluxbdry_EAST 0 southern limit of flux-boundary region on eastern boundary (m)
max_y_fluxbdry_EAST 0 northern limit of flux-boundary region on eastern boundary (m)
min_y_fluxbdry_WEST 0 southern limit of flux-boundary region on western boundary (m)
max_y_fluxbdry_WEST 0 northern limit of flux-boundary region on eastern boundary (m)
min_x_CFBC_NORTH 0 western limit of calving front condition region on northern boundary (m)
max_x_CFBC_NORTH 0 eastern limit of calving front condition region on northern boundary (m)
min_x_CFBC_SOUTH 0 western limit of calving front condition region on southern boundary (m)
max_x_CFBC_SOUTH 0 eastern limit of calving front condition region on southern boundary (m)
min_y_CFBC_EAST 0 southern limit of calving front condition region on eastern boundary (m)
max_y_CFBC_EAST 0 northern limit of calving front condition region on eastern boundary (m)
min_y_CFBC_WEST 0 southern limit of calving front condition region on western boundary (m)
max_y_CFBC_WEST 0 northern limit of calving front condition region on eastern boundary (m)
flux_bdry_val_SOUTH 0 volume flux per width entering at flux-boundary on southern boundary (m2/a)
flux_bdry_val_NORTH 0 volume flux per width entering at flux-boundary on southern boundary (m2/a)
flux_bdry_val_EAST 0 volume flux per width entering at flux-boundary on southern boundary (m2/a)
flux_bdry_val_WEST 0 volume flux per width entering at flux-boundary on southern boundary (m2/a)
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8.6.5.3 Description

Equations Solved

The model solves for 3 dynamic variables: 𝑥-velocity (𝑢), 𝑦-velocity (𝑣), and thickness (ℎ). There is also a variable
that tracks coverage of fractional cells, discussed in Ice front advance.

By default the model solves the “shallow shelf approximation” (SSA) for velocity. The SSA is appropriate for floating
ice (ice shelf) or ice flowing over a low-friction bed (e.g., Macayeal (1989) [Mac89]). The SSA consists of the 𝑥-
momentum balance:

𝜕𝑥(ℎ𝜈(4𝜀̇𝑥𝑥 + 2𝜀̇𝑦𝑦)) + 𝜕𝑦(2ℎ𝜈𝜀̇𝑥𝑦) − 𝜏𝑏𝑥 = 𝜌𝑔ℎ
𝜕𝑠

𝜕𝑥
(8.41)

the 𝑦-momentum balance:

𝜕𝑥(2ℎ𝜈𝜀̇𝑥𝑦) + 𝜕𝑦(ℎ𝜈(4𝜀̇𝑦𝑦 + 2𝜀̇𝑥𝑥)) − 𝜏𝑏𝑦 = 𝜌𝑔ℎ
𝜕𝑠

𝜕𝑦
(8.42)

where 𝜌 is ice density, 𝑔 is gravitational acceleration, and 𝑠 is surface elevation. 𝜈, 𝜏𝑏𝑖 and 𝜀̇𝑖𝑗 are ice viscosity, basal
drag, and the strain rate tensor, respectively, all explained below.

From the velocity field, thickness evolves according to the continuity equation:

ℎ𝑡 + ∇ · (ℎ𝑢⃗) = 𝑎̇− 𝑏̇ (8.43)

Where 𝑏̇ is a basal mass balance (e.g., melting due to contact with the ocean), positive where there is melting. This is
a field that can be specified through a file. At the moment surface mass balance 𝑎̇ can only be set as uniform. Where
ice is grounded, surface elevation is given by

𝑠 = 𝑅+ ℎ

where 𝑅(𝑥, 𝑦) is the bathymetry, and the basal elevation 𝑏 is equal to 𝑅. If ice is floating, then the assumption of
hydrostasy and constant density gives

𝑠 = (1 − 𝜌

𝜌𝑤
)ℎ,

where 𝜌𝑤 is a representative ocean density, and 𝑏 = −(𝜌/𝜌𝑤)ℎ. Again by hydrostasy, floation is assumed wherever

ℎ ≤ −𝜌𝑤
𝜌
𝑅

is satisfied. Floatation criteria is stored in float_frac_streamice, equal to 1 where ice is grounded, and equal to 0 where
ice is floating.

The strain rates 𝜀𝑖𝑗 are generalized to the case of orthogonal curvilinear coordinates, to include the “metric” terms that
arise when casting the equations of motion on a sphere or projection on to a sphere (see Finite-volume discretization
of the stress tensor divergence). Thus

𝜀̇𝑥𝑥 =𝑢𝑥 + 𝑘1𝑣,

𝜀̇𝑦𝑦 =𝑣𝑦 + 𝑘1𝑢,

𝜀̇𝑥𝑦 =
1

2
(𝑢𝑦 + 𝑣𝑥) + 𝑘1𝑢+ 𝑘2𝑣.

𝜈 has the form arising from Glen’s law

𝜈 =
1

2
𝐴− 1

𝑛

(︀
𝜀̇2𝑥𝑥 + 𝜀̇2𝑦𝑦 + 𝜀̇𝑥𝑥𝜀̇𝑦𝑦 + 𝜀̇2𝑥𝑦 + 𝜀̇2𝑚𝑖𝑛

)︀ 1−𝑛
2𝑛 (8.44)
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though the form is slightly different if a hybrid formulation is used.

Whether 𝜏𝑏 is nonzero depends on whether the floatation condition is satisfied. Currently this is determined simply on
an instantaneous cell-by-cell basis (unless subgrid interpolation is used), as is the surface elevation 𝑠, but possibly this
should be rethought if the effects of tides are to be considered. 𝜏⃗𝑏 has the form

𝜏⃗𝑏 = 𝐶(|𝑢⃗|2 + 𝑢2𝑚𝑖𝑛)
𝑚−1

2 𝑢⃗. (8.45)

Again, the form is slightly different if a hybrid formulation is to be used, and the velocity refers to sliding velocity
(𝑢𝑏).

An alternative to the above “power law” sliding parameterization can be used by defining the STREAM-
ICE_COULOMB_SLIDING CPP option and setting streamice_allow_reg_coulomb to .TRUE.:

𝜏⃗𝑏 = 𝐶
|𝑢|𝑚𝑁

2
[︀
𝐶1/𝑚|𝑢| + (0.5𝑁)1/𝑚

]︀𝑚𝑢−1𝑢⃗ (8.46)

where 𝑢 is shorthand for the regularized norm in (8.45) (or for 𝑢𝑏 if a hybrid formulation is used). 𝑚 is the same
exponent as in (8.45). 𝑁 is effective pressure:

𝑁 = 𝜌𝑔(ℎ− ℎ𝑓 ), (8.47)

with ℎ𝑓 the floatation thickness

ℎ𝑓 = 𝑚𝑎𝑥

(︂
0,−𝜌𝑤

𝜌
𝑅

)︂
,

where 𝑅 is bed elevation. This formulation was used in the MISMIP+ intercomparison tests [ADCD+16]. (8.47)
assumes complete hydraulic connectivity to the ocean throughout the domain, which is likely only true within a few
tens of kilometers of the grounding line. With this sliding relation, Coulomb sliding is predominant near the grounding
line, with the yield strength proportional to height above floatation. Further inland sliding transitions to the power law
relation in (8.45).

The momentum equations are solved together with appropriate boundary conditions, discussed below. In the case of a
calving front boundary condition (CFBC), the boundary condition has the following form:

(ℎ𝜈(4𝜀̇𝑥𝑥 + 2𝜀̇𝑦𝑦))𝑛𝑥 + (2ℎ𝜈𝜀̇𝑥𝑦)𝑛𝑦 =
1

2
𝑔
(︀
𝜌ℎ2 − 𝜌𝑤𝑏

2
)︀
𝑛𝑥 (8.48)

(2ℎ𝜈𝜀̇𝑥𝑦)𝑛𝑥 + (ℎ𝜈(4𝜀̇𝑦𝑦 + 2𝜀̇𝑥𝑥))𝑛𝑦 =
1

2
𝑔
(︀
𝜌ℎ2 − 𝜌𝑤𝑏

2
)︀
𝑛𝑦. (8.49)

Here 𝑛⃗ is the normal to the boundary, and 𝑏 is ice base.

Hybrid SIA-SSA stress balance

The SSA does not take vertical shear stress or strain rates (e.g., 𝜎𝑥𝑧 , 𝜕𝑢/𝜕𝑧) into account. Although there are other
terms in the stress tensor, studies have found that in all but a few cases, vertical shear and longitudinal stresses
(represented by the SSA) are sufficient to represent glaciological flow. pkg/streamice can allow for representation of
vertical shear, although the approximation is made that longitudinal stresses are depth-independent. The stress balance
is referred to as “hybrid” because it is a joining of the SSA and the “shallow ice approximation” (SIA), which accounts
only for vertical shear. Such hybrid formulations have been shown to be valid over a larger range of conditions than
SSA (Goldberg 2011) [Gol11].

In the hybrid formulation, 𝑢 and 𝑣, the depth-averaged 𝑥− and 𝑦− velocities, replace 𝑢 and 𝑣 in (8.41), (8.42), and
(8.43), and gradients such as 𝑢𝑥 are replaced by (𝑢)𝑥. Viscosity becomes

𝜈 =
1

2
𝐴− 1

𝑛

(︂
𝜀̇2𝑥𝑥 + 𝜀̇2𝑦𝑦 + 𝜀̇𝑥𝑥𝜀̇𝑦𝑦 + 𝜀̇2𝑥𝑦 +

1

4
𝑢2𝑧 +

1

4
𝑣2𝑧 + 𝜀̇2𝑚𝑖𝑛

)︂ 1−𝑛
2𝑛

In the formulation for 𝜏𝑏, 𝑢𝑏, the horizontal velocity at 𝑢𝑏 is used instead. The details are given in Goldberg (2011)
[Gol11].
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Ice front advance

By default all mass flux across calving boundaries is considered lost. However, it is possible to account for this flux
and potential advance of the ice shelf front. If streamice_move_front is TRUE, then a partial-area formulation is used.

The algorithm is based on Albrecht et al. (2011) [AMH+11]. In this scheme, for empty or partial cells adjacent to a
calving front, a reference thickness ℎ𝑟𝑒𝑓 is found, defined as an average over the thickness of all neighboring cells
that flow into the cell. The total volume input over a time step is added to the volume of ice already in the cell, whose
partial area coverage is then updated based on the volume and reference thickness. If the area coverage reaches 100%
in a time step, then the additional volume is cascaded into adjacent empty or partial cells.

If streamice_calve_to_mask is TRUE, this sets a limit to how far the front can advance, even if advance is allowed.
The front will not advance into cells where the array streamice_calve_mask is not equal to 1. This mask must be set
through a binary input file to allow the front to advance past its initial position.

No calving parameterization is implemented in pkg/streamice. However, front advancement is a precursor for such a
development to be added.

Units of input files

The inputs for basal traction (streamicebasalTracFile, C_basal_fric_const) and ice stiffness (streamiceGlenConstFile,
B_glen_isothermal) require specific units. For ice stiffness (A in (8.44)), 𝐵 = 𝐴−1/𝑛 is specified; or, more accu-
rately, its square root 𝐴−1/(2𝑛) is specified (this is to ensure positivity of B by squaring the input). The units of
streamiceGlenConstFile and B_glen_isothermal are Pa1/2 yr1/(2𝑛) where 𝑛 is n_glen.

streamicebasalTracFile and C_basal_fric_const initialize the basal traction (C in (8.45)). Again 𝐶1/2 is directly spec-
ified rather than C to ensure positivity. The units are Pa1/2(m yr−1)𝑛𝑏 where 𝑛𝑏 is n_basal_friction.

8.6.5.4 Numerical Details

The momentum balance is solved via iteration on viscosity (Goldberg 2011 [Gol11]). At each iteration, a linear elliptic
differential equation is solved via a finite-element method using bilinear basis functions. The velocity solution “lives”
on cell corners, while thickness “lives” at cell centers (Figure 8.14). The cell-centered thickness is then evolved using
a second-order slope-limited finite-volume scheme, with the velocity field from the previous solve. To represent the
flow of floating ice, basal stress terms are multiplied by an array float_frac_streamice, a cell-centered array which
determines where ice meets the floation condition.

The computational domain of pkg/streamice (which may be smaller than the array/grid as defined by SIZE.h and
GRID.h) is determined by a number of mask arrays within pkg/streamice. They are

• ℎ𝑚𝑎𝑠𝑘 (streamice_hmask): equal to 1 (ice-covered), 0 (open ocean), 2 (partly-covered), or -1 (out of domain)

• 𝑢𝑚𝑎𝑠𝑘 (streamice_umask): equal to 1 (an “active” velocity node), 3 (a Dirichlet node), or 0 (zero velocity)

• 𝑣𝑚𝑎𝑠𝑘 (streamice_vmask): similar to umask

• 𝑢𝑓𝑎𝑐𝑒𝑚𝑎𝑠𝑘𝑏𝑑𝑟𝑦 (streamice_ufacemask_bdry): equal to -1 (interior face), 0 (no-slip), 1 (no-stress), 2 (calving
stress front), or 4 (flux input boundary); when 4, then u_flux_bdry_SI must be initialized, through binary or
parameter file

• 𝑣𝑓𝑎𝑐𝑒𝑚𝑎𝑠𝑘𝑏𝑑𝑟𝑦 (streamice_vfacemask_bdry): similar to 𝑢𝑓𝑎𝑐𝑒𝑚𝑎𝑠𝑘𝑏𝑑𝑟𝑦

ℎ𝑚𝑎𝑠𝑘 is defined at cell centers, like ℎ. 𝑢𝑚𝑎𝑠𝑘 and 𝑣𝑚𝑎𝑠𝑘 are defined at cell nodes, like velocities. 𝑢𝑓𝑎𝑐𝑒𝑚𝑎𝑠𝑘𝑏𝑑𝑟𝑦
and 𝑣𝑓𝑎𝑐𝑒𝑚𝑎𝑠𝑘𝑏𝑑𝑟𝑦 are defined at cell faces, like velocities in a 𝐶-grid - but unless one sets #define STREAM-
ICE_GEOM_FILE_SETUP in STREAMICE_OPTIONS.h, the values are only relevant at the boundaries of the grid.
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Figure 8.14: Grid locations of thickness (h), velocity (u,v), area, and various masks.
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Figure 8.15: Hypothetical configuration, detailing the meaning of thickness and velocity masks and their role in
controlling boundary conditions.
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The values of 𝑢𝑚𝑎𝑠𝑘 and 𝑣𝑚𝑎𝑠𝑘 determine which nodal values of 𝑢 and 𝑣 are involved in the solve for veloci-
ties. These masks are not configured directly by the user, but are re-initialized based on streamice_hmask, stream-
ice_ufacemask_bdry and streamice_vfacemask_bdry at each time step. Figure 8.15 demonstrates how these values are
set in various cells.

With 𝑢𝑚𝑎𝑠𝑘 and 𝑣𝑚𝑎𝑠𝑘 appropriately initialized, subroutine streamice_vel_solve.F can proceed rather generally.
Contributions are only evaluated if ℎ𝑚𝑎𝑠𝑘 = 1 in a given cell, and a given nodal basis function is only considered if
𝑢𝑚𝑎𝑠𝑘 = 1 or 𝑣𝑚𝑎𝑠𝑘 = 1 at that node.

8.6.5.5 Additional Features

PETSc

There is an option to use PETSc for the matrix solve component of the velocity solve, and this has been observed to
give a 3- or 4-fold improvement in performance over the inbuilt conjugate gradient solver in a number of cases. To
use this option, the CPP option ALLOW_PETSC must be defined, and MITgcm must be compiled with the -mpi flag
(see Section 3.5.4). However, often a system-specific installation of PETSc is required. If you wish to use PETSc with
pkg/streamice, please contact the author.

Boundary Stresses

The calving front boundary conditions (8.48) and (8.49) are intended for ice fronts bordering open ocean. However,
there may be reasons to apply different Neumann conditions at these locations, e.g., one might want to represent force
associated with ice melange, or to represent parts of the ice shelf that are not resolved, as in Goldberg et al. (2015)
[GHJS15]. The user can then modify these boundary conditions in the form

(ℎ𝜈(4𝜀̇𝑥𝑥 + 2𝜀̇𝑦𝑦))𝑛𝑥 + (2ℎ𝜈𝜀̇𝑥𝑦)𝑛𝑦 =
1

2
𝑔
(︀
𝜌ℎ2 − 𝜌𝑤𝑏

2
)︀
𝑛𝑥 + 𝜎𝑛𝑥 + 𝜏𝑛𝑦

(2ℎ𝜈𝜀̇𝑥𝑦)𝑛𝑥 + (ℎ𝜈(4𝜀̇𝑦𝑦 + 2𝜀̇𝑥𝑥))𝑛𝑦 =
1

2
𝑔
(︀
𝜌ℎ2 − 𝜌𝑤𝑏

2
)︀
𝑛𝑦 + 𝜎𝑛𝑦 + 𝜏𝑛𝑥

In these equations, 𝜎 and 𝜏 represent normal and shear stresses at the boundaries of cells. They are not specified
directly, but through coefficients 𝛾𝜎 and 𝛾𝜏 :

𝜎 =
1

2
𝑔
(︀
𝜌ℎ2 − 𝜌𝑤𝑏

2
)︀
𝛾𝜎

𝜏 =
1

2
𝑔
(︀
𝜌ℎ2 − 𝜌𝑤𝑏

2
)︀
𝛾𝜏

𝛾𝜎 is specified through streamiceuNormalStressFile, streamicevNormalStressFile, streamiceuNormalTimeDepFile,
streamicevNormalTimeDepFile and 𝛾𝜏 is specified through streamiceuShearStressFile, streamicevShearStressFile,
streamiceuShearTimeDepFile, and streamicevShearTimeDepFile. Within the file names, the u and v determine
whether the values are specified along horizontal (𝑢-) faces and vertical (𝑣-) faces. The values will only have an
effect if they are specified along calving front boundaries (see Configuring domain through files).

8.6.5.6 Adjoint

The STREAMICE package is adjointable using both TAF (Goldberg et al. 2013 [GH13]) and OpenAD (Goldberg et
al. 2016 [GNHU16]). In OpenAD, the fixed-point method of [Chr94] is implemented, greatly reducing the memory
requirements and also improving performance when PETSc is used.

Verification experiments with both OpenAD and TAF are located in the verification/halfpipe_streamice (see below).
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8.6.5.7 Key Subroutines

Top-level routine: streamice_timestep.F (called from model/src/do_oceanic_phys.F)

CALLING SEQUENCE
...
streamice_timestep (called from DO_OCEANIC_PHYS)
|
|-- #ifdef ALLOW_STREAMICE_TIMEDEP_FORCING
| STREAMICE_FIELDS_LOAD
| #endif
|
|--#if (defined (ALLOW_STREAMICE_OAD_FP))
| STREAMICE_VEL_SOLVE_OPENAD
| #else
| STREAMICE_VEL_SOLVE
| |
| |-- STREAMICE_DRIVING_STRESS
| |
| | [ITERATE ON FOLLOWING]
| |
| |-- STREAMICE_CG_WRAPPER
| | |
| | |-- STREAMICE_CG_SOLVE
| | #ifdef ALLOW_PETSC
| | STREAMICE_CG_SOLVE_PETSC
| | #endif
| |
| |-- #ifdef STREAMICE_HYBRID_STRESS
| STREAMICE_VISC_BETA_HYBRID
| #else
| STREAMICE_VISC_BETA
| #endif
|
|-- STREAMICE_ADVECT_THICKNESS
| |
| |-- STREAMICE_ADV_FRONT
|
|-- STREAMICE_UPD_FFRAC_UNCOUPLED
|

8.6.5.8 STREAMICE diagnostics

Diagnostics output is available via the diagnostics package (Packages II - Diagnostics and I/O). Available output fields
are summarized in the following table:

----------------------------------------------------------------------------
<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c)
----------------------------------------------------------------------------
SI_Uvel | 1 | |UZ L1|m/a |Ice stream x-velocity
SI_Vvel | 1 | |VZ L1|m/a |Ice stream y-velocity
SI_Thick| 1 | |SM L1|m |Ice stream thickness
SI_area | 1 | |SM L1|m^2 |Ice stream cell area coverage
SI_float| 1 | |SM L1|none |Ice stream grounding indicator
SI_hmask| 1 | |SM L1|none |Ice stream thickness mask
SI_usurf| 1 | |SM L1|none |Ice stream surface x-vel

(continues on next page)
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(continued from previous page)

SI_vsurf| 1 | |SM L1|none |Ice stream surface y-vel
SI_ubase| 1 | |SM L1|none |Ice stream basal x-vel
SI_vbase| 1 | |SM L1|none |Ice stream basal y-vel
SI_taubx| 1 | |SM L1|none |Ice stream basal x-stress
SI_tauby| 1 | |SM L1|none |Ice stream basal y-stress
SI_selev| 1 | |SM L1|none |Ice stream surface elev

8.6.5.9 Experiments and tutorials that use streamice

The verification/halfpipe_streamice experiment uses pkg/streamice.

8.7 Biogeochemistry Packages

8.7.1 GCHEM Package

8.7.1.1 Introduction

This package has been developed as interface to the PTRACERS package. The purpose is to provide a structure where
various (any) tracer experiments can be added to the code. For instance there are placeholders for routines to read in
parameters needed for any tracer experiments, a routine to read in extra fields required for the tracer code, routines for
either external forcing or internal interactions between tracers and routines for additional diagnostics relating to the
tracers. Note that the gchem package itself is only a means to call the subroutines used by specific biogeochemical
experiments, and does not “do” anything on its own.

There are two examples: cfc which looks at 2 tracers with a simple external forcing and dic with 4,5 or 6 tracers whose
tendency terms are related to one another. We will discuss these here only as how they provide examples to use this
package.

8.7.1.2 Key subroutines and parameters

FRAMEWORK
The different biogeochemistry frameworks (e.g. cfc of dic) are specified in the packages_conf file.
GCHEM_OPTIONS.h includes the compiler options to be used in any experiment. An important compiler option is
#define GCHEM_SEPARATE_FORCING which determined how and when the tracer forcing is applied (see
discussion on Forcing below). See section on dic for some additional flags that can be set for that experiment.
There are further runtime parameters set in data.gchem and kept in common block GCHEM.h. These runtime options
include:
∙ Parameters to set the timing for periodic forcing files to be loaded are: gchem_ForcingPeriod, gchem_ForcingCycle.
The former is how often to load, the latter is how often to cycle through those fields (eg. period couple be monthly
and cycle one year). This is used in dic and cfc, with gchem_ForcingPeriod=0 meaning no periodic forcing.
∙ nsubtime is the integer number of extra timesteps required by the tracer experiment. This will give a timestep of
deltaTtracer/nsubtime for the dependencies between tracers. The default is one.
∙ File names - these are several filenames than can be read in for external fields needed in the tracer forcing - for
instance wind speed is needed in both DIC and CFC packages to calculate the air-sea exchange of gases. Not all file
names will be used for every tracer experiment.
∙ gchem_int_ are variable names for run-time set integer numbers. (Currently 1 through 5).
∙ gchem_rl_ are variable names for run-time set real numbers. (Currently 1 through 5).
∙ Note that the old tIter0 has been replaced by PTRACERS_Iter0 which is set in data.ptracers instead.
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INITIALIZATION
The values set at runtime in data.gchem are read in using gchem_readparms.F which is called from
packages_readparms.F. This will include any external forcing files that will be needed by the tracer experiment.
There are two routine used to initialize parameters and fields needed by the experiment packages. These are
gchem_init_fixed.F which is called from packages_init_fixed.F, and gchem_init_vari.F called from
packages_init_variable.F. The first should be used to call a subroutine specific to the tracer experiment which sets
fixed parameters, the second should call a subroutine specific to the tracer experiment which sets (or initializes) time
fields that will vary with time.

LOADING FIELDS
External forcing fields used by the tracer experiment are read in by a subroutine (specific to the tracer experiment)
called from gchem_fields_load.F. This latter is called from forward_step.F.

FORCING
Tracer fields are advected-and-diffused by the ptracer package. Additional changes (e.g. surface forcing or
interactions between tracers) to these fields are taken care of by the gchem interface. For tracers that are essentially
passive (e.g. CFC’s) but may have some surface boundary conditions this can easily be done within the regular tracer
timestep. In this case gchem_calc_tendency.F is called from forward_step.F, where the reactive (as opposed to the
advective diffusive) tendencies are computed. These tendencies, stored on the 3D field gchemTendency, are added to
the passive tracer tendencies gPtr in gchem_add_tendency.F, which is called from ptracers_forcing.F. For tracers
with more complicated dependencies on each other, and especially tracers which require a smaller timestep than
deltaTtracer, it will be easier to use gchem_forcing_sep.F which is called from forward_step.F. There is a compiler
option set in GCHEM_OPTIONS.h that determines which method is used: #define GCHEM_SEPARATE_FORCING
does the latter where tracers are forced separately from the advection-diffusion code, and #undef
GCHEM_SEPARATE_FORCING includes the forcing in the regular timestepping.

DIAGNOSTICS
This package also also used the passive tracer routine ptracers_monitor.F which prints out tracer statistics as often as
the model dynamic statistic diagnostics (dynsys) are written (or as prescribed by the runtime flag
PTRACERS_monitorFreq, set in data.ptracers). There is also a placeholder for any tracer experiment specific
diagnostics to be calculated and printed to files. This is done in gchem_diags.F. For instance the time average CO2
air-sea fluxes, and sea surface pH (among others) are written out by dic_biotic_diags.F which is called from
gchem_diags.F.

8.7.1.3 GCHEM Diagnostics

These diagnostics are particularly for the dic package.

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
DICBIOA | 15 |SM P MR |mol/m3/sec |Biological Productivity (mol/m3/s)
DICCARB | 15 |SM P MR |mol eq/m3/sec |Carbonate chg-biol prod and remin
→˓(mol eq/m3/s)
DICTFLX | 1 |SM P L1 |mol/m3/sec |Tendency of DIC due to air-sea exch
→˓(mol/m3/s)
DICOFLX | 1 |SM P L1 |mol/m3/sec |Tendency of O2 due to air-sea exch
→˓(mol/m3/s)
DICCFLX | 1 |SM P L1 |mol/m2/sec |Flux of CO2 - air-sea exch (mol/m2/s)

(continues on next page)
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(continued from previous page)

DICPCO2 | 1 |SM P M1 |atm |Partial Pressure of CO2 (atm)
DICPHAV | 1 |SM P M1 |dimensionless |pH (dimensionless)

8.7.1.4 Do’s and Don’ts

The pkg ptracer is required with use with this pkg. Also, as usual, the runtime flag useGCHEM must be set to .TRUE.
in data.pkg. By itself, gchem pkg will read in data.gchem and will write out gchem diagnostics. It requires tracer
experiment specific calls to do anything else (for instance the calls to dic and cfc pkgs).

8.7.1.5 Reference Material

8.7.1.6 Experiments and tutorials that use gchem

• Global Ocean biogeochemical tutorial, in tutorial_global_oce_biogeo verification directory, described in section
[sec:eg-biogeochem_tutorial] uses gchem and dic

• Global Ocean cfc tutorial, in tutorial_cfc_offline verification directory, uses gchem and cfc (and offline) de-
scribed in [sec:eg-offline-cfc]

• Global Ocean online cfc example in cfc_example verification directory, uses gchem and cfc

8.7.2 DIC Package

8.7.2.1 Introduction

This is one of the biogeochemical packages handled from the pkg gchem. The main purpose of this package is to
consider the cycling of carbon in the ocean. It also looks at the cycling of phosphorous and potentially oxygen and
iron. There are four standard tracers 𝐷𝐼𝐶, 𝐴𝐿𝐾, 𝑃𝑂4, 𝐷𝑂𝑃 and also possibly 𝑂2 and 𝐹𝑒. The air-sea exchange
of CO2 and O2 are handled as in the OCMIP experiments (reference). The export of biological matter is computed
as a function of available light and PO4 (and Fe). This export is remineralized at depth according to a Martin curve
(again, this is the same as in the OCMIP experiments). There is also a representation of the carbonate flux handled
as in the OCMIP experiments. The air-sea exchange on CO2 is affected by temperature, salinity and the pH of the
surface waters. The pH is determined following the method of Follows et al. For more details of the equations see
section [sec:eg-biogeochem_tutorial].

8.7.2.2 Key subroutines and parameters

INITIALIZATION
DIC_ABIOTIC.h contains the common block for the parameters and fields needed to calculate the air-sea flux of 𝐶𝑂2

and 𝑂2. The fixed parameters are set in dic_abiotic_param which is called from gchem_init_fixed.F. The parameters
needed for the biotic part of the calculations are initialized in dic_biotic_param and are stored in DIC_BIOTIC.h. The
first guess of pH is calculated in dic_surfforcing_init.F.

LOADING FIELDS
The air-sea exchange of 𝐶𝑂2 and 𝑂2 need wind, atmospheric pressure (although the current version has this
hardwired to 1), and sea-ice coverage. The calculation of pH needs silica fields. These fields are read in in
dic_fields_load.F. These fields are initialized to zero in dic_ini_forcing.F. The fields for interpolating are in common
block in DIC_LOAD.h.
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FORCING
The tracers are advected-diffused in ptracers_integrate.F. The updated tracers are passed to dic_biotic_forcing.F
where the effects of the air-sea exchange and biological activity and remineralization are calculated and the tracers
are updated for a second time. Below we discuss the subroutines called from dic_biotic_forcing.F.

Air-sea exchange of 𝐶𝑂2 is calculated in dic_surfforcing. Air-Sea Exchange of 𝐶𝑂2 depends on T,S and pH. The
determination of pH is done in carbon_chem.F. There are three subroutines in this file: carbon_coeffs which
determines the coefficients for the carbon chemistry equations; calc_pco2 which calculates the pH using a
Newton-Raphson method; and calc_pco2_approx which uses the much more efficient method of Follows et al. The
latter is hard-wired into this package, the former is kept here for completeness.

Biological productivity is determined following Dutkiewicz et al. (2005) and is calculated in bio_export.F The light
in each latitude band is calculate in insol.F, unless using one of the flags listed below. The formation of hard tissue
(carbonate) is linked to the biological productivity and has an effect on the alkalinity - the flux of carbonate is
calculated in car_flux.F, unless using the flag listed below for the Friis et al (2006) scheme. The flux of phosphate to
depth where it instantly remineralized is calculated in phos_flux.F.

The dilution or concentration of carbon and alkalinity by the addition or subtraction of freshwater is important to
their surface patterns. These “virtual” fluxes can be calculated by the model in several ways. The older scheme is
done following OCMIP protocols (see more in Dutkiewicz et al 2005), in the subroutines dic_surfforcing.F and
alk_surfforcing.F. To use this you need to set in GCHEM_OPTIONS.h: #define ALLOW_OLD_VIRTUALFLUX.
But this can also be done by the ptracers pkg if this is undefined. You will then need to set the concentration of the
tracer in rainwater and potentially a reference tracer value in data.ptracer (PTRACERS_EvPrRn, and
PTRACERS_ref respectively).

Oxygen air-sea exchange is calculated in o2_surfforcing.F.

Iron chemistry (the amount of free iron) is taken care of in fe_chem.F.

DIAGNOSTICS
Averages of air-sea exchanges, biological productivity, carbonate activity and pH are calculated. These are initialized
to zero in dic_biotic_init and are stored in common block in DIC_BIOTIC.h.

COMPILE TIME FLAGS
These are set in GCHEM_OPTIONS.h:
DIC_BIOTIC: needs to be set for dic to work properly (should be fixed sometime).
ALLOW_O2: include the tracer oxygen.
ALLOW_FE: include the tracer iron. Note you will need an iron dust file set in data.gchem in this case.
MINFE: limit the iron, assuming precpitation of any excess free iron.
CAR_DISS: use the calcium carbonate scheme of Friis et al 2006.
ALLOW_OLD_VIRTUALFLUX: use the old OCMIP style virtual flux for alklinity adn carbon (rather than doing it
through pkg/ptracers).
READ_PAR: read the light (photosynthetically available radiation) from a file set in data.gchem.
USE_QSW: use the numbers from QSW to be the PAR. Note that a file for Qsw must be supplied in data, or Qsw
must be supplied by an atmospheric model.
If the above two flags are not set, the model calculates PAR in insol.F as a function of latitude and year day.

550 Chapter 8. Packages I - Physical Parameterizations



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

USE_QSW_UNDERICE: if using a sea ice model, or if the Qsw variable has the seaice fraction already taken into
account, this flag must be set.
AD_SAFE: will use a tanh function instead of a max function - this is better if using the adjoint
DIC_NO_NEG: will include some failsafes in case any of the variables become negative. (This is advicable).
ALLOW_DIC_COST: was used for calculating cost function (but hasn’t been updated or maintained, so not sure if it
works still)

8.7.2.3 Do’s and Don’ts

This package must be run with both ptracers and gchem enabled. It is set up for at least 4 tracers, but there is the
provision for oxygen and iron. Note the flags above.

8.7.2.4 Reference Material

Dutkiewicz. S., A. Sokolov, J. Scott and P. Stone, 2005: A Three-Dimensional Ocean-Seaice-Carbon Cycle Model
and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies, Report 122, Joint
Program of the Science and Policy of Global Change, M.I.T., Cambridge, MA.
Follows, M., T. Ito and S. Dutkiewicz, 2006: A Compact and Accurate Carbonate Chemistry Solver for Ocean
Biogeochemistry Models. Ocean Modeling, 12, 290-301.
Friis, K., R. Najjar, M.J. Follows, and S. Dutkiewicz, 2006: Possible overestimation of shallow-depth calcium
carbonate dissolution in the ocean, Global Biogeochemical Cycles, 20, GB4019, doi:10.1029/2006GB002727.

8.7.2.5 Experiments and tutorials that use dic

• Global Ocean tutorial, in tutorial_global_oce_biogeo verification directory, described in section [sec:eg-
biogeochem_tutorial]
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CHAPTER

NINE

PACKAGES II - DIAGNOSTICS AND I/O

MITgcm includes several packages related to input and output during a model integration. The packages described in
this chapter are related to the choice of input/output fields and their on-disk format.

9.1 pkg/diagnostics – A Flexible Infrastructure

9.1.1 Introduction

This section of the documentation describes the diagnostics package (pkg/diagnostics) available within MITgcm. A
large selection of model diagnostics is available for output. In addition to the diagnostic quantities pre-defined within
MITgcm, there exists the option, in any code setup, to define a new diagnostic quantity and include it as part of the
diagnostic output with the addition of a single subroutine call in the routine where the field is computed. As a matter of
philosophy, no diagnostic is enabled as default, thus each user must specify the exact diagnostic information required
for an experiment. This is accomplished by enabling the specific diagnostics of interest from the list of available
diagnostics. Additional diagnostic quantities, defined within different MITgcm packages, are available and are listed
in the diagnostic list subsection of the manual section associated with each relevant package. Instructions for enabling
diagnostic output and defining new diagnostic quantities are found in Section 9.1.4 of this document.

Once a diagnostic is enabled, MITgcm will continually increment an array specifically allocated for that diagnostic
whenever the appropriate quantity is computed. A counter is defined which records how many times each diagnostic
quantity has been incremented. Several special diagnostics are included in the list of available diagnostics. Quantities
referred to as “counter diagnostics” are defined for selected diagnostics which record the frequency at which a diag-
nostic is incremented separately for each model grid location. Quantities referred to as “user diagnostics” are included
to facilitate defining new diagnostics for a particular experiment.

9.1.2 Equations

Not relevant.

9.1.3 Key Subroutines and Parameters

There are several utilities within MITgcm available to users to enable, disable, clear, write and retrieve model diag-
nostics, and may be called from any routine. The available utilities and the CALL sequences are listed below.

diagnostics_addtolist.F: This routine is the underlying interface routine for defining a new permanent diagnostic in the
main model or in a package. The calling sequence is:
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CALL DIAGNOSTICS_ADDTOLIST (
O diagNum,
I diagName, diagCode, diagUnits, diagTitle, diagMate,
I myThid )

where:
diagNum = diagnostic Id number - Output from routine
diagName = name of diagnostic to declare
diagCode = parser code for this diagnostic
diagUnits = field units for this diagnostic
diagTitle = field description for this diagnostic
diagMate = diagnostic mate number
myThid = my Thread Id number

diagnostics_fill.F: This is the main user interface routine to the diagnostics package. This routine will increment the
specified diagnostic quantity with a field sent through the argument list.

CALL DIAGNOSTICS_FILL(
I inpFld, diagName,
I kLev, nLevs, bibjFlg, bi, bj, myThid )

where:
inpFld = Field to increment diagnostics array
diagName = diagnostic identificator name (8 characters long)
kLev = Integer flag for vertical levels:

> 0 (any integer): WHICH single level to increment in qdiag.
0,-1 to increment "nLevs" levels in qdiag,
0 : fill-in in the same order as the input array
-1: fill-in in reverse order.

nLevs = indicates Number of levels of the input field array
(whether to fill-in all the levels (kLev<1) or just one (kLev>0))

bibjFlg = Integer flag to indicate instructions for bi bj loop
= 0 indicates that the bi-bj loop must be done here
= 1 indicates that the bi-bj loop is done OUTSIDE
= 2 indicates that the bi-bj loop is done OUTSIDE

AND that we have been sent a local array (with overlap regions)
(local array here means that it has no bi-bj dimensions)

= 3 indicates that the bi-bj loop is done OUTSIDE
AND that we have been sent a local array
AND that the array has no overlap region (interior only)

NOTE - bibjFlg can be NEGATIVE to indicate not to increment counter
bi = X-direction tile number - used for bibjFlg=1-3
bj = Y-direction tile number - used for bibjFlg=1-3
myThid = my thread Id number

diagnostics_scale_fill.F: This is a possible alternative routine to diagnostics_fill.F which performs the same functions
and has an additional option to scale the field before filling or raise the field to a power before filling.

CALL DIAGNOSTICS_SCALE_FILL(
I inpFld, scaleFact, power, diagName,
I kLev, nLevs, bibjFlg, bi, bj, myThid )

where all the arguments are the same as for DIAGNOSTICS_FILL with
the addition of:

scaleFact = Scaling factor to apply to the input field product
power = Integer power to which to raise the input field (after scaling)
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diagnostics_fract_fill.F: This is a specific alternative routine to diagnostics_scale_fill.F for the case of a diagnostics
which is associated to a fraction-weight factor (referred to as the diagnostics “counter-mate”). This fraction-weight
field is expected to vary during the simulation and is provided as argument to diagnostics_fract_fill.F in order to
perform fraction-weighted time-average diagnostics. Note that the fraction-weight field has to correspond to the
diagnostics counter-mate which has to be filled independently with a call to diagnostics_fill.F.

CALL DIAGNOSTICS_FRACT_FILL(
I inpFld, fractFld, scaleFact, power, diagName,
I kLev, nLevs, bibjFlg, bi, bj, myThid )

where all the arguments are the same as for DIAGNOSTICS_SCALE_FILL with
the addition of:

fractFld = fraction used for weighted average diagnostics

diagnostics_is_on.F: Function call to inquire whether a diagnostic is active and should be incremented. Useful when
there is a computation that must be done locally before a call to diagnostics_fill.F. The call sequence:

flag = DIAGNOSTICS_IS_ON( diagName, myThid )

where:
diagName = diagnostic identificator name (8 characters long)
myThid = my thread Id number

diagnostics_count.F: This subroutine increments the diagnostics counter only. In general, the diagnostics counter is
incremented at the same time as the diagnostics is filled, by calling diagnostics_fill.F. However, there are few cases
where the counter is not incremented during the filling (e.g., when the filling is done level per level but level 1 is
skipped) and needs to be done explicitly with a call to subroutine diagnostics_count.F. The call sequence is:

CALL DIAGNOSTICS_COUNT(
I diagName, bi, bj, myThid )

where:
diagName = name of diagnostic to increment the counter
bi = X-direction tile number, or 0 if called outside bi,bj loops
bj = Y-direction tile number, or 0 if called outside bi,bj loops
myThid = my thread Id number

The diagnostics are computed at various times and places within MITgcm. Because MITgcm may employ a staggered
grid, diagnostics may be computed at grid box centers, corners, or edges, and at the middle or edge in the vertical.
Some diagnostics are scalars, while others are components of vectors. An internal array is defined which contains
information concerning various grid attributes of each diagnostic. The gdiag array (in common block diagnostics in
file DIAGNOSTICS.h) is internally defined as a character*16 variable, and is equivalenced to a character*1 “parse”
array in output in order to extract the grid-attribute information. The gdiag array is described in Table 9.1.
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Table 9.1: Diagnostic Parsing Array
Array Value Description
parse(1) → S scalar diagnostic

→ U U-vector component diagnostic
→ V V-vector component diagnostic

parse(2) → U C-grid U-point
→ V C-grid V-point
→ M C-grid mass point
→ Z C-grid vorticity (corner) point

parse(3) → used for level-integrated output: cumulate levels
→ r same but cumulate product by model level thickness
→ R same but cumulate product by hFac & level thickness

parse(4) → P positive definite diagnostic
→ A Adjoint variable diagnostic

parse(5) → C with counter array
→ P post-processed (not filled up) from other diags
→ D disable diagnostic for output

parse(6-8) retired, formerly 3-digit mate number
parse(9) → U model level + 1

2

→ M model level middle
→ L model level - 1

2

parse(10) → 0 levels = 0
→ 1 levels = 1
→ R levels = Nr
→ L levels = MAX(Nr,NrPhys)
→ M levels = MAX(Nr,NrPhys) - 1
→ G levels = ground_level number
→ I levels = seaice_level number
→ X free levels option (need to be set explicitly)

As an example, consider a diagnostic whose associated gdiag parameter is equal to “UURMR”. From gdiag we can
determine that this diagnostic is a U-vector component located at the C-grid U-point, model mid-level (M) with Nr
levels (last R).

In this way, each diagnostic in the model has its attributes (i.e., vector or scalar, C-grid location, etc.) defined internally.
The output routines use this information in order to determine what type of transformations need to be performed. Any
interpolations are done at the time of output rather than during each model step. In this way the user has flexibility in
determining the type of output gridded data.

9.1.4 Usage Notes

9.1.4.1 Using available diagnostics

To use the diagnostics package, other than enabling it in packages.conf and turning the useDiagnostics flag in
data.pkg to .TRUE., there are two further steps the user must take to enable the diagnostics package for output
of quantities that are already defined in MITgcm under an experiment’s configuration of packages. A parameter file
data.diagnostics must be supplied in the run directory, and the file DIAGNOSTICS_SIZE.h must be included
in the code directory. The steps for defining a new (permanent or experiment-specific temporary) diagnostic quantity
will be outlined later.

The namelist in parameter file data.diagnostics will activate a user-defined list of diagnostics quantities to be
computed, specify the frequency and type of output, the number of levels, and the name of all the separate output files.
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A sample data.diagnostics namelist file:

# Diagnostic Package Choices
#--------------------
# dumpAtLast (logical): always write output at the end of simulation (default=F)
# diag_mnc (logical): write to NetCDF files (default=useMNC)
#--for each output-stream:
# fileName(n) : prefix of the output file name (max 80c long) for outp.stream n
# frequency(n):< 0 : write snap-shot output every |frequency| seconds
# > 0 : write time-average output every frequency seconds
# timePhase(n) : write at time = timePhase + multiple of |frequency|
# averagingFreq : frequency (in s) for periodic averaging interval
# averagingPhase : phase (in s) for periodic averaging interval
# repeatCycle : number of averaging intervals in 1 cycle
# levels(:,n) : list of levels to write to file (Notes: declared as REAL)
# when this entry is missing, select all common levels of this list
# fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n
# (see "available_diagnostics.log" file for the full list of diags)
# missing_value(n) : missing value for real-type fields in output file "n"
# fileFlags(n) : specific code (8c string) for output file "n"
#--------------------
&DIAGNOSTICS_LIST
fields(1:2,1) = 'UVEL ','VVEL ',
levels(1:5,1) = 1.,2.,3.,4.,5.,
filename(1) = 'diagout1',
frequency(1) = 86400.,
fields(1:2,2) = 'THETA ','SALT ',
filename(2) = 'diagout2',
fileflags(2) = ' P1 ',
frequency(2) = 3600.,

&

&DIAG_STATIS_PARMS
&

In this example, there are two output files that will be generated for each tile and for each output time. The first set
of output files has the prefix diagout1, does time averaging every 86400. seconds, (frequency is 86400.), and will
write fields which are multiple-level fields at output levels 1-5. The names of diagnostics quantities are UVEL and
VVEL. The second set of output files has the prefix diagout2, does time averaging every 3600. seconds, includes fields
with all levels, and the names of diagnostics quantities are THETA and SALT.

The user must assure that enough computer memory is allocated for the diagnostics and the output streams selected
for a particular experiment. This is accomplished by modifying the file DIAGNOSTICS_SIZE.h and including it in
the experiment code directory. The parameters that should be checked are called numDiags, numLists, numperList,
and diagSt_size.

numDiags (and diagSt_size): All MITgcm diagnostic quantities are stored in the single diagnostic array gdiag which
is located in the file and has the form:

_RL qdiag(1-Olx,sNx+Olx,1-Olx,sNx+Olx,numDiags,nSx,nSy)
_RL qSdiag(0:nStats,0:nRegions,diagSt_size,nSx,nSy)
COMMON / DIAG_STORE_R / qdiag, qSdiag

The first two-dimensions of diagSt_size correspond to the horizontal dimension of a given diagnostic, and the third
dimension of diagSt_size is used to identify diagnostic fields and levels combined. In order to minimize the memory
requirement of the model for diagnostics, the default MITgcm executable is compiled with room for only one horizon-
tal diagnostic array, or with numDiags set to Nr. In order for the user to enable more than one 3-D diagnostic, the size
of the diagnostics common must be expanded to accommodate the desired diagnostics. This can be accomplished by
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manually changing the parameter numDiags in the file . numDiags should be set greater than or equal to the sum of all
the diagnostics activated for output each multiplied by the number of levels defined for that diagnostic quantity. For
the above example, there are four multiple level fields, which the available diagnostics list (see below) indicates are
defined at the MITgcm vertical resolution, Nr. The value of numDiags in DIAGNOSTICS_SIZE.h would therefore be
equal to 4*Nr, or, say 40 if Nr=10.

numLists and numperList: The parameter numLists must be set greater than or equal to the number of separate output
streams that the user specifies in the namelist file data.diagnostics. The parameter numperList corresponds to
the maximum number of diagnostics requested per output streams.

9.1.4.2 Adjoint variables

The diagnostics package can also be used to print adjoint state variables. Using the diagnostics package as opposed
to using the standard ‘adjoint dump’ options allows one to take advantage of all the averaging and post processing
routines available to other diagnostics variables.

Currently, the available adjoint state variables are:

110 |ADJetan | 1 | |SM A M1|dJ/m |dJ/dEtaN: Sensitivity to sea
→˓surface height anomaly
111 |ADJuvel | 50 | 112 |UURA MR|dJ/(m/s) |dJ/dU: Sensitivity to zonal
→˓velocity
112 |ADJvvel | 50 | 111 |VVRA MR|dJ/(m/s) |dJ/dV: Sensitivity to
→˓meridional velocity
113 |ADJwvel | 50 | |WM A LR|dJ/(m/s) |dJ/dW: Sensitivity to vertical
→˓velocity
114 |ADJtheta| 50 | |SMRA MR|dJ/degC |dJ/dTheta: Sensitivity to
→˓potential temperature
115 |ADJsalt | 50 | |SMRA MR|dJ/psu |dJ/dSalt: Sensitivity to
→˓salinity

Some notes to the user

1. This feature is currently untested with OpenAD.

2. This feature does not work with the divided adjoint.

3. adEtaN is broken in addummy_in_stepping.F so the output through diagnostics is zeros just as with the standard
‘adjoint dump’ method.

4. The diagStats options are not available for these variables.

5. Adjoint variables are recognized by checking the 10 character variable diagCode. To add a new adjoint variable,
set the 4th position of diagCode to A (notice this is the case for the list of available adjoint variables).

Using pkg/diagnostics for adjoint variables

1. Make sure the following flag is defined in either AUTODIFF_OPTIONS.h or ECCO_CPPOPTIONS.h if that is
being used.

#define ALLOW_AUTODIFF_MONITOR

2. Be sure to increase numlists and numDiags appropriately in DIAGNOSTICS_SIZE.h. Safe values are e.g. 10-20
and 500-1000 respectively.
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3. Specify desired variables in data.diagnostics as any other variable, as in the following example or as in
this data.diagnostics. Note however, adjoint and forward diagnostic variables cannot be in the same list. That is,
a single fields(:,:) list cannot contain both adjoint and forward variables.

&DIAGNOSTICS_LIST
# ---

fields(1:5,1) = 'ADJtheta','ADJsalt ',
'ADJuvel ','ADJvvel ','ADJwvel '

filename(1) = 'diags/adjState_3d_snaps',
frequency(1)=-86400.0,
timePhase(1)=0.0,

#---
fields(1:5,2) = 'ADJtheta','ADJsalt ',

'ADJuvel ','ADJvvel ','ADJwvel '
filename(2) = 'diags/adjState_3d_avg',
frequency(2)= 86400.0,

#---
&

Note: the diagnostics package automatically provides a phase shift of 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/2, so specify timePhase = 0 to
match output from adjDumpFreq.

9.1.4.3 Adding new diagnostics to the code

In order to define and include as part of the diagnostic output any field that is desired for a particular experiment, two
steps must be taken. The first is to enable the “User Diagnostic” in data.diagnostics. This is accomplished by
adding one of the “User Diagnostic” field names (see available diagnostics):UDIAG1 through UDIAG10, for multi-
level fields, or SDIAG1 through SDIAG10 for single level fields) to the data.diagnostics namelist in one of
the output streams. The second step is to add a call to diagnostics_fill.F from the subroutine in which the quantity
desired for diagnostic output is computed.

In order to add a new diagnostic to the permanent set of diagnostics that the main model or any package contains as
part of its diagnostics menu, the subroutine diagnostics_addtolist.F should be called during the initialization phase of
the main model or package. For the main model, the call should be made from subroutine diagnostics_main_init.F,
and for a package, the call should probably be made from from inside the particular package’s init_fixed routine. A
typical code sequence to set the input arguments to diagnostics_addtolist.F would look like:

diagName = 'RHOAnoma'
diagTitle = 'Density Anomaly (=Rho-rhoConst)'
diagUnits = 'kg/m^3 '
diagCode = 'SMR MR '
CALL DIAGNOSTICS\_ADDTOLIST( diagNum,

I diagName, diagCode, diagUnits, diagTitle, 0, myThid )

If the new diagnostic quantity is associated with either a vector pair or a diagnostic counter, the diagMate argu-
ment must be provided with the proper index corresponding to the “mate”. The output argument from diagnos-
tics_addtolist.F that is called diagNum here contains a running total of the number of diagnostics defined in the code
up to any point during the run. The sequence number for the next two diagnostics defined (the two components of
the vector pair, for instance) will be diagNum+1 and diagNum+2. The definition of the first component of the vector
pair must fill the “mate” segment of the diagCode as diagnostic number diagNum+2. Since the subroutine increments
diagNum, the definition of the second component of the vector fills the “mate” part of diagCode with diagNum. A
code sequence for this case would look like:

diagName = 'UVEL '
diagTitle = 'Zonal Component of Velocity (m/s)'

(continues on next page)
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diagUnits = 'm/s '
diagCode = 'UUR MR '
diagMate = diagNum + 2
CALL DIAGNOSTICS_ADDTOLIST( diagNum,

I diagName, diagCode, diagUnits, diagTitle, diagMate, myThid )

diagName = 'VVEL '
diagTitle = 'Meridional Component of Velocity (m/s)'
diagUnits = 'm/s '
diagCode = 'VVR MR '
diagMate = diagNum
CALL DIAGNOSTICS_ADDTOLIST( diagNum,

I diagName, diagCode, diagUnits, diagTitle, diagMate, myThid )

9.1.4.4 MITgcm kernel available diagnostics list:

----------------------------------------------------------------------------
<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c)
-------------------------------------------------------------------------------------
SDIAG1 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic
→˓ #1
SDIAG2 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic
→˓ #2
SDIAG3 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic
→˓ #3
SDIAG4 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic
→˓ #4
SDIAG5 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic
→˓ #5
SDIAG6 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic
→˓ #6
SDIAG7 | 1 | |SU L1|user-defined |User-Defined U.pt Surface
→˓Diagnostic #7
SDIAG8 | 1 | |SV L1|user-defined |User-Defined V.pt Surface
→˓Diagnostic #8
SDIAG9 | 1 | 10 |UU L1|user-defined |User-Defined U.vector Surface Diag.
→˓ #9
SDIAG10 | 1 | 9 |VV L1|user-defined |User-Defined V.vector Surface Diag.
→˓#10
UDIAG1 | 50 | |SM MR|user-defined |User-Defined Model-Level Diagnostic
→˓ #1
UDIAG2 | 50 | |SM MR|user-defined |User-Defined Model-Level Diagnostic
→˓ #2
UDIAG3 | 50 | |SMR MR|user-defined |User-Defined Model-Level Diagnostic
→˓ #3
UDIAG4 | 50 | |SMR MR|user-defined |User-Defined Model-Level Diagnostic
→˓ #4
UDIAG5 | 50 | |SU MR|user-defined |User-Defined U.pt Model-Level Diag.
→˓ #5
UDIAG6 | 50 | |SV MR|user-defined |User-Defined V.pt Model-Level Diag.
→˓ #6
UDIAG7 | 50 | 18 |UUR MR|user-defined |User-Defined U.vector Model-Lev
→˓Diag.#7
UDIAG8 | 50 | 17 |VVR MR|user-defined |User-Defined V.vector Model-Lev
→˓Diag.#8

(continues on next page)
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UDIAG9 | 50 | |SM ML|user-defined |User-Defined Phys-Level Diagnostic
→˓ #9
UDIAG10 | 50 | |SM ML|user-defined |User-Defined Phys-Level Diagnostic
→˓#10
SDIAGC | 1 | 22 |SM C L1|user-defined |User-Defined Counted Surface
→˓Diagnostic
SDIAGCC | 1 | |SM L1|count |User-Defined Surface Diagnostic
→˓Counter
ETAN | 1 | |SM M1|m |Surface Height Anomaly
ETANSQ | 1 | |SM P M1|m^2 |Square of Surface Height Anomaly
DETADT2 | 1 | |SM M1|m^2/s^2 |Square of Surface Height Anomaly
→˓Tendency
THETA | 50 | |SMR MR|degC |Potential Temperature
SALT | 50 | |SMR MR|psu |Salinity
RELHUM | 50 | |SMR MR|percent |Relative Humidity
SALTanom| 50 | |SMR MR|psu |Salt anomaly (=SALT-35; g/kg)
UVEL | 50 | 31 |UUR MR|m/s |Zonal Component of Velocity (m/s)
VVEL | 50 | 30 |VVR MR|m/s |Meridional Component of Velocity (m/
→˓s)
WVEL | 50 | |WM LR|m/s |Vertical Component of Velocity (r_
→˓units/s)
THETASQ | 50 | |SMRP MR|degC^2 |Square of Potential Temperature
SALTSQ | 50 | |SMRP MR|(psu)^2 |Square of Salinity
SALTSQan| 50 | |SMRP MR|(psu)^2 |Square of Salt anomaly (=(SALT-35)^
→˓2 (g^2/kg^2)
UVELSQ | 50 | 37 |UURP MR|m^2/s^2 |Square of Zonal Comp of Velocity (m^
→˓2/s^2)
VVELSQ | 50 | 36 |VVRP MR|m^2/s^2 |Square of Meridional Comp of
→˓Velocity (m^2/s^2)
WVELSQ | 50 | |WM P LR|m^2/s^2 |Square of Vertical Comp of Velocity
UE_VEL_C| 50 | 40 |UMR MR|m/s |Eastward Velocity (m/s) (cell
→˓center)
VN_VEL_C| 50 | 39 |VMR MR|m/s |Northward Velocity (m/s) (cell
→˓center)
UV_VEL_C| 50 | 41 |UMR MR|m^2/s^2 |Product of horizontal Comp of
→˓velocity (cell center)
UV_VEL_Z| 50 | 42 |UZR MR|m^2/s^2 |Meridional Transport of Zonal
→˓Momentum (m^2/s^2)
WU_VEL | 50 | |WU LR|m.m/s^2 |Vertical Transport of Zonal Momentum
WV_VEL | 50 | |WV LR|m.m/s^2 |Vertical Transport of Meridional
→˓Momentum
UVELMASS| 50 | 46 |UUr MR|m/s |Zonal Mass-Weighted Comp of
→˓Velocity (m/s)
VVELMASS| 50 | 45 |VVr MR|m/s |Meridional Mass-Weighted Comp of
→˓Velocity (m/s)
WVELMASS| 50 | |WM LR|m/s |Vertical Mass-Weighted Comp of
→˓Velocity
PhiVEL | 50 | 45 |SMR P MR|m^2/s |Horizontal Velocity Potential (m^2/
→˓s)
PsiVEL | 50 | 48 |SZ P MR|m.m^2/s |Horizontal Velocity Stream-Function
UTHMASS | 50 | 51 |UUr MR|degC.m/s |Zonal Mass-Weight Transp of Pot Temp
VTHMASS | 50 | 50 |VVr MR|degC.m/s |Meridional Mass-Weight Transp of
→˓Pot Temp
WTHMASS | 50 | |WM LR|degC.m/s |Vertical Mass-Weight Transp of Pot
→˓Temp (K.m/s)
USLTMASS| 50 | 54 |UUr MR|psu.m/s |Zonal Mass-Weight Transp of Salinity
VSLTMASS| 50 | 53 |VVr MR|psu.m/s |Meridional Mass-Weight Transp of
→˓Salinity (continues on next page)
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WSLTMASS| 50 | |WM LR|psu.m/s |Vertical Mass-Weight Transp of
→˓Salinity
UVELTH | 50 | 57 |UUR MR|degC.m/s |Zonal Transport of Pot Temp
VVELTH | 50 | 56 |VVR MR|degC.m/s |Meridional Transport of Pot Temp
WVELTH | 50 | |WM LR|degC.m/s |Vertical Transport of Pot Temp
UVELSLT | 50 | 60 |UUR MR|psu.m/s |Zonal Transport of Salinity
VVELSLT | 50 | 59 |VVR MR|psu.m/s |Meridional Transport of Salinity
WVELSLT | 50 | |WM LR|psu.m/s |Vertical Transport of Salinity
UVELPHI | 50 | 63 |UUr MR|m^3/s^3 |Zonal Mass-Weight Transp of
→˓Pressure Pot.(p/rho) Anomaly
VVELPHI | 50 | 62 |VVr MR|m^3/s^3 |Merid. Mass-Weight Transp of
→˓Pressure Pot.(p/rho) Anomaly
RHOAnoma| 50 | |SMR MR|kg/m^3 |Density Anomaly (=Rho-rhoConst)
RHOANOSQ| 50 | |SMRP MR|kg^2/m^6 |Square of Density Anomaly (=(Rho-
→˓rhoConst)^2)
URHOMASS| 50 | 67 |UUr MR|kg/m^2/s |Zonal Transport of Density
VRHOMASS| 50 | 66 |VVr MR|kg/m^2/s |Meridional Transport of Density
WRHOMASS| 50 | |WM LR|kg/m^2/s |Vertical Transport of Density
WdRHO_P | 50 | |WM LR|kg/m^2/s |Vertical velocity times delta^
→˓k(Rho)_at-const-P
WdRHOdP | 50 | |WM LR|kg/m^2/s |Vertical velocity times delta^
→˓k(Rho)_at-const-T,S
PHIHYD | 50 | |SMR MR|m^2/s^2 |Hydrostatic Pressure Pot.(p/rho)
→˓Anomaly
PHIHYDSQ| 50 | |SMRP MR|m^4/s^4 |Square of Hyd. Pressure Pot.(p/rho)
→˓Anomaly
PHIBOT | 1 | |SM M1|m^2/s^2 |Bottom Pressure Pot.(p/rho) Anomaly
PHIBOTSQ| 1 | |SM P M1|m^4/s^4 |Square of Bottom Pressure Pot.(p/
→˓rho) Anomaly
PHIHYDcR| 50 | |SMR MR|m^2/s^2 |Hydrostatic Pressure Pot.(p/rho)
→˓Anomaly @ const r
MXLDEPTH| 1 | |SM M1|m |Mixed-Layer Depth (>0)
DRHODR | 50 | |SM LR|kg/m^4 |Stratification: d.Sigma/dr (kg/m3/r_
→˓unit)
CONVADJ | 50 | |SMR LR|fraction |Convective Adjustment Index [0-1]
oceTAUX | 1 | 80 |UU U1|N/m^2 |zonal surface wind stress, >0
→˓increases uVel
oceTAUY | 1 | 79 |VV U1|N/m^2 |meridional surf. wind stress, >0
→˓increases vVel
atmPload| 1 | |SM U1|Pa |Atmospheric pressure loading
sIceLoad| 1 | |SM U1|kg/m^2 |sea-ice loading (in Mass of
→˓ice+snow / area unit)
oceFWflx| 1 | |SM U1|kg/m^2/s |net surface Fresh-Water flux into
→˓the ocean (+=down), >0 decreases salinity
oceSflux| 1 | |SM U1|g/m^2/s |net surface Salt flux into the
→˓ocean (+=down), >0 increases salinity
oceQnet | 1 | |SM U1|W/m^2 |net surface heat flux into the
→˓ocean (+=down), >0 increases theta
oceQsw | 1 | |SM U1|W/m^2 |net Short-Wave radiation (+=down), >
→˓0 increases theta
oceFreez| 1 | |SM U1|W/m^2 |heating from freezing of sea-water
→˓(allowFreezing=T)
TRELAX | 1 | |SM U1|W/m^2 |surface temperature relaxation, >0
→˓increases theta
SRELAX | 1 | |SM U1|g/m^2/s |surface salinity relaxation, >0
→˓increases salt
surForcT| 1 | |SM U1|W/m^2 |model surface forcing for
→˓Temperature, >0 increases theta (continues on next page)
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surForcS| 1 | |SM U1|g/m^2/s |model surface forcing for Salinity,
→˓>0 increases salinity
TFLUX | 1 | |SM U1|W/m^2 |total heat flux (match heat-content
→˓variations), >0 increases theta
SFLUX | 1 | |SM U1|g/m^2/s |total salt flux (match salt-content
→˓variations), >0 increases salt
RCENTER | 50 | |SM MR|m |Cell-Center Height
RSURF | 1 | |SM M1|m |Surface Height
TOTUTEND| 50 | 97 |UUR MR|m/s/day |Tendency of Zonal Component of
→˓Velocity
TOTVTEND| 50 | 96 |VVR MR|m/s/day |Tendency of Meridional Component of
→˓Velocity
TOTTTEND| 50 | |SMR MR|degC/day |Tendency of Potential Temperature
TOTSTEND| 50 | |SMR MR|psu/day |Tendency of Salinity
----------------------------------------------------------------------------
<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c)
----------------------------------------------------------------------------
MoistCor| 50 | |SM MR|W/m^2 |Heating correction due to moist
→˓thermodynamics
gT_Forc | 50 | |SMR MR|degC/s |Potential Temp. forcing tendency
gS_Forc | 50 | |SMR MR|psu/s |Salinity forcing tendency
AB_gT | 50 | |SMR MR|degC/s |Potential Temp. tendency from Adams-
→˓Bashforth
AB_gS | 50 | |SMR MR|psu/s |Salinity tendency from Adams-
→˓Bashforth
gTinAB | 50 | |SMR MR|degC/s |Potential Temp. tendency going in
→˓Adams-Bashforth
gSinAB | 50 | |SMR MR|psu/s |Salinity tendency going in Adams-
→˓Bashforth
AB_gU | 50 | 108 |UUR MR|m/s^2 |U momentum tendency from Adams-
→˓Bashforth
AB_gV | 50 | 107 |VVR MR|m/s^2 |V momentum tendency from Adams-
→˓Bashforth
ADVr_TH | 50 | |WM LR|degC.m^3/s |Vertical Advective Flux of Pot.
→˓Temperature
ADVx_TH | 50 | 111 |UU MR|degC.m^3/s |Zonal Advective Flux of Pot.
→˓Temperature
ADVy_TH | 50 | 110 |VV MR|degC.m^3/s |Meridional Advective Flux of Pot.
→˓Temperature
DFrE_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.
→˓Temperature (Explicit part)
DFxE_TH | 50 | 114 |UU MR|degC.m^3/s |Zonal Diffusive Flux of Pot.
→˓Temperature
DFyE_TH | 50 | 113 |VV MR|degC.m^3/s |Meridional Diffusive Flux of Pot.
→˓Temperature
DFrI_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.
→˓Temperature (Implicit part)
SM_x_TH | 50 | 117 |UM MR|degC |Pot.Temp. 1rst Order Moment Sx
SM_y_TH | 50 | 116 |VM MR|degC |Pot.Temp. 1rst Order Moment Sy
SM_z_TH | 50 | |SM MR|degC |Pot.Temp. 1rst Order Moment Sz
SMxx_TH | 50 | 120 |UM MR|degC |Pot.Temp. 2nd Order Moment Sxx
SMyy_TH | 50 | 119 |VM MR|degC |Pot.Temp. 2nd Order Moment Syy
SMzz_TH | 50 | |SM MR|degC |Pot.Temp. 2nd Order Moment Szz
SMxy_TH | 50 | |SM MR|degC |Pot.Temp. 2nd Order Moment Sxy
SMxz_TH | 50 | 124 |UM MR|degC |Pot.Temp. 2nd Order Moment Sxz
SMyz_TH | 50 | 123 |VM MR|degC |Pot.Temp. 2nd Order Moment Syz
SM_v_TH | 50 | |SM P MR|(degC)^2 |Pot.Temp. sub-grid variance
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9.1. pkg/diagnostics – A Flexible Infrastructure 563



MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

(continued from previous page)

ADVr_SLT| 50 | |WM LR|psu.m^3/s |Vertical Advective Flux of
→˓Salinity
ADVx_SLT| 50 | 128 |UU MR|psu.m^3/s |Zonal Advective Flux of
→˓Salinity
ADVy_SLT| 50 | 127 |VV MR|psu.m^3/s |Meridional Advective Flux of
→˓Salinity
DFrE_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity
→˓ (Explicit part)
DFxE_SLT| 50 | 131 |UU MR|psu.m^3/s |Zonal Diffusive Flux of
→˓Salinity
DFyE_SLT| 50 | 130 |VV MR|psu.m^3/s |Meridional Diffusive Flux of
→˓Salinity
DFrI_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity
→˓ (Implicit part)
SALTFILL| 50 | |SM MR|psu.m^3/s |Filling of Negative Values of
→˓Salinity
SM_x_SLT| 50 | 135 |UM MR|psu |Salinity 1rst Order Moment Sx
SM_y_SLT| 50 | 134 |VM MR|psu |Salinity 1rst Order Moment Sy
SM_z_SLT| 50 | |SM MR|psu |Salinity 1rst Order Moment Sz
SMxx_SLT| 50 | 138 |UM MR|psu |Salinity 2nd Order Moment Sxx
SMyy_SLT| 50 | 137 |VM MR|psu |Salinity 2nd Order Moment Syy
SMzz_SLT| 50 | |SM MR|psu |Salinity 2nd Order Moment Szz
SMxy_SLT| 50 | |SM MR|psu |Salinity 2nd Order Moment Sxy
SMxz_SLT| 50 | 142 |UM MR|psu |Salinity 2nd Order Moment Sxz
SMyz_SLT| 50 | 141 |VM MR|psu |Salinity 2nd Order Moment Syz
SM_v_SLT| 50 | |SM P MR|(psu)^2 |Salinity sub-grid variance
VISCAHZ | 50 | |SZ MR|m^2/s |Harmonic Visc Coefficient (m2/s)
→˓(Zeta Pt)
VISCA4Z | 50 | |SZ MR|m^4/s |Biharmonic Visc Coefficient (m4/s)
→˓(Zeta Pt)
VISCAHD | 50 | |SM MR|m^2/s |Harmonic Viscosity Coefficient (m2/
→˓s) (Div Pt)
VISCA4D | 50 | |SM MR|m^4/s |Biharmonic Viscosity Coefficient
→˓(m4/s) (Div Pt)
VISCAHW | 50 | |WM LR|m^2/s |Harmonic Viscosity Coefficient (m2/
→˓s) (W Pt)
VISCA4W | 50 | |WM LR|m^4/s |Biharmonic Viscosity Coefficient
→˓(m4/s) (W Pt)
VAHZMAX | 50 | |SZ MR|m^2/s |CFL-MAX Harm Visc Coefficient (m2/
→˓s) (Zeta Pt)
VA4ZMAX | 50 | |SZ MR|m^4/s |CFL-MAX Biharm Visc Coefficient (m4/
→˓s) (Zeta Pt)
VAHDMAX | 50 | |SM MR|m^2/s |CFL-MAX Harm Visc Coefficient (m2/
→˓s) (Div Pt)
VA4DMAX | 50 | |SM MR|m^4/s |CFL-MAX Biharm Visc Coefficient (m4/
→˓s) (Div Pt)
VAHZMIN | 50 | |SZ MR|m^2/s |RE-MIN Harm Visc Coefficient (m2/s)
→˓(Zeta Pt)
VA4ZMIN | 50 | |SZ MR|m^4/s |RE-MIN Biharm Visc Coefficient (m4/
→˓s) (Zeta Pt)
VAHDMIN | 50 | |SM MR|m^2/s |RE-MIN Harm Visc Coefficient (m2/s)
→˓(Div Pt)
VA4DMIN | 50 | |SM MR|m^4/s |RE-MIN Biharm Visc Coefficient (m4/
→˓s) (Div Pt)
VAHZLTH | 50 | |SZ MR|m^2/s |Leith Harm Visc Coefficient (m2/s)
→˓(Zeta Pt)
VA4ZLTH | 50 | |SZ MR|m^4/s |Leith Biharm Visc Coefficient (m4/
→˓s) (Zeta Pt) (continues on next page)
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VAHDLTH | 50 | |SM MR|m^2/s |Leith Harm Visc Coefficient (m2/s)
→˓(Div Pt)
VA4DLTH | 50 | |SM MR|m^4/s |Leith Biharm Visc Coefficient (m4/
→˓s) (Div Pt)
VAHZLTHD| 50 | |SZ MR|m^2/s |LeithD Harm Visc Coefficient (m2/s)
→˓(Zeta Pt)
VA4ZLTHD| 50 | |SZ MR|m^4/s |LeithD Biharm Visc Coefficient (m4/
→˓s) (Zeta Pt)
VAHDLTHD| 50 | |SM MR|m^2/s |LeithD Harm Visc Coefficient (m2/s)
→˓(Div Pt)
VA4DLTHD| 50 | |SM MR|m^4/s |LeithD Biharm Visc Coefficient (m4/
→˓s) (Div Pt)
VAHZSMAG| 50 | |SZ MR|m^2/s |Smagorinsky Harm Visc Coefficient
→˓(m2/s) (Zeta Pt)
VA4ZSMAG| 50 | |SZ MR|m^4/s |Smagorinsky Biharm Visc Coeff. (m4/
→˓s) (Zeta Pt)
VAHDSMAG| 50 | |SM MR|m^2/s |Smagorinsky Harm Visc Coefficient
→˓(m2/s) (Div Pt)
VA4DSMAG| 50 | |SM MR|m^4/s |Smagorinsky Biharm Visc Coeff. (m4/
→˓s) (Div Pt)
momKE | 50 | |SMR MR|m^2/s^2 |Kinetic Energy (in momentum Eq.)
momHDiv | 50 | |SMR MR|s^-1 |Horizontal Divergence (in momentum
→˓Eq.)
momVort3| 50 | |SZR MR|s^-1 |3rd component (vertical) of
→˓Vorticity
Strain | 50 | |SZR MR|s^-1 |Horizontal Strain of Horizontal
→˓Velocities
Tension | 50 | |SMR MR|s^-1 |Horizontal Tension of Horizontal
→˓Velocities
UBotDrag| 50 | 176 |UUR MR|m/s^2 |U momentum tendency from Bottom Drag
VBotDrag| 50 | 175 |VVR MR|m/s^2 |V momentum tendency from Bottom Drag
USidDrag| 50 | 178 |UUR MR|m/s^2 |U momentum tendency from Side Drag
VSidDrag| 50 | 177 |VVR MR|m/s^2 |V momentum tendency from Side Drag
Um_Diss | 50 | 180 |UUR MR|m/s^2 |U momentum tendency from Dissipation
Vm_Diss | 50 | 179 |VVR MR|m/s^2 |V momentum tendency from Dissipation
Um_Advec| 50 | 182 |UUR MR|m/s^2 |U momentum tendency from Advection
→˓terms
Vm_Advec| 50 | 181 |VVR MR|m/s^2 |V momentum tendency from Advection
→˓terms
Um_Cori | 50 | 184 |UUR MR|m/s^2 |U momentum tendency from Coriolis
→˓term
Vm_Cori | 50 | 183 |VVR MR|m/s^2 |V momentum tendency from Coriolis
→˓term
Um_dPHdx| 50 | 186 |UUR MR|m/s^2 |U momentum tendency from
→˓Hydrostatic Pressure grad
Vm_dPHdy| 50 | 185 |VVR MR|m/s^2 |V momentum tendency from
→˓Hydrostatic Pressure grad
Um_Ext | 50 | 188 |UUR MR|m/s^2 |U momentum tendency from external
→˓forcing
Vm_Ext | 50 | 187 |VVR MR|m/s^2 |V momentum tendency from external
→˓forcing
Um_AdvZ3| 50 | 190 |UUR MR|m/s^2 |U momentum tendency from Vorticity
→˓Advection
Vm_AdvZ3| 50 | 189 |VVR MR|m/s^2 |V momentum tendency from Vorticity
→˓Advection
Um_AdvRe| 50 | 192 |UUR MR|m/s^2 |U momentum tendency from vertical
→˓Advection (Explicit part)
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Vm_AdvRe| 50 | 191 |VVR MR|m/s^2 |V momentum tendency from vertical
→˓Advection (Explicit part)
VISrI_Um| 50 | |WU LR|m^4/s^2 |Vertical Viscous Flux of U
→˓momentum (Implicit part)
VISrI_Vm| 50 | |WV LR|m^4/s^2 |Vertical Viscous Flux of V
→˓momentum (Implicit part)

9.1.4.5 MITgcm packages: available diagnostics lists

For a list of the diagnostic fields available in the different MITgcm packages, follow the link to the available diagnostics
listing in the manual section describing the package:

• pkg/aim_v23: available diagnostics

• pkg/exf: available diagnostics

• pkg/gchem: available diagnostics

• pkg/generic_advdiff: available diagnostics

• pkg/gridalt: available diagnostics

• pkg/gmredi: available diagnostics

• pkg/fizhi: available diagnostics

• pkg/kpp: available diagnostics

• pkg/land: available diagnostics

• pkg/mom_common: available diagnostics

• pkg/obcs: available diagnostics

• pkg/thsice: available diagnostics

• pkg/seaice: available diagnostics

• pkg/shap_filt: available diagnostics

• pkg/ptracers: available diagnostics

9.2 Fortran Native I/O: pkg/mdsio and pkg/rw

9.2.1 pkg/mdsio

9.2.1.1 Introduction

pkg/mdsio contains a group of Fortran routines intended as a general interface for reading and writing direct-access
(“binary”) Fortran files. pkg/mdsio routines are used by pkg/rw.
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9.2.1.2 Using pkg/mdsio

pkg/mdsio is geared toward the reading and writing of floating point (Fortran REAL*4 or REAL*8) arrays. It assumes
that the in-memory layout of all arrays follows the per-tile MITgcm convention

C Example of a "2D" array
_RL anArray(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)

C Example of a "3D" array
_RL anArray(1-OLx:sNx+OLx,1-OLy:sNy+OLy,1:Nr,nSx,nSy)

where the first two dimensions are spatial or “horizontal” indicies that include a “halo” or exchange region (please see
Section 6 and Section 8.2.5 which describe domain decomposition), and the remaining indicies (Nr, nSx, and nSx)
are often present but may or may not be necessary for a specific variable..

In order to write output, pkg/mdsio is called with a function such as:

CALL MDSWRITEFIELD(fn,prec,lgf,typ,Nr,arr,irec,myIter,myThid)

where:

fn is a CHARACTER string containing a file “base” name which will then be used to create file names
that contain tile and/or model iteration indicies

prec is an integer that contains one of two globally defined values (precFloat64 or precFloat32)

lgf is a LOGICAL that typically contains the globally defined globalFile option which specifies the
creation of globally (spatially) concatenated files

typ is a CHARACTER string that specifies the type of the variable being written (’RL’ or ’RS’)

Nr is an integer that specifies the number of vertical levels within the variable being written

arr is the variable (array) to be written

irec is the starting record within the output file that will contain the array

myIter,myThid are integers containing, respectively, the current model iteration count and the unique
thread ID for the current context of execution

As one can see from the above (generic) example, enough information is made available (through both the argument
list and through common blocks) for pkg/mdsio to perform the following tasks:

1. open either a per-tile file such as:

uVel.0000302400.003.001.data

or a “global” file such as

uVel.0000302400.data

2. byte-swap (as necessary) the input array and write its contents (minus any halo information) to the binary file –
or to the correct location within the binary file if the globalfile option is used, and

3. create an ASCII–text metadata file (same name as the binary but with a .meta extension) describing the binary
file contents (often, for later use with the MATLAB rdmds() utility).

Reading output with pkg/mdsio is very similar to writing it. A typical function call is

CALL MDSREADFIELD(fn,prec,typ,Nr,arr,irec,myThid)

where variables are exactly the same as the MDSWRITEFIELD example provided above. It is important to note that
the lgf argument is missing from the MDSREADFIELD function. By default, pkg/mdsio will first try to read from an
appropriately named global file and, failing that, will try to read from a per-tile file.
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9.2.1.3 Important considerations

When using pkg/mdsio, one should be aware of the following package features and limitations:

• Byte-swapping: For the most part, byte-swapping is gracefully handled. All files intended for reading/writing
by pkg/mdsio should contain big-endian (sometimes called “network byte order”) data. By handling byte-
swapping within the model, MITgcm output is more easily ported between different machines, architectures,
compilers, etc. Byteswapping can be turned on/off at compile time within pkg/mdsio using the _BYTESWAPIO
CPP macro which is usually set within a genmake2 options file or optfile (see Section 3.5.2.2). Additionally,
some compilers may have byte-swap options that are speedier or more convenient to use.

• Data types: Data types are currently limited to single– or double–precision floating point values. These values
can be converted, on-the-fly, from one to the other so that any combination of either single– or double–precision
variables can be read from or written to files containing either single– or double–precision data.

• Array sizes: Array sizes are limited; pkg/mdsio is very much geared towards the reading/writing of per-tile
(that is, domain-decomposed and halo-ed) arrays. Data that cannot be made to “fit” within these assumed sizes
can be challenging to read or write with pkg/mdsio.

• Tiling: Tiling or domain decomposition is automatically handled by pkg/mdsio for logically rectangular grid
topologies (e.g., lat-lon grids) and “standard” cubed sphere topologies. More complicated topologies will prob-
ably not be supported. pkg/mdsio can, without any coding changes, read and write to/from files that were run
on the same global grid but with different tiling (grid decomposition) schemes. For example, pkg/mdsio can use
and/or create identical input/output files for a “C32” cube when the model is run with either 6, 12, or 24 tiles
(corresponding to 1, 2 or 4 tiles per cubed sphere face). This is one of the primary advantages that the pkg/mdsio
package has over pkg/mnc.

• Single-CPU I/O: This option can be specified with the flag useSingleCpuIO = .TRUE. in the PARM01
namelist within the main data file. Single–CPU I/O mode is appropriate for computers (e.g., some SGI sys-
tems) where it can either speed overall I/O or solve problems where the operating system or file systems cannot
correctly handle multiple threads or MPI processes simultaneously writing to the same file.

• Meta-data: Meta-data is written by MITgcm on a per-file basis using a second file with a .meta extension as
described above. MITgcm itself does not read the *.meta files, they are there primarly for convenience during
post-processing. One should be careful not to delete the meta-data files when using MATLAB post-processing
scripts such as rdmds() since it relies upon them.

• Numerous files: If one is not careful (e.g., dumping many variables every time step over a long integration),
pkg/mdsio will write copious amounts of files. The creation of both a binary (*.data) and ASCII text meta-
data (*.meta) file for each output type step exacerbates the issue. Some operating systems do not gracefully
handle large numbers (e.g., many thousands to millions) of files within one directory. So care should be taken
to split output into smaller groups using subdirectories.

• Overwriting output: Overwriting of output is the default behavior for pkg/mdsio. If a model tries to write to
a file name that already exists, the older file will be deleted. For this reason, MITgcm users should be careful
to move output that they wish to keep into, for instance, subdirectories before performing subsequent runs that
may over–lap in time or otherwise produce files with identical names (e.g., Monte-Carlo simulations).

• No “halo” information: “Halo” information is neither written nor read by pkg/mdsio. Along the horizontal
dimensions, all variables are written in an sNx–by–sNy fashion. So, although variables (arrays) may be defined
at different locations on Arakawa grids [U (right/left horizontal edges), V (top/bottom horizontal edges), M
(mass or cell center), or Z (vorticity or cell corner) points], they are all written using only interior (1:sNx
and 1:sNy) values. For quantities defined at U, V, and M points, writing 1:sNx and 1:sNy for every tile is
sufficient to ensure that all values are written globally for some grids (e.g., cubed sphere, re-entrant channels, and
doubly-periodic rectangular regions). For Z points, failing to write values at the sNx+1 and sNy+1 locations
means that, for some tile topologies, not all values are written. For instance, with a cubed sphere topology at
least two corner values are “lost” (fail to be written for any tile) if the sNx+1 and sNy+1 values are ignored.
If this is an issue, we recommend switching to pkg/mnc, which writes the sNx+1 and sNy+1 grid values for
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the U, V, and Z locations. Also, pkg/mnc is capable of reading and/or writing entire halo regions and more
complicated array shapes which can be helpful when debugging – features that do not exist within pkg/mdsio.

CPP Flag Name Default Description
SAFE_IO #undef if defined, stops the model from overwriting its own

files
ALLOW_WHIO #undef I/O will include tile halos in the files

9.2.2 pkg/rw basic binary I/O utilities

pkg/rw provides a very rudimentary binary I/O capability for quickly writing single record direct-access Fortran binary
files. It is primarily used for writing diagnostic output.

9.2.2.1 Introduction

pkg/rw is an interface to the more general pkg/mdsio package. pkg/rw can be used to write or read direct-access
Fortran binary files for 2-D XY and 3-D XYZ arrays. The arrays are assumed to have been declared according to the
standard MITgcm 2-D or 3-D floating point array type:

C Example of declaring a standard two dimensional "long"
C floating point type array (the _RL macro is usually
C mapped to 64-bit floats in most configurations)

_RL anArray(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)

Each call to a pkg/rw read or write routine will read (or write) to the first record of a file. To write direct access Fortran
files with multiple records use the higher-level routines in pkg/mdsio rather than pkg/rw routines. To write self-
describing files that contain embedded information describing the variables being written and the spatial and temporal
locations of those variables use the pkg/mnc instead (see Section 9.3) which produces netCDF format output.

CPP Flag Name Default Description
RW_SAFE_MFLDS #define use READ_MFLDS in “safe” mode (set/check/unset

for each file to read); involves more thread
synchronization which could slow down multi-threaded
run

RW_DISABLE_SMALL_OVERLAP #undef disable writing of small-overlap size array (to reduce
memory size since those S/R do a local copy to 3-D
full-size overlap array)

9.3 NetCDF I/O: pkg/mnc

Package pkg/mnc is a set of convenience routines written to expedite the process of creating, appending, and reading
netCDF files. NetCDF is an increasingly popular self-describing file format intended primarily for scientific data sets.
An extensive collection of netCDF documentation, including a user’s guide, tutorial, FAQ, support archive and other
information can be obtained from UCAR’s web site http://www.unidata.ucar.edu/software/netcdf.

Since it is a “wrapper” for netCDF, pkg/mnc depends upon the Fortran-77 interface included with the standard NetCDF
v3.x library which is often called libnetcdf.a. Please contact your local systems administrators or email mitgcm-
support@mitgcm.org for help building and installing netCDF for your particular platform.
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Every effort has been made to allow pkg/mnc and pkg/mdsio (see Section 9.2) to peacefully co-exist. In may cases,
the model can read one format and write to the other. This side-by-side functionality can be used to, for instance, help
convert pickup files or other data sets between the two formats.

9.3.1 Using pkg/mnc

9.3.1.1 pkg/mnc configuration:

As with all MITgcm packages, pkg/mnc can be turned on or off at compile time using the packages.conf file or
the genmake2 -enable=mnc or -disable=mnc switches.

While pkg/mnc is likely to work “as is”, there are a few compile–time constants that may need to be increased for
simulations that employ large numbers of tiles within each process. Note that the important quantity is the maximum
number of tiles per process. Since MPI configurations tend to distribute large numbers of tiles over relatively large
numbers of MPI processes, these constants will rarely need to be increased.

If pkg/mnc runs out of space within its “lookup” tables during a simulation, then it will provide an error message along
with a recommendation of which parameter to increase. The parameters are all located within MNC_COMMON.h
and the ones that may need to be increased are:

Name Default Description
MNC_MAX_ID 1000 IDs for various low-level entities
MNC_MAX_INFO 400 IDs (mostly for object sizes)
MNC_CW_MAX_I 150 IDs for the “wrapper” layer

In those rare cases where pkg/mnc “out-of-memory” error messages are encountered, it is a good idea to increase the
too-small parameter by a factor of 2–10 in order to avoid wasting time on an iterative compile–test sequence.

9.3.1.2 pkg/mnc Inputs:

Like most MITgcm packages, all of pkg/mnc can be turned on/off at runtime using a single flag in data.pkg:

Name Type Default Description
useMNC L .FALSE. overall MNC ON/OFF switch

One important MNC–related flag is present in the main data namelist file in the PARM03 section:

Name Type Default Description
outputTypesInclusive L .FALSE. use all available output “types”

which specifies that turning on pkg/mnc for a particular type of output should not simultaneously turn off the default
output method as it normally does. Usually, this option is only used for debugging purposes since it is inefficient
to write output types using both pkg/mnc and pkg/mdsio or ASCII output. This option can also be helpful when
transitioning from pkg/mdsio to pkg/mnc since the output can be readily compared.

For run-time configuration, most of the pkg/mnc–related model parameters are contained within a Fortran namelist
file called data.mnc. The available parameters currently include:
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Name Type Default Description
mnc_use_outdir L .FALSE. create a directory for output
mnc_outdir_str S ’mnc_’ output directory name
mnc_outdir_date L .FALSE. embed date in the outdir name
mnc_outdir_num L .TRUE. optional
pickup_write_mnc L .TRUE. use MNC to write pickup files
pickup_read_mnc L .TRUE. use MNC to read pickup file
mnc_use_indir L .FALSE. use a directory (path) for input
mnc_indir_str S ‘ ’ input directory (or path) name
snapshot_mnc L .TRUE. write snapshot output w/MNC
monitor_mnc L .TRUE. write pkg/monitor output w/MNC
timeave_mnc L .TRUE. write pkg/timeave output w/MNC
autodiff_mnc L .TRUE. write pkg/autodiff output w/MNC
mnc_max_fsize R 2.1e+09 max allowable file size (<2GB)
mnc_filefreq R -1 frequency of new file creation (seconds)
readgrid_mnc L .FALSE. read grid quantities using MNC
mnc_echo_gvtypes L .FALSE. list pre-defined “types” (debug)

Unlike the older pkg/mdsio method, pkg/mnc has the ability to create or use existing output directories. If either
mnc_outdir_date or mnc_outdir_num is .TRUE., then pkg/mnc will try to create directories on a per process basis
for its output. This means that a single directory will be created for a non-MPI run and multiple directories (one per
MPI process) will be created for an MPI run. This approach was chosen since it works safely on both shared global
file systems (such as NFS and AFS) and on local (per-compute-node) file systems. And if both mnc_outdir_date and
mnc_outdir_num are .FALSE., then the pkg/mnc package will assume that the directory specified in mnc_outdir_str
already exists and will use it. This allows the user to create and specify directories outside of the model.

For input, pkg/mnc can use a single global input directory. This is a just convenience that allows pkg/mnc to gather
all of its input files from a path other than the current working directory. As with pkg/mdsio, the default is to use the
current working directory.

The flags snapshot_mnc, monitor_mnc, timeave_mnc, and autodiff_mnc allow the user to turn on pkg/mnc for par-
ticular “types” of output. If a type is selected, then pkg/mnc will be used for all output that matches that type. This
applies to output from the main model and from all of the optional MITgcm packages. Mostly, the names used here
correspond to the names used for the output frequencies in the main data namelist file.

The mnc_max_fsize parameter is a convenience added to help users work around common file size limitations. On
many computer systems, either the operating system, the file system(s), and/or the netCDF libraries are unable to
handle files greater than two or four gigabytes in size. pkg/mnc is able to work within this limitation by creating new
files which grow along the netCDF “unlimited” (usually, time) dimension. The default value for this parameter is just
slightly less than 2GB which is safe on virtually all operating systems. Essentially, this feature is a way to intelligently
and automatically split files output along the unlimited dimension. On systems that support large file sizes, these
splits can be readily concatenated (that is, un-done) using tools such as the NetCDF Operators (with ncrcat) which is
available at http://nco.sourceforge.net.

Another way users can force the splitting of pkg/mnc files along the time dimension is the mnc_filefreq option. With
it, files that contain variables with a temporal dimension can be split at regular intervals based solely upon the model
time (specified in seconds). For some problems, this can be much more convenient than splitting based upon file size.

Additional pkg/mnc–related parameters may be contained within each package. Please see the individual packages for
descriptions of their use of pkg/mnc.

9.3. NetCDF I/O: pkg/mnc 571

http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_use_outdir
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_outdir_str
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_outdir_date
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_outdir_num
http://mitgcm.org/lxr/ident/MITgcm?_i=pickup_write_mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=pickup_read_mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_use_indir
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_indir_str
http://mitgcm.org/lxr/ident/MITgcm?_i=snapshot_mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=monitor_mnc
https://github.com/MITgcm/MITgcm/blob/master/pkg/monitor
http://mitgcm.org/lxr/ident/MITgcm?_i=timeave_mnc
https://github.com/MITgcm/MITgcm/blob/master/pkg/timeave
http://mitgcm.org/lxr/ident/MITgcm?_i=autodiff_mnc
https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_max_fsize
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_filefreq
http://mitgcm.org/lxr/ident/MITgcm?_i=readgrid_mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_echo_gvtypes
https://github.com/MITgcm/MITgcm/blob/master/pkg/mdsio
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_outdir_date
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_outdir_num
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_outdir_date
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_outdir_num
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_outdir_str
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc
https://github.com/MITgcm/MITgcm/blob/master/pkg/mdsio
http://mitgcm.org/lxr/ident/MITgcm?_i=snapshot_mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=monitor_mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=timeave_mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=autodiff_mnc
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_max_fsize
http://www.unidata.ucar.edu/software/netcdf/
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc
http://www.unidata.ucar.edu/software/netcdf/
http://nco.sourceforge.net/nco.html#ncrcat-netCDF-Record-Concatenator
http://nco.sourceforge.net
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc
http://mitgcm.org/lxr/ident/MITgcm?_i=mnc_filefreq
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc
https://github.com/MITgcm/MITgcm/blob/master/pkg/mnc


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

9.3.1.3 pkg/mnc output:

Depending upon the flags used, pkg/mnc will produce zero or more directories containing one or more netCDF files
as output. These files are either mostly or entirely compliant with the netCDF “CF” convention (v1.0) and any confor-
mance issues will be fixed over time. The patterns used for file names are:

• «BASENAME».«tileNum».nc

• «BASENAME».«nIter».«faceNum».nc

• «BASENAME».«nIter».«tileNum».nc

and examples are:

• grid.t001.nc, grid.t002.nc

• input.0000072000.f001.nc

• state.0000000000.t001.nc, surfDiag.0000036000.t001.nc

where «BASENAME» is the name selected to represent a set of variables written together, «nIter» is the current itera-
tion number as specified in the main data namelist input file and written in a zero-filled 10-digit format, «tileNum»
is a three-or-more-digit zero-filled and t–prefixed tile number, «faceNum» is a three-or-more-digit zero-filled and
f–prefixed face number, and .nc is the file suffix specified by the current netCDF “CF” conventions.

Some example «BASENAME» values are:

grid contains the variables that describe the various grid constants related to locations, lengths, areas, etc.

state contains the variables output at the dumpFreq time frequency

pickup.ckptA, pickup.ckptB are the “rolling” checkpoint files

tave contains the time-averaged quantities from the main model

All pkg/mnc output is currently done in a “file-per-tile” fashion since most NetCDF v3.x implementations cannot
write safely within MPI or multi-threaded environments. This tiling is done in a global fashion and the tile numbers
are appended to the base names as described above. Some scripts to manipulate pkg/mnc output are available at
utils/matlab which includes a spatial “assembly” script mnc_assembly.m.

More general manipulations can be performed on netCDF files with the NetCDF Operators (“NCO”) at http://nco.
sourceforge.net or with the Climate Data Operators (“CDO”) at https://code.mpimet.mpg.de/projects/cdo.

Unlike the older pkg/mdsio routines, pkg/mnc reads and writes variables on different “grids” depending upon their
location in the Arakawa C–grid. The following table provides examples:

Name C–grid location # in X # in Y
Temperature mass sNx sNy
Salinity mass sNx sNy
U velocity U sNx+1 sNy
V velocity V sNx sNy+1
Vorticity vorticity sNx+1 sNy+1

and the intent is two–fold:

1. For some grid topologies it is impossible to output all quantities using only sNx,sNy arrays for every tile. Two
examples of this failure are the missing corners problem for vorticity values on the cubed sphere and the velocity
edge values for some open–boundary domains.

2. Writing quantities located on velocity or vorticity points with the above scheme introduces a very small data
redundancy. However, any slight inconvenience is easily offset by the ease with which one can, on every
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individual tile, interpolate these values to mass points without having to perform an “exchange” (or “halo-
filling”) operation to collect the values from neighboring tiles. This makes the most common post–processing
operations much easier to implement.

9.3.2 pkg/mnc Troubleshooting

9.3.2.1 Build troubleshooting:

In order to build MITgcm with pkg/mnc enabled, the NetCDF v3.x Fortran-77 (not Fortran-90) library must be avail-
able. This library is composed of a single header file (called netcdf.inc) and a single library file (usually called
libnetcdf.a) and it must be built with the same compiler with compatible compiler options as the one used to
build MITgcm (in other words, while one does not have to build libnetcdf.a with the same exact set of com-
piler options as MITgcm, one must avoid using some specific different compiler options which are incompatible, i.e.,
causing a compile-time or run-time error).

For more details concerning the netCDF build and install process, please visit the Getting and Building NetCDF guide
which includes an extensive list of known–good netCDF configurations for various platforms.

9.3.2.2 Runtime troubleshooting:

Please be aware of the following:

• As a safety feature, the pkg/mnc does not, by default, allow pre-existing files to be appended to or overwritten.
This is in contrast to the older pkg/mdsio which will, without any warning, overwrite existing files. If MITgcm
aborts with an error message about the inability to open or write to a netCDF file, please check first whether
you are attempting to overwrite files from a previous run.

• The constraints placed upon the “unlimited” (or “record”) dimension inherent with NetCDF v3.x make it very
inefficient to put variables written at potentially different intervals within the same file. For this reason, pkg/mnc
output is split into groups of files which attempt to reflect the nature of their content.

• On many systems, netCDF has practical file size limits on the order of 2–4GB (the maximium memory ad-
dressable with 32bit pointers or pointer differences) due to a lack of operating system, compiler, and/or library
support. The latest revisions of NetCDF v3.x have large file support and, on some operating systems, file sizes
are only limited by available disk space.

• There is an 80 character limit to the total length of all file names. This limit includes the directory (or path)
since paths and file names are internally appended. Generally, file names will not exceed the limit and paths can
usually be shortened using, for example, soft links.

• pkg/mnc does not (yet) provide a mechanism for reading information from a single “global” file as can be done
with pkg/mdsio. This is in progress.

9.3.3 pkg/mnc Internals

pkg/mnc is a two-level convenience library (or “wrapper”) for most of the netCDF Fortran API. Its purpose is to
streamline the user interface to netCDF by maintaining internal relations (look-up tables) keyed with strings (or names)
and entities such as netCDF files, variables, and attributes.

The two levels of pkg/mnc are:

Upper level

The upper level contains information about two kinds of associations:
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grid type is lookup table indexed with a grid type name. Each grid type name is associated with a
number of dimensions, the dimension sizes (one of which may be unlimited), and starting and ending
index arrays. The intent is to store all the necessary size and shape information for the Fortran
arrays containing MITgcm–style “tile” variables (i.e., a central region surrounded by a variably-
sized “halo” or exchange region as shown in Figure 6.5 and Figure 6.6).

variable type is a lookup table indexed by a variable type name. For each name, the table contains a
reference to a grid type for the variable and the names and values of various attributes.

Within the upper level, these associations are not permanently tied to any particular netCDF file. This
allows the information to be re-used over multiple file reads and writes.

Lower level

In the lower (or internal) level, associations are stored for netCDF files and many of the entities that
they contain including dimensions, variables, and global attributes. All associations are on a per-file
basis. Thus, each entity is tied to a unique netCDF file and will be created or destroyed when files are,
respectively, opened or closed.

9.3.3.1 pkg/mnc grid–tTypes and variable–types:

As a convenience for users, pkg/mnc includes numerous routines to aid in the writing of data to netCDF format.
Probably the biggest convenience is the use of pre-defined “grid types” and “variable types”. These “types” are simply
look-up tables that store dimensions, indicies, attributes, and other information that can all be retrieved using a single
character string.

The “grid types” are a way of mapping variables within MITgcm to netCDF arrays. Within MITgcm, most spatial
variables are defined using 2–D or 3–D arrays with “overlap” regions (see Figure 6.5, a possible vertical index, and
Figure 6.6) and tile indicies such as the following “U” velocity:

_RL uVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)

as defined in DYNVARS.h.

The grid type is a character string that encodes the presence and types associated with the four possible dimensions.
The character string follows the format:

«H0»_«H1»_«H2»__«V»__«T»

(note the double underscore between «H2» and «V», and «V» and «T») where the terms «H0», «H1», «H2», «V»,
«T» can be almost any combination of the following:

Horizontal Vertical Time
H0: location H1: dimensions H2: halo V: location T: level
– xy Hn – –
U x Hy i t
V y c
Cen
Cor

A example list of all pre-defined combinations is contained in the file pkg/mnc/pre-defined_grids.txt.

The variable type is an association between a variable type name and the following items:

Item Purpose
grid type defines the in-memory arrangement
bi,bj dimensions tiling indices, if present
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and is used by the mnc_cw__[R|W] subroutines for reading and writing variables.

9.3.3.2 Using pkg/mnc: examples

Writing variables to netCDF files can be accomplished in as few as two function calls. The first function call defines
a variable type, associates it with a name (character string), and provides additional information about the indicies for
the tile (bi,bj) dimensions. The second function call will write the data at, if necessary, the current time level within
the model.

Examples of the initialization calls can be found in the file model/src/ini_model_io.F where these function calls:

C Create MNC definitions for DYNVARS.h variables
CALL MNC_CW_ADD_VNAME('iter', '-_-_--__-__t', 0,0, myThid)
CALL MNC_CW_ADD_VATTR_TEXT('iter',1,

& 'long_name','iteration_count', myThid)

CALL MNC_CW_ADD_VNAME('model_time', '-_-_--__-__t', 0,0, myThid)
CALL MNC_CW_ADD_VATTR_TEXT('model_time',1,

& 'long_name','Model Time', myThid)
CALL MNC_CW_ADD_VATTR_TEXT('model_time',1,'units','s', myThid)

CALL MNC_CW_ADD_VNAME('U', 'U_xy_Hn__C__t', 4,5, myThid)
CALL MNC_CW_ADD_VATTR_TEXT('U',1,'units','m/s', myThid)
CALL MNC_CW_ADD_VATTR_TEXT('U',1,

& 'coordinates','XU YU RC iter', myThid)

CALL MNC_CW_ADD_VNAME('T', 'Cen_xy_Hn__C__t', 4,5, myThid)
CALL MNC_CW_ADD_VATTR_TEXT('T',1,'units','degC', myThid)
CALL MNC_CW_ADD_VATTR_TEXT('T',1,'long_name',

& 'potential_temperature', myThid)
CALL MNC_CW_ADD_VATTR_TEXT('T',1,

& 'coordinates','XC YC RC iter', myThid)

initialize four VNAMEs and add one or more netCDF attributes to each.

The four variables defined above are subsequently written at specific time steps within model/src/write_state.F using
the function calls:

C Write dynvars using the MNC package
CALL MNC_CW_SET_UDIM('state', -1, myThid)
CALL MNC_CW_I_W('I','state',0,0,'iter', myIter, myThid)
CALL MNC_CW_SET_UDIM('state', 0, myThid)
CALL MNC_CW_RL_W('D','state',0,0,'model_time',myTime, myThid)
CALL MNC_CW_RL_W('D','state',0,0,'U', uVel, myThid)
CALL MNC_CW_RL_W('D','state',0,0,'T', theta, myThid)

While it is easiest to write variables within typical 2-D and 3-D fields where all data is known at a given time, it is
also possible to write fields where only a portion (e.g., a “slab” or “slice”) is known at a given instant. An example is
provided within pkg/mom_vecinv/mom_vecinv.F where an offset vector is used:

IF (useMNC .AND. snapshot_mnc) THEN
CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'fV', uCf,

& offsets, myThid)
CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'fU', vCf,

& offsets, myThid)
ENDIF

to write a 3-D field one depth slice at a time.
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Each element in the offset vector corresponds (in order) to the dimensions of the “full” (or virtual) array and specifies
which are known at the time of the call. A zero within the offset array means that all values along that dimension are
available while a positive integer means that only values along that index of the dimension are available. In all cases,
the matrix passed is assumed to start (that is, have an in-memory structure) coinciding with the start of the specified
slice. Thus, using this offset array mechanism, a slice can be written along any single dimension or combinations of
dimensions.

9.4 Monitor: Simulation State Monitoring Toolkit

9.4.1 Introduction

pkg/monitor is primarily intended as a convenient method for calculating and writing the following statistics:

• minimum

• maximum

• mean

• standard deviation

for spatially distributed fields. By default, pkg/monitor output is sent to the “standard output” channel where it appears
as ASCII text containing a %MON string such as this example:

(PID.TID 0000.0001) %MON time_tsnumber = 3
(PID.TID 0000.0001) %MON time_secondsf = 3.6000000000000E+03
(PID.TID 0000.0001) %MON dynstat_eta_max = 1.0025466645951E-03
(PID.TID 0000.0001) %MON dynstat_eta_min = -1.0008899950901E-03
(PID.TID 0000.0001) %MON dynstat_eta_mean = 2.1037438449350E-14
(PID.TID 0000.0001) %MON dynstat_eta_sd = 5.0985228723396E-04
(PID.TID 0000.0001) %MON dynstat_eta_del2 = 3.5216706549525E-07
(PID.TID 0000.0001) %MON dynstat_uvel_max = 3.7594045977254E-05
(PID.TID 0000.0001) %MON dynstat_uvel_min = -2.8264287531564E-05
(PID.TID 0000.0001) %MON dynstat_uvel_mean = 9.1369201945671E-06
(PID.TID 0000.0001) %MON dynstat_uvel_sd = 1.6868439193567E-05
(PID.TID 0000.0001) %MON dynstat_uvel_del2 = 8.4315445301916E-08

pkg/monitor text can be readily parsed by the testreport script to determine, somewhat crudely but quickly, how
similar the output from two experiments are when run on different platforms or before/after code changes.

pkg/monitor output can also be useful for quickly diagnosing practical problems such as CFL limitations, model
progress (through iteration counts), and behavior within some packages that use it.

9.4.2 Using pkg/monitor

As with most packages, pkg/monitor can be turned on or off at compile and/or run times using the packages.conf
and data.pkg files.

The monitor output can be sent to the standard output channel, to an pkg/mnc–generated file, or to both simultaneously.
For pkg/mnc output, the flag monitor_mnc=.TRUE. should be set within the data.mnc file. For output to both
ASCII and pkg/mnc, the flag outputTypesInclusive=.TRUE. should be set within the PARM03 section of the
main data file. It should be noted that the outputTypesInclusive flag will make ALL kinds of output (that
is, everything written by pkg/mdsio, pkg/mnc, and pkg/monitor) simultaneously active so it should be used only with
caution -– and perhaps only for debugging purposes.
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CPP Flag Name Default Description
MONITOR_TEST_HFACZ #undef disable use of hFacZ

9.5 Grid Generation

The horizontal discretizations within MITgcm have been written to work with many different grid types including:

• cartesian coordinates

• spherical polar (“latitude-longitude”) coordinates

• general curvilinear orthogonal coordinates

The last of these, especially when combined with the domain decomposition capabilities of MITgcm, allows a great
degree of grid flexibility. To date, general curvilinear orthogonal coordinates have been used extensively in conjunction
with so-called “cubed sphere” grids. However, it is important to observe that cubed sphere arrangements are only
one example of what is possible with domain-decomposed logically rectangular regions each containing curvilinear
orthogonal coordinate systems. Much more sophisticated domains can be imagined and constructed.

In order to explore the possibilities of domain-decomposed curvilinear orthogonal coordinate systems, a suite of grid
generation software called “SPGrid” (for SPherical Gridding) has been developed. SPGrid is a relatively new facility
and papers detailing its algorithms are in preparation. Although SPGrid is new and rapidly developing, it has already
demonstrated the ability to generate some useful and interesting grids.

This section provides a very brief introduction to SPGrid and shows some early results. For further information, please
contact the MITgcm support list MITgcm-support@mitgcm.org.

9.5.1 Using SPGrid

The SPGrid software is not a single program. Rather, it is a collection of C++ code and MATLAB scripts that can
be used as a framework or library for grid generation and manipulation. Currently, grid creation is accomplished by
either directly running MATLAB scripts or by writing a C++ “driver” program. The MATLAB scripts are suitable for
grids composed of a single “face” (that is, a single logically rectangular region on the surface of a sphere). The C++
driver programs are appropriate for grids composed of multiple connected logically rectangular patches. Each driver
program is written to specify the shape and connectivity of tiles and the preferred grid density (that is, the number of
grid cells in each logical direction) and edge locations of the cells where they meet the edges of each face. The driver
programs pass this information to the SPGrid library, which generates the actual grid and produces the output files that
describe it.

Currently, driver programs are available for a few examples including cubes, “lat-lon caps” (cube topologies that
have conformal caps at the poles and are exactly lat-lon channels for the remainder of the domain), and some simple
“embedded” regions that are meant to be used within typical cubes or traditional lat-lon grids.

To create new grids, one may start with an existing driver program and modify it to describe a domain that has a
different arrangement. The number, location, size, and connectivity of grid “faces” (the name used for the logically
rectangular regions) can be readily changed. Further, the number of grid cells within faces and the location of the grid
cells at the face edges can also be specified.
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9.5.1.1 SPGrid requirements

The following programs and libraries are required to build and/or run the SPGrid suite:

• MATLAB is a run-time requirement since many of the generation algorithms have been written as MATLAB
scripts.

• The Geometric Tools Engine (a C++ library) is needed for the main “driver” code.

• The netCDF library is needed for file I/O.

• The Boost serialization library is also used for I/O:

• a typical Linux/Unix build environment including the make utility (preferably GNU Make) and a C++ compiler
(SPGrid was developed with g++ v4.x).

9.5.1.2 Obtaining SPGrid

The latest version can be obtained from:

9.5.1.3 Building SPGrid

The procedure for building is similar to many open source projects:

tar -xf spgrid-0.9.4.tar.gz
cd spgrid-0.9.4
export CPPFLAGS="-I/usr/include/netcdf-3"
export LDFLAGS="-L/usr/lib/netcdf-3"
./configure
make

where the CPPFLAGS and LDFLAGS environment variables can be edited to reflect the locations of all the necessary
dependencies. SPGrid is known to work on Fedora Core Linux (versions 4 and 5) and is likely to work on most any
Linux distribution that provides the needed dependencies.

9.5.1.4 Running SPGrid

Within the src sub-directory, various example driver programs exist. These examples describe small, simple domains
and can generate the input files (formatted as either binary *.mitgrid or netCDF) used by MITgcm.

One such example is called SpF_test_cube_cap and it can be run with the following sequence of commands:

cd spgrid-0.9.4/src
make SpF_test_cube_cap
mkdir SpF_test_cube_cap.d
( cd SpF_test_cube_cap.d && ln -s ../../scripts/*.m . )
./SpF_test_cube_cap

which should create a series of output files:

SpF_test_cube_cap.d/grid_*.mitgrid
SpF_test_cube_cap.d/grid_*.nc
SpF_test_cube_cap.d/std_topology.nc

where the grid_.mitgrid and grid_.nc files contain the grid information in binary and netCDF formats and
the std_topology.nc file contains the information describing the connectivity (both edge–edge and corner–corner
contacts) between all the faces.
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9.5.2 Example Grids

The following grids are various examples created with SPGrid.

9.6 Pre– and Post–Processing Scripts and Utilities

There are numerous tools for pre-processing data, converting model output and analysis written in MATLAB, Fortran
(f77 and f90) and perl. As yet they remain undocumented although many are self-documenting (MATLAB routines
have “help” written into them).

Here we’ll summarize what is available but this is an ever growing resource so this may not cover everything that is
out there:

9.6.1 Utilities Supplied With the Model

We supply some basic scripts with the model to facilitate conversion or reading of data into analysis software.

9.6.1.1 utils/scripts

In the directory utils/scripts, joinds and joinmds are perl scripts used to joining multi-part files created by MITgcm.
Use joinmds. You will only need joinds if you are working with output older than two years (prior to c23).

9.6.1.2 utils/matlab

In the directory utils/matlab you will find several MATLAB scripts (.m files). The principle script is rdmds.m, used
for reading the multi-part model output files into MATLAB . Place the scripts in your MATLAB path or change the
path appropriately, then at the MATLAB prompt type:

>> help rdmds

to get help on how to use rdmds.

Another useful script scans the terminal output file for pkg/monitor information.

Most other scripts are for working in the curvilinear coordinate systems, and as yet are unpublished and undocumented.

9.6.1.3 pkg/mnc utils

The following scripts and utilities have been written to help manipulate netCDF files:

Tile Assembly: A MATLAB script mnc_assembly.m is available for spatially “assembling” pkg/mnc output. A con-
venience wrapper script called gluemnc.m is also provided. Please use the MATLAB help facility for more
information.

gmt: As MITgcm evolves to handle more complicated domains and topologies, a suite of matlab tools is being writ-
ten to more gracefully handle the model files. This suite is called “gmt” which refers to “generalized model
topology” pre-/post-processing. Currently, this directory contains a MATLAB script gmt/rdnctiles.m that is able
to read netCDF files for any domain. Additional scripts are being created that will work with these fields on a
per-tile basis.
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9.6.2 Pre-Processing Software

There is a suite of pre-processing software for interpolating bathymetry and forcing data, written by Adcroft and
Biastoch. At some point, these will be made available for download. If you are in need of such software, contact one
of them.

9.7 Potential Vorticity Matlab Toolbox

Author: Guillaume Maze

9.7.1 Introduction

This section of the documentation describes a MATLAB package that aims to provide useful routines to compute
vorticity fields (relative, potential and planetary) and its related components. This is an offline computation. It was
developed to be used in mode water studies, so that it comes with other related routines, in particular ones computing
surface vertical potential vorticity fluxes.

9.7.2 Equations

9.7.2.1 Potential vorticity

The package computes the three components of the relative vorticity defined by:

𝜔 = ∇×U =

⎛⎝ 𝜔𝑥

𝜔𝑦

𝜁

⎞⎠ ≃

⎛⎝ −𝜕𝑣
𝜕𝑧

−𝜕𝑢
𝜕𝑧

𝜕𝑣
𝜕𝑥 − 𝜕𝑢

𝜕𝑦

⎞⎠ (9.1)

where we omitted the vertical velocity component (as done throughout the package).

The package then computes the potential vorticity as:

𝑄 = −1

𝜌
𝜔 · ∇𝜎𝜃

= −1

𝜌

(︂
𝜔𝑥
𝜕𝜎𝜃
𝜕𝑥

+ 𝜔𝑦
𝜕𝜎𝜃
𝜕𝑦

+ (𝑓 + 𝜁)
𝜕𝜎𝜃
𝜕𝑧

)︂ (9.2)

where 𝜌 is the density, 𝜎𝜃 is the potential density (both eventually computed by the package) and 𝑓 is the Coriolis
parameter.

The package is also able to compute the simpler planetary vorticity as:

𝑄𝑠𝑝𝑙 = −𝑓
𝜌

𝜎𝜃
𝜕𝑧

(9.3)
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9.7.2.2 Surface vertical potential vorticity fluxes

These quantities are useful in mode water studies because of the impermeability theorem which states that for a given
potential density layer (embedding a mode water), the integrated PV only changes through surface input/output.

Vertical PV fluxes due to frictional and diabatic processes are given by:

𝐽𝐵
𝑧 = −𝑓

ℎ

(︂
𝛼𝑄𝑛𝑒𝑡

𝐶𝑤
− 𝜌0𝛽𝑆𝑛𝑒𝑡

)︂
(9.4)

𝐽𝐹
𝑧 =

1

𝜌𝛿𝑒
𝑘⃗ × 𝜏 · ∇𝜎𝑚 (9.5)

These components can be computed with the package. Details on the variables definition and the way these fluxes are
derived can be found in Section 9.7.5.

We now give some simple explanations about these fluxes and how they can reduce the PV value of an oceanic potential
density layer.

Diabatic process

Let’s take the PV flux due to surface buoyancy forcing from (9.4) and simplify it as:

𝐽𝐵
𝑧 ≃ − 𝛼𝑓

ℎ𝐶𝑤
𝑄𝑛𝑒𝑡

When the net surface heat flux 𝑄𝑛𝑒𝑡 is upward, i.e., negative and cooling the ocean (buoyancy loss), surface density
will increase, triggering mixing which reduces the stratification and then the PV.

𝑄𝑛𝑒𝑡 < 0 (upward, cooling)

𝐽𝐵
𝑧 > 0 (upward)

−𝜌−1∇ · 𝐽𝐵
𝑧 < 0 (PV flux divergence)

𝑃𝑉 ↘ where 𝑄𝑛𝑒𝑡 < 0

Frictional process: “Down-front” wind-stress

Now let’s take the PV flux due to the “wind-driven buoyancy flux” from (9.5) and simplify it as:

𝐽𝐹
𝑧 =

1

𝜌𝛿𝑒

(︂
𝜏𝑥
𝜕𝜎

𝜕𝑦
− 𝜏𝑦

𝜕𝜎

𝜕𝑥

)︂
≃ 1

𝜌𝛿𝑒
𝜏𝑥
𝜕𝜎

𝜕𝑦

When the wind is blowing from the east above the Gulf Stream (a region of high meridional density gradient), it
induces an advection of dense water from the northern side of the GS to the southern side through Ekman currents.
Then, it induces a “wind-driven” buoyancy lost and mixing which reduces the stratification and the PV.

𝑘⃗ × 𝜏 · ∇𝜎 > 0 ("Down-front" wind)

𝐽𝐹
𝑧 > 0 (upward)

−𝜌−1∇ · 𝐽𝐹
𝑧 < 0 (PV flux divergence)

𝑃𝑉 ↘ where 𝑘⃗ × 𝜏 · ∇𝜎 > 0
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Diabatic versus frictional processes

A recent debate in the community arose about the relative role of these processes. Taking the ratio of (9.4) and (9.5)
leads to:

𝐽𝐹
𝑧

𝐽𝐵
𝑍

=

1
𝜌𝛿𝑒
𝑘⃗ × 𝜏 · ∇𝜎

− 𝑓
ℎ

(︁
𝛼𝑄𝑛𝑒𝑡

𝐶𝑤
− 𝜌0𝛽𝑆𝑛𝑒𝑡

)︁
≃ 𝑄𝐸𝑘/𝛿𝑒

𝑄𝑛𝑒𝑡/ℎ

where appears the lateral heat flux induced by Ekman currents:

𝑄𝐸𝑘 = − 𝐶𝑤

𝛼𝜌𝑓
𝑘⃗ × 𝜏 · ∇𝜎

=
𝐶𝑤

𝛼
𝛿𝑒 ⃗𝑢𝐸𝑘 · ∇𝜎

which can be computed with the package. In the aim of comparing both processes, it will be useful to plot surface net
and lateral Ekman-induced heat fluxes together with PV fluxes.

9.7.3 Key routines

• A_compute_potential_density.m: Compute the potential density field. Requires the potential temperature and
salinity (either total or anomalous) and produces one output file with the potential density field (file prefix
is SIGMATHETA). The routine uses utils/matlab/densjmd95.m, a Matlab counterpart of the MITgcm built-in
function to compute the density.

• B_compute_relative_vorticity.m: Compute the three components of the relative vorticity defined in (9.1).
Requires the two horizontal velocity components and produces three output files with the three components
(files prefix are OMEGAX, OMEGAY and ZETA).

• C_compute_potential_vorticity.m: Compute the potential vorticity without the negative ratio by the density.
Two options are possible in order to compute either the full component (term into parenthesis in (9.2) or the
planetary component (𝑓𝜕𝑧𝜎𝜃 in (9.3)). Requires the relative vorticity components and the potential density,
and produces one output file with the potential vorticity (file prefix is PV for the full term and splPV for the
planetary component).

• D_compute_potential_vorticity.m: Load the field computed with and divide it by −𝜌 to obtain the correct
potential vorticity. Require the density field and after loading, overwrite the file with prefix PV or splPV.

• compute_density.m: Compute the density 𝜌 from the potential temperature and the salinity fields.

• compute_JFz.m: Compute the surface vertical PV flux due to frictional processes. Requires the wind stress
components, density, potential density and Ekman layer depth (all of them, except the wind stress, may be
computed with the package), and produces one output file with the PV flux 𝐽𝐹

𝑧 (see (9.5) and with JFz as a
prefix.

• compute_JBz.m: Compute the surface vertical PV flux due to diabatic processes as:

𝐽𝐵
𝑧 = −𝑓

ℎ

𝛼𝑄𝑛𝑒𝑡

𝐶𝑤

which is a simplified version of the full expression given in (9.4). Requires the net surface heat flux and the
mixed layer depth (of which an estimation can be computed with the package), and produces one output file
with the PV flux 𝐽𝐵

𝑧 and with JBz as a prefix.
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• compute_QEk.m: Compute the horizontal heat flux due to Ekman currents from the PV flux induced by fric-
tional forces as:

𝑄𝐸𝑘 = −𝐶𝑤𝛿𝑒
𝛼𝑓

𝐽𝐹
𝑧

Requires the PV flux due to frictional forces and the Ekman layer depth, and produces one output with the heat
flux and with QEk as a prefix.

• eg_main_getPV: A complete example of how to set up a master routine able to compute everything from the
package.

9.7.4 Technical details

9.7.4.1 File name

A file name is formed by three parameters which need to be set up as global variables in MATLAB before running any
routines. They are:

• the prefix, i.e., the variable name (netcdf_UVEL for example). This parameter is specified in the help section
of all diagnostic routines.

• netcdf_domain: the geographical domain.

• netcdf_suff: the netcdf extension (nc or cdf for example).

Then, for example, if the calling MATLAB routine had set up:

global netcdf_THETA netcdf_SALTanom netcdf_domain netcdf_suff
netcdf_THETA = 'THETA';
netcdf_SALTanom = 'SALT';
netcdf_domain = 'north_atlantic';
netcdf_suff = 'nc';

the routine A_compute_potential_density.m to compute the potential density field, will look for the files:

THETA.north_atlantic.nc
SALT.north_atlantic.nc

and the output file will automatically be: SIGMATHETA.north_atlantic.nc.

Otherwise indicated, output file prefix cannot be changed.

9.7.4.2 Path to file

All diagnostic routines look for input files in a subdirectory (relative to the MATLAB routine directory) called ./
netcdf-files, which in turn is supposed to contain subdirectories for each set of fields. For example, computing
the potential density for the timestep 12H00 02/03/2005 will require a subdirectory with the potential temperature and
salinity files like:

./netcdf-files/200501031200/THETA.north_atlantic.nc

./netcdf-files/200501031200/SALT.north_atlantic.nc

The output file SIGMATHETA.north\_atlantic.nc will be created in ./netcdf-files/
200501031200/. All diagnostic routines take as argument the name of the timestep subdirectory into ./
netcdf-files.
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9.7.4.3 Grids

With MITgcm numerical outputs, velocity and tracer fields may not be defined on the same grid. Usually, UVEL and
VVEL are defined on a C-grid but when interpolated from a cube-sphere simulation they are defined on a A-grid. When
it is needed, routines allow to set up a global variable which define the grid to use.

9.7.5 Notes on the flux form of the PV equation and vertical PV fluxes

9.7.5.1 Flux form of the PV equation

The conservative flux form of the potential vorticity equation is:

𝜕𝜌𝑄

𝜕𝑡
+ ∇ · 𝐽 = 0 (9.6)

where the potential vorticity 𝑄 is given by (9.2).

The generalized flux vector of potential vorticity is:

𝐽 = 𝜌𝑄𝑢⃗+𝑁𝑄

which allows to rewrite (9.6) as:

𝐷𝑄

𝑑𝑡
= −1

𝜌
∇ ·𝑁𝑄 (9.7)

where the non-advective PV flux 𝑁𝑄 is given by:

𝑁𝑄 = −𝜌0
𝑔
𝐵𝜔𝑎 + 𝐹 ×∇𝜎𝜃 (9.8)

Its first component is linked to the buoyancy forcing:

𝐵 = − 𝑔

𝜌𝑜

𝐷𝜎𝜃
𝑑𝑡

and the second one to the non-conservative body forces per unit mass:

𝐹 =
𝐷𝑢⃗

𝑑𝑡
+ 2Ω × 𝑢⃗+ ∇𝑝

Note that introducing 𝐵 into (9.8) yields:

𝑁𝑄 = 𝜔𝑎
𝐷𝜎𝜃
𝑑𝑡

+ 𝐹 ×∇𝜎𝜃

9.7.5.2 Determining the PV flux at the ocean’s surface

In the context of mode water study, we are particularly interested in how the PV may be reduced by surface PV fluxes
because a mode water is characterized by a low PV value. Considering the volume limited by two 𝑖𝑠𝑜−𝜎𝜃, PV flux is
limited to surface processes and then vertical component of 𝑁𝑄. It is supposed that 𝐵 and 𝐹 will only be non-zero in
the mixed layer (of depth ℎ and variable density 𝜎𝑚) exposed to mechanical forcing by the wind and buoyancy fluxes
through the ocean’s surface.
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Given the assumption of a mechanical forcing confined to a thin surface Ekman layer (of depth 𝛿𝑒, eventually computed
by the package) and of hydrostatic and geostrophic balances, we can write:

𝑢𝑔 =
1

𝜌𝑓
𝑘⃗ ×∇𝑝

𝜕𝑝𝑚
𝜕𝑧

= −𝜎𝑚𝑔

𝜕𝜎𝑚
𝜕𝑡

+ 𝑢⃗𝑚 · ∇𝜎𝑚 = −𝜌0
𝑔
𝐵

(9.9)

where:

𝑢⃗𝑚 = 𝑢⃗𝑔 + 𝑢⃗𝐸𝑘 + 𝑜(𝑅𝑜) (9.10)

is the full velocity field composed of the geostrophic current 𝑢⃗𝑔 and the Ekman drift:

𝑢⃗𝐸𝑘 = − 1

𝜌𝑓
𝑘⃗ × 𝜕𝜏

𝜕𝑧
(9.11)

(where 𝜏 is the wind stress) and last by other ageostrophic components of 𝑜(𝑅𝑜) which are neglected.

Partitioning the buoyancy forcing as:

𝐵 = 𝐵𝑔 +𝐵𝐸𝑘 (9.12)

and using (9.10) and (9.11), (9.9) becomes:

𝜕𝜎𝑚
𝜕𝑡

+ 𝑢⃗𝑔 · ∇𝜎𝑚 = −𝜌0
𝑔
𝐵𝑔

revealing the “wind-driven buoyancy forcing”:

𝐵𝐸𝑘 =
𝑔

𝜌0

1

𝜌𝑓

(︂
𝑘⃗ × 𝜕𝜏

𝜕𝑧

)︂
· ∇𝜎𝑚

Note that since:

𝜕𝐵𝑔

𝜕𝑧
=

𝜕

𝜕𝑧

(︂
− 𝑔

𝜌0
𝑢𝑔 · ∇𝜎𝑚

)︂
= − 𝑔

𝜌0

𝜕𝑢𝑔
𝜕𝑧

· ∇𝜎𝑚 = 0

𝐵𝑔 must be uniform throughout the depth of the mixed layer and then being related to the surface buoyancy flux by
integrating (9.12) through the mixed layer:∫︁ 0

−ℎ

𝐵 𝑑𝑧 = ℎ𝐵𝑔 +

∫︁ 0

−ℎ

𝐵𝐸𝑘 𝑑𝑧 = ℬ𝑖𝑛 (9.13)

where ℬ𝑖𝑛 is the vertically integrated surface buoyancy (in)flux:

ℬ𝑖𝑛 =
𝑔

𝜌𝑜

(︂
𝛼𝑄𝑛𝑒𝑡

𝐶𝑤
− 𝜌0𝛽𝑆𝑛𝑒𝑡

)︂
(9.14)

with 𝛼 ≃ 2.5 × 10−4 K−1 the thermal expansion coefficient (computed by the package otherwise), 𝐶𝑤 =
4187 J kg−1K−1 the specific heat of seawater, 𝑄𝑛𝑒𝑡 [W/m−2] the net heat surface flux (positive downward, warm-
ing the ocean), 𝛽 [psu−1] the saline contraction coefficient, and 𝑆𝑛𝑒𝑡 = 𝑆 * (𝐸 − 𝑃 ) [psu m s−1] the net freshwater
surface flux with 𝑆 [psu] the surface salinity and (𝐸 − 𝑃 ) [m/s] the fresh water flux.

Introducing the body force in the Ekman layer:

𝐹𝑧 =
1

𝜌

𝜕𝜏

𝜕𝑧
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the vertical component of (9.8) is:

𝑁𝑄𝑧 = −𝜌0
𝑔

(𝐵𝑔 +𝐵𝐸𝑘)𝜔𝑧 +
1

𝜌

(︂
𝜕𝜏

𝜕𝑧
×∇𝜎𝜃

)︂
· 𝑘⃗

= −𝜌0
𝑔
𝐵𝑔𝜔𝑧 −

𝜌0
𝑔

(︂
𝑔

𝜌0

1

𝜌𝑓
𝑘⃗ × 𝜕𝜏

𝜕𝑧
· ∇𝜎𝑚

)︂
𝜔𝑧 +

1

𝜌

(︂
𝜕𝜏

𝜕𝑧
×∇𝜎𝜃

)︂
· 𝑘⃗

= −𝜌0
𝑔
𝐵𝑔𝜔𝑧 +

(︂
1 − 𝜔𝑧

𝑓

)︂(︂
1

𝜌

𝜕𝜏

𝜕𝑧
×∇𝜎𝜃

)︂
· 𝑘⃗

and given the assumption that 𝜔𝑧 ≃ 𝑓 , the second term vanishes and we obtain:

𝑁𝑄𝑧 = −𝜌0
𝑔
𝑓𝐵𝑔 (9.15)

Note that the wind-stress forcing does not appear explicitly here but is implicit in 𝐵𝑔 through (9.13): the buoyancy
forcing𝐵𝑔 is determined by the difference between the integrated surface buoyancy flux ℬ𝑖𝑛 and the integrated “wind-
driven buoyancy forcing”:

𝐵𝑔 =
1

ℎ

(︂
ℬ𝑖𝑛 −

∫︁ 0

−ℎ

𝐵𝐸𝑘𝑑𝑧

)︂
=

1

ℎ

𝑔

𝜌0

(︂
𝛼𝑄𝑛𝑒𝑡

𝐶𝑤
− 𝜌0𝛽𝑆𝑛𝑒𝑡

)︂
− 1

ℎ

∫︁ 0

−ℎ

𝑔

𝜌0

1

𝜌𝑓
𝑘⃗ × 𝜕𝜏

𝜕𝑧
· ∇𝜎𝑚𝑑𝑧

=
1

ℎ

𝑔

𝜌0

(︂
𝛼𝑄𝑛𝑒𝑡

𝐶𝑤
− 𝜌0𝛽𝑆𝑛𝑒𝑡

)︂
− 𝑔

𝜌0

1

𝜌𝑓𝛿𝑒
𝑘⃗ × 𝜏 · ∇𝜎𝑚

Finally, from (9.8), the vertical surface flux of PV may be written as:

𝑁𝑄𝑧 = 𝐽𝐵
𝑧 + 𝐽𝐹

𝑧

𝐽𝐵
𝑧 = −𝑓

ℎ

(︂
𝛼𝑄𝑛𝑒𝑡

𝐶𝑤
− 𝜌0𝛽𝑆𝑛𝑒𝑡

)︂
𝐽𝐹
𝑧 =

1

𝜌𝛿𝑒
𝑘⃗ × 𝜏 · ∇𝜎𝑚

9.8 pkg/flt – Simulation of float / parcel displacements

9.8.1 Introduction

This section describes the pkg/flt package and is largely based on the original documentation provided by Arne Bias-
toch and Alistair Adcroft circa 2001. pkg/flt computes float trajectories and simulates the behavior of profiling floats
during a model run. Profiling floats (e.g.) Argo) typically drift at depth and go back to the surface at pre-defined time
intervals. However, pkg/flt can also simulate observing devices such as non-profiling floats or surface drifters.

The package’s core functionalities are operated by the flt_main call in forward_step (see below for details). Check-
pointing is supported via flt_write_pickup called in packages_write_pickup.

Time-stepping of float locations is based on a second- or fourth-order Runga-Kutta scheme (Press et al., 1992, Nu-
merical Recipes). Velocities and positions are interpolated between grid points to the simulated device location, and
various types of noise can be added the simulated displacements. Spatial interpolation is bilinear close to boundaries
and otherwise a polynomial interpolation. Float positions are expressed in local grid index space.
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9.8.2 Compile-time options in FLT_OPTIONS.h

CPP Flag Name Default Description
ALLOW_3D_FLT #define allow three-dimensional float displacements
USE_FLT_ALT_NOISE #define use alternative method of adding random noise
ALLOW_FLT_3D_NOISE #define add noise also to the vertical velocity of 3D floats
FLT_SECOND_ORDER_RUNGE_KUTTA #undef revert to old second-order Runge-Kutta
FLT_WITHOUT_X_PERIODICITY #undef prevent floats to re-enter the opposite side of a periodic

domain
FLT_WITHOUT_Y_PERIODICITY #undef prevent floats to re-enter the opposite side of a periodic

domain
DEVEL_FLT_EXCH2 #undef allow experimentation with pkg/flt + exch2 despite

incomplete implementation

9.8.3 Compile-time parameters in FLT_SIZE.h include:

parameter (max_npart_tile = 300) is the maximum number of floats per tile. Should be smaller than the total number
of floats when running on a parallel environment but as small as possible to avoid too large arrays. The model
will stop if the number of floats per tile exceeds max_npart_tile at any time.

parameter (max_npart_exch = 50) is the maximum number of floats per tile that can be exchanged with other tiles
to one side (there are 4 arrays) in one timestep. Should be generally small because only few floats leave the tile
exactly at the same time.

9.8.4 Run-time options in data.flt include:

flt_int_traj is the time interval in seconds to sample float position and dynamic variables (T,S,U,V,Eta). To capture
the whole profile cycle of a PALACE float this has to be at least as small as the shortest surface time

flt_int_prof is the time interval in seconds to sample a whole profile of T,S,U,V (as well as positions and Eta). This
has to chosen at least as small as the shortest profiling interval.

flt_noise If FLT_NOISE is defined then this is the amplitude that is added to the advection velocity by the random
number generator.

flt_file is the base filename of the float positions without tile information and ending (e.g. float_pos)

flt_selectTrajOutp selects variables to output following float trajectories (=0 : none ; =1 : position only ; =2 :
+p,u,v,t,s)

flt_selectProfOutp` selects variables to output when floats profile (=0 : none ; =1 : position only ; =2 : +p,u,v,t,s)

flt_deltaT is equal to deltaTClock by default

FLT_Iter0 is the time step when floats are initialized

mapIniPos2Index converts float initial positions to local, fractional indices (.TRUE. by default)

Notes: flt_int_prof is the time between getting profiles, not the the return cycle of the float to the surface. The latter can
be specified individually for every float. Because the mechanism for returning to the surface is called in the profiling
routine flt_int_prof has to be the minimum of all iup(max_npart). The subsampling of profiles can be done later in the
analysis.

Notes: All profiling intervals have to be an integer multiple of flt_int_prof. The profile is always taken over the whole
water column. For example, let’s assume that one wants a first set of floats with 5 days profiling interval and 24 hours
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surface time, and another one with 10 days profiling interval and 12 hours surface time. To capture all of the floats
motions, one then would have to set flt_int_traj=43200 and flt_int_prof=432000.

9.8.5 Input Files

If nIter0.EQ.FLT_Iter0 then flt_init_varia first looks for a global file (e.g. float_pos.data). If that file does not exists
then flt_init_varia looks for local files (e.g. float_pos.001.001.data, etc.) or for local pickup files that have been
generated during a previous model run (e.g. pickup_flt.ckptA.001.001.data, etc.).

The first line of these input file provides:

• the number of floats on that tile in the first record

• the total number of floats in the sixth record

Notes: when using a global file at first-time initialization both fields should be the same.

Afterwards the input files contain one 9-element double-precision record for each float:

npart A unique float identifier (1,2,3,...)
tstart start date of integration of float (in s)

- If tstart=-1 floats are integrated right from the beginning
xpart x position of float (in units of XC)
ypart y position of float (in units of YC)
kpart actual vertical level of float
kfloat target level of float

- should be the same as kpart at the beginning
iup flag if the float

- should profile ( > 0 = return cycle (in s) to surface)
- remain at depth ( = 0 )
- is a 3D float ( = -1 ).
- should be advected WITHOUT additional noise ( = -2 ).
(This implies that the float is non-profiling)

- is a mooring ( = -3 ), i.e. the float is not advected
itop time of float the surface (in s)
tend end date of integration of float (in s)

- If tend=-1 floats are integrated till the end of the integration

Notes: an example how to write a float file (write_float.F) is included in the verification experiment documented
below.

9.8.6 Output Files

The output consists of 3 sets of local files:

• pickup_flt* : last positions of floats that can be used for restart

• float_trajectories* : trajectories of floats and actual values at depth

• float_profiles* : profiles throughout the whole water column
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9.8.7 Verification Experiment

The verification experiment is based on exp4 (flow over a Gaussian in a channel). The two main difference is that an
additional wind forcing was introduced to speed up the currents.

A few utilities are included that were supposedly used to prepare input for pkg/flt and / or visualize its output:

extra/cvfloat.F90
extra/cvprofiles.F
extra/write_float.F
input/convert_ini.m
input/read_flt_traj.m

9.8.8 Algorithm details

A summary of what flt_main.F currently does is as follows:

CALL FLT_RUNGA4
CALL FLT_TRILINEAR
or CALL FLT_BILINEAR

or CALL FLT_RUNGA2
CALL FLT_TRILINEAR
or CALL FLT_BILINEAR

CALL FLT_EXCH2
CALL EXCH2_SEND_PUT_VEC_RL
CALL EXCH2_RECV_GET_VEC_RL

or CALL FLT_EXCHG
CALL EXCH_SEND_PUT_VEC_X_RL
CALL EXCH_RECV_GET_VEC_X_RL
CALL EXCH_SEND_PUT_VEC_Y_RL
CALL EXCH_RECV_GET_VEC_Y_RL

CALL FLT_UP
CALL FLT_DOWN
CALL FLT_TRAJ

A summary of included fortran files is provided inside flt_main.F:

Main Routines:
C
C o flt_main - Integrates the floats forward and stores
C positions and vertical profiles at specific
C time intervals.
C o flt_readparms - Read parameter file
C o flt_init_fixed - Initialise fixed
C o flt_init_varia - Initialise the floats
C o flt_restart - Writes restart data to file (=> renamed: flt_write_pickup)
C
C Second Level Subroutines:
C
C o flt_runga2 - Second order Runga-Kutta inetgration (default)
C o flt_exchg - Does a new distribution of floats over tiles
C after every integration step.
C o flt_up - moves float to the surface (if flag is set)
C and stores profiles to file
C o flt_down - moves float to its target depth (if flag is set)
C o flt_traj - stores positions and data to file

(continues on next page)
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(continued from previous page)

C o flt_interp_linear - contains blinear interpolation scheme
C o flt_mapping - contains mapping functions & subroutine
C o flt_mdsreadvector - modified mdsreadvector to read files
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CHAPTER

TEN

OCEAN STATE ESTIMATION PACKAGES

This chapter describes packages that have been introduced for ocean state estimation purposes and in relation with
automatic differentiation (see Automatic Differentiation). Various examples in this chapter rely on two model config-
urations that can be setup as explained in Test Cases For Estimation Package Capabilities

10.1 ECCO: model-data comparisons using gridded data sets

Author: Gael Forget

The functionalities implemented in pkg/ecco are: (1) output time-averaged model fields to compare with gridded
data sets; (2) compute normalized model-data distances (i.e., cost functions); (3) compute averages and transports (i.e.,
integrals). The former is achieved as the model runs forwards in time whereas the others occur after time-integration
has completed. Following [FCH+15] the total cost function is formulated generically as

𝒥 (𝑢⃗) =
∑︁
𝑖

𝛼𝑖

(︁
𝑑𝑇𝑖 𝑅

−1
𝑖 𝑑𝑖

)︁
+
∑︁
𝑗

𝛽𝑗 𝑢⃗
𝑇 𝑢⃗ (10.1)

𝑑𝑖 = 𝒫(𝑚⃗𝑖 − 𝑜⃗𝑖) (10.2)

𝑚⃗𝑖 = 𝒮𝒟ℳ(𝑣⃗) (10.3)

𝑣⃗ = 𝒬(𝑢⃗) (10.4)

𝑢⃗ = ℛ(𝑢⃗′) (10.5)

using symbols defined in Table 10.1. Per Equation (10.3) model counterparts (𝑚⃗𝑖) to observational data (𝑜⃗𝑖) derive
from adjustable model parameters (𝑣⃗) through model dynamics integration (ℳ), diagnostic calculations (𝒟), and
averaging in space and time (𝒮). Alternatively 𝒮 stands for subsampling in space and time in the context of Section
10.2 (PROFILES: model-data comparisons at observed locations). Plain model-data misfits (𝑚⃗𝑖−𝑜⃗𝑖) can be penalized
directly in Eq. (10.1) but penalized misfits (𝑑𝑖) more generally derive from 𝑚⃗𝑖 − 𝑜⃗𝑖 through the generic 𝒫 post-
processor (Eq. (10.2)). Eqs. (10.4)-(10.5) pertain to model control parameter adjustment capabilities described in
Section 10.3 (CTRL: Model Parameter Adjustment Capability).
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Table 10.1: Symbol used in formulating generic cost functions.
symbol definition
𝑢⃗ vector of nondimensional control variables
𝑣⃗ vector of dimensional control variables
𝛼𝑖, 𝛽𝑗 misfit and control cost function multipliers (1 by de-

fault)
𝑅𝑖 data error covariance matrix (𝑅−1

𝑖 are weights)
𝑑𝑖 a set of model-data differences
𝑜⃗𝑖 observational data vector
𝑚⃗𝑖 model counterpart to 𝑜⃗𝑖
𝒫 post-processing operator (e.g., a smoother)
ℳ forward model dynamics operator
𝒟 diagnostic computation operator
𝒮 averaging/subsampling operator
𝒬 Pre-processing operator
ℛ Pre-conditioning operator

10.1.1 Generic Cost Function

The parameters available for configuring generic cost function terms in data.ecco are given in Table 10.2 and
examples of possible specifications are available in:

• MITgcm_contrib/verification_other/global_oce_cs32/input/data.ecco

• MITgcm_contrib/verification_other/global_oce_cs32/input_ad.sens/data.ecco

• MITgcm_contrib/gael/verification/global_oce_llc90/input.ecco_v4/data.ecco

The gridded observation file name is specified by gencost_datafile. Observational time series may be provided
as on big file or split into yearly files finishing in ‘_1992’, ‘_1993’, etc. The corresponding 𝑚⃗𝑖 physical variable is spec-
ified via the gencost_barfile root (see Table 10.3). A file named as specified by gencost_barfile gets cre-
ated where averaged fields are written progressively as the model steps forward in time. After the final time step this file
is re-read by cost_generic.F to compute the corresponding cost function term. If gencost_outputlevel
= 1 and gencost_name=‘foo’ then cost_generic.F outputs model-data misfit fields (i.e., 𝑑𝑖) to a file named
‘misfit_foo.data’ for offline analysis and visualization.

In the current implementation, model-data error covariance matrices 𝑅𝑖 omit non-diagonal terms. Specifying 𝑅𝑖 thus
boils down to providing uncertainty fields (𝜎𝑖 such that 𝑅𝑖 = 𝜎2

𝑖 ) in a file specified via gencost_errfile. By
default 𝜎𝑖 is assumed to be time-invariant but a 𝜎𝑖 time series of the same length as the 𝑜⃗𝑖 time series can be provided
using the variaweight option (Table 10.4). By default cost functions are quadratic but 𝑑𝑇𝑖 𝑅

−1
𝑖 𝑑𝑖 can be replaced

with 𝑅−1/2
𝑖 𝑑𝑖 using the nosumsq option (Table 10.4).

In principle, any averaging frequency should be possible, but only ‘day’, ‘month’, ‘step’, and ‘const’ are implemented
for gencost_avgperiod. If two different averaging frequencies are needed for a variable used in multiple cost
function terms (e.g., daily and monthly) then an extension starting with ‘_’ should be added to gencost_barfile
(such as ‘_day’ and ‘_mon’).1 If two cost function terms use the same variable and frequency, however, then using a
common gencost_barfile saves disk space.

Climatologies of 𝑚⃗𝑖 can be formed from the time series of model averages in order to compare with climatologies of
𝑜⃗𝑖 by activating the ‘clim’ option via gencost_preproc and setting the corresponding gencost_preproc_i
integer parameter to the number of records (i.e., a # of months, days, or time steps) per climatological cycle. The
generic post-processor (𝒫 in Eq. (10.2)) also allows model-data misfits to be, for example, smoothed in space by
setting gencost_posproc to ‘smooth’ and specifying the smoother parameters via gencost_posproc_c and

1 ecco_check may be missing a test for conflicting names. . .
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gencost_posproc_i (see Table 10.4). Other options associated with the computation of Eq. (10.1) are summa-
rized in Table 10.4 and further discussed below. Multiple gencost_preproc / gencost_posproc options may
be specified per cost term.

In general the specification of gencost_name is optional, has no impact on the end-result, and only serves
to distinguish between cost function terms amongst the model output (STDOUT.0000, STDERR.0000, costfunc-
tion000, misfit*.data). Exceptions listed in Table 10.6 however activate alternative cost function codes (in place of
cost_generic.F) described in Section 10.1.3. In this section and in Table 10.3 (unlike in other parts of the man-
ual) ‘zonal’ / ‘meridional’ are to be taken literally and these components are centered (i.e., not at the staggered model
velocity points). Preparing gridded velocity data sets for use in cost functions thus boils down to interpolating them to
XC / YC.

Table 10.2: Run-time parameters used in formulating generic cost
functions and defined via ecco_gencost_nml` namelist in data.ecco.
All parameters are vectors of length NGENCOST (the # of avail-
able cost terms) except for gencost_proc* are arrays of size
NGENPPROC×NGENCOST (10 × 20 by default; can be changed in
ecco.h at compile time). In addition, the gencost_is3d internal
parameter is reset to true on the fly in all 3D cases in Table 10.3.

parameter type function
gencost_name character(*) Name of cost term
gencost_barfile character(*) File to receive model counterpart 𝑚⃗𝑖 (See Table 10.3)
gencost_datafile character(*) File containing observational data 𝑜⃗𝑖
gencost_avgperiod character(5) Averaging period for 𝑜⃗𝑖 and 𝑚⃗𝑖 (see text)
gencost_outputlevel integer Greater than 0 will output misfit fields
gencost_errfile character(*) Uncertainty field name (not used in Section 10.1.2)
gencost_mask character(*) Mask file name root (used only in Section 10.1.2)
mult_gencost real Multiplier 𝛼𝑖 (default: 1)
gencost_preproc character(*) Preprocessor names
gencost_preproc_c character(*) Preprocessor character arguments
gencost_preproc_i integer(*) Preprocessor integer arguments
gencost_preproc_r real(*) Preprocessor real arguments
gencost_posproc character(*) Post-processor names
gencost_posproc_c character(*) Post-processor character arguments
gencost_posproc_i integer(*) Post-processor integer arguments
gencost_posproc_r real(*) Post-processor real arguments
gencost_spmin real Data less than this value will be omitted
gencost_spmax real Data greater than this value will be omitted
gencost_spzero real Data points equal to this value will be omitted
gencost_startdate1 integer Start date of observations (YYYMMDD)
gencost_startdate2 integer Start date of observations (HHMMSS)
gencost_is3d logical Needs to be true for 3D fields
gencost_enddate1 integer Not fully implemented (used only in Section 10.1.3)
gencost_enddate2 integer Not fully implemented (used only in Section 10.1.3)
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Table 10.3: Implemented gencost_barfile options (as of check-
point 65z) that can be used via cost_generic.F (Section 10.1.1).
An extension starting with ‘_’ can be appended at the end of the vari-
able name to distinguish between separate cost function terms. Note:
the ‘m_eta’ formula depends on the ATMOSPHERIC_LOADING and
ALLOW_PSBAR_STERIC compile time options and ‘useRealFreshWa-
terFlux’ run time parameter.

variable name description remarks
m_eta sea surface height free surface + ice + global steric correction
m_sst sea surface temperature first level potential temperature
m_sss sea surface salinity first level salinity
m_bp bottom pressure phiHydLow
m_siarea sea-ice area from pkg/seaice
m_siheff sea-ice effective thickness from pkg/seaice
m_sihsnow snow effective thickness from pkg/seaice
m_theta potential temperature three-dimensional
m_salt salinity three-dimensional
m_UE zonal velocity three-dimensional
m_VN meridional velocity three-dimensional
m_ustress zonal wind stress from pkg/exf
m_vstress meridional wind stress from pkg/exf
m_uwind zonal wind from pkg/exf
m_vwind meridional wind from pkg/exf
m_atemp atmospheric temperature from pkg/exf
m_aqh atmospheric specific humidity from pkg/exf
m_precip precipitation from pkg/exf
m_swdown downward shortwave from pkg/exf
m_lwdown downward longwave from pkg/exf
m_wspeed wind speed from pkg/exf
m_diffkr vertical/diapycnal diffusivity three-dimensional, constant
m_kapgm GM diffusivity three-dimensional, constant
m_kapredi isopycnal diffusivity three-dimensional, constant
m_geothermalflux geothermal heat flux constant
m_bottomdrag bottom drag constant

Table 10.4: gencost_preproc and gencost_posproc options
implemented as of checkpoint 65z. Note: the distinction between
gencost_preproc and gencost_posproc seems unclear and
may be revisited in the future.

name description gencost_preproc_i , _r, or _c
gencost_preproc
clim Use climatological misfits integer: no. of records per climatological cycle
mean Use time mean of misfits —
anom Use anomalies from time mean —
variaweight Use time-varying weight 𝑊𝑖 —
nosumsq Use linear misfits —
factor Multiply 𝑚⃗𝑖 by a scaling factor real: the scaling factor
gencost_posproc
smooth Smooth misfits character: smoothing scale file

integer: smoother # of time steps
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10.1.2 Generic Integral Function

The functionality described in this section is operated by cost_gencost_boxmean.F. It is primarily aimed at
obtaining a mechanistic understanding of a chosen physical variable via adjoint sensitivity computations (see Auto-
matic Differentiation) as done for example in [MGZ+99][HWP+11][FWL+15]. Thus the quadratic term in Eq. (10.1)
(𝑑𝑇𝑖 𝑅

−1
𝑖 𝑑𝑖) is by default replaced with a 𝑑𝑖 scalar2 that derives from model fields through a generic integral formula

(Eq. (10.3)). The specification of gencost_barfile again selects the physical variable type. Current valid options
to use cost_gencost_boxmean.F are reported in Table 10.5. A suffix starting with ‘_’ can again be appended
to gencost_barfile.

The integral formula is defined by masks provided via binary files which names are specified via gencost_mask.
There are two cases: (1) if gencost_mask = ‘foo_mask’ and gencost_barfile is of the ‘m_boxmean*’
type then the model will search for horizontal, vertical, and temporal mask files named foo_maskC, foo_maskK,
and foo_maskT; (2) if instead gencost_barfile is of the ‘m_horflux_’ type then the model will search for
foo_maskW, foo_maskS, foo_maskK, and foo_maskT.

The ‘C’ mask or the ‘W’ / ‘S’ masks are expected to be two-dimensional fields. The ‘K’ and ‘T’ masks (both optional;
all 1 by default) are expected to be one-dimensional vectors. The ‘K’ vector length should match Nr. The ‘T’ vector
length should match the # of records that the specification of gencost_avgperiod implies but there is no restric-
tion on its values. In case #1 (‘m_boxmean*’) the ‘C’ and ‘K’ masks should consists of +1 and 0 values and a volume
average will be computed accordingly. In case #2 (‘m_horflux*’) the ‘W’, ‘S’, and ‘K’ masks should consists of +1,
-1, and 0 values and an integrated horizontal transport (or overturn) will be computed accordingly.

Table 10.5: Implemented gencost_barfile options (as of check-
point 65z) that can be used via cost_gencost_boxmean.F (Section
10.1.2).

variable name description remarks
m_boxmean_theta mean of theta over box specify box
m_boxmean_salt mean of salt over box specify box
m_boxmean_eta mean of SSH over box specify box
m_horflux_vol volume transport through section specify transect

10.1.3 Custom Cost Functions

This section (very much a work in progress. . . ) pertains to the special cases of cost_gencost_bpv4.
F, cost_gencost_seaicev4.F, cost_gencost_sshv4.F, cost_gencost_sstv4.F, and
cost_gencost_transp.F. The cost_gencost_transp.F function can be used to compute a transport of vol-
ume, heat, or salt through a specified section (non quadratic cost function). To this end one sets gencost_name =
‘transp*’, where * is an optional suffix starting with ‘_’, and set gencost_barfile to one of m_trVol,
m_trHeat, and m_trSalt.

Note: the functionality in cost_gencost_transp.F is not regularly tested. Users interested in computing volu-
metric transports through a section are recommended to use the m_horflux_vol capabilities described above as it
is regularly tested. Users interested in computing heat and salt transport should note the following about m_trHeat
and m_trSalt:

1. The associated advection scheme with transports may be inconsistent with the model unless
ENUM_CENTERED_2ND is implemented

2. Bolus velocities are not included

3. Diffusion components are not included

2 The quadratic option in fact does not yet exist in cost_gencost_boxmean.F. . .
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Table 10.6: Pre-defined gencost_name special cases (as of check-
point 65z; Section 10.1.3).

name description remarks
sshv4-mdt sea surface height mean dynamic topography (SSH - geod)
sshv4-tp sea surface height Along-Track Topex/Jason SLA (level 3)
sshv4-ers sea surface height Along-Track ERS/Envisat SLA (level 3)
sshv4-gfo sea surface height Along-Track GFO class SLA (level 3)
sshv4-lsc sea surface height Large-Scale SLA (from the above)
sshv4-gmsl sea surface height Global-Mean SLA (from the above)
bpv4-grace bottom pressure GRACE maps (level 4)
sstv4-amsre sea surface temperature Along-Swath SST (level 3)
sstv4-amsre-lsc sea surface temperature Large-Scale SST (from the above)
si4-cons sea ice concentration needs sea-ice adjoint (level 4)
si4-deconc model sea ice deficiency proxy penalty (from the above)
si4-exconc model sea ice excess proxy penalty (from the above)
transp_trVol volume transport specify masks (Section 10.1.2)
transp_trHeat heat transport specify masks (Section 10.1.2)
transp_trSalt salt transport specify masks (Section 10.1.2)

10.1.4 Key Routines

TBA. . . ecco_readparms.F, ecco_check.F, ecco_summary.F, . . . cost_generic.F,
cost_gencost_boxmean.F, ecco_toolbox.F, . . . ecco_phys.F, cost_gencost_customize.
F, cost_averagesfields.F, . . .

10.1.5 Compile Options

TBA. . . ALLOW_GENCOST_CONTRIBUTION, ALLOW_GENCOST3D, . . . AL-
LOW_PSBAR_STERIC, ALLOW_SHALLOW_ALTIMETRY, ALLOW_HIGHLAT_ALTIMETRY, . . . AL-
LOW_PROFILES_CONTRIBUTION, . . . ALLOW_ECCO_OLD_FC_PRINT, . . . ECCO_CTRL_DEPRECATED,
. . . packages required for some functionalities: smooth, profiles, ctrl

10.2 PROFILES: model-data comparisons at observed locations

Author: Gael Forget

The purpose of pkg/profiles is to allow sampling of MITgcm runs according to a chosen pathway (after a ship or a
drifter, along altimeter tracks, etc.), typically leading to easy model-data comparisons. Given input files that con-
tain positions and dates, pkg/profiles will interpolate the model trajectory at the observed location. In particular,
pkg/profiles can be used to do model-data comparison online and formulate a least-squares problem (ECCO applica-
tion).

The pkg/profiles namelist is called data.profiles. In the example below, it includes two input netcdf file names (AR-
GOifremer_r8.nc and XBT_v5.nc) that should be linked to the run directory and cost function multipliers that only
matter in the context of automatic differentiation (see Automatic Differentiation). The first index is a file number and
the second index (in mult* only) is a variable number. By convention, the variable number is an integer ranging 1 to
6: temperature, salinity, zonal velocity, meridional velocity, sea surface height anomaly, and passive tracer.

The netcdf input file structure is illustrated in the case of XBT_v5.nc To create such files, one can use the MITprof mat-
lab toolbox obtained from https://github.com/gaelforget/MITprof . At run time, each file is scanned to determine which
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variables are included; these will be interpolated. The (final) output file structure is similar but with interpolated model
values in prof_T etc., and it contains model mask variables (e.g. prof_Tmask). The very model output consists of one
binary (or netcdf) file per processor. The final netcdf output is to be built from those using netcdf_ecco_recompose.m
(offline).

When the k2 option is used (e.g. for cubed sphere runs), the input file is to be completed with interpolation grid
points and coefficients computed offline using netcdf_ecco_GenericgridMain.m. Typically, you would first provide the
standard namelist and files. After detecting that interpolation information is missing, the model will generate special
grid files (profilesXCincl1PointOverlap* etc.) and then stop. You then want to run netcdf_ecco_GenericgridMain.m
using the special grid files. This operation could eventually be inlined.

Example: data.profiles

#
# \*****************\*
# PROFILES cost function
# \*****************\*
&PROFILES_NML
#
profilesfiles(1)= ’ARGOifremer_r8’,
mult_profiles(1,1) = 1.,
mult_profiles(1,2) = 1.,
profilesfiles(2)= ’XBT_v5’,
mult_profiles(2,1) = 1.,
#
/

Example: XBT_v5.nc

netcdf XBT_v5 {
dimensions:
iPROF = 278026 ;
iDEPTH = 55 ;
lTXT = 30 ;
variables:
double depth(iDEPTH) ;
depth:units = "meters" ;
double prof_YYYYMMDD(iPROF) ;
prof_YYYYMMDD:missing_value = -9999. ;
prof_YYYYMMDD:long_name = "year (4 digits), month (2 digits), day (2 digits)" ;
double prof_HHMMSS(iPROF) ;
prof_HHMMSS:missing_value = -9999. ;
prof_HHMMSS:long_name = "hour (2 digits), minute (2 digits), second (2 digits)" ;
double prof_lon(iPROF) ;
prof_lon:units = "(degree E)" ;
prof_lon:missing_value = -9999. ;
double prof_lat(iPROF) ;
prof_lat:units = "(degree N)" ;
prof_lat:missing_value = -9999. ;
char prof_descr(iPROF, lTXT) ;
prof_descr:long_name = "profile description" ;
double prof_T(iPROF, iDEPTH) ;
prof_T:long_name = "potential temperature" ;
prof_T:units = "degree Celsius" ;
prof_T:missing_value = -9999. ;
double prof_Tweight(iPROF, iDEPTH) ;
prof_Tweight:long_name = "weights" ;
prof_Tweight:units = "(degree Celsius)-2" ;

(continues on next page)
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(continued from previous page)

prof_Tweight:missing_value = -9999. ;
}

10.3 CTRL: Model Parameter Adjustment Capability

Author: Gael Forget

Package ctrl provides an interface to defining the control variables for an optimization. After defining CPP-
flags ALLOW_GENTIM2D_CONTROL, ALLOW_GENARR2D_CONTROL, ALLOW_GENARR3D_CONTROL
in CTRL_OPTIONS.h <pkg/ctrl/CTRL_OPTIONS.h, the parameters available for configuring generic cost terms
in data.ctrl are given in Table 10.7. The control variables are stored as fields on the model grid in
files $ctrlvar.$iternumber.data/meta, and corresponding gradients in ad$ctrlvar.$iternumber.
data/meta, where $ctrl is defined in data.ctrl (see Table 10.8 for possible options) and $iternumber is
the 10-digit iteration number of the optimization. Further, ctrl maps the gradient fields to a vector that can be handed
over to an optimization routine (see Section 10.5) and maps the resulting new control vector to the model grid unless
CPP-flag EXCLUDE_CTRL_PACK is defined in CTRL_OPTIONS.h.

Table 10.7: Parameters in ctrl_nml_genarr namelist in data.
ctrl. The * can be replaced by arr2d, arr3d, or tim2d for
time-invariant two and three dimensional controls and time-varying 2D
controls, respectively. Parameters for genarr2d, genarr3d, and
gentime2d are arrays of length maxCtrlArr2D, maxCtrlArr3D,
and maxCtrlTim2D, respectively, with one entry per term in the cost
function.

parameter type function
xx_gen*_file character(*) Control Name: prefix from Table 10.8 + suffix.
xx_gen*_weight character(*) Weights in the form of 𝜎−2

𝑢⃗𝑗

xx_gen*_bounds real(5) Apply bounds
xx_gen*_preproc character(*) Control preprocessor(s) (see Table 10.9 )
xx_gen*_preproc_c character(*) Preprocessor character arguments
xx_gen*_preproc_i integer(*) Preprocessor integer arguments
xx_gen*_preproc_r real(*) Preprocessor real arguments
gen*Precond real Preconditioning factor (= 1 by default)
mult_gen* real Cost function multiplier 𝛽𝑗 (= 1 by default)
xx_gentim2d_period real Frequency of adjustments (in seconds)
xx_gentim2d_startda te1 integer Adjustment start date
xx_gentim2d_startda te2 integer Default: model start date
xx_gentim2d_cumsum logical Accumulate control adjustments
xx_gentim2d_glosum logical Global sum of adjustment (output is still 2D)
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Table 10.8: Generic control prefixes implemented as of checkpoint 65z.
name description

2D, time-invariant controls genarr2d
xx_etan initial sea surface height
xx_bottomdrag bottom drag
xx_geothermal geothermal heat flux

3D, time-invariant controls genarr3d
xx_theta initial potential temperature
xx_salt initial salinity
xx_uvel initial zonal velocity
xx_vvel initial meridional velocity
xx_kapgm GM coefficient
xx_kapredi isopycnal diffusivity
xx_diffkr diapycnal diffusivity

2D, time-varying controls gentim2D
xx_atemp atmospheric temperature
xx_aqh atmospheric specific humidity
xx_swdown downward shortwave
xx_lwdown downward longwave
xx_precip precipitation
xx_runoff river runoff
xx_uwind zonal wind
xx_vwind meridional wind
xx_tauu zonal wind stress
xx_tauv meridional wind stress
xx_gen_precip globally averaged precipitation?

Table 10.9: xx_gen????d_preproc options implemented as of
checkpoint 65z. Notes: 𝑎: If noscaling is false, the control adjust-
ment is scaled by one on the square root of the weight before being
added to the base control variable; if noscaling is true, the control
is multiplied by the weight in the cost function itself.

name description arguments
WC01 Correlation modeling integer: operator type (default: 1)
smooth Smoothing without normalization integer: operator type (default: 1)
docycle Average period replication integer: cycle length
replicate Alias for docycle (units of xx_gentim2d_period)
rmcycle Periodic average subtraction integer: cycle length
variaweight Use time-varying weight —
noscaling:math: ^{a} Do not scale with xx_gen*_weight —
documul Sets xx_gentim2d_cumsum —
doglomean Sets xx_gentim2d_glosum —

The control problem is non-dimensional by default, as reflected in the omission of weights in control penalties [(𝑢⃗𝑇𝑗 𝑢⃗𝑗
in (10.1)]. Non-dimensional controls (𝑢⃗𝑗) are scaled to physical units (𝑣⃗𝑗) through multiplication by the respec-
tive uncertainty fields (𝜎𝑢⃗𝑗

), as part of the generic preprocessor 𝒬 in (10.4). Besides the scaling of 𝑢⃗𝑗 to physical
units, the preprocessor 𝒬 can include, for example, spatial correlation modeling (using an implementation of Weaver
and Coutier, 2001) by setting xx_gen*_preproc = ’WC01’. Alternatively, setting xx_gen*_preproc =
’smooth’ activates the smoothing part of WC01, but omits the normalization. Additionally, bounds for the controls
can be specified by setting xx_gen*_bounds. In forward mode, adjustments to the 𝑖th control are clipped so that
they remain between xx_gen*_bounds(i,1) and xx_gen*_bounds(i,4). If xx_gen*_bounds(i,1)
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< xx_gen*_bounds(i+1,1) for 𝑖 = 1, 2, 3, then the bounds will “emulate a local minimum;” otherwise, the
bounds have no effect in adjoint mode.

For the case of time-varying controls, the frequency is specified by xx_gentim2d_period. The generic con-
trol package interprets special values of xx_gentim2d_period in the same way as the exf package: a value
of −12 implies cycling monthly fields while a value of 0 means that the field is steady. Time varying weights
can be provided by specifying the preprocessor variaweight, in which case the xx_gentim2d_weight file
must contain as many records as the control parameter time series itself (approximately the run length divided by
xx_gentim2d_period).

The parameter mult_gen* sets the multiplier for the corresponding cost function penalty [𝛽𝑗 in (10.1); 𝛽𝑗 = 1
by default). The preconditioner, ℛ, does not directly appear in the estimation problem, but only serves to push the
optimization process in a certain direction in control space; this operator is specified by gen*Precond (= 1 by
default).

10.4 SMOOTH: Smoothing And Covariance Model

Author: Gael Forget

TO BE CONTINUED. . .

10.5 The line search optimisation algorithm

Author: Patrick Heimbach

10.5.1 General features

The line search algorithm is based on a quasi-Newton variable storage method which was implemented by
[GLemarechal89].

TO BE CONTINUED. . .

10.5.2 The online vs. offline version

• Online version
Every call to simul refers to an execution of the forward and adjoint model. Several iterations of optimization
may thus be performed within a single run of the main program (lsopt_top). The following cases may occur:

– cold start only (no optimization)

– cold start, followed by one or several iterations of optimization

– warm start from previous cold start with one or several iterations

– warm start from previous warm start with one or several iterations

• Offline version
Every call to simul refers to a read procedure which reads the result of a forward and adjoint run Therefore,
only one call to simul is allowed, itmax = 0, for cold start itmax = 1, for warm start Also, at the end, x(i+1)
needs to be computed and saved to be available for the offline model and adjoint run

In order to achieve minimum difference between the online and offline code xdiff(i+1) is stored to file at the end of an
(offline) iteration, but recomputed identically at the beginning of the next iteration.
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10.5.3 Number of iterations vs. number of simulations

- itmax: controls the max. number of iterations
- nfunc: controls the max. number of simulations within one iteration

10.5.3.1 Summary

From one iteration to the next the descent direction changes. Within one iteration more than one forward and adjoint
run may be performed. The updated control used as input for these simulations uses the same descent direction, but
different step sizes.

10.5.3.2 Description

From one iteration to the next the descent direction dd changes using the result for the adjoint vector gg of the
previous iteration. In lsline the updated control

xdiff(i, 1) = xx(i− 1) + tact(i− 1, 1) * dd(i− 1)

serves as input for a forward and adjoint model run yielding a new gg(i,1). In general, the new solution
passes the 1st and 2nd Wolfe tests so xdiff(i,1) represents the solution sought:

xx(i) = xdiff(i, 1)

If one of the two tests fails, an inter- or extrapolation is invoked to determine a new step size tact(i-1,2). If
more than one function call is permitted, the new step size is used together with the “old” descent direction
dd(i-1) (i.e. dd is not updated using the new gg(i)), to compute a new

xdiff(i, 2) = xx(i− 1) + tact(i− 1, 2) * dd(i− 1)

that serves as input in a new forward and adjoint run, yielding gg(i,2). If now, both Wolfe tests are
successful, the updated solution is given by

xx(i) = xdiff(i, 2) = xx(i− 1) + tact(i− 1, 2) * dd(i− 1)

In order to save memory both the fields dd and xdiff have a double usage.

•
- in lsopt_top: used as x(i) - x(i-1) for Hessian update
- in lsline: intermediate result for control update x = x + tact*dd

•
- in lsopt_top, lsline: descent vector, dd = -gg and hessupd
- in dgscale: intermediate result to compute new preconditioner
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10.5.3.3 The parameter file lsopt.par

• NUPDATE max. no. of update pairs (gg(i)-gg(i-1), xx(i)-xx(i-1)) to be stored in OPWARMD to estimate
Hessian [pair of current iter. is stored in (2*jmax+2, 2*jmax+3) jmax must be > 0 to access these entries]
Presently NUPDATE must be > 0 (i.e. iteration without reference to previous iterations through OPWARMD
has not been tested)

• EPSX relative precision on xx bellow which xx should not be improved

• EPSG relative precision on gg below which optimization is considered successful

• IPRINT controls verbose (>=1) or non-verbose output

• NUMITER max. number of iterations of optimisation; NUMTER = 0: cold start only, no optimization

• ITER_NUM index of new restart file to be created (not necessarily = NUMITER!)

• NFUNC max. no. of simulations per iteration (must be > 0); is used if step size tact is inter-/extrapolated; in
this case, if NFUNC > 1, a new simulation is performed with same gradient but “improved” step size

• FMIN first guess cost function value (only used as long as first iteration not completed, i.e. for jmax <= 0)

10.5.3.4 OPWARMI, OPWARMD files

Two files retain values of previous iterations which are used in latest iteration to update Hessian:

• OPWARMI: contains index settings and scalar variables

n = nn no. of control variables
fc = ff cost value of last iteration
isize no. of bytes per record in OPWARMD
m = nupdate max. no. of updates for Hessian
jmin, jmax pointer indices for OPWARMD file (cf. below)
gnorm0 norm of first (cold start) gradient gg
iabsiter total number of iterations with respect to cold start

• OPWARMD: contains vectors (control and gradient)

entry name description
1 xx(i) control vector of latest iteration
2 gg(i) gradient of latest iteration
3 xdiff(i),diag preconditioning vector; (1,. . . ,1) for cold start
2*jmax+2 gold=g(i)-g(i-1) for last update (jmax)
2*jmax+3 xdiff=tact*d=xx(i)-xx (i-1) for last update (jmax)

Example 1: jmin = 1, jmax = 3, mupd = 5

1 2 3 | 4 5 6 7 8 9 empty empty
|___|___|___| | |___|___| |___|___| |___|___| |___|___| |___|___|

0 | 1 2 3

Example 2: jmin = 3, jmax = 7, mupd = 5 ---> jmax = 2

1 2 3 |
|___|___|___| | |___|___| |___|___| |___|___| |___|___| |___|___|

| 6 7 3 4 5
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10.5.3.5 Error handling

lsopt_top
|
|---- check arguments
|---- CALL INSTORE
| |
| |---- determine whether OPWARMI available:
| * if no: cold start: create OPWARMI
| * if yes: warm start: read from OPWARMI
| create or open OPWARMD
|
|---- check consistency between OPWARMI and model parameters
|
|---- >>> if COLD start: <<<
| | first simulation with f.g. xx_0; output: first ff_0, gg_0
| | set first preconditioner value xdiff_0 to 1
| | store xx(0), gg(0), xdiff(0) to OPWARMD (first 3 entries)
| |
| >>> else: WARM start: <<<
| read xx(i), gg(i) from OPWARMD (first 2 entries)
| for first warm start after cold start, i=0
|
|
|
|---- /// if ITMAX > 0: perform optimization (increment loop index i)
| (
| )---- save current values of gg(i-1) -> gold(i-1), ff -> fold(i-1)
| (---- CALL LSUPDXX
| ) |
| ( |---- >>> if jmax=0 <<<
| ) | | first optimization after cold start:
| ( | | preconditioner estimated via ff_0 - ff_(first guess)
| ) | | dd(i-1) = -gg(i-1)*preco
| ( | |
| ) | >>> if jmax > 0 <<<
| ( | dd(i-1) = -gg(i-1)
| ) | CALL HESSUPD
| ( | |
| ) | |---- dd(i-1) modified via Hessian approx.
| ( |
| ) |---- >>> if <dd,gg> >= 0 <<<
| ( | ifail = 4
| ) |
| ( |---- compute step size: tact(i-1)
| ) |---- compute update: xdiff(i) = xx(i-1) + tact(i-1)*dd(i-1)
| (
| )---- >>> if ifail = 4 <<<
| ( goto 1000
| )
| (---- CALL OPTLINE / LSLINE
| ) |

... ... ...

... ...
| )
| (---- CALL OPTLINE / LSLINE

(continues on next page)
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(continued from previous page)

| ) |
| ( |---- /// loop over simulations
| ) (
| ( )---- CALL SIMUL
| ) ( |
| ( ) |---- input: xdiff(i)
| ) ( |---- output: ff(i), gg(i)
| ( ) |---- >>> if ONLINE <<<
| ) ( runs model and adjoint
| ( ) >>> if OFFLINE <<<
| ) ( reads those values from file
| ( )
| ) (---- 1st Wolfe test:
| ( ) ff(i) <= tact*xpara1*<gg(i-1),dd(i-1)>
| ) (
| ( )---- 2nd Wolfe test:
| ) ( <gg(i),dd(i-1)> >= xpara2*<gg(i-1),dd(i-1)>
| ( )
| ) (---- >>> if 1st and 2nd Wolfe tests ok <<<
| ( ) | 320: update xx: xx(i) = xdiff(i)
| ) ( |
| ( ) >>> else if 1st Wolfe test not ok <<<
| ) ( | 500: INTERpolate new tact:
| ( ) | barr*tact < tact < (1-barr)*tact
| ) ( | CALL CUBIC
| ( ) |
| ) ( >>> else if 2nd Wolfe test not ok <<<
| ( ) 350: EXTRApolate new tact:
| ) ( (1+barmin)*tact < tact < 10*tact
| ( ) CALL CUBIC
| ) (
| ( )---- >>> if new tact > tmax <<<
| ) ( | ifail = 7
| ( ) |
| ) (---- >>> if new tact < tmin OR tact*dd < machine precision <<<
| ( ) | ifail = 8
| ) ( |
| ( )---- >>> else <<<
| ) ( update xdiff for new simulation
| ( )
| ) \\\ if nfunc > 1: use inter-/extrapolated tact and xdiff
| ( for new simulation
| ) N.B.: new xx is thus not based on new gg, but
| ( rather on new step size tact
| )
| (---- store new values xx(i), gg(i) to OPWARMD (first 2 entries)
| )---- >>> if ifail = 7,8,9 <<<
| ( goto 1000
| )

... ...

... ...
| )
| (---- store new values xx(i), gg(i) to OPWARMD (first 2 entries)
| )---- >>> if ifail = 7,8,9 <<<
| ( goto 1000

(continues on next page)
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(continued from previous page)

| )
| (---- compute new pointers jmin, jmax to include latest values
| ) gg(i)-gg(i-1), xx(i)-xx(i-1) to Hessian matrix estimate
| (---- store gg(i)-gg(i-1), xx(i)-xx(i-1) to OPWARMD
| ) (entries 2*jmax+2, 2*jmax+3)
| (
| )---- CALL DGSCALE
| ( |
| ) |---- call dostore
| ( | |
| ) | |---- read preconditioner of previous iteration diag(i-1)
| ( | from OPWARMD (3rd entry)
| ) |
| ( |---- compute new preconditioner diag(i), based upon diag(i-1),
| ) | gg(i)-gg(i-1), xx(i)-xx(i-1)
| ( |
| ) |---- call dostore
| ( |
| ) |---- write new preconditioner diag(i) to OPWARMD (3rd entry)
| (
|---- \\\ end of optimization iteration loop
|
|
|
|---- CALL OUTSTORE
| |
| |---- store gnorm0, ff(i), current pointers jmin, jmax, iterabs to OPWARMI
|
|---- >>> if OFFLINE version <<<
| xx(i+1) needs to be computed as input for offline optimization
| |
| |---- CALL LSUPDXX
| | |
| | |---- compute dd(i), tact(i) -> xdiff(i+1) = x(i) + tact(i)*dd(i)
| |
| |---- CALL WRITE_CONTROL
| | |
| | |---- write xdiff(i+1) to special file for offline optim.
|
|---- print final information
|
O

10.5.4 Alternative code to optim and lsopt

The non-MITgcm package optim_m1qn3 is based on the same quasi-Newton variable storage method (BFGS)
[GLemarechal89] as the package in subdirectory lsopt, but it uses a reverse communication version of the latest
(and probably last) release of the subroutine m1qn3. This avoids having to define a dummy subroutine simul and
also simplifies the code structure. As a consequence this package is simple(r) to compile and use, because m1qn3.f
contains all necessary subroutines and only one extra routine (ddot, which was copied from BLAS) is required.

The principle of reverse communication is outlined in this example:

external simul_rc
...

(continues on next page)
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(continued from previous page)

reverse = .true.
do while (.true.)

call m1qn3 (simul_rc,...,x,f,g,...,reverse,indic,...)
if (reverse) break
call simul (indic,n,x,f,g)

end while

simul_rc is an empty ‘’model simulator”, and simul generates a new state based on the value of indic.

The original m1qn3 has been modified to work “offline”, i.e. the simulator and the driver of m1qn3_offline are
separate programs that are called alternatingly from a (shell-)script. This requires that the “state” of m1qn3 is saved
before this program terminates. This state is saved in a single file OPWARM.optXXX per simulation, where XXX is the
simulation number. Communication with the routine, writing and restoring the state of m1qn3 is achieved via three
new common-blocks that are contained in three header files. simul is replaced by reading and storing the model state
and gradient vectors. Schematically the driver routine optim_sub does the following:

external simul_rc
...

call optim_readdata( nn, ctrlname, ..., xx ) ! read control vector
call optim_readdata( nn, costname, ..., adxx ) ! read gradient vector
call optim_store_m1qn3( ..., .false. ) ! read state of m1qn3
reverse = .true.
call m1qn3 (simul_rc,...,xx,objf,adxx,...,reverse,indic,...)
call optim_store_m1qn3( ..., .true. ) ! write state of m1qn3
call optim_writedata( nn, ctrlname, ..., xx ) ! write control vector

The optimization loop is executed outside of this program within a script.

The code can be obtained at https://github.com/mjlosch/optim_m1qn3 . The README contains short instructions how
to build and use the code in combination with the tutorial_global_oce_optim experiment. The usage is very
similar to the optim package.

10.6 Test Cases For Estimation Package Capabilities

First, download the model as explained in Getting Started with MITgcm via the MITgcm git server

% git clone https://github.com/user_name/MITgcm.git

Then, download the setup from the MITgcm_contrib/ area by logging into the cvs server

% setenv CVSROOT ':pserver:cvsanon@mitgcm.org:/u/gcmpack'
% cvs login
% ( enter the CVS password: "cvsanon" )

and following the directions provided here for global_oce_cs32 or here for global_oce_llc90. These model config-
urations are used for daily regression tests to ensure continued availability of the tested estimation package features
discussed in Ocean State Estimation Packages. Daily results of these tests, which currently run on the glacier cluster,
are reported on this site. To this end, one sets a crontab job that typically executes the script reported below. The
various commands can also be used to run these examples outside of crontab, directly at the command line via the
testreport capability.

Note: Users are advised against running global_oce_llc90/ tests with fewer than 12 cores (96 for adjoint tests) to
avoid potential memory overloads. global_oce_llc90/ (595M) uses the same LLC90 grid as the production ECCO
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version 4 setup does [FCH+15]. The much coarser resolution global_oce_cs32/ (614M) uses the CS32 grid and can
run on any modern laptop.

% #!/bin/csh -f
% setenv PATH ~/bin:$PATH
% setenv MODULESHOME /usr/share/Modules
% source /usr/share/Modules/init/csh
% module use /usr/share/Modules
% module load openmpi-x86_64
% setenv MPI_INC_DIR $MPI_INCLUDE
%
% cd ~/MITgcm
% #mkdir gitpull.log
% set D=`date +%Y-%m-%d`
% git pull -v > gitpull.log/gitpull.$D.log
%
% cd verification
%
% #ieee case:
% ./testreport -clean -t 'global_oce_*'
% ./testreport -of=../tools/build_options/linux_amd64_gfortran -MPI 24 -t 'global_oce_
→˓*' -addr username@something.whatever
% ../tools/do_tst_2+2 -t 'global_oce_*' -mpi -exe 'mpirun -np 24 ./mitgcmuv' -a
→˓username@something.whatever
%
% #devel case:
% ./testreport -clean -t 'global_oce_*'
% ./testreport -of=../tools/build_options/linux_amd64_gfortran -MPI 24 -devel -t
→˓'global_oce_*' -addr username@something.whatever
% ../tools/do_tst_2+2 -t 'global_oce_*' -mpi -exe 'mpirun -np 24 ./mitgcmuv' -a
→˓username@something.whatever
%
% #fast case:
% ./testreport -clean -t 'global_oce_*'
% ./testreport -of=../tools/build_options/linux_amd64_gfortran -MPI 24 -t 'global_oce_
→˓*' -fast -addr username@something.whatever
% ../tools/do_tst_2+2 -t 'global_oce_*' -mpi -exe 'mpirun -np 24 ./mitgcmuv' -a
→˓username@something.whatever
%
% #adjoint case:
% ./testreport -clean -t 'global_oce_*'
% ./testreport -of=../tools/build_options/linux_amd64_gfortran -MPI 24 -ad -t 'global_
→˓oce_*' -addr username@something.whatever
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CHAPTER

ELEVEN

UTILITIES

11.1 MITgcmutils

This Python package includes a number of helpful functions and scripts for dealing with MITgcm output. You can
install it from the model repository (in directory utils/python/MITgcmutils) or from the Python Package Index:

pip install --user MITgcmutils

The following functions are exposed at the package level:

• from module mds: rdmds() and wrmds()

• from module mnc: rdmnc() and mnc_files()

• from module ptracers: iolabel() and: iolabel2num()

• from module diagnostics: readstats()

The package also includes a standalone script for joining tiled mnc files: gluemncbig.

For more functions, see the individual modules:

11.1.1 mds

exception MITgcmutils.mds.ParseError

MITgcmutils.mds.parsemeta(metafile)
parses metafile (file object or filename) into a dictionary of lists of floats, ints or strings

MITgcmutils.mds.rdmds(fnamearg, itrs=-1, machineformat='b', rec=None, fill_value=0, re-
turnmeta=False, astype=<class 'float'>, region=None, lev=(), use-
memmap=False, mm=False, squeeze=True, verbose=False)

Read meta-data files as written by MITgcm.

Call signatures:

a = rdmds(fname,. . . )

a,its,meta = rdmds(fname,. . . ,returnmeta=True)

Parameters

• fname (string) – name of file to read, without the ‘.data’ or ‘.meta’ suffix. If itrs is
given, the iteration number is added to fname as well. fname may contain shell wildcards,
which is useful for tile files organized into directories, e.g.,

T = rdmds(‘prefix*/T’, 2880)

609

https://github.com/MITgcm/MITgcm/blob/master/utils/python/MITgcmutils


MITgcm Documentation, Release checkpoint66o-816-gb6703a8da

will read prefix0000/T.0000002880.*, prefix0001/T.0000002880.*, . . . (and any others that
match the wildcard, so be careful how you name things!)

• itrs (int or list of ints or np.NaN or np.Inf) – Iteration number(s).
With itrs=-1, will try to read

fname.meta or fname.001.001.meta, . . .

If itrs is a list of integers of an integer, it will read the corresponding

fname.000000iter.meta, . . .

If itrs is np.NaN, it will read all iterations for which files are found. If itrs is np.Inf, it will
read the highest iteration found.

• machineformat (int) – endianness (‘b’ or ‘l’, default ‘b’)

• rec (list of int or None) – list of records to read (default all) useful for pickups
and multi-field diagnostics files

• fill_value (float) – fill value for missing (blank) tiles (default 0)

• astype (data type) – data type to return (default: double precision) None: keep data
type/precision of file

• region (tuple of int) – (x0,x1,y0,y1) read only this region (default (0,nx,0,ny))

• lev (list of int or tuple of lists of int) – list of levels to read, or, for
multiple dimensions (excluding x,y), tuple(!) of lists (see examples below)

• usememmap (bool) – if True, use a memory map for reading data (default False) recom-
mended when using lev, or region with global files to save memory and, possibly, time

Returns

• a (array_like) – numpy array of the data read

• its (list of int) – list of iteration numbers read (only if returnmeta=True)

• meta (dict) – dictionary of metadata (only if returnmeta=True)

Examples

>>> XC = rdmds('XC')
>>> XC = rdmds('res_*/XC')
>>> T = rdmds('T.0000002880')
>>> T = rdmds('T',2880)
>>> T2 = rdmds('T',[2880,5760])
>>> T,its = rdmds('T',numpy.Inf)
>>> VVEL = rdmds('pickup',2880,rec=range(50,100))
>>> a5 = rdmds('diags',2880,rec=0,lev=[5])
>>> a = rdmds('diags',2880,rec=0,lev=([0],[0,1,5,6,7]))
>>> from numpy import r_
>>> a = rdmds('diags',2880,rec=0,lev=([0],r_[:2,5:8])) # same as previous
>>> a = rdmds('diags',2880,rec=0)[0, [0,1,5,6,7], ...] # same, but less efficient
>>> a = rdmds('diags',2880)[0, 0, [0,1,5,6,7], ...] # even less efficient

MITgcmutils.mds.readmeta(f)
read meta file and extract tile/timestep-specific parameters

MITgcmutils.mds.scanforfiles(fname)
return list of iteration numbers for which metafiles with base fname exist
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MITgcmutils.mds.strip_comments(text)
strips C and C++ style comments from text

MITgcmutils.mds.wrmds(fbase, arr, itr=None, dataprec='float32', ndims=None, nrecords=None,
times=None, fields=None, simulation=None, machineformat='b',
deltat=None, dimlist=None)

Write an array to an mds meta/data file set.

If itr is given, the files will be named fbase.0000000itr.data and fbase.0000000itr.meta, otherwise just fbase.data
and fbase.meta.

Parameters

• fbase (string) – Name of file to write, without the ‘.data’ or ‘.meta’ suffixes, and with-
out the iteration number if itr is give

• arr (array_like) – Numpy array to write

• itr (int or None) – If given, this iteration number will be appended to the file name

• dataprec (string) – precision of resulting file (‘float32’ or ‘float64’)

• ndims (int) – number of non-record dimensions; extra (leading) dimensions will be
folded into 1 record dimension

• nrecords (int) – number of records; will fold as many leading dimensions as necessary
(has to match shape!)

• times (float or list of floats) – times to write into meta file. Either a single
float or a list of two for a time interval

• fields (list of strings) – list of fields

• simulation (string) – string describing the simulation

• machineformat (string) – ‘b’ or ‘l’ for big or little endian

• deltat (float) – time step; provide in place of either times or itr to have one computed
from the other

• dimlist (tuple) – dimensions as will be stored in file (only useful when passing meta
data from an existing file to wrmds as keyword args)

11.1.2 mnc

class MITgcmutils.mnc.MNC(fpatt, layout=None, multitime=False)
A file object for MNC (tiled NetCDF) data.

Should behave mostly like scipy.io.netcdf.netcdf_file in ‘r’ mode.

Parameters

• fpatt (string) – glob pattern for tile files

• layout (string) – which global layout to use:

’model’ use layout implied by Nx, Ny

’exch2’ use exch2 global layout

’faces’ variables are lists of exch2 faces

default is to use exch2 layout if present, model otherwise
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Example

>>> nc = mnc_files('mnc_*/state.0000000000.t*.nc')
>>> temp = nc.variables['Temp'][:]
>>> salt = nv.variables['S'][:]
>>> nc.close()
temp and salt are now assembled (global) arrays of shape (Nt, Nr, Ny, Nx)
where Nt is the number iterations found in the file (in this case probably 1).

Notes

The multitime option is not implemented, i.e., MNC cannot read files split in time.

close()
Close tile files

MITgcmutils.mnc.mnc_files(fpatt, layout=None)
A file object for MNC (tiled NetCDF) data.

Should behave mostly like scipy.io.netcdf.netcdf_file in ‘r’ mode.

Parameters

• fpatt (string) – glob pattern for tile files

• layout (string) – which global layout to use:

’model’ use layout implied by Nx, Ny

’exch2’ use exch2 global layout

’faces’ variables are lists of exch2 faces

default is to use exch2 layout if present, model otherwise

Example

>>> nc = mnc_files('mnc_*/state.0000000000.t*.nc')
>>> temp = nc.variables['Temp'][:]
>>> salt = nv.variables['S'][:]
>>> nc.close()
temp and salt are now assembled (global) arrays of shape (Nt, Nr, Ny, Nx)
where Nt is the number iterations found in the file (in this case probably 1).

Notes

The multitime option is not implemented, i.e., MNC cannot read files split in time.

MITgcmutils.mnc.rdmnc(fpatt, varnames=None, iters=None, slices=Ellipsis, layout=None)
Read one or more variables from an mnc file set.

Parameters

• fpatt (string) – glob pattern for netcdf files comprising the set

• varnames (list of strings, optional) – list of variables to read (default all)

• iters (list of int, optional) – list of iterations (not time) to read
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• slices (tuple of slice objects) – tuple of slices to read from each variable
(typically given as numpy.s_[. . . ])

Returns dictionary of variable arrays

Return type dict of numpy arrays

Example

>>> S = rdmnc("mnc_*/state.0000000000.*', ['U', 'V'], slices=numpy.s_[..., 10:-10,
→˓ 10:-10])
>>> u = S['U']
>>> v = S['V']

Notes

Can currently read only one file set (i.e., 1 file per tile), not several files split in time.

Consider using mnc_files for more control (and similar convenience). The same restriction about multiple files
applies, however.

11.1.3 diagnostics

MITgcmutils.diagnostics.readstats(fname)
locals,totals,itrs = readstats(fname)

Read a diagstats text file into record arrays (or dictionaries).

Parameters fname (string) – name of diagstats file to read

Returns

• locals (record array or dict of arrays) – local statistics, shape (len(itrs), Nr, 5)

• totals (record array or dict of arrays) – column integrals, shape (len(itrs), 5)

• itrs (list of int) – iteration numbers found in the file

Notes

• The 5 columns of the resulting arrays are average, std.dev, min, max and total volume.

• There is a record (or dictionary key) for each field found in the file.

11.1.4 ptracers

MITgcmutils.ptracers.iolabel(i)
Map tracer number (1..3843) to 2-character I/O label:

1..99 => 01..99
100..619 => 0a..0Z,1a..9Z
620..3843 => aa..ZZ
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Parameters i (int) – ptracer number (1..3843)

Returns 2-character I/O label

Return type string

MITgcmutils.ptracers.iolabel2num(s)
Map 2-character IO label to tracer number, the inverse of iolabel()

11.1.5 jmd95

Density of Sea Water using the Jackett and McDougall 1995 (JAOT 12) polynomial

MITgcmutils.jmd95.bulkmodjmd95(s, theta, p)
Compute bulk modulus

MITgcmutils.jmd95.dens(s, theta, p)
Computes in-situ density of sea water

Density of Sea Water using Jackett and McDougall 1995 (JAOT 12) polynomial (modified UNESCO polyno-
mial).

Parameters

• s (array_like) – salinity [psu (PSS-78)]

• theta (array_like) – potential temperature [degree C (IPTS-68)]; same shape as s

• p (array_like) – pressure [dbar]; broadcastable to shape of s

Returns dens – density [kg/m^3]

Return type array

Example

>>> densjmd95(35.5, 3., 3000.)
1041.83267

Notes

AUTHOR: Martin Losch 2002-08-09 (mlosch@mit.edu)

Jackett and McDougall, 1995, JAOT 12(4), pp. 381-388

MITgcmutils.jmd95.densjmd95(s, theta, p)
Computes in-situ density of sea water

Density of Sea Water using Jackett and McDougall 1995 (JAOT 12) polynomial (modified UNESCO polyno-
mial).

Parameters

• s (array_like) – salinity [psu (PSS-78)]

• theta (array_like) – potential temperature [degree C (IPTS-68)]; same shape as s

• p (array_like) – pressure [dbar]; broadcastable to shape of s

Returns dens – density [kg/m^3]
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Return type array

Example

>>> densjmd95(35.5, 3., 3000.)
1041.83267

Notes

AUTHOR: Martin Losch 2002-08-09 (mlosch@mit.edu)

Jackett and McDougall, 1995, JAOT 12(4), pp. 381-388

11.1.6 mdjwf

Density of Sea Water using McDougall et al. 2003 (JAOT 20) polynomial

MITgcmutils.mdjwf.dens(s, theta, p)
Computes in-situ density of sea water

Density of Sea Water using McDougall et al. 2003 (JAOT 20) polynomial (Gibbs Potential).

Parameters

• s (array_like) – salinity [psu (PSS-78)]

• theta (array_like) – potential temperature [degree C (IPTS-68)]; same shape as s

• p (array_like) – pressure [dbar]; broadcastable to shape of s

Returns dens – density [kg/m^3]

Return type array

Example

>>> densmdjwf(35., 25., 2000.)
1031.654229

Notes

AUTHOR: Martin Losch 2002-08-09 (Martin.Losch@awi.de)

McDougall et al., 2003, JAOT 20(5), pp. 730-741

MITgcmutils.mdjwf.densmdjwf(s, theta, p)
Computes in-situ density of sea water

Density of Sea Water using McDougall et al. 2003 (JAOT 20) polynomial (Gibbs Potential).

Parameters

• s (array_like) – salinity [psu (PSS-78)]

• theta (array_like) – potential temperature [degree C (IPTS-68)]; same shape as s

• p (array_like) – pressure [dbar]; broadcastable to shape of s
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Returns dens – density [kg/m^3]

Return type array

Example

>>> densmdjwf(35., 25., 2000.)
1031.654229

Notes

AUTHOR: Martin Losch 2002-08-09 (Martin.Losch@awi.de)

McDougall et al., 2003, JAOT 20(5), pp. 730-741

11.1.7 cs

MITgcmutils.cs.pcol(x, y, data, projection=None, vmin=None, vmax=None, **kwargs)
Plots 2D scalar fields on the MITgcm cubed sphere grid with pcolormesh.

Parameters

• x (array_like) – ‘xg’, that is, x coordinate of the points one half grid cell to the left and
bottom, that is vorticity points for tracers, etc.

• y (array_like) – ‘yg’, that is, y coordinate of same points

• data (array_like) – scalar field at tracer points

• projection (Basemap instance, optional) – used to transform if present. Un-
fortunatly, cylindrical and conic maps are limited to the [-180 180] range. projection =
‘sphere’ results in a 3D visualization on the sphere without any specific projection. Good
for debugging.

Example

>>> from mpl_toolkits.basemap import Basemap
>>> import MITgcmutils as mit
>>> import matplotlib.pyplot as plt
>>> from sq import sq
>>>
>>> x=mit.rdmds('XG'); y=mit.rdmds('YG'); e=mit.rdmds('Eta',np.Inf)
>>> fig = plt.figure();
>>> mp = Basemap(projection='moll',lon_0 = 0.,
>>> resolution = 'l', area_thresh = 1000.)
>>> plt.clf()
>>> h = mit.cs.pcol(x,y,sq(e), projection = mp)
>>> mp.fillcontinents(color = 'grey')
>>> mp.drawmapboundary()
>>> mp.drawmeridians(np.arange(0, 360, 30))
>>> mp.drawparallels(np.arange(-90, 90, 30))
>>> plt.show()
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11.1.8 llc

MITgcmutils.llc.contour(*arguments, **kwargs)
Create a contour plot of a 2-D llc array (with tricontour).

Call signatures:

contour(X, Y, C, N, **kwargs)

contour(X, Y, C, V, **kwargs)

Parameters

• X (array-like) – x coordinates of the grid points

• Y (array-like) – y coordinates of the grid points

• C (array-like) – array of color values.

• N (int) – number of levels

• V (list of float) – list of levels

• kwargs – passed to tricontour.

MITgcmutils.llc.contourf(*arguments, **kwargs)
Create a contourf plot of a 2-D llc array (with tricontour).

Call signatures:

contourf(X, Y, C, N, **kwargs)

contourf(X, Y, C, V, **kwargs)

Parameters

• X (array-like) – x coordinates of the grid points

• Y (array-like) – y coordinates of the grid points

• C (array-like) – array of color values.

• N (int) – number of levels

• V (list of float) – list of levels

• kwargs – passed to tricontour.

MITgcmutils.llc.div(u, v, dxg=None, dyg=None, rac=None, hfw=None, hfs=None)
Compute divergence of vector field (U,V) on llc grid

Call signatures:

divergence = div(U, V, DXG, DYG, RAC, HFW, HFS)
divergence = div(U, V)
divergence = div(U, V, DXG, DYG)
divergence = div(U, V, DXG, DYG, RAC)
divergence = div(U, V, DXG, DYG, hfw=HFW, hfs=HFS)

Parameters
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• u (array-like (timelevel,depthlevel,jpoint,ipoint)) – x-component
of vector field at u-point

• v (array-like (timelevel,depthlevel,jpoint,ipoint)) – y-component
of vector field at v-point

• dxg (array-like (jpoint,ipoint), optional) – grid spacing in x across v-
point, defaults to one

• dyg (array-like (jpoint,ipoint), optional) – grid spacing in y across u-
point, defaults to one

• rac (array-like (jpoint,ipoint), optional) – grid cell area, defaults to
dxg*dyg

• hfw (array-like (depthlevel,jpoint,ipoint), optional) – hFac at u-
point, defaults to one

• hfs (array-like (depthlevel,jpoint,ipoint), optional) – hFac at v-
point, defaults to one

MITgcmutils.llc.faces(fld)
convert mds multidimensional data into a list with 6 faces

MITgcmutils.llc.faces2mds(ff)
convert 6 faces to mds 2D data, inverse opertation of llc.faces

MITgcmutils.llc.flat(fld, **kwargs)
convert mds data into global 2D field only fields with 2 to 5 dimensions are allowed

MITgcmutils.llc.grad(X, dxc=None, dyc=None, hfw=None, hfs=None)
Compute horizontal gradient of scalar field X on llc grid

Call signatures:

dXdx, dXdy = div(X, DXC, DYC, HFW, HFS)
dXdx, dXdy = div(X)
dXdx, dXdy = div(X, DXC, DYC)
dXdx, dXdy = div(X, hfw=HFW, hfs=HFS)

Parameters

• X (array-like (timelevel,depthlevel,jpoint,ipoint)) – scalar field at
c-point

• dxc (array-like (jpoint,ipoint), optional) – grid spacing in x across u-
point, defaults to one

• dyc (array-like (jpoint,ipoint), optional) – grid spacing in y across v-
point, defaults to one

• hfw (array-like (depthlevel,jpoint,ipoint), optional) – hFac at u-
point, defaults to one

• hfs (array-like (depthlevel,jpoint,ipoint), optional) – hFac at v-
point, defaults to one

MITgcmutils.llc.mds(fld, center='Atlantic')
convert global ‘flat’ field into mds data; only fields with 2 to 5 dimensions are allowed
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MITgcmutils.llc.pcol(*arguments, **kwargs)
Create a pseudo-color plot of a 2-D llc array (with plt.pcolormesh).

Call signatures:

pcol(X, Y, C, **kwargs)

pcol(X, Y, C, m, **kwargs)

Parameters

• X (array-like) – x coordinates of the grid point corners (G-points)

• Y (array-like) – y coordinates of the grid point corners (G-points)

• C (array-like) – array of color values.

• m (Basemap instance, optional) – map projection to use. NOTE: currently not
all projections work

• kwargs – passed to plt.pcolormesh.

MITgcmutils.llc.uv2c(u, v)
Average vector component (u,v) to center points on llc grid

Call signatures:

uc,vc = uv2c(U,V)

Parameters

• U (array-like (timelevel,depthlevel,jpoint,ipoint)) – x-component
of vector field at u-point

• V (array-like (timelevel,depthlevel,jpoint,ipoint)) – y-component
of vector field at v-point

11.1.9 gluemncbig

This command line script is part of MITgcmutils and provides a convenient method for stitching together NetCDF
files into a single file covering the model domain. Be careful though - the resulting files can get very large.

Usage: gluemncbig [-2] [-q] [--verbose] [--help] [--many] [-v <vars>] -o <outfile>
→˓<files>

-v <vars> comma-separated list of variable names or glob patterns
-2 write a NetCDF version 2 (64-Bit Offset) file allowing for large records
--many many tiles: assemble only along x in memory; less efficient

on some filesystems, but opens fewer files simultaneously and
uses less memory

-q suppress progress messages
--verbose report variables
--help show this help text

All files must have the same variables.
Each variable (or 1 record of it) must fit in memory.
With --many, only a row of tiles along x must fit in memory.

(continues on next page)
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(continued from previous page)

Examples:

gluemncbig -o ptr.nc mnc_*/ptr_tave.*.nc
gluemncbig -o BIO.nc -v 'BIO_*' mnc_*/ptr_tave.*.nc
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TWELVE

RELATED PROJECTS AND HIGHLIGHTED PAPERS

12.1 Projects Related to MITgcm

12.1.1 Estimating the Circulation and Climate of the Ocean (ECCO)

ECCO is a community of MITgcm users who create and analyze ocean state estimates. ECCO typically optimizes
initial conditions, surface forcing fields, and internal parameters to fit a multi-decadal model solution to various data
constraints using MITgcm’s adjoint capabilities. Unlike other data assimilation products, ECCO solutions are dynam-
ically self-consistent, have closed budgets, and can easily be re-run by users.

websites: https://ecco.jpl.nasa.gov/, http://eccov4.readthedocs.io/en/latest/

12.1.2 Gcmfaces: Gridded Earth Variables In Matlab And Octave

The gcmfaces toolbox handles gridded Earth variables as sets of connected arrays. This object-oriented approach al-
lows users to write generic, compact analysis codes that readily become applicable to a wide variety of grids. gcmfaces
notably allows for analysis of MITgcm output on any of its familiar grids.

website: http://gcmfaces.readthedocs.io/en/latest/

12.1.3 MITprof: In-Situ Ocean Data In Matlab And Octave

The MITprof toolbox handles unevenly distributed in-situ ocean observations. It is notably used, along with gcmfaces,
to generate input files for MITgcm’s profiles package (MITgcm/pkg/profiles).

website: https://github.com/gaelforget/MITprof

12.1.4 OceanParcels - Lagrangian Particle Tracker

Parcels provides a set of Python classses and methods to create customizable particle tracking simulations, focussing
on tracking of both passive water parcels as well as active plankton, plastic and fish.

website: http://oceanparcels.org/
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12.1.5 Southern Ocean State Estimation (SOSE)

SOSE uses the same techniques as ECCO to produce an eddy-permitting state estimate of the Southern Ocean.

website: http://sose.ucsd.edu/

12.1.6 Xgcm: General Circulation Model Postprocessing with xarray

Xgcm is a python packge for working with the datasets produced by numerical General Circulation Models (GCMs)
and similar gridded datasets that are amenable to finite volume analysis. In these datasets, different variables are
located at different positions with respect to a volume or area element (e.g. cell center, cell face, etc.) xgcm solves the
problem of how to interpolate and difference these variables from one position to another.

website: http://xgcm.readthedocs.io/en/latest/

12.1.7 Xmitgcm

Xmitgcm is a Python module that loads MITgcm MDS output files as xarray datasets with the associated grid infor-
mation. These can be easily exported as NetCDF files.

website: http://xmitgcm.readthedocs.io/en/latest/

12.2 Highlighted Papers
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