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CHAPTER
ONE

OVERVIEW

This document provides the reader with the information necessary to carry out numerical experiments using MITgcm.
It gives a comprehensive description of the continuous equations on which the model is based, the numerical algorithms
the model employs and a description of the associated program code. Along with the hydrodynamical kernel, physical
and biogeochemical parameterizations of key atmospheric and oceanic processes are available. A number of examples
illustrating the use of the model in both process and general circulation studies of the atmosphere and ocean are also
presented.

1.1 Introduction

MITgcm has a number of novel aspects:

* it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is
used to drive forward both atmospheric and oceanic models - see Figure 1.1

Dynamical Kernel

Atmospheric
Physics

Ocean
Physics

Figure 1.1: MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric simulations.

* it has a non-hydrostatic capability and so can be used to study both small-scale and large scale
processes - see Figure 1.2
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~1 000km ~10 000 km

Figure 1.2: MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of phenomenon -
from convection on the left, all the way through to global circulation patterns on the right.

* finite volume techniques are employed yielding an intuitive discretization and support for the treat-
ment of irregular geometries using orthogonal curvilinear grids and shaved cells - see Figure 1.3

* tangent linear and adjoint counterparts are automatically maintained along with the forward model,
permitting sensitivity and optimization studies.

* the model is developed to perform efficiently on a wide variety of computational platforms.

Key publications reporting on and charting the development of the model are Hill and Marshall (1995), Marshall et al.
(1997a), Marshall et al. (1997b), Adcroft and Marshall (1997), Marshall et al. (1998), Adcroft and Marshall (1999),
Hill et al. (1999), Marotzke et al. (1999), Adcroft and Campin (2004), Adcroft et al. (2004b), Marshall et al. (2004)
(an overview on the model formulation can also be found in Adcroft et al. (2004c¢)):

Hill, C. and J. Marshall, (1995) Application of a Parallel Navier-Stokes Model to Ocean Circulation in Parallel Com-
putational Fluid Dynamics, In Proceedings of Parallel Computational Fluid Dynamics: Implementations and Results
Using Parallel Computers, 545-552. Elsevier Science B.V.: New York [HM95]

Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean
modeling, J. Geophysical Res., 102(C3), 5733-5752 [MHPA97]

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997b) A finite-volume, incompressible Navier Stokes
model for studies of the ocean on parallel computers, J. Geophysical Res., 102(C3), 5753-5766 [MAH+97]

Adcroft, A.J., Hill, C.N. and J. Marshall, (1997) Representation of topography by shaved cells in a height coordinate
ocean model, Mon Wea Rev, 125, 2293-2315 [AHM97]

Marshall, J., Jones, H. and C. Hill, (1998) Efficient ocean modeling using non-hydrostatic algorithms, Journal of
Marine Systems, 18, 115-134 [MJHO98]

Adcroft, A., Hill C. and J. Marshall: (1999) A new treatment of the Coriolis terms in C-grid models at both high and
low resolutions, Mon. Wea. Rev., 127, 1928-1936 [AHM99]

Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999) A Strategy for Terascale Climate Modeling, In Proceedings of
the Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, 406-425 World Scientific Publishing
Co: UK [HAJM99]

Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999) Construction of the adjoint MIT ocean
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Finite Volume: Shaved Cells

Stream Function W Tracer 0 at t=0.3

-1 =1
- 1 -1 1

Figure 1.3: Finite volume techniques (bottom panel) are used, permitting a treatment of topography that rivals o
(terrain following) coordinates.
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general circulation model and application to Atlantic heat transport variability, J. Geophysical Res., 104(C12), 29,529-
29,547 [MGZ+99]

A. Adcroft and J.-M. Campin, (2004a) Re-scaled height coordinates for accurate representation of free-surface flows
in ocean circulation models, Ocean Modelling, 7, 269-284 [AC04]

A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall, (2004b) Implementation of an atmosphere-ocean general circula-
tion model on the expanded spherical cube, Mon Wea Rev , 132, 2845-2863 [ACHMO04]

J. Marshall, A. Adcroft, J.-M. Campin, C. Hill, and A. White, (2004) Atmosphere-ocean modeling exploiting fluid
isomorphisms, Mon. Wea. Rev., 132, 2882-2894 [MAC+04]

A. Adcroft, C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, (2004c) Overview of the formulation and numerics
of the MITgcm, In Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numer-
ical methods for atmosphere and ocean modelling, 139—-149. URL: http://mitgcm.org/pdfs/ECMWEF2004- Adcroft.pdf
[AHIMC+04]

We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems
that can be addressed using it.

1.2 lllustrations of the model in action

MITgcm has been designed and used to model a wide range of phenomena, from convection on the scale of meters in
the ocean to the global pattern of atmospheric winds - see Figure 1.2. To give a flavor of the kinds of problems the
model has been used to study, we briefly describe some of them here. A more detailed description of the underlying
formulation, numerical algorithm and implementation that lie behind these calculations is given later. Indeed many
of the illustrative examples shown below can be easily reproduced: simply download the model (the minimum you
need is a PC running Linux, together with a FORTRAN77 compiler) and follow the examples described in detail in
the documentation.

1.2.1 Global atmosphere: ‘Held-Suarez’ benchmark

A novel feature of MITgcm is its ability to simulate, using one basic algorithm, both atmospheric and oceanographic
flows at both small and large scales.

Figure 1.4 shows an instantaneous plot of the 500 mb temperature field obtained using the atmospheric isomorph of
MITgcm run at 2.8° resolution on the cubed sphere. We see cold air over the pole (blue) and warm air along an
equatorial band (red). Fully developed baroclinic eddies spawned in the northern hemisphere storm track are evident.
There are no mountains or land-sea contrast in this calculation, but you can easily put them in. The model is driven
by relaxation to a radiative-convective equilibrium profile, following the description set out in Held and Suarez (1994)
[HS94] designed to test atmospheric hydrodynamical cores - there are no mountains or land-sea contrast.

As described in Adcroft et al. (2004) [ACHMO04], a ‘cubed sphere’ is used to discretize the globe permitting a uniform
griding and obviated the need to Fourier filter. The ‘vector-invariant’ form of MITgcm supports any orthogonal
curvilinear grid, of which the cubed sphere is just one of many choices.

Figure 1.5 shows the 5-year mean, zonally averaged zonal wind from a 20-level configuration of the model. It compares
favorable with more conventional spatial discretization approaches. The two plots show the field calculated using
the cube-sphere grid and the flow calculated using a regular, spherical polar latitude-longitude grid. Both grids are
supported within the model.
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Figure 1.4: Instantaneous plot of the temperature field at 500 mb obtained using the atmospheric isomorph of MITgcm

1.2.2 Ocean gyres

Baroclinic instability is a ubiquitous process in the ocean, as well as the atmosphere. Ocean eddies play an important
role in modifying the hydrographic structure and current systems of the oceans. Coarse resolution models of the
oceans cannot resolve the eddy field and yield rather broad, diffusive patterns of ocean currents. But if the resolution
of our models is increased until the baroclinic instability process is resolved, numerical solutions of a different and
much more realistic kind, can be obtained.

Figure 1.6 shows the surface temperature and velocity field obtained from MITgcm run at %o horizontal resolution
on a lat-lon grid in which the pole has been rotated by 90° on to the equator (to avoid the converging of meridian in
northern latitudes). 21 vertical levels are used in the vertical with a ‘lopped cell’ representation of topography. The
development and propagation of anomalously warm and cold eddies can be clearly seen in the Gulf Stream region.
The transport of warm water northward by the mean flow of the Gulf Stream is also clearly visible.

1.2.3 Global ocean circulation

Figure 1.7 shows the pattern of ocean currents at the surface of a 4° global ocean model run with 15 vertical levels.
Lopped cells are used to represent topography on a regular lat-lon grid extending from 70°N to 70°S. The model is
driven using monthly-mean winds with mixed boundary conditions on temperature and salinity at the surface. The
transfer properties of ocean eddies, convection and mixing is parameterized in this model.

Figure 1.8 shows the meridional overturning circulation of the global ocean in Sverdrups.

1.2. lllustrations of the model in action 5



MITgcm Documentation, Release checkpoint660-816-gb6703a8da

=200 —

—400 —

Z (MB)
|

=600 —

—800 —

—1000 T

-

—200 —

—400 —

Z (MB)
|

—600 —

—800 —

—1000 T
80°5 ° 0°
LATITUDE

Figure 1.5: Five year mean, zonally averaged zonal flow for cube-sphere simulation (top) and latitude-longitude
simulation (bottom) and using Held-Suarez forcing. Note the difference in the solutions over the pole — the cubed
sphere is superior.
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Figure 1.6: Instantaneous temperature map from a go simulation of the North Atlantic. The figure shows the temper-

ature in the second layer (37.5 m deep).
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Figure 1.7: Pattern of surface ocean currents from a global integration of the model at 4° horizontal resolution and
with 15 vertical levels.
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Figure 1.8: Meridional overturning stream function (in Sverdrups) from a global integration of the model at 4° hori-
zontal resolution and with 15 vertical levels.
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1.2.4 Convection and mixing over topography

Dense plumes generated by localized cooling on the continental shelf of the ocean may be influenced by rotation when
the deformation radius is smaller than the width of the cooling region. Rather than gravity plumes, the mechanism for
moving dense fluid down the shelf is then through geostrophic eddies. The simulation shown in Figure 1.9 (blue is
cold dense fluid, red is warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to trigger convection
by surface cooling. The cold, dense water falls down the slope but is deflected along the slope by rotation. It is found
that entrainment in the vertical plane is reduced when rotational control is strong, and replaced by lateral entrainment
due to the baroclinic instability of the along-slope current.

10.98

10.97

10.96

10.95

4 5 6

3
x (km)

Figure 1.9: MITgcm run in a non-hydrostatic configuration to study convection over a slope.

1.2.5 Boundary forced internal waves

The unique ability of MITgcm to treat non-hydrostatic dynamics in the presence of complex geometry makes it an ideal
tool to study internal wave dynamics and mixing in oceanic canyons and ridges driven by large amplitude barotropic
tidal currents imposed through open boundary conditions.

Figure 1.10 shows the influence of cross-slope topographic variations on internal wave breaking - the cross-slope
velocity is in color, the density contoured. The internal waves are excited by application of open boundary conditions
on the left. They propagate to the sloping boundary (represented using MITgcm’s finite volume spatial discretization)
where they break under non-hydrostatic dynamics.

1.2. lllustrations of the model in action 9
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Figure 1.10: Simulation of internal waves forced at an open boundary (on the left) impacting a sloping shelf. The
along slope velocity is shown colored, contour lines show density surfaces. The slope is represented with high-fidelity
using lopped cells.
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1.2.6 Parameter sensitivity using the adjoint of MITgcm

Forward and tangent linear counterparts of MITgcm are supported using an ‘automatic adjoint compiler’. These can
be used in parameter sensitivity and data assimilation studies.

As one example of application of the MITgcem adjoint, Figure 1.11 maps the gradient g—;{[ where J is the magnitude

of the overturning stream-function shown in Figure 1.8 at 60°N and H (), ¢) is the mean, local air-sea heat flux over a
100 year period. We see that .J is sensitive to heat fluxes over the Labrador Sea, one of the important sources of deep
water for the thermohaline circulations. This calculation also yields sensitivities to all other model parameters.

Sensitivity of the Meridional Overturning — Ocean

Heat Flux (Min= -7.7 107 Sv W' m?; Max = 42.9 107 Sv W' m?
| | | | | | | | |

90N

60N —

30N

30S

60S -

90S \ \ \ \ \ \ \ \ \ \ \
180W 150W 120W  90W 60W  30W, 0, ,30E 60E 90E 120E 150E 180E
10 "SvW 'm

-10 -5 0 5 10 15 20 25 30 35 40 45 50

Figure 1.11: Sensitivity of meridional overturning strength to surface heat flux changes. Contours show the magnitude
of the response (in Sv x 10 ) that a persistent +1 Wm heat flux anomaly at a given grid point would produce.

1.2.7 Global state estimation of the ocean

An important application of MITgcm is in state estimation of the global ocean circulation. An appropriately defined
‘cost function’, which measures the departure of the model from observations (both remotely sensed and in-situ)
over an interval of time, is minimized by adjusting ‘control parameters’ such as air-sea fluxes, the wind field, the
initial conditions etc. Figure 1.12 and Figure 1.13 show the large scale planetary circulation and a Hopf-Muller plot of
Equatorial sea-surface height. Both are obtained from assimilation bringing the model in to consistency with altimetric
and in-situ observations over the period 1992-1997.

1.2. lllustrations of the model in action 11



MITgcm Documentation, Release checkpoint660-816-gb6703a8da

Figure 1.12: Circulation patterns from a multi-year, global circulation simulation constrained by Topex altimeter data
and WOCE cruise observations. This output is from a higher resolution, shorter duration experiment with equatorially
enhanced grid spacing.
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Figure 1.13: Equatorial sea-surface height in unconstrained (left), constrained (middle) simulations and in observations
(right).
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1.2.8 Ocean biogeochemical cycles

MITgcem is being used to study global biogeochemical cycles in the ocean. For example one can study the effects of
interannual changes in meteorological forcing and upper ocean circulation on the fluxes of carbon dioxide and oxygen
between the ocean and atmosphere. Figure 1.14 shows the annual air-sea flux of oxygen and its relation to density
outcrops in the southern oceans from a single year of a global, interannually varying simulation. The simulation is run

at 1°x1° resolution telescoping to %O X %O in the tropics (not shown).

MITgcm air-sea O2 flux (moI/m2/yrg with contoured potential density
0

Figure 1.14: Annual air-sea flux of oxygen (shaded) plotted along with potential density outcrops of the surface of the
southern ocean from a global 1°x1° integration with a telescoping grid (to %O ) at the equator.
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1.2.9 Simulations of laboratory experiments

Figure 1.16 shows MITgcm being used to simulate a laboratory experiment (Figure 1.15) inquiring into the dynamics
of the Antarctic Circumpolar Current (ACC). An initially homogeneous tank of water (1 m in diameter) is driven from
its free surface by a rotating heated disk. The combined action of mechanical and thermal forcing creates a lens of
fluid which becomes baroclinically unstable. The stratification and depth of penetration of the lens is arrested by its
instability in a process analogous to that which sets the stratification of the ACC.

e

-
L]

il : ; _l."l.

Figure 1.15: A 1 m diameter laboratory experiment simulating the dynamics of the Antarctic Circumpolar Current.

1.3 Continuous equations in ‘r’ coordinates

To render atmosphere and ocean models from one dynamical core we exploit ‘isomorphisms’ between equation sets
that govern the evolution of the respective fluids - see Figure 1.17. One system of hydrodynamical equations is written
down and encoded. The model variables have different interpretations depending on whether the atmosphere or ocean
is being studied. Thus, for example, the vertical coordinate ‘r’ is interpreted as pressure, p, if we are modeling the
atmosphere (right hand side of Figure 1.17) and height, 2, if we are modeling the ocean (left hand side of Figure 1.17).

The state of the fluid at any time is characterized by the distribution of velocity V, active tracers 6 and .S, a ‘geopoten-
tial’ ¢ and density p = p(, S, p) which may depend on 6, S, and p. The equations that govern the evolution of these
fields, obtained by applying the laws of classical mechanics and thermodynamics to a Boussinesq, Navier-Stokes fluid
are, written in terms of a generic vertical coordinate, r, so that the appropriate kinematic boundary conditions can be
applied isomorphically see Figure 1.18.

Dv; =

l;/th + (29 X \‘f')h + V¢ = Fy; horizontal momentum (1.1)
Di ~

L1k (29 X \7’) + 9¢ + b = F, vertical momentum (1.2)
Dt or

1.3. Continuous equations in ‘r’ coordinates 15
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Figure 1.16: A numerical simulation of the laboratory experiment using MITgcm.
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Figure 1.17: Isomorphic equation sets used for atmosphere (right) and ocean (left).
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Figure 1.18: Vertical coordinates and kinematic boundary conditions for atmosphere (top) and ocean (bottom).

Py

Vi -V + @ 0 continuity
or

b =b(0, S, ) equation of state

Do
Dt
DS

D= Qg humidity/salinity

= Qy potential temperature

Here:

r is the vertical coordinate

Dﬂt = % + Vv - V is the total derivative
V=V + E% is the ‘grad’ operator
with V, operating in the horizontal and E% operating in the vertical, where % is a unit vector in the vertical
t is time
v = (u,v,7) = (V¥p,7) is the velocity
¢ is the ‘pressure’/‘geopotential’
Q) is the Earth’s rotation
b is the ‘buoyancy’
0 is potential temperature

S is specific humidity in the atmosphere; salinity in the ocean

(1.3)
(1.4)

(1.5)

(1.6)

1.3. Continuous equations in ‘r’ coordinates
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Fy are forcing and dissipation of ¥
Qp are forcing and dissipation of 6
Qg are forcing and dissipation of .S

The F's and Q’s are provided by ‘physics’ and forcing packages for atmosphere and ocean. These are described in
later chapters.

1.3.1 Kinematic Boundary conditions
1.3.1.1 Vertical

at fixed and moving r surfaces we set (see Figure 1.18):

7 =0atr = Rfizeq(, y) (ocean bottom, top of the atmosphere) 1.7)
. Dr
P= o at 7 = Rinoving (7, y) (ocean surface, bottom of the atmosphere) (1.8)

Here
Rmoving == Ro + n

where R,(xz,y) is the ‘r—value’ (height or pressure, depending on whether we are in the atmosphere or ocean) of the
‘moving surface’ in the resting fluid and 7 is the departure from R, (z,y) in the presence of motion.

1.3.1.2 Horizontal

v-n=0 (1.9)
where 11 is the normal to a solid boundary.
1.3.2 Atmosphere
In the atmosphere, (see Figure 1.18), we interpret:
7 = pis the pressure (1.10)
._Dp . . o .
7= i = w is the vertical velocity in p coordinates (1.11)
¢ = g z is the geopotential height (1.12)
oIl
b = —0 is the buoyancy (1.13)
dp
0="T( &)" is potential temperature (1.14)
p
S = q is the specific humidity (1.15)

where

T is absolute temperature

p is the pressure

18 Chapter 1. Overview
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z is the height of the pressure surface
g is the acceleration due to gravity

In the above the ideal gas law, p = pRT, has been expressed in terms of the Exner function II(p) given by (1.16) (see
also Section 1.4.1)

T(p) = cp(2)" (1.16)

where p. is a reference pressure and © = R/c, with R the gas constant and ¢, the specific heat of air at constant
pressure.

At the top of the atmosphere (which is ‘fixed’ in our r coordinate):
Ryized = Ptop = 0
In a resting atmosphere the elevation of the mountains at the bottom is given by
Rinoving = Ro(2,y) = po(,y)
i.e. the (hydrostatic) pressure at the top of the mountains in a resting atmosphere.
The boundary conditions at top and bottom are given by:
w = 0atr = Ryizeq (top of the atmosphere) (1.17)

Dp,
W= Dpt atr = Ryoving (bottom of the atmosphere) (1.18)
Then the (hydrostatic form of) equations (1.1)-(1.6) yields a consistent set of atmospheric equations which, for conve-

nience, are written out in p—coordinates in Section 1.4.1 - see eqs. (1.59)-(1.63).

1.3.3 Ocean

In the ocean we interpret:

r = z is the height (1.19)

= lDTj = w is the vertical velocity (1.20)

o= L s the pressure (1.21)

b(0,S,r) = % (p(8,S,7) — pc) is the buoyancy (1.22)

where p, is a fixed reference density of water and g is the acceleration due to gravity.
In the above:

At the bottom of the ocean: Ry;zeq(z,y) = —H (x,y).

The surface of the ocean is given by: I,,0ping = 1

The position of the resting free surface of the ocean is given by R, = Z, = 0.

Boundary conditions are:

w = 0atr = Ry;zcq (0cean bottom) (1.23)
D
w = FZ at r = Ryoving = 1 (0cean surface) (1.24)

where 7 is the elevation of the free surface.

Then equations (1.1)- (1.6) yield a consistent set of oceanic equations which, for convenience, are written out in
z—coordinates in Section 1.5.1 - see eqs. (1.98) to (1.103).
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1.3.4 Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic
forms

Let us separate ¢ in to surface, hydrostatic and non-hydrostatic terms:

¢(1‘7 Y, T) = ¢s($, y) + ¢hyd(x7 Y, T) + ¢7Lh(x7 Y, T) (125)
and write (1.1) in the form:

Ovi}, -
% + Vios + Vidnya + €t Vidnn = Gy, (1.26)
Obnyd _ _y, (1.27)

or
or  Oonn

— =G, 1.28
€nh ot + or G7 ( )

Here €, is a non-hydrostatic parameter.

The (ég, Gf) in (1.26) and (1.28) represent advective, metric and Coriolis terms in the momentum equations. In

spherical coordinates they take the form' - see Marshall et al. (1997a) [MHPA97] for a full discussion:

G, =—-Vv.Vu advection
{ ur  uvtan e } )
T — metric
T r (1.29)
— {—2Qusin ¢ + 2Q7 cos p } Coriolis
+ Fu forcing/dissipation
G, =—-v.Vv advection
; 2
_jur_ uTtang metric
o T (1.30)
— {2Qusin ¢} Coriolis
+ Fy forcing/dissipation
G, =—-V.Vr advection
(=) o
- metric
o (1.31)
+ 2Qu cos Coriolis
+ Fr forcing/dissipation

In the above ‘r’ is the distance from the center of the earth and ‘¢ ’ is latitude (see Figure 1.20).

Grad and div operators in spherical coordinates are defined in Coordinate systems.

' n the hydrostatic primitive equations (HPE) all underlined terms in (1.29), (1.30) and (1.31) are omitted; the singly-underlined terms are
included in the quasi-hydrostatic model (QH). The fully non-hydrostatic model (NH) includes all terms.
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1.3.4.1 Shallow atmosphere approximation

Most models are based on the ‘hydrostatic primitive equations’ (HPE’s) in which the vertical momentum equation is
reduced to a statement of hydrostatic balance and the ‘traditional approximation’ is made in which the Coriolis force
is treated approximately and the shallow atmosphere approximation is made. MITgcm need not make the ‘traditional
approximation’. To be able to support consistent non-hydrostatic forms the shallow atmosphere approximation can be
relaxed - when dividing through by r in, for example, (1.29), we do not replace r by a, the radius of the earth.

1.3.4.2 Hydrostatic and quasi-hydrostatic forms

These are discussed at length in Marshall et al. (1997a) [MHPA97].

In the ‘hydrostatic primitive equations’ (HPE) all the underlined terms in Eqgs. (1.29) — (1.31) are neglected and ‘r’
is replaced by ‘a’, the mean radius of the earth. Once the pressure is found at one level - e.g. by inverting a 2-d Elliptic
equation for ¢5 at 7 = Ryp,ouing - the pressure can be computed at all other levels by integration of the hydrostatic
relation, eq (1.27).

In the ‘quasi-hydrostatic’ equations (QH) strict balance between gravity and vertical pressure gradients is not imposed.
The 2Qwu cos ¢ Coriolis term are not neglected and are balanced by a non-hydrostatic contribution to the pressure field:
only the terms underlined twice in Eqs. (1.29) — (1.31) are set to zero and, simultaneously, the shallow atmosphere
approximation is relaxed. In QH all the metric terms are retained and the full variation of the radial position of a
particle monitored. The QH vertical momentum equation (1.28) becomes:

8¢nh

=20
o U COS

making a small correction to the hydrostatic pressure.

QH has good energetic credentials - they are the same as for HPE. Importantly, however, it has the same angular
momentum principle as the full non-hydrostatic model (NH) - see Marshall et.al. (1997a) [MHPA97]. As in HPE
only a 2-d elliptic problem need be solved.

1.3.4.3 Non-hydrostatic and quasi-nonhydrostatic forms

MITgcm presently supports a full non-hydrostatic ocean isomorph, but only a quasi-non-hydrostatic atmospheric
isomorph.

Non-hydrostatic Ocean

In the non-hydrostatic ocean model all terms in equations Eqs. (1.29) — (1.31) are retained. A three dimensional
elliptic equation must be solved subject to Neumann boundary conditions (see below). It is important to note that
use of the full NH does not admit any new ‘fast’ waves in to the system - the incompressible condition (1.3) has
already filtered out acoustic modes. It does, however, ensure that the gravity waves are treated accurately with an
exact dispersion relation. The NH set has a complete angular momentum principle and consistent energetics - see
White and Bromley (1995) [WBO95]; Marshall et al. (1997a) [MHPA97].
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Quasi-nonhydrostatic Atmosphere

In the non-hydrostatic version of our atmospheric model we approximate 7 in the vertical momentum eqs. (1.28) and
(1.30) (but only here) by:

. Dp 1Dé¢
popp_1D¢

= == 1.32
Dt g Dt ( )

where py,,, is the hydrostatic pressure.

1.3.4.4 Summary of equation sets supported by model

Atmosphere

Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the compressible non-Boussinesq equations in
p—coordinates are supported.

Hydrostatic and quasi-hydrostatic

The hydrostatic set is written out in p—coordinates in Hydrostatic Primitive Equations for the Atmosphere in Pressure
Coordinates - see eqgs. (1.59) to (1.63).

Quasi-nonhydrostatic

A quasi-nonhydrostatic form is also supported.

Ocean
Hydrostatic and quasi-hydrostatic

Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq equations in z—coordinates are supported.

Non-hydrostatic

Non-hydrostatic forms of the incompressible Boussinesq equations in z— coordinates are supported - see eqs. (1.98)
to (1.103).

1.3.5 Solution strategy

The method of solution employed in the HPE, QH and NH models is summarized in Figure 1.19. Under all dy-
namics, a 2-d elliptic equation is first solved to find the surface pressure and the hydrostatic pressure at any level
computed from the weight of fluid above. Under HPE and QH dynamics, the horizontal momentum equations are
then stepped forward and 7 found from continuity. Under NH dynamics a 3-d elliptic equation must be solved for the
non-hydrostatic pressure before stepping forward the horizontal momentum equations; 7 is found by stepping forward
the vertical momentum equation.

There is no penalty in implementing QH over HPE except, of course, some complication that goes with the inclusion
of cos¢ Coriolis terms and the relaxation of the shallow atmosphere approximation. But this leads to negligible
increase in computation. In NH, in contrast, one additional elliptic equation - a three-dimensional one - must be
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inverted for p,;,. However the ‘overhead’ of the NH model is essentially negligible in the hydrostatic limit (see detailed
discussion in Marshall et al. (1997) [MHPA97] resulting in a non-hydrostatic algorithm that, in the hydrostatic limit,
is as computationally economic as the HPEs.

Z

Vi (HV i 0:) =S 5:000) pm(1,¢,2)=_[~3d2'

0

HPE an NH

Vipuy = V'av -V.,.2(ps + Puy)

ov ov

ath =G, — V. (ps + puy) . =G, —V.(ps+ Puy + Pyy)
f ow A aPNH

w=-|V,. v dz’ —_—=G,———
‘0[ h h 3[ &

Figure 1.19: Basic solution strategy in MITgcm. HPE and QH forms diagnose the vertical velocity, in NH a prognostic
equation for the vertical velocity is integrated.

1.3.6 Finding the pressure field
Unlike the prognostic variables u, v, w, € and S, the pressure field must be obtained diagnostically. We proceed,

as before, by dividing the total (pressure/geo) potential in to three parts, a surface part, ¢s(x,y), a hydrostatic part
®hyd(z,y,r) and a non-hydrostatic part ¢, (z, y,), as in (1.25), and writing the momentum equation as in (1.26).

1.3.6.1 Hydrostatic pressure

Hydrostatic pressure is obtained by integrating (1.27) vertically from r = R, where ¢pq(r = R,) = 0, to yield:

R R
o 8 o
/r %’;yd dr = [Gnyalo = / —bdr

and so

R,
¢hyd($7y,7“)=/ bdr (1.33)

The model can be easily modified to accommodate a loading term (e.g atmospheric pressure pushing down on the
ocean’s surface) by setting:

Ohyd(r = R,) = loading (1.34)
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1.3.6.2 Surface pressure

The surface pressure equation can be obtained by integrating continuity, (1.3), vertically from r = Ryjzeq to r =

Rmom’ng
Ruoving
/ (Vh - ¥n +0,) dr =0
Rfized
Thus:
b . Rioving .
j+V.V77+/ Vi - Vpdr =0
ot Ryized

where 1 = Ry,0ving — I, is the free-surface r-anomaly in units of 7. The above can be rearranged to yield, using
Leibnitz’s theorem:

a,r] Rumoving
— + V- / Vydr = source (1.35)
ot Rfized

where we have incorporated a source term.

Whether ¢ is pressure (ocean model, p/p.) or geopotential (atmospheric model), in (1.26), the horizontal gradient
term can be written

Vids = Vi (bsn) (1.36)

where b, is the buoyancy at the surface.

In the hydrostatic limit (¢,,;, = 0), equations (1.26), (1.35) and (1.36) can be solved by inverting a 2-d elliptic equation
for ¢4 as described in Chapter 2. Both ‘free surface’ and ‘rigid lid” approaches are available.

1.3.6.3 Non-hydrostatic pressure

Taking the horizontal divergence of (1.26) and adding % of (1.28), invoking the continuity equation (1.3), we deduce
that:

Vipun = V.Gy — (Vigs + Vi¢nya) = V.F (1.37)

For a given rhs this 3-d elliptic equation must be inverted for ¢,,;, subject to appropriate choice of boundary conditions.
This method is usually called The Pressure Method [Harlow and Welch (1965) [HW65]; Williams (1969) [Wil69];
Potter (1973) [Pot73]. In the hydrostatic primitive equations case (HPE), the 3-d problem does not need to be solved.

Boundary Conditions

We apply the condition of no normal flow through all solid boundaries - the coasts (in the ocean) and the bottom:
Vvn=0 (1.38)

where 71 is a vector of unit length normal to the boundary. The kinematic condition (1.38) is also applied to the
vertical velocity at 7 = Ry,oping. No-slip (vp = 0) or slip (Qvr/0n = 0) conditions are employed on the tangential
component of velocity, v, at all solid boundaries, depending on the form chosen for the dissipative terms in the
momentum equations - see below.

Eq. (1.38) implies, making use of (1.26), that:

NV énn = n.F (1.39)
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where
F =G — (Vios + Voénya)

presenting inhomogeneous Neumann boundary conditions to the Elliptic problem (1.37). As shown, for example, by
Williams (1969) [Wil69], one can exploit classical 3D potential theory and, by introducing an appropriately chosen
d-function sheet of ‘source-charge’, replace the inhomogeneous boundary condition on pressure by a homogeneous
one. The source term rhs in (1.37) is the divergence of the vector F. By simultaneously setting 7. F = 0 and
1.V, = 0 on the boundary the following self-consistent but simpler homogenized Elliptic problem is obtained:

v2¢nh = Vﬁ
where F is a modified F such that F.i = 0. As is implied by (1.39) the modified boundary condition becomes:
n.Von, =0 (1.40)

If the flow is ‘close’ to hydrostatic balance then the 3-d inversion converges rapidly because ¢, is then only a small
correction to the hydrostatic pressure field (see the discussion in Marshall et al. (1997a,b) [MHPA97] [MAH+97].

The solution ¢, to (1.37) and (1.39) does not vanish at r = R,,oving, and so refines the pressure there.

1.3.7 Forcing/dissipation
1.3.7.1 Forcing

The forcing terms F on the rhs of the equations are provided by ‘physics packages’ and forcing packages. These are
described later on.

1.3.7.2 Dissipation

Momentum

Many forms of momentum dissipation are available in the model. Laplacian and biharmonic frictions are commonly
used:

0%v

0z2
where A, and A, are (constant) horizontal and vertical viscosity coefficients and A4 is the horizontal coefficient for
biharmonic friction. These coefficients are the same for all velocity components.

Dy = AyViv + Ay— + AyViv (1.41)

Tracers
The mixing terms for the temperature and salinity equations have a similar form to that of momentum except that the
diffusion tensor can be non-diagonal and have varying coefficients.

Dr,s = V.[KV(T,S)] + K4V,(T,S) (1.42)

where K is the diffusion tensor and the K4 horizontal coefficient for biharmonic diffusion. In the simplest case where
the subgrid-scale fluxes of heat and salt are parameterized with constant horizontal and vertical diffusion coefficients,
K, reduces to a diagonal matrix with constant coefficients:

K, 0 0
K = 0 K, O0 (1.43)
0 0 K,
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where K, and K, are the horizontal and vertical diffusion coefficients. These coefficients are the same for all tracers
(temperature, salinity ... ).

1.3.8 Vector invariant form

For some purposes it is advantageous to write momentum advection in eq (1.1) and (1.2) in the (so-called) ‘vector
invariant’ form:

Dv oV L 1,
i ot (va)xv+V{2(v~v)] (1.44)

This permits alternative numerical treatments of the non-linear terms based on their representation as a vorticity flux.
Because gradients of coordinate vectors no longer appear on the rhs of (1.44), explicit representation of the metric

terms in (1.29), (1.30) and (1.31), can be avoided: information about the geometry is contained in the areas and
lengths of the volumes used to discretize the model.

1.3.9 Adjoint

Tangent linear and adjoint counterparts of the forward model are described in Section 7.

1.4 Appendix ATMOSPHERE

1.4.1 Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates

The hydrostatic primitive equations (HPE’s) in p—coordinates are:

Dvp,

or + [k xV+Vyp=F (1.45)
% =0 (1.46)
dp

. Oow
vp-vh+a—p =0 (1.47)
pa = RT (1.48)

DT  Da
bvL | Ye 1.49
T +th Q (1.49)

where v}, = (u, v, 0) is the ‘horizontal’ (on pressure surfaces) component of velocity, % = % +Vi-V, +w8% is the
total derivative, f = 2Q sin ¢ is the Coriolis parameter, ¢ = gz is the geopotential, « = 1/p is the specific volume,
w= % is the vertical velocity in the p—coordinate. Equation (1.49) is the first law of thermodynamics where internal
energy e = ¢, T, T is temperature, () is the rate of heating per unit mass and p% is the work done by the fluid in

compressing.

It is convenient to cast the heat equation in terms of potential temperature 6 so that it looks more like a generic
conservation law. Differentiating (1.48) we get:

Da Dp DT
Por Yoo T Bor

which, when added to the heat equation (1.49) and using ¢, = ¢, + R, gives:

DT Dp _

el — 1.50
Dt ~ "Dt Q (150)
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Potential temperature is defined:

pC
9 - ] =)~

where p, is a reference pressure and k = R/c,,. For convenience we will make use of the Exner function II(p) which
is defined by:
Pk
(p) = ¢,(+) (1.52)

The following relations will be useful and are easily expressed in terms of the Exner function:

oIl kII k6 O11 DIl 911 Dp
pI'=10; —=—; a=—=—70,; —=———
Op P D dp Dt dp Dt
where b = %—EG is the buoyancy.
The heat equation is obtained by noting that

DT _ D) _ DO DU _ DO Dp

“pr = Dt ot UDt TV Dl YD

and on substituting into (1.50) gives:

Do
Mo =9 (1.53)

which is in conservative form.

For convenience in the model we prefer to step forward (1.53) rather than (1.49).

1.4.1.1 Boundary conditions

The upper and lower boundary conditions are:

Dp
tthetop: p=0,w=—=0 1.54
at the top: p W=7 (1.54)

at the surface: p = ps, @ = Propo = 9 Ztopo (1.55)

In p—coordinates, the upper boundary acts like a solid boundary (w = 0 ); in z—coordinates the lower boundary is
analogous to a free surface (¢ is imposed and w # 0).

1.4.1.2 Splitting the geopotential

For the purposes of initialization and reducing round-off errors, the model deals with perturbations from reference (or
‘standard’) profiles. For example, the hydrostatic geopotential associated with the resting atmosphere is not dynami-
cally relevant and can therefore be subtracted from the equations. The equations written in terms of perturbations are
obtained by substituting the following definitions into the previous model equations:

9=0,+0 (1.56)
a=a,+do (1.57)
¢=¢o+¢ (1.58)

The reference state (indicated by subscript ‘o’) corresponds to horizontally homogeneous atmosphere at rest
(0o, v, ¢0) With surface pressure p,(z, y) that satisfies ¢, (po) = g Ziopo. defined:

0o(p) = f"(p)
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Qo (P) = Hpgo
P

¢0(p) = ¢t0100 - / a,dp
D

0

The final form of the HPE’s in p—coordinates is then:

%‘Zh bk x4V, = F (1.59)
(g‘; ta =0 (1.60)
vp.vh+g—“; —0 (1.61)
g—ge’ —a (1.62)

% :% (1.63)

1.5 Appendix OCEAN

1.5.1 Equations of Motion for the Ocean

We review here the method by which the standard (Boussinesq, incompressible) HPE’s for the ocean written in
z—coordinates are obtained. The non-Boussinesq equations for oceanic motion are:

DV . 1 o
2 fk XV +-Vop=F (1.64)
Dt p
Dw 190p
. it 1.
etht +g+paz €nhFuw (1.65)
1 Dp . ow _
;ﬁ—kvz-vh—k&—o (166)
p=p(0,5,p) (1.67)
Db
= — 1.68
i Qp (1.68)
DS
- = 1.69
D1 Qs (1.69)

These equations permit acoustics modes, inertia-gravity waves, non-hydrostatic motions, a geostrophic (Rossby) mode
and a thermohaline mode. As written, they cannot be integrated forward consistently - if we step p forward in (1.66),
the answer will not be consistent with that obtained by stepping (1.68) and (1.69) and then using (1.67) to yield p. It
is therefore necessary to manipulate the system as follows. Differentiating the EOS (equation of state) gives:

Dp_0p| DO 0p| DS, 0p| Dp 70
Dt~ 9|5, Dt = 9S|,, Dt " dp|,q Dt (170)
Note that g—; = %2 is the reciprocal of the sound speed (c,) squared. Substituting into (1.66) gives:
1 Dp
——+V, V+0o,wx0 1.71
pc2 Dt + Vo (1.71)
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where we have used an approximation sign to indicate that we have assumed adiabatic motion, dropping the % and
%f. Replacing (1.66) with (1.71) yields a system that can be explicitly integrated forward:

Dv R 1 -
X fkx ¥y +-Vp=F (1.72)
Dt p
Dw 190p
nh—— —— = €nnFuw 1.73
Eth-l—g‘f'paZ E€nhFq ( )
1 Dp . ow
pc2 Dt VeVt 0z 0 (174
p=p(0,5,p) (1.75)
Do
= _ 1.76
D1 op (1.76)
DS
— = 1.77
i Qs (L.77)

1.5.1.1 Compressible z-coordinate equations

Here we linearize the acoustic modes by replacing p with p,(z) wherever it appears in a product (ie. non-linear
term) - this is the ‘Boussinesq assumption’. The only term that then retains the full variation in p is the gravitational
acceleration:

Dv - 1 .
L fk XV —Vap=F (1.78)
Dt Po
e U 90 100y (1.79)
nh Dt Do Do B = €nhdw .
1 Dp N ow B
2Dy TVt g =0 (150
p=p(0,5,p) (1.81)
Do
2Y 1.82
1 o (1.82)
DS
Do _ 1.83
D1 Qs (1.83)

These equations still retain acoustic modes. But, because the “compressible” terms are linearized, the pressure equa-

tion (1.80) can be integrated implicitly with ease (the time-dependent term appears as a Helmholtz term in the non-

hydrostatic pressure equation). These are the fruly compressible Boussinesq equations. Note that the EOS must have
Op

the same pressure dependency as the linearized pressure term, ie. - = L, for consistency.
op 0.8 c?

1.5.1.2 ‘Anelastic’ z-coordinate equations

The anelastic approximation filters the acoustic mode by removing the time-dependency in the continuity (now
pressure-) equation (1.80). This could be done simply by noting that %’t’ ~ —gpo%f = —gpow, but this leads to
an inconsistency between continuity and EOS. A better solution is to change the dependency on pressure in the EOS
by splitting the pressure into a reference function of height and a perturbation:

p = p(ea SapO(z) + Esp/)
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Remembering that the term % in continuity comes from differentiating the EOS, the continuity equation then be-
comes:

1 Dp, Dy’ . ow
s V.- — =0
PoC? ( Dt " “Di)7 vt 0z
If the time- and space-scales of the motions of interest are longer than those of acoustic modes, then L << ( DDpt" , V.
V1) in the continuity equations and ae % g—g Dp > in the EOS (1.70). Thus we set €, = 0, removing
the dependency on p’ in the continuity equatlon and EOS Expandlng Dp "(z) = —gpow then leads to the anelastic
continuity equation:
0
V. 4 o= Tw=0 (1.84)
0z 2

A slightly different route leads to the quasi-Boussinesq continuity equation where we use the scaling %—ptl +V;5-p'V <<
V3 - poV yielding:
1 9 (pow)

V, Vp+ ——~=0 (1.85)
po Oz

Equations (1.84) and (1.85) are in fact the same equation if:

iapo _ —g

po 0z 2

Again, note that if p, is evaluated from prescribed 0, and .S, profiles, then the EOS dependency on p, and the term 5

in continuity should be referred to those same profiles. The full set of ‘quasi-Boussinesq’ or ‘anelastic’ equations for
the ocean are then:

DVh =

+ fk X Vp, + Vzp F (1.86)
Dt Po
Dw gp 10p
nh — . =T tnhdw 1.
E}Dt+po+poaz €nhFo (1.87)
1 0(po
V. ¥, 4+ — (pow ):o (1.88)
po Oz
p=p(0,5,p0(2)) (1.89)
Do
- 1.90
D1 Qp (1.90)
DS
— =090, 1.91
D1 Qs (1.91)

1.5.1.3 Incompressible z-coordinate equations

Here, the objective is to drop the depth dependence of p, and so, technically, to also remove the dependence of p on
Do. This would yield the “truly” incompressible Boussinesq equations:

Dvh =

—_— k 1.92
Dt +f ><Vh+pvzp F (1.92)
gp  10p
nh —XFh. — ¢tn L‘Fw 1.93
€Enh = Dt o + e D2 €nh (1.93)
ow
V., vip+—=0 (1.94)
0z
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p=p(0,5) (1.95)
Db
ey (1.96)
DS
g, (1.97)

where p,. is a constant reference density of water.

1.5.1.4 Compressible non-divergent equations

The above “incompressible” equations are incompressible in both the flow and the density. In many oceanic appli-
cations, however, it is important to retain compressibility effects in the density. To do this we must split the density
thus:

p=potp
We then assert that variations with depth of p, are unimportant while the compressible effects in p’ are:
Po = Pc

P =p0,8,p.(2)) — po

This then yields what we can call the semi-compressible Boussinesq equations:

D_iz ’ — 1 =
Vh y fkxVp+ —V.p = F (1.98)
Dt Pe
Dw gp 10p
. S F 1.99
Dt T T heas T (159
v 2 g (1.100)
0z
p'=p0,5,p.(2)) — pe (1.101)
Do
Do _ 1.102
Dr o ( )
DS
Do _ 1.103
D1 Qs ( )

Note that the hydrostatic pressure of the resting fluid, including that associated with p., is subtracted out since it has
no effect on the dynamics.

Though necessary, the assumptions that go into these equations are messy since we essentially assume a different
EOS for the reference density and the perturbation density. Nevertheless, it is the hydrostatic (e,,5, = 0) form of these
equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE’s).

1.6 Appendix OPERATORS

1.6.1 Coordinate systems

1.6.1.1 Spherical coordinates

In spherical coordinates, the velocity components in the zonal, meridional and vertical direction respectively, are given
by:

D)
u=rcospor
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(see Figure 1.20) Here ¢ is the latitude, A the longitude, r the radial distance of the particle from the center of the
earth, (2 is the angular speed of rotation of the Earth and D/ Dt is the total derivative.
The ‘grad’ (V) and ‘div’ (V) operators are defined by, in spherical coordinates:
v=(_ L 919 9
T \rcosp A\ rop Or
1 8u+8( ) +1<9(r27'=)
— + — (vcos —
rcose | ON Oy v r2  or

<
<
Il
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Q

Polar axis

Figure 1.20: Spherical polar coordinates: longitude ), latitude ¢ and r the distance from the center.
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CHAPTER
TWO

DISCRETIZATION AND ALGORITHM

This chapter lays out the numerical schemes that are employed in the core MITgcm algorithm. Whenever possible
links are made to actual program code in the MITgecm implementation. The chapter begins with a discussion of the
temporal discretization used in MITgem. This discussion is followed by sections that describe the spatial discretization.
The schemes employed for momentum terms are described first, afterwards the schemes that apply to passive and
dynamically active tracers are described.

2.1 Notation

Because of the particularity of the vertical direction in stratified fluid context, in this chapter, the vector notations are
mostly used for the horizontal component: the horizontal part of a vector is simply written V (instead of vy, or V, in
chapter 1) and a 3D vector is simply written ¥ (instead of ¥ in chapter 1).

The notations we use to describe the discrete formulation of the model are summarized as follows.

General notation:

Az, Ay, Ar grid spacing in X, Y, R directions
Ac, Aw, Ag, A¢ + horizontal area of a grid cell surrounding 6, u, v, ¢ point
Vu, Vo, Vs Vo : Volume of the grid box surrounding w, v, w, € point

i, j, k : current index relative to X, Y, R directions

Basic operators:

0; 2 6;® = q)i+1/2 - (bifl/2
T = (Do + Pisiy2)/2
Oy : 0, D = ﬁ&@

V = horizontal gradient operator : V& = {5, ®,,®}
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V- = horizontal divergence operator : V - f = 2 {§;Ayf, + §;Axf,}

¥ = horizontal Laplacian operator : V-® = V - V®

2.2 Time-stepping

The equations of motion integrated by the model involve four prognostic equations for flow, » and v, temperature,
#, and salt/moisture, S, and three diagnostic equations for vertical flow, w, density/buoyancy, p/b, and pressure/geo-
potential, ¢p,q. In addition, the surface pressure or height may by described by either a prognostic or diagnostic
equation and if non-hydrostatics terms are included then a diagnostic equation for non-hydrostatic pressure is also
solved. The combination of prognostic and diagnostic equations requires a model algorithm that can march forward
prognostic variables while satisfying constraints imposed by diagnostic equations.

Since the model comes in several flavors and formulation, it would be confusing to present the model algorithm exactly
as written into code along with all the switches and optional terms. Instead, we present the algorithm for each of the
basic formulations which are:

1. the semi-implicit pressure method for hydrostatic equations with a rigid-lid, variables co-located in time and
with Adams-Bashforth time-stepping;

2. as 1 but with an implicit linear free-surface;

3. as 1 or 2 but with variables staggered in time;

4. as 1 or 2 but with non-hydrostatic terms included;
5. as 2 or 3 but with non-linear free-surface.

In all the above configurations it is also possible to substitute the Adams-Bashforth with an alternative time-stepping
scheme for terms evaluated explicitly in time. Since the over-arching algorithm is independent of the particular time-
stepping scheme chosen we will describe first the over-arching algorithm, known as the pressure method, with a
rigid-lid model in Section 2.3. This algorithm is essentially unchanged, apart for some coefficients, when the rigid
lid assumption is replaced with a linearized implicit free-surface, described in Section 2.4. These two flavors of the
pressure-method encompass all formulations of the model as it exists today. The integration of explicit in time terms
is out-lined in Section 2.5 and put into the context of the overall algorithm in Section 2.7 and Section 2.8. Inclusion
of non-hydrostatic terms requires applying the pressure method in three dimensions instead of two and this algorithm
modification is described in Section 2.9. Finally, the free-surface equation may be treated more exactly, including
non-linear terms, and this is described in Section 2.10.2.

2.3 Pressure method with rigid-lid

The horizontal momentum and continuity equations for the ocean ((1.98) and (1.100)), or for the atmosphere ((1.45)
and (1.47)), can be summarized by:

atu + 98177 = Gu
v+ goyn= G,
Ozu + Oyv + O, w = 0
where we are adopting the oceanic notation for brevity. All terms in the momentum equations, except for surface

pressure gradient, are encapsulated in the G vector. The continuity equation, when integrated over the fluid depth, H,
and with the rigid-lid/no normal flow boundary conditions applied, becomes:

0, Hii + 0,HD =0 @2.1)
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Here, Hu = |, 7 udz is the depth integral of u, similarly for Hv. The rigid-lid approximation sets w = 0 at the lid so
that it does not move but allows a pressure to be exerted on the fluid by the lid. The horizontal momentum equations
and vertically integrated continuity equation are be discretized in time and space as follows:

W 4 Atgdn ™t = w4 ALGLY?) (22)
o 4 Atgaunn+1 — "+ AtGS}?Hl/?) 2.3)
0y Hur 1 + 9, Hynt1 = 0 (2.4)

As written here, terms on the LHS all involve time level n + 1 and are referred to as implicit; the implicit backward
time stepping scheme is being used. All other terms in the RHS are explicit in time. The thermodynamic quantities
are integrated forward in time in parallel with the flow and will be discussed later. For the purposes of describing the
pressure method it suffices to say that the hydrostatic pressure gradient is explicit and so can be included in the vector

G.

Substituting the two momentum equations into the depth integrated continuity equation eliminates »"*! and v"*!
yielding an elliptic equation for n"*1. Equations (2.2), (2.3) and (2.4) can then be re-arranged as follows:

ut = u" + AtGt/2) (2.5)

v* =" + AtG( Y2 (2.6)

O AtgHO " 4 0, AtgHO, " = 0, Hu* + 9, Ho* (2.7)
u" Tt = ut — Atgd,n" Tt 2.8)

V" =% — Atgd,n" ! (2.9)

Equations (2.5) to (2.9), solved sequentially, represent the pressure method algorithm used in the model. The essence
of the pressure method lies in the fact that any explicit prediction for the flow would lead to a divergence flow field
so a pressure field must be found that keeps the flow non-divergent over each step of the integration. The particular
location in time of the pressure field is somewhat ambiguous; in Figure 2.1 we depicted as co-located with the future
flow field (time level n + 1) but it could equally have been drawn as staggered in time with the flow.

The correspondence to the code is as follows:
* the prognostic phase, equations (2.5) and (2.6), stepping forward «™ and v™ to u* and v* is coded in timestep.F

* the vertical integration, H w* and Ho*, divergence and inversion of the elliptic operator in equation (2.7) is
coded in solve_for_pressure.F

* finally, the new flow field at time level n+ 1 given by equations (2.8) and (2.9) is calculated in correction_step.F

The calling tree for these routines is as follows:

Pressure method calling tree

FORWARD_STEP

DYNAMICS
TIMESTEP u*,v* (2.5), (2.6)
SOLVE_FOR_PRESSURE
CALC_DIV_GHAT Hu*, Ho* (2.7)
CG2D "t (2.7)
MOMENTUM_CORRECTION_STEP
CALC_GRAD_PHI_SURF vy tl
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Figure 2.1: A schematic of the evolution in time of the pressure method algorithm. A prediction for the flow variables
at time level n 4 1 is made based only on the explicit terms, Gt/ 2)_and denoted u*, v*. Next, a pressure field is
found such that u™ 1, "1 will be non-divergent. Conceptually, the * quantities exist at time level n + 1 but they are
intermediate and only temporary.

CORRECTION_STEP u™th ot (2.8), (2.9)

In general, the horizontal momentum time-stepping can contain some terms that are treated implicitly in time, such as
the vertical viscosity when using the backward time-stepping scheme (implicitViscosity =.TRUE.). The method used
to solve those implicit terms is provided in Section 2.6, and modifies equations (2.2) and (2.3) to give:

u"t = AL, Ay0u™ + Atgdun" T = w4 AtGTHY
" = AtD, A, 00"+ Atgdnt Tt = o™ + AtG( /2

2.4 Pressure method with implicit linear free-surface

The rigid-lid approximation filters out external gravity waves subsequently modifying the dispersion relation of
barotropic Rossby waves. The discrete form of the elliptic equation has some zero eigenvalues which makes it a
potentially tricky or inefficient problem to solve.

The rigid-lid approximation can be easily replaced by a linearization of the free-surface equation which can be written:
o+ 0 Hu+0,Hv=P—-E+R (2.10)

which differs from the depth integrated continuity equation with rigid-lid ((2.1)) by the time-dependent term and
fresh-water source term.

Equation (2.4) in the rigid-lid pressure method is then replaced by the time discretization of (2.10) which is:
7 At Huntl + Atdy Hontl = i + AH(P — €) 2.11)

where the use of flow at time level 7+ 1 makes the method implicit and backward in time. This is the preferred scheme
since it still filters the fast unresolved wave motions by damping them. A centered scheme, such as Crank-Nicholson
(see Section 2.10.1), would alias the energy of the fast modes onto slower modes of motion.
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As for the rigid-lid pressure method, equations (2.2), (2.3) and (2.11) can be re-arranged as follows:

ut = u" 4 AtG Y2 (2.12)

v* = o™ + AtG( Y2 (2.13)

0" =€ (N + AH(P — &) — At(d, Hu* + 8, Hv*) (2.14)
OpgHOun™ ™ + 8, g HO, "+ — % - _X; (2.15)
u" =t — Atgd,n" (2.16)

"t = v* — Atgo,n" ! (2.17)

Equations (2.12) to (2.17), solved sequentially, represent the pressure method algorithm with a backward implicit,
linearized free surface. The method is still formerly a pressure method because in the limit of large At the rigid-
lid method is recovered. However, the implicit treatment of the free-surface allows the flow to be divergent and
for the surface pressure/elevation to respond on a finite time-scale (as opposed to instantly). To recover the rigid-
lid formulation, we use a switch-like variable, €y, (freesurfFac), which selects between the free-surface and rigid-lid;
€rs = 1 allows the free-surface to evolve; €y, = 0 imposes the rigid-lid. The evolution in time and location of variables
is exactly as it was for the rigid-lid model so that Figure 2.1 is still applicable. Similarly, the calling sequence, given
here, is as for the pressure-method.

2.5 Explicit time-stepping: Adams-Bashforth

In describing the the pressure method above we deferred describing the time discretization of the explicit terms.
We have historically used the quasi-second order Adams-Bashforth method (AB-II) for all explicit terms in both the
momentum and tracer equations. This is still the default mode of operation but it is now possible to use alternate
schemes for tracers (see Section 2.16), or a 3rd order Adams-Bashforth method (AB-III). In the previous sections, we
summarized an explicit scheme as:

= AtngJrl/Q) (2.18)

where 7 could be any prognostic variable (u, v, § or S) and 7* is an explicit estimate of 77+ and would be exact if not
for implicit-in-time terms. The parenthesis about 7 + 1/2 indicates that the term is explicit and extrapolated forward
in time. Below we describe in more detail the AB-II and AB-III schemes.

2.5.1 Adams-Bashforth I
The quasi-second order Adams-Bashforth scheme is formulated as follows:
G2 = (3/2 4 €ap)G? — (1/2 + eap)GP (2.19)

This is a linear extrapolation, forward in time, to t = (n 4+ 1/2 + € 45)At. An extrapolation to the mid-point in time,
t = (n+ 1/2)At, corresponding to € 45 = 0, would be second order accurate but is weakly unstable for oscillatory
terms. A small but finite value for € 4 5 stabilizes the method. Strictly speaking, damping terms such as diffusion and
dissipation, and fixed terms (forcing), do not need to be inside the Adams-Bashforth extrapolation. However, in the
current code, it is simpler to include these terms and this can be justified if the flow and forcing evolves smoothly.
Problems can, and do, arise when forcing or motions are high frequency and this corresponds to a reduced stability
compared to a simple forward time-stepping of such terms. The model offers the possibility to leave terms outside
the Adams-Bashforth extrapolation, by turning off the logical flag forcing In_AB (parameter file data, namelist
PARMO1, default value = TRUE) and then setting tracForcingOutAB (default=0), momForcingOutAB (default=0),

2.5. Explicit time-stepping: Adams-Bashforth 39
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and momDissip_In_AB (parameter file data, namelist PARMO1, default value = TRUE), respectively for the tracer
terms, momentum forcing terms, and the dissipation terms.

A stability analysis for an oscillation equation should be given at this point.

A stability analysis for a relaxation equation should be given at this point.

2.5.2 Adams-Bashforth Il

The 3rd order Adams-Bashforth time stepping (AB-III) provides several advantages (see, e.g., Durran 1991 [Dur91])
compared to the default quasi-second order Adams-Bashforth method:

* higher accuracy;
* stable with a longer time-step;
* no additional computation (just requires the storage of one additional time level).

The 3rd order Adams-Bashforth can be used to extrapolate forward in time the tendency (replacing (2.19)) as:
G YD = (14 aup + Bap)GY — (aap + 2Bap)Gr + BapGr—? (2.20)

3rd order accuracy is obtained with (aap, Sap) = (1/2, 5/12). Note that selecting (vap, Bap) = (1/2+ €ap, 0)
one recovers AB-II. The AB-III time stepping improves the stability limit for an oscillatory problem like advection
or Coriolis. As seen from Figure 2.3, it remains stable up to a CFL of 0.72, compared to only 0.50 with AB-II and
eap = 0.1. Itis interesting to note that the stability limit can be further extended up to a CFL of 0.786 for an oscillatory
problem (see Figure 2.3) using (wap, Sap) = (0.5, 0.2811) but then the scheme is only second order accurate.

However, the behavior of the AB-III for a damping problem (like diffusion) is less favorable, since the stability limit
is reduced to 0.54 only (and 0.64 with 845 = 0.2811) compared to 1.0 (and 0.9 with e 4 5 = 0.1) with the AB-II (see
Figure 2.4).

A way to enable the use of a longer time step is to keep the dissipation terms outside the AB extrapolation (setting
momDissip_In_AB to .FALSE. in main parameter file data, namelist PARMO 3, thus returning to a simple forward
time-stepping for dissipation, and to use AB-III only for advection and Coriolis terms.

The AB-III time stepping is activated by defining the option #define ALLOW_ADAMSBASHFORTH_3 in
CPP_OPTIONS.h. The parameters aap, 545 can be set from the main parameter file data (namelist PARMO03)
and their default values correspond to the 3rd order Adams-Bashforth. A simple example is provided in verifica-
tion/advect_xy/input.ab3_c4.

AB-III is not yet available for the vertical momentum equation (non-hydrostatic) nor for passive tracers.

2.6 Implicit time-stepping: backward method

Vertical diffusion and viscosity can be treated implicitly in time using the backward method which is an intrinsic
scheme. Recently, the option to treat the vertical advection implicitly has been added, but not yet tested; therefore, the
description hereafter is limited to diffusion and viscosity. For tracers, the time discretized equation is:

" At K, 0T = 7 4 AtGIMHY/) (2.21)
where G(T"Jrl/ ?) is the remaining explicit terms extrapolated using the Adams-Bashforth method as described above.

Equation (2.21) can be split split into:

™ = 7" + AtGIH/2) (2.22)
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Figure 2.2: Oscillatory and damping response of quasi-second order Adams-Bashforth scheme for different values of
the € 4 5 parameter (0.0, 0.1, 0.25, from top to bottom) The analytical solution (in black), the physical mode (in blue)
and the numerical mode (in red) are represented with a CFL step of 0.1. The left column represents the oscillatory
response on the complex plane for CFL ranging from 0.1 up to 0.9. The right column represents the damping response
amplitude (y-axis) function of the CFL (x-axis).
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Oscil. response of AB-3 : CFL (f*dt)= 0.0 —> 0.9 every 0.1
a,p=0.60,0.000 ; fC= 0.5025 a,p=0.50,0.250 ; fC= 0.7698
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Figure 2.3: Oscillatory response of third order Adams-Bashforth scheme for different values of the (wap, Bap)
parameters. The analytical solution (in black), the physical mode (in blue) and the numerical mode (in red) are
represented with a CFL step of 0.1.
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Damping response of AB-3 : A = 1.0 ; A*dt=0.0 —> 1.1 every 0.1
a,p=0.50,0.000 ; u = 1.0000 a,p=0.60,0.000 ; u = 0.9091
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Figure 2.4: Damping response of third order Adams-Bashforth scheme for different values of the (a4, S45) param-
eters. The analytical solution (in black), the physical mode (in blue) and the numerical mode (in red) are represented

with a CFL step of 0.1.

2.6. Implicit time-stepping: backward method
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T = LN () (2.23)

where £ is the inverse of the operator
L =[14 Atd,£,0y]

Equation (2.22) looks exactly as (2.18) while (2.23) involves an operator or matrix inversion. By re-arranging (2.21)
in this way we have cast the method as an explicit prediction step and an implicit step allowing the latter to be inserted
into the over all algorithm with minimal interference.

The calling sequence for stepping forward a tracer variable such as temperature with implicit diffusion is as follows:

Adams-Bashforth calling tree
FORWARD_STEP

THERMODYNAMICS
TEMP_INTEGRATE
GAD_CALC_RHS n— Go(u, ")
either
EXTERNAL_FORCING =Gy +Q
ADAMS_BASHFORTH2  G{"/? (2.19)
or
EXTERNAL_FORCING G — gt g
TIMESTEP_TRACER 7 (2.18)
IMPLDIFF r(n+1) (2.23)

In order to fit within the pressure method, the implicit viscosity must not alter the barotropic flow. In other words, it
can only redistribute momentum in the vertical. The upshot of this is that although vertical viscosity may be backward
implicit and unconditionally stable, no-slip boundary conditions may not be made implicit and are thus cast as a an
explicit drag term.

2.7 Synchronous time-stepping: variables co-located in time

The Adams-Bashforth extrapolation of explicit tendencies fits neatly into the pressure method algorithm when all state
variables are co-located in time. The algorithm can be represented by the sequential solution of the follow equations:

Gps=Gos(u",0",8") (2.24)

(n+1/2) _ n et
Gos ' =0B/24€ap)Gi s — (1/2+ €ap)Gy g (2.25)
(67.57) = (6", 5™) + MG (226)
(0n+175n+1) _ [’—7}9(9*’5«*) (227)
Phyd = / (o™, S™)dr (2.28)
GY = Go(¥", ¢11ya) (2.29)
GUY?) = (3/2+ ap)Gl — (1/2+ eap) Gl (230)
V=" 4+ AtGUT?) 2.31)
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Figure 2.5: A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the algorithm. All
prognostic variables are co-located in time. Explicit tendencies are evaluated at time level n as a function of the state
at that time level (dotted arrow). The explicit tendency from the previous time level, n — 1, is used to extrapolate
tendencies to n + 1/2 (dashed arrow). This extrapolated tendency allows variables to be stably integrated forward-
in-time to render an estimate (x -variables) at the n + 1 time level (solid arc-arrow). The operator £ formed from
implicit-in-time terms is solved to yield the state variables at time level n + 1.
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V= L3N (2.32)

N = ess (1" + AP — £)) — ALV - H* (2.33)
n+1 *

N AV e N £ __nn 2.34

Vo gHV INZ Af2 239

VUL = ¢ — AtgVyn Tt (2.35)

Figure 2.5 illustrates the location of variables in time and evolution of the algorithm with time. The Adams-Bashforth
extrapolation of the tracer tendencies is illustrated by the dashed arrow, the prediction at n + 1 is indicated by the
solid arc. Inversion of the implicit terms, Ee_,klg’ then yields the new tracer fields at n + 1. All these operations are
carried out in subroutine THERMODYNAMICS and subsidiaries, which correspond to equations (2.24) to (2.27).
Similarly illustrated is the Adams-Bashforth extrapolation of accelerations, stepping forward and solving of implicit
viscosity and surface pressure gradient terms, corresponding to equations (2.29) to (2.35). These operations are carried
out in subroutines DYNAMICS, SOLVE_FOR_PRESSURE and MOMENTUM_CORRECTION_STEP. This, then,
represents an entire algorithm for stepping forward the model one time-step. The corresponding calling tree for the
overall synchronous algorithm using Adams-Bashforth time-stepping is given below. The place where the model
geometry hFac factors) is updated is added here but is only relevant for the non-linear free-surface algorithm. For
completeness, the external forcing, ocean and atmospheric physics have been added, although they are mainly optional.

Synchronous Adams-Bashforth calling tree

FORWARD_STEP
EXTERNAL_FIELDS_LOAD
DO_ATMOSPHERIC_PHYS
DO_OCEANIC_PHYS

THERMODYNAMICS
CALC_GT
GAD_CALC_RHS n = Gy(u,07) (2.24)
EXTERNAL_FORCING n_GQr+Q
ADAMS_BASHFORTH?2 G Y (2.05)
TIMESTEP_TRACER 0% (2.26)
IMPLDIFF 6(n+1) (2.27)
DYNAMICS
CALC_PHI_HYD P (2.28)
MOM_FLUXFORM or MOM_VECINV ~ GZ (2.29)
TIMESTEP ¥ (2.30), (2.31)
IMPLDIFF ¥ (2.32)

UPDATE_R_STAR or UPDATE_SURF_DR (NonLin-FS only)
SOLVE_FOR_PRESSURE

CALC_DIV_GHAT n* (2.33)

CG2D Nt (2.34)
MOMENTUM_CORRECTION_STEP

CALC_GRAD_PHI_SURF ATl

CORRECTION_STEP unt "t (2.35)
TRACERS_CORRECTION_STEP

CYCLE_TRACER o+t

SHAP_FILT_APPLY_TS or ZONAL_FILT_APPLY_TS
CONVECTIVE_ADJUSTMENT
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2.8 Staggered baroclinic time-stepping
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Figure 2.6: A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the algorithm but with
staggering in time of thermodynamic variables with the flow. Explicit momentum tendencies are evaluated at time
level n — 1/2 as a function of the flow field at that time level n — 1/2. The explicit tendency from the previous time
level, n — 3/2, is used to extrapolate tendencies to n (dashed arrow). The hydrostatic pressure/geo-potential @pyq
is evaluated directly at time level n (vertical arrows) and used with the extrapolated tendencies to step forward the
flow variables from n — 1/2 to n + 1/2 (solid arc-arrow). The implicit-in-time operator £,, v (vertical arrows) is then
applied to the previous estimation of the the flow field (x -variables) and yields to the two velocity components u, v at
time level n 4+ 1/2. These are then used to calculate the advection term (dashed arc-arrow) of the thermo-dynamics
tendencies at time step n. The extrapolated thermodynamics tendency, from time level n — 1 and n to n + 1/2, allows
thermodynamic variables to be stably integrated forward-in-time (solid arc-arrow) up to time level n + 1.

For well-stratified problems, internal gravity waves may be the limiting process for determining a stable time-step. In
the circumstance, it is more efficient to stagger in time the thermodynamic variables with the flow variables. Figure
2.6 illustrates the staggering and algorithm. The key difference between this and Figure 2.5 is that the thermodynamic
variables are solved after the dynamics, using the recently updated flow field. This essentially allows the gravity wave
terms to leap-frog in time giving second order accuracy and more stability.

The essential change in the staggered algorithm is that the thermodynamics solver is delayed from half a time step,
allowing the use of the most recent velocities to compute the advection terms. Once the thermodynamics fields are
updated, the hydrostatic pressure is computed to step forward the dynamics. Note that the pressure gradient must also
be taken out of the Adams-Bashforth extrapolation. Also, retaining the integer time-levels, n and n + 1, does not
give a user the sense of where variables are located in time. Instead, we re-write the entire algorithm, (2.24) to (2.35),
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annotating the position in time of variables appropriately:
O = [ b0",5M)ar

—»371/2 _ é‘_,‘(‘—,»n—l/Q)
GY = (3/2+ ean)Gy % — (1/2 + eap)Gl 2
V=2 g A (ég’” ~ Véia)
‘—;** — E‘:,1<‘7*)
Nt = efs (77”’1/2 + AP — 5)") — AtV - Hv*
n+1/2 *

. gH ntl/2 & 0 T
Ve gHVn Af2 AP

\7"-"_1/2 A Atgvnn-‘,-l/Q

Gg,S _ G07S(un+1/27 0”, Sn)

G("+1/2) (3/2+ean)Gy s — (1/2+ €ap)Gys'

(6%,5%) = (6", 8™) + AtGY'S?
(0n+17 SnJrl) = L;S(o*a S*)

(2.36)

(2.37)
(2.38)
(2.39)
(2.40)

2.41)

(2.42)

(2.43)
(2.44)
(2.45)
(2.46)

(2.47)

The corresponding calling tree is given below. The staggered algorithm is activated with the run-time flag stagger-

TimeStep =.TRUE. in parameter file data, namelist PARMO1.

Staggered Adams-Bashforth calling tree

FORWARD_STEP
EXTERNAL_FIELDS_LOAD
DO_ATMOSPHERIC_PHYS
DO_OCEANIC_PHYS

DYNAMICS
CALC_PHI_HYD 7 (2.36)
MOM_FLUXFORM or MOM_VECINV n=1/2 (5 37)
TIMESTEP ¥ (2.38), (2.39)
IMPLDIFF V** (2.40)

UPDATE_R_STAR or UPDATE_SURF_DR (NonLin-FS only)
SOLVE_FOR_PRESSURE

CALC_DIV_GHAT n* (2.41)
CG2D n /2 (2.42)
MOMENTUM_CORRECTION_STEP
CALC_GRAD_PHI_SURF vy ti/2
CORRECTION_STEP w2 yntl/2 (2 43)
THERMODYNAMICS
CALC_GT
GAD_CALC_RHS G = Go(u, ™) (2.44)
EXTERNAL_FORCING Gr=Gp+Q
ADAMS_BASHFORTH? G2 (2.45)
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TIMESTEP_TRACER 0* (2.46)

IMPLDIFF o(n+1) (2.47)
TRACERS_CORRECTION_STEP

CYCLE_TRACER ol

SHAP_FILT_APPLY_TS or ZONAL_FILT_APPLY_TS
CONVECTIVE_ADJUSTMENT

The only difficulty with this approach is apparent in equation (2.44) and illustrated by the dotted arrow connecting
u, v 1T1/2 with Gy . The flow used to advect tracers around is not naturally located in time. This could be avoided by
applying the Adams-Bashforth extrapolation to the tracer field itself and advecting that around but this approach is not
yet available. We’re not aware of any detrimental effect of this feature. The difficulty lies mainly in interpretation of
what time-level variables and terms correspond to.

2.9 Non-hydrostatic formulation

The non-hydrostatic formulation re-introduces the full vertical momentum equation and requires the solution of a 3-D
elliptic equations for non-hydrostatic pressure perturbation. We still integrate vertically for the hydrostatic pressure
and solve a 2-D elliptic equation for the surface pressure/elevation for this reduces the amount of work needed to solve
for the non-hydrostatic pressure.

The momentum equations are discretized in time as follows:

1 1
"+ g0 4 0 = o+ G 2:48)
1 n+1 n+1 n+1 1 n (n+1/2)
ALY + g0yn + Oy, = Ar’ + G, (2.49)
1 n+1 +1 L 1
- 87“ n — G(n+ /2) 2.50
AT Tt = et G 220

which must satisfy the discrete-in-time depth integrated continuity, equation (2.11) and the local continuity equation
™t + 9yt + 9wt =0 (2.51)
As before, the explicit predictions for momentum are consolidated as:
uwt = u™ + AtGSJH_l/m
o* = o™ AtngJrl/Q)
w* = w" 4 AtGY2
but this time we introduce an intermediate step by splitting the tendency of the flow as follows:
" =t — A9 wtt = ut — Atgdun" Tt
’U"+1 _ U** _ Atayd)zgl ’U** _ ’U* _ Atgaynn-i-l

Substituting into the depth integrated continuity (equation (2.11)) gives

n+1 *

n on n n €fsh n
0uHO, (g + 831 ) + 0, HO, (g0 + Gt - Ll = - (2.52)

which is approximated by equation (2.15) on the basis that i) ¢! is not yet known and ii) Vnn << gVn. If (2.15)

is solved accurately then the implication is that $nh ~ 0 so that the non-hydrostatic pressure field does not drive
barotropic motion.
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The flow must satisfy non-divergence (equation (2.51)) locally, as well as depth integrated, and this constraint is used

to form a 3-D elliptic equations for ¢Z;1:

Dpw I + Oy + Ol = Opu™ + Oyv** + Oy (2.53)

The entire algorithm can be summarized as the sequential solution of the following equations:

u' = u" + AtGt/2) (2.54)

v* =" + AtG(2) (2.55)

w* = w" 4+ AtG/2) (2.56)

0 = eps (1" + AP — €)) — At (amH&? + aylm) (2.57)

DugHO " 4 DygHo, — LT 0 (2.58)
wgHO:n" " + OygHOyn" ™" — AZ - AR :

ut =u* — Atgagm"'H (2.59)

v =0* — Atg(?y?]”+1 (2.60)

Do 4 Dy B 4 D = O™ + Y™ 4 Dpw® (2.61)

" = utt — Atd, o (2.62)

R A (2.63)

dpw"t = —g untt — (“)yv"'*'1 (2.64)

where the last equation is solved by vertically integrating for w"*!.

2.10 Variants on the Free Surface

We now describe the various formulations of the free-surface that include non-linear forms, implicit in time using
Crank-Nicholson, explicit and [one day] split-explicit. First, we’ll reiterate the underlying algorithm but this time using
the notation consistent with the more general vertical coordinate r. The elliptic equation for free-surface coordinate
(units of r), corresponding to (2.11), and assuming no non-hydrostatic effects (¢,,;, = 0) is:

ersn" Tt = Vi - At (Ry — Rfized)Vibsn™ ™ = n* (2.65)
where
R,
N =e€ps "t — AtVy, - / Vidr + ep AP — &) (2.66)
Ryized

S/R SOLVE_FOR_PRESSURE

u* : gU(DYNVARS.h)

v*: gV (DYNVARS.h)

n* : cg2d_b (SOLVE_FOR_PRESSURE.h )
n™*t1: etaN ( DYNVARS.h)
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Once ™! has been found, substituting into (2.2), (2.3) yields v"*1! if the model is hydrostatic (e, = 0):
VL = — AtVbn L

This is known as the correction step. However, when the model is non-hydrostatic (¢, = 1) we need an additional
step and an additional equation for ¢/, . This is obtained by substituting (2.48), (2.49) and (2.50) into continuity:

n 1 ko -
Vi + 00" = 5 Vi V7 + 0,7 2.67)
where
V=¥ — AtV bt

Note that n™*! is also used to update the second RHS term 0,.7* since the vertical velocity at the surface (¥4, f) is
evaluated as (n"*1 — ") /At.

Finally, the horizontal velocities at the new time level are found by:
G = e AtV e, (2.68)

and the vertical velocity is found by integrating the continuity equation vertically. Note that, for the convenience of
the restart procedure, the vertical integration of the continuity equation has been moved to the beginning of the time
step (instead of at the end), without any consequence on the solution.

S/R CORRECTION_STEP

n™*1 : etaN (DYNVARS.h)
¢+ : phi_nh (NH_VARS.h)
u* : gU (DYNVARS.h)

v*: gV (DYNVARS.h)

u™*1 : uVel (DYNVARS.h)
v™t1: vVel (DYNVARS.h)

Regarding the implementation of the surface pressure solver, all computation are done within the routine
SOLVE_FOR_PRESSURE and its dependent calls. The standard method to solve the 2D elliptic problem (2.65)
uses the conjugate gradient method (routine CG2D); the solver matrix and conjugate gradient operator are only func-
tion of the discretized domain and are therefore evaluated separately, before the time iteration loop, within INI_CG2D.
The computation of the RHS n* is partly done in CALC_DIV_GHAT and in SOLVE_FOR_PRESSURE.

The same method is applied for the non hydrostatic part, using a conjugate gradient 3D solver (CG3D) that is initialized
in INI_CG3D. The RHS terms of 2D and 3D problems are computed together at the same point in the code.

2.10.1 Crank-Nicolson barotropic time stepping

The full implicit time stepping described previously is unconditionally stable but damps the fast gravity waves, result-
ing in a loss of potential energy. The modification presented now allows one to combine an implicit part (v, 5) and
an explicit part (1 — v, 1 — /) for the surface pressure gradient () and for the barotropic flow divergence (/3). For
instance, v = § = 1 is the previous fully implicit scheme; v = 8 = 1/2 is the non damping (energy conserving),
unconditionally stable, Crank-Nicolson scheme; (v, 5) = (1,0) or = (0,1) corresponds to the forward - backward
scheme that conserves energy but is only stable for small time steps. In the code, ~y, 8 are defined as parameters, re-
spectively implicSurfPress, implicDiv2DFlow. They are read from the main parameter file data (namelist PARMO1)
and are set by default to 1,1.
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Equations (2.12) — (2.17) are modified as follows:

on—+1

We set

v n n ntl V' S n+1/2
A7 + Vabs[yn™ ™ + (1 = V)0 4+ €nn Vil = AL + Gé +1/2) 4 Vhéf’ﬁlyd( 2
nn+1 _ nn R,
N + V- / BV + (1 — B)V"]dr = €4 (P — &) (2.69)
Rfimed
V= AGTTYY (- DA+ AtV T
R,
N = €N + € ALH(P — &) — AtV - / [BV* + (1 — B)v"]dr
Rfimed

In the hydrostatic case €,,; = 0, allowing us to find !, thus:

6f877n+1 -V "YBAthS(Ro - Rfiwed)vhnn+1 = 77*

and then to compute (CORRECTION_STEP):

VL = ¥ — YAtV b T

Notes:

1. The RHS term of equation (2.69) corresponds the contribution of fresh water flux ({mathcal{P-E}}) to the free-

surface variations (ef,, = 1, useRealFreshWaterFlux = TRUE. in parameter file data). In order to remain
consistent with the tracer equation, specially in the non-linear free-surface formulation, this term is also affected
by the Crank-Nicolson time stepping. The RHS reads: ¢, (8(P — £)"1/2 4 (1 — B)(P — £)*~1/?)

. The stability criteria with Crank-Nicolson time stepping for the pure linear gravity wave problem in cartesian

coordinates is:
* v+ (3 < 1: unstable
e y>1/2and 5 > 1/2: stable

© ¥+ B> 1rstableif i, (v —1/2)(8 = 1/2) +1 2 0 with ¢ae = 28tV/gH | [ 5z + w2

. A similar mixed forward/backward time-stepping is also available for the non-hydrostatic algorithm, with a

fraction v, (0 < v,n < 1) of the non-hydrostatic pressure gradient being evaluated at time step n+1 (backward
in time) and the remaining part (1 — ~,5) being evaluated at time step n (forward in time). The run-time
parameter implicitNHPress corresponding to the implicit fraction -, of the non-hydrostatic pressure is set by
default to the implicit fraction ~ of surface pressure (implicSurfPress), but can also be specified independently
(in main parameter file data, namelist PARMO1).

2.10.2 Non-linear free-surface

Options have been added to the model that concern the free surface formulation.

2.10.2.1 Pressure/geo-potential and free surface

For the atmosphere, since ¢ = ¢;opo — f ; adp, subtracting the reference state defined in section Section 1.4.1.2 :

P
o = thopo - / a,dp  with ¢o(po) = ¢topo

Po
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we get:

Ds Po
¢’=¢—¢o=/ adp—/ aodp

p p

For the ocean, the reference state is simpler since p. does not dependent on z (b, = g) and the surface reference
position is uniformly z = 0 (R, = 0), and the same subtraction leads to a similar relation. For both fluids, using the

isomorphic notations, we can write:
Tsurf R,
¢ = / bdr — / bodr
T T

and re-write as:

Tsurf Ro
= / bdr+ / (b — by)dr (2.70)
R, r
or:
Tsurf Tsurf
@ :/ bodr—l—/ (b— bo)dr @.71)
R, r

In section Section 1.3.6, following eq. (2.70), the pressure/geo-potential ¢’ has been separated into surface (¢,), and
hydrostatic anomaly (gi);Ly 4)- In this section, the split between ¢ and (b;Ly 4 1s made according to equation (2.71). This
slightly different definition reflects the actual implementation in the code and is valid for both linear and non-linear
free-surface formulation, in both r-coordinate and r*-coordinate.

Because the linear free-surface approximation ignores the tracer content of the fluid parcel between R, and 7y f =
R, + n, for consistency reasons, this part is also neglected in qb;w q:

Tsurf R,
Dhyd = / (b —b,)dr ~ / (b — b,)dr
r r

Note that in this case, the two definitions of ¢, and ¢;Lyd from equations (2.70) and (2.71) converge toward the
same (approximated) expressions: ¢ = |’ ;S”‘f bodr and gb;w 4= fTR" b'dr. On the contrary, the unapproximated

formulation (see Section 2.10.2.2) retains the full expression: ¢;,, ; = S5 (b— bo)dr . This is obtained by selecting
nonlinFreeSurf =4 in parameter file dat a. Regarding the surface potential:

Ro+n 1 Ro+n
¢ = / bodr =bsn  with by = f/ bodr
R, nJrR,

bs =~ b,(R,) is an excellent approximation (better than the usual numerical truncation, since generally |7| is smaller
than the vertical grid increment).

For the ocean, ¢, = gn and by = ¢ is uniform. For the atmosphere, however, because of topographic effects, the
reference surface pressure R, = p, has large spatial variations that are responsible for significant by variations (from
0.8 to 1.2 [m?/kg]). For this reason, when uniformLin_PhiSurf =.FALSE. (parameter file dat a, namelist PARAMO1)
anon-uniform linear coefficient b, is used and computed (INI_LINEAR_PHISURF) according to the reference surface
pressure p,: bs = b,(R,) = cpﬁ(po/PgL)(“’l)Gmf (po), with Pg; the mean sea-level pressure.

2.10.2.2 Free surface effect on column total thickness (Non-linear free-surface)

The total thickness of the fluid column is 75y f — Rfizea = 7 + Ro — Rfizeq. In most applications, the free surface
displacements are small compared to the total thickness n < H, = R, — Rjizcq. In the previous sections and in
older version of the model, the linearized free-surface approximation was made, assuming 7rgyrf — Rfizea =~ H,
when computing horizontal transports, either in the continuity equation or in tracer and momentum advection terms.
This approximation is dropped when using the non-linear free-surface formulation and the total thickness, including
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the time varying part 7, is considered when computing horizontal transports. Implications for the barotropic part are
presented hereafter. In section Section 2.10.2.3 consequences for tracer conservation is briefly discussed (more details
can be found in Campin et al. (2004) [CAHMO04]) ; the general time-stepping is presented in section Section 2.10.2.4
with some limitations regarding the vertical resolution in section Section 2.10.2.5.

In the non-linear formulation, the continuous form of the model equations remains unchanged, except for the 2D
continuity equation (2.11) which is now integrated from R¢izeq(,y) Up t0 rsyrf = Ro + 1

Ro+n
6f38t77 = T.‘|’l‘:’l‘5u7~f + efw(P - 5) =—Vp- / vdr + 6fw(7) - 5)

Rfized

Since 7 has a direct effect on the horizontal velocity (through V;®,,, 1), this adds a non-linear term to the free surface
equation. Several options for the time discretization of this non-linear part can be considered, as detailed below.

If the column thickness is evaluated at time step n, and with implicit treatment of the surface potential gradient,
equations (2.65) and (2.66) become:

er et = Vi - AP0 + Ry — Rypinea) Vibey™ ™ = 1*

where

Ro+n"
e = A [ AP e

Ryized
This method requires us to update the solver matrix at each time step.

Alternatively, the non-linear contribution can be evaluated fully explicitly:
Efs'r)nJrl -V At2(Ro - Rfixed)vhbsnnJrl = 77* + V- AtQ(nn)vhbsnn

This formulation allows one to keep the initial solver matrix unchanged though throughout the integration, since the
non-linear free surface only affects the RHS.

Finally, another option is a “linearized” formulation where the total column thickness appears only in the integral term
of the RHS (2.66) but not directly in the equation (2.65).

Those different options (see Table 2.1) have been tested and show little differences. However, we recommend the use
of the most precise method (nonlinFreeSurf =4) since the computation cost involved in the solver matrix update is
negligible.

Table 2.1: Non-linear free-surface flags

Parameter Value | Description

nonlinFreeSurf | -1 linear free-surface, restart from a pickup file produced
with #undef EXACT CONSERYV code

linear free-surface (= default)

full non-linear free-surface

same as 4 but neglecting fi"ﬂ Vdrin @},

same as 3 but do not update cg2d solver matrix

same as 2 but treat momentum as in linear free-surface
do not use r* vertical coordinate (= default)

use * vertical coordinate

same as 2 but without the contribution of the slope of
the coordinate in V&

select_rStar

=IO = W KO

54 Chapter 2. Discretization and Algorithm


http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf
http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf
http://mitgcm.org/lxr/ident/MITgcm?_i=EXACT_CONSERV
http://mitgcm.org/lxr/ident/MITgcm?_i=select_rStar

MITgcm Documentation, Release checkpoint660-816-gb6703a8da

2.10.2.3 Tracer conservation with non-linear free-surface

To ensure global tracer conservation (i.e., the total amount) as well as local conservation, the change in the surface
level thickness must be consistent with the way the continuity equation is integrated, both in the barotropic part (to
find 1) and baroclinic part (to find w = 7).

To illustrate this, consider the shallow water model, with a source of fresh water (P):
Oth+V - -hvé="P
where h is the total thickness of the water column. To conserve the tracer 6 we have to discretize:
0¢(h0) + V - (hOV) = Pbrain
Using the implicit (non-linear) free surface described above (Section 2.4) we have:
R = B — AtV - (B V) + AP

The discretized form of the tracer equation must adopt the same “form” in the computation of tracer fluxes, that is, the
same value of h, as used in the continuity equation:

R OnEL = prgn — ALV - (B 0" L) + AP0, gin

The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth make the conservation sightly tricky.
The current implementation with the Adams-Bashforth time-stepping provides an exact local conservation and pre-
vents any drift in the global tracer content (Campin et al. (2004) [CAHMO04]). Compared to the linear free-surface
method, an additional step is required: the variation of the water column thickness (from A™ to A" *1) is not incorpo-
rated directly into the tracer equation. Instead, the model uses the Gy terms (first step) as in the linear free surface
formulation (with the “surface correction” turned “on”, see tracer section):

701 _ (—V . (hn " {;n—&-l) _ 7;n+1 9n) /hn

surf

Then, in a second step, the thickness variation (expansion/reduction) is taken into account:

n n h" n+1/2 n n
0" = 0" 4 At (GEYD 4 P (Grain — 07) /1)
Note that with a simple forward time step (no Adams-Bashforth), these two formulations are equivalent, since (h"+! —
h)/AL =P — V- (A" ") = P ¢ 1L

surf

2.10.2.4 Time stepping implementation of the non-linear free-surface

The grid cell thickness was hold constant with the linear free-surface; with the non-linear free-surface, it is now
varying in time, at least at the surface level. This implies some modifications of the general algorithm described earlier
in sections Section 2.7 and Section 2.8.

A simplified version of the staggered in time, non-linear free-surface algorithm is detailed hereafter, and can be
compared to the equivalent linear free-surface case (eq. (2.37) to (2.47)) and can also be easily transposed to the
synchronous time-stepping case. Among the simplifications, salinity equation, implicit operator and detailed ellip-
tic equation are omitted. Surface forcing is explicitly written as fluxes of temperature, fresh water and momentum,
Qnt1/2 prtl/2 F1 respectively. h”™ and dh™ are the column and grid box thickness in r-coordinate.

Phya = / b(o", 8", r)dr (2.72)
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- . I = (n 3 = 15,—

¢ E Geldnm ) 5 QR = EGYT - DG @73)
o —n— dhnil ~(n n n— n

V= A (G(VJ)Jro/dh 1) — AV}, (2.74)

— update model geometry : hFac(dh™)

g = g2 APV — ALY / v dpn

— U2 L AP Ay /(\7’* —gAtVn"“/z) dhn (2.75)
Vi g g At TL/2 (2.76)

R = B 4 AtPPTY2 ALV - / VY2 gpn (2.77)

Gy = Gy(dh™ ™2 6m) 5 G2 = %G;} - %Gg—l (2.78)

0 = 07 AL (G g (P Oy — 0) + Q) ™)
Two steps have been added to linear free-surface algorithm (eq. (2.37) to (2.47)): Firstly, the model “geometry” (here
the hFacC,W,S) is updated just before entering SOLVE_FOR_PRESSURE, using the current dh™ field. Secondly,
the vertically integrated continuity equation (2.77) has been added (exactConserv =.TRUE., in parameter file data,
namelist PARMO1) just before computing the vertical velocity, in subroutine INTEGR_CONTINUITY. Although this
equation might appear redundant with (2.75), the integrated column thickness 2" *! will be different from 7"+1/2 +
H in the following cases:

* when Crank-Nicolson time-stepping is used (see Section 2.10.1).
» when filters are applied to the flow field, after (2.76), and alter the divergence of the flow.

» when the solver does not iterate until convergence; for example, because a too large residual target was set
(cg2dTargetResidual, parameter file data, namelist PARM02).

In this staggered time-stepping algorithm, the momentum tendencies are computed using dh"~! geometry factors
(2.73) and then rescaled in subroutine TIMESTEP, (2.74), similarly to tracer tendencies (see Section 2.10.2.3). The
tracers are stepped forward later, using the recently updated flow field v"**1/2 and the corresponding model geometry
dh™ to compute the tendencies (2.78); then the tendencies are rescaled by dh™ /dh™** to derive the new tracers values
(6,5)" 1 ((2.79), in subroutines CALC_GT, CALC_GS).

Note that the fresh-water input is added in a consistent way in the continuity equation and in the tracer equation, taking
into account the fresh-water temperature 6,.»;p.

Regarding the restart procedure, two 2D fields "1 and (h™ — h™~1)/At in addition to the standard state variables
and tendencies ("~1/2, vn=1/2 gn gn GL73/2, Gy ) are stored in a “pickup” file. The model restarts reading

this pickup file, then updates the model geometry according to A"~ !, and compute k™ and the vertical velocity before
starting the main calling sequence (eq. (2.72) to (2.79), FORWARD_STEP).

S/R INTEGR_CONTINUITY

h*tl — H, @ etaH (DYNVARS.h)
h™ — H, : etaHnm1 ( SURFACE.h )
("t — h™) /At : dEtaHdt (SURFACE.h )
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2.10.2.5 Non-linear free-surface and vertical resolution

When the amplitude of the free-surface variations becomes as large as the vertical resolution near the surface, the
surface layer thickness can decrease to nearly zero or can even vanish completely. This later possibility has not been
implemented, and a minimum relative thickness is imposed (hFacInf, parameter file data, namelist PARMO1) to
prevent numerical instabilities caused by very thin surface level.

A better alternative to the vanishing level problem relies on a different vertical coordinate »* : The time variation of
the total column thickness becomes part of the r* coordinate motion, as in a ¢, o, model, but the fixed part related
to topography is treated as in a height or pressure coordinate model. A complete description is given in Adcroft and
Campin (2004) [AC04].

The time-stepping implementation of the r* coordinate is identical to the non-linear free-surface in r coordinate, and
differences appear only in the spacial discretization.

2.11 Spatial discretization of the dynamical equations

Spatial discretization is carried out using the finite volume method. This amounts to a grid-point method (namely
second-order centered finite difference) in the fluid interior but allows boundaries to intersect a regular grid allowing
a more accurate representation of the position of the boundary. We treat the horizontal and vertical directions as
separable and differently.

2.11.1 The finite volume method: finite volumes versus finite difference

The finite volume method is used to discretize the equations in space. The expression “finite volume” actually has two
meanings; one is the method of embedded or intersecting boundaries (shaved or lopped cells in our terminology) and
the other is non-linear interpolation methods that can deal with non-smooth solutions such as shocks (i.e. flux limiters
for advection). Both make use of the integral form of the conservation laws to which the weak solution is a solution
on each finite volume of (sub-domain). The weak solution can be constructed out of piece-wise constant elements or
be differentiable. The differentiable equations can not be satisfied by piece-wise constant functions.

As an example, the 1-D constant coefficient advection-diffusion equation:
O + 0p(ub — K0,0) =0
can be discretized by integrating over finite sub-domains, i.e. the lengths Ax;:
Axdf+ 0;(F) =0

is exact if f(x) is piece-wise constant over the interval Az; or more generally if §; is defined as the average over the
interval Ax;.

The flux, F;_; /2, must be approximated:

— K
F=uf——0,0
Az, '
and this is where truncation errors can enter the solution. The method for obtaining 6 is unspecified and a wide range
of possibilities exist including centered and upwind interpolation, polynomial fits based on the the volume average
definitions of quantities and non-linear interpolation such as flux-limiters.

Choosing simple centered second-order interpolation and differencing recovers the same ODE’s resulting from finite
differencing for the interior of a fluid. Differences arise at boundaries where a boundary is not positioned on a regular
or smoothly varying grid. This method is used to represent the topography using lopped cell, see Adcroft et al. (1997)
[AHMO97]. Subtle difference also appear in more than one dimension away from boundaries. This happens because
each direction is discretized independently in the finite difference method while the integrating over finite volume
implicitly treats all directions simultaneously.
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2.11.2 C grid staggering of variables

The basic algorithm employed for stepping forward the momentum equations is based on retaining non-divergence of
the flow at all times. This is most naturally done if the components of flow are staggered in space in the form of an
Arakawa C grid (Arakawa and Lamb, 1977 [AL77]).

Figure 2.7 shows the components of flow (u,v,w) staggered in space such that the zonal component falls on the
interface between continuity cells in the zonal direction. Similarly for the meridional and vertical directions. The
continuity cell is synonymous with tracer cells (they are one and the same).

Figure 2.7: Three dimensional staggering of velocity components. This facilitates the natural discretization of the
continuity and tracer equations.

2.11.3 Grid initialization and data

Initialization of grid data is controlled by subroutine INI_GRID which in calls INI_VERTICAL_GRID to
initialize the vertical grid, and then either of INI_CARTESIAN_GRID, INI_SPHERICAL_POLAR_GRID or
INI_CURVILINEAR_GRID to initialize the horizontal grid for cartesian, spherical-polar or curvilinear coordinates
respectively.

The reciprocals of all grid quantities are pre-calculated and this is done in subroutine INI_MASKS_ETC which is
called later by subroutine INITIALISE_FIXED.

All grid descriptors are global arrays and stored in common blocks in GRID.h and a generally declared as _RS.

2.11.4 Horizontal grid

The model domain is decomposed into tiles and within each tile a quasi-regular grid is used. A tile is the ba-
sic unit of domain decomposition for parallelization but may be used whether parallelized or not; see section
[sec:domain_decomposition] for more details. Although the tiles may be patched together in an unstructured manner
(i.e. irregular or non-tessilating pattern), the interior of tiles is a structured grid of quadrilateral cells. The horizon-
tal coordinate system is orthogonal curvilinear meaning we can not necessarily treat the two horizontal directions as
separable. Instead, each cell in the horizontal grid is described by the length of it’s sides and it’s area.

The grid information is quite general and describes any of the available coordinates systems, cartesian, spherical-
polar or curvilinear. All that is necessary to distinguish between the coordinate systems is to initialize the grid data
(descriptors) appropriately.
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In the following, we refer to the orientation of quantities on the computational grid using geographic terminology
such as points of the compass. This is purely for convenience but should not be confused with the actual geographic
orientation of model quantities.
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Figure 2.8: Staggering of horizontal grid descriptors (lengths and areas). The grid lines indicate the tracer cell bound-
aries and are the reference grid for all panels. a) The area of a tracer cell, A, is bordered by the lengths Az, and Ay,,.
b) The area of a vorticity cell, A¢, is bordered by the lengths Az and Ay,. c) The area of a u cell, A,,, is bordered by
the lengths Az, and Ayy. d) The area of a v cell, Ay, is bordered by the lengths Az ¢ and Ay,,.

Figure 2.8 (a) shows the tracer cell (synonymous with the continuity cell). The length of the southern edge, Az,
western edge, Ay, and surface area, A, presented in the vertical are stored in arrays dxG, dyG and rA. The “g” suffix
indicates that the lengths are along the defining grid boundaries. The “c” suffix associates the quantity with the cell
centers. The quantities are staggered in space and the indexing is such that dxG(i,j) is positioned to the south of rA(i,j)
and dyG(i,j) positioned to the west.

Figure 2.8 (b) shows the vorticity cell. The length of the southern edge, Ax., western edge, Ay, and surface area, A,
presented in the vertical are stored in arrays dxC, dyC and rAz. The “z” suffix indicates that the lengths are measured
between the cell centers and the “(” suffix associates points with the vorticity points. The quantities are staggered in

space and the indexing is such that dxC(i,j) is positioned to the north of rAz(i,j) and dyC(i,j) positioned to the east.

Figure 2.8 (c) shows the “u” or western (w) cell. The length of the southern edge, Ax,, eastern edge, Ay and surface
area, A,,, presented in the vertical are stored in arrays dxV, dyF and rAw. The “v” suffix indicates that the length is
measured between the v-points, the “f” suffix indicates that the length is measured between the (tracer) cell faces and
the “w” suffix associates points with the u-points (w stands for west). The quantities are staggered in space and the

indexing is such that dxV(i,j) is positioned to the south of rAw(i,j) and dyF(i,j) positioned to the east.

Figure 2.8 (d) shows the “v” or southern (s) cell. The length of the northern edge, Ax y, western edge, Ay, and surface
area, A, presented in the vertical are stored in arrays dxF, dyU and rAs. The “u” suffix indicates that the length is
measured between the u-points, the “f” suffix indicates that the length is measured between the (tracer) cell faces and
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the “s” suffix associates points with the v-points (s stands for south). The quantities are staggered in space and the
indexing is such that dxF(i,j) is positioned to the north of rAs(i,j) and dyU(i,j) positioned to the west.

S/R INI_CARTESIAN_GRID , INI_SPHERICAL_POLAR_GRID , INI_CURVILINEAR_GRID

Ac, Ac, Ay, Ag 1 1A, TAZ, TAW, rAs (GRID.h )
Axg, Ay, : dxG, dyG (GRID.h )
Az, Ay, : dxC, dyC (GRID.h)
Az, Ayy : dxF, dyF (GRID.h )
Ax,, Ay, : dxV, dyU (GRID.h)

2.11.4.1 Reciprocals of horizontal grid descriptors
Lengths and areas appear in the denominator of expressions as much as in the numerator. For efficiency and portability,
we pre-calculate the reciprocal of the horizontal grid quantities so that in-line divisions can be avoided.

For each grid descriptor (array) there is a reciprocal named using the prefix recip_. This doubles the amount of
storage in GRID.h but they are all only 2-D descriptors.

S/R INI_MASKS_ETC
AL Agl, At AL recip_rA, recip_rAz, recip_rAw, recip_rAs ( GRID.h )
Azt Ayt recip_dxG, recip_dyG ( GRID.h )
Azt Ayt recip_dxC, recip_dyC ( GRID.h)
Az, Ay;': recip_dxF, recip_dyF (GRID.h)
Azt Ayt recip_dxV, recip_dyU ( GRID.h)

2.11.4.2 Cartesian coordinates

Cartesian coordinates are selected when the logical flag usingCartesianGrid in namelist PARMO04 is set to true. The
grid spacing can be set to uniform via scalars dXspacing and dYspacing in namelist PARMO4 or to variable resolution
by the vectors DELX and DELY. Units are normally meters. Non-dimensional coordinates can be used by interpreting
the gravitational constant as the Rayleigh number.

2.11.4.3 Spherical-polar coordinates

Spherical coordinates are selected when the logical flag usingSphericalPolarGrid in namelist PARMO04 is set to true.
The grid spacing can be set to uniform via scalars dXspacing and dYspacing in namelist PARM04 or to variable
resolution by the vectors DELX and DELY. Units of these namelist variables are alway degrees. The horizontal grid
descriptors are calculated from these namelist variables have units of meters.
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2.11.4.4 Curvilinear coordinates
Curvilinear coordinates are selected when the logical flag usingCurvilinearGrid in namelist PARMO4 is set to true.

The grid spacing can not be set via the namelist. Instead, the grid descriptors are read from data files, one for each
descriptor. As for other grids, the horizontal grid descriptors have units of meters.

2.11.5 Vertical grid
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Figure 2.9: Two versions of the vertical grid. a) The cell centered approach where the interface depths are specified
and the tracer points centered in between the interfaces. b) The interface centered approach where tracer levels are
specified and the w-interfaces are centered in between.

As for the horizontal grid, we use the suffixes “c”” and “f” to indicates faces and centers. Figure 2.9 (a) shows the default
vertical grid used by the model. Ar; is the difference in r (vertical coordinate) between the faces (i.e. Ary = —dyr
where the minus sign appears due to the convention that the surface layer has index k = 1.).

The vertical grid is calculated in subroutine INI_VERTICAL_GRID and specified via the vector delR in namelist
PARMO4. The units of “r” are either meters or Pascals depending on the isomorphism being used which in turn is
dependent only on the choice of equation of state.

There are alternative namelist vectors delZ and delP which dictate whether z- or p- coordinates are to be used but we
intend to phase this out since they are redundant.

The reciprocals Ar;l and Ar_ ! are pre-calculated (also in subroutine INI_VERTICAL_GRID). All vertical grid
descriptors are stored in common blocks in GRID.h.
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The above grid Figure 2.9 (a) is known as the cell centered approach because the tracer points are at cell centers; the
cell centers are mid-way between the cell interfaces. This discretization is selected when the thickness of the levels
are provided (delR, parameter file dat a, namelist PARMO04) An alternative, the vertex or interface centered approach,
is shown in Figure 2.9 (b). Here, the interior interfaces are positioned mid-way between the tracer nodes (no longer
cell centers). This approach is formally more accurate for evaluation of hydrostatic pressure and vertical advection but
historically the cell centered approach has been used. An alternative form of subroutine INI_ VERTICAL_GRID is
used to select the interface centered approach This form requires to specify Nr 41 vertical distances delRc (parameter
file data, namelist PARMO04, e.g. ideal_2D_oce/input/data) corresponding to surface to center, Nr—1 center to center,
and center to bottom distances.

S/R INI_VERTICAL_GRID

Arg, Ar. : drF, drC (GRID.h)
Ar;l, Arc_l : recip_drF, recip_drC ( GRID.h )

2.11.6 Topography: partially filled cells

Adcroft et al. (1997) [AHM97] presented two alternatives to the step-wise finite difference representation of topogra-
phy. The method is known to the engineering community as infersecting boundary method. It involves allowing the
boundary to intersect a grid of cells thereby modifying the shape of those cells intersected. We suggested allowing the
topography to take on a piece-wise linear representation (shaved cells) or a simpler piecewise constant representation
(partial step). Both show dramatic improvements in solution compared to the traditional full step representation, the
piece-wise linear being the best. However, the storage requirements are excessive so the simpler piece-wise constant
or partial-step method is all that is currently supported.

b,
h Ar
Ar

Figure 2.10: A schematic of the x-r plane showing the location of the non-dimensional fractions h. and h,, . The
physical thickness of a tracer cell is given by h.(i, 7, k) Ar (k) and the physical thickness of the open side is given by
hw(ivja k)Arf(k) .

Figure 2.10 shows a schematic of the x-r plane indicating how the thickness of a level is determined at tracer and u
points. The physical thickness of a tracer cell is given by h.(i, j, k) Ar (k) and the physical thickness of the open
side is given by hy, (1, j, k) Ar (k). Three 3-D descriptors A, h,, and h, are used to describe the geometry: hFacC,
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hFacW and hFacS respectively. These are calculated in subroutine INI_MASKS_ETC along with there reciprocals
recip_hFacC, recip_hFacW and recip_hFacS.

The non-dimensional fractions (or h-facs as we call them) are calculated from the model depth array and then processed
to avoid tiny volumes. The rule is that if a fraction is less than hFacMin then it is rounded to the nearer of 0 or hFacMin
or if the physical thickness is less than hFacMinDr then it is similarly rounded. The larger of the two methods is used
when there is a conflict. By setting hFacMinDr equal to or larger than the thinnest nominal layers, min (Azy), but
setting hFacMin to some small fraction then the model will only lop thick layers but retain stability based on the
thinnest unlopped thickness; min (Azy, hFacMinDr).

S/R filelink:INI_MASKS _ETC

he, hq, hs : hFacC, hFacW, hFacS ( GRID.h )
ol pt h;l : recip_hFacC, recip_hFacW, recip_hFacS ( GRID.h )

c *'Pw

2.12 Continuity and horizontal pressure gradient term

The core algorithm is based on the “C grid” discretization of the continuity equation which can be summarized as:

1 0 €nh r 1 ’
Ot 5,0 ar‘ M A, 1P = G = K 0 @7
1 oD €Enh 1
4 Soh s & —q s .
Otv + Ayc (SJ 87" . n + Ayc (5J nh Gv Ayc 63 h (2 80)
€ aw—l——l 51 @1 ) = ennGu + 5" — 1 0, ®) (2.81)
nh t AT’C k¥nh | — €nhUw AT’C k¥p .
0iAYgAr phypt + 0; Az g Arphev + 0 Acw = Acdp(P — €)r=0 (2.82)

where the continuity equation has been most naturally discretized by staggering the three components of velocity as
shown in Figure 2.7. The grid lengths Ax. and Ay, are the lengths between tracer points (cell centers). The grid
lengths Az, Ay, are the grid lengths between cell corners. Ary and Ar, are the distance (in units of 7) between
level interfaces (w-level) and level centers (tracer level). The surface area presented in the vertical is denoted A.. The
factors h,, and hg are non-dimensional fractions (between O and 1) that represent the fraction cell depth that is “open”
for fluid flow.

The last equation, the discrete continuity equation, can be summed in the vertical to yield the free-surface equation:

A0 + 6 AygArphyu+8; Y - AzgArshaw = A(P — €)r=o (2.83)
k k

The source term P — £ on the rhs of continuity accounts for the local addition of volume due to excess precipitation
and run-off over evaporation and only enters the top-level of the ocean model.

2.13 Hydrostatic balance

The vertical momentum equation has the hydrostatic or quasi-hydrostatic balance on the right hand side. This dis-
cretization guarantees that the conversion of potential to kinetic energy as derived from the buoyancy equation exactly
matches the form derived from the pressure gradient terms when forming the kinetic energy equation.

In the ocean, using z-coordinates, the hydrostatic balance terms are discretized:

— 1
ennOrw + gp’k + E(Skcb’ =... (2.84)
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In the atmosphere, using p-coordinates, hydrostatic balance is discretized:
7+ L, =0 (2.85)
ATl
where AII is the difference in Exner function between the pressure points. The non-hydrostatic equations are not

available in the atmosphere.

The difference in approach between ocean and atmosphere occurs because of the direct use of the ideal gas equation
in forming the potential energy conversion term cw. Because of the different representation of hydrostatic balance
between ocean and atmosphere there is no elegant way to represent both systems using an arbitrary coordinate.

The integration for hydrostatic pressure is made in the positive r direction (increasing k-index). For the ocean, this is
from the free-surface down and for the atmosphere this is from the ground up.

The calculations are made in the subroutine CALC_PHI HYD. Inside this routine, one of other of the atmo-
spheric/oceanic form is selected based on the string variable buoyancyRelation.

2.14 Flux-form momentum equations

The original finite volume model was based on the Eulerian flux form momentum equations. This is the default though
the vector invariant form is optionally available (and recommended in some cases).

The “G’s” (our colloquial name for all terms on rhs!) are broken into the various advective, Coriolis, horizontal
dissipation, vertical dissipation and metric forces:

Gu — szv + Gior + Gﬁ—diss + Gz—diss 4 G;netric 4 Gﬁh—metm'c (286)
G'U — szv + Gf}or + G'l;fdiss + szdiss + G;netm’c + Gzhfmetric (287)
Gw —_ Gidv 4 GZ?T 4 GLL)—diss + G&—diss + Ggetric + Ggh—metric (288)

In the hydrostatic limit, G,, = 0 and €,; = 0, reducing the vertical momentum to hydrostatic balance.

These terms are calculated in routines called from subroutine MOM_FLUXFORM and collected into the global arrays
¢U, gV, and gW.

S/R MOM_FLUXFORM
G, : gU (DYNVARS.h)
G, : gV (DYNVARS.h)
Gy : gW (NH_VARS.h)

2.14.1 Advection of momentum

The advective operator is second order accurate in space:

AwArph, Gt = 5T + 6,V + 6, W 7 (2.89)
AArh GO = 5,T7°% + 5,V + 6, o (2.90)
ANAr GO = 5T + 6,V @ + 6, o (2.91)
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and because of the flux form does not contribute to the global budget of linear momentum. The quantities U, V and
W are volume fluxes defined:

U= Ay,Arsh,u (2.92)
V = Az Arghgv (2.93)
W= Aw (2.94)

The advection of momentum takes the same form as the advection of tracers but by a translated advective flow.
Consequently, the conservation of second moments, derived for tracers later, applies to u? and v? and w? so that
advection of momentum correctly conserves kinetic energy.

S/R MOM_U_ADV_UU, MOM_U_ADV_VU,MOM_U_ADV_WU
uu, vu, wu : fZon, fMer, fVerUkp ( local to MOM_FLUXFORM.F )

S/R MOM_V_ADV_UV,MOM_V_ADV_VV,MOM_V_ADV_WV
uv, vv, wv : Zon, fMer, fVerVkp (local to MOM_FLUXFORM.F )

2.14.2 Coriolis terms

The “pure C grid” Coriolis terms (i.e. in absence of C-D scheme) are discretized:

AwArh,GSO" = FANT the® — enn [ AT pha® (2.95)
AN ph GO = —fA A ha (2.96)
e
AAr.GS™ = eqn L AATph T (2.97)
where the Coriolis parameters f and f’ are defined:
f= 2Qsingp
f'= 2Qcosyp
where ¢ is geographic latitude when using spherical geometry, otherwise the 3-plane definition is used:

f= fot+By

f= 0
This discretization globally conserves kinetic energy. It should be noted that despite the use of this discretization in
former publications, all calculations to date have used the following different discretization:

Ggor — fuﬁji _ Cnhf;mik (298)
Ggor _ 7fuﬂij (299)
Ggor — enhf{uﬂik (2.100)

where the subscripts on f and f’ indicate evaluation of the Coriolis parameters at the appropriate points in space.
The above discretization does not conserve anything, especially energy, but for historical reasons is the default for the
code. A flag controls this discretization: set run-time integer selectCoriScheme to two (=2) (which otherwise defaults
to zero) to select the energy-conserving conserving form (2.95), (2.96), and (2.97) above.

S/R CD_CODE_SCHEME, MOM_U_CORIOLIS, MOM_V_CORIOLIS
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G, GCr : cF (local to MOM_FLUXFORM.F )

2.14.3 Curvature metric terms

The most commonly used coordinate system on the sphere is the geographic system (), ¢). The curvilinear nature
of these coordinates on the sphere lead to some “metric” terms in the component momentum equations. Under the
thin-atmosphere and hydrostatic approximations these terms are discretized:

AwAr phyGretrie = L tan o A Ar h o (2.101)
a
— j
AArph Gretric = X tan A Arph (2.102)
a
Ggetm’c =0 (2103)

where a is the radius of the planet (sphericity is assumed) or the radial distance of the particle (i.e. a function of
height). It is easy to see that this discretization satisfies all the properties of the discrete Coriolis terms since the metric
factor ¥ tan ¢ can be viewed as a modification of the vertical Coriolis parameter: f — f + & tan .

However, as for the Coriolis terms, a non-energy conserving form has exclusively been used to date:

uv"

metric __
G, =

tan ¢

uut

metric __
Gy =

tan ¢

where tan ¢ is evaluated at the v and v points respectively.

S/R MOM_U_METRIC_SPHERE, MOM_V_METRIC_SPHERE
Gmetric gmetric . mT (local to MOM_FLUXFORM.F )

2.14.4 Non-hydrostatic metric terms

For the non-hydrostatic equations, dropping the thin-atmosphere approximation re-introduces metric terms involving
w which are required to conserve angular momentum:

%

——
AwArfhwGZletMc _ _U;U AcArihe (2.104)
=
AArphGmetric — ~ T8 4 Ap b, (2.105)
a
2 k
s (2.106)

P2
] 57
AAr Gmetrie = LT84 Ay oh,
a

Because we are always consistent, even if consistently wrong, we have, in the past, used a different discretization in
the model which is:

Gmetric —_ szk
“ a
Gmet?"ic _ _ ij
v
a
metric 1 —ik?2 7jk2
Gw = a (u +v )
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S/R MOM_U_METRIC_NH, MOM_V_METRIC_NH
Gmetric gmetric . ;T (local to MOM_FLUXFORM.F )

2.14.5 Lateral dissipation

Historically, we have represented the SGS Reynolds stresses as simply down gradient momentum fluxes, ignoring
constraints on the stress tensor such as symmetry.

A Ar phy, Gh=458 — 5 Ay Ar phomiy + 0;Ax, ArpheTio (2.107)
AgAr phy G458 = §, Ay, Arphetor + 0;A2 p AT pheTao (2.108)
The lateral viscous stresses are discretized:
1 1
T = AhCuA(sD)Tzf&U - A4C11A2(<P)A7xf5ivzu (2.109)
1 1 9
T12 = AhclgA(go)E(Sju — A4612A2 (@)dev u (2110)
1 1 9
T21 = Ah021A(§0) (52"0 — A4021A2 (@)H&V v (2111)
1 1 9
Ty = AhCQ2A(90)A7yf§jU - A4022A2(<P)A7yf5jv v (2.112)

where the non-dimensional factors ¢j,an (@), {I,m,n} € {1,2} define the “cosine” scaling with latitude which can
be applied in various ad-hoc ways. For instance, c11a = c21a = (cos ga)?’/ 2, ¢1aA = Coan = 1 would represent the
anisotropic cosine scaling typically used on the “lat-lon” grid for Laplacian viscosity.

It should be noted that despite the ad-hoc nature of the scaling, some scaling must be done since on a lat-lon grid the

converging meridians make it very unlikely that a stable viscosity parameter exists across the entire model domain.
The Laplacian viscosity coefficient, A; (viscAh), has units of m2s~1,

(viscA4), has units of m*s~1.

The bi-harmonic viscosity coefficient, Ay

S/R MOM_U_XVISCFLUX, MOM_U_YVISCFLUX
711, T12 : VF, v4F (local to MOM_FLUXFORM.F )

S/R MOM_V_XVISCFLUX, MOM_V_YVISCFLUX
To1, Ta2 : VF, v4F (local to MOM_FLUXFORM.F )

Two types of lateral boundary condition exist for the lateral viscous terms, no-slip and free-slip.

The free-slip condition is most convenient to code since it is equivalent to zero-stress on boundaries. Simple masking
of the stress components sets them to zero. The fractional open stress is properly handled using the lopped cells.

The no-slip condition defines the normal gradient of a tangential flow such that the flow is zero on the boundary. Rather
than modify the stresses by using complicated functions of the masks and “ghost” points (see Adcroft and Marshall
(1998) [AMO8]) we add the boundary stresses as an additional source term in cells next to solid boundaries. This has
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the advantage of being able to cope with “thin walls” and also makes the interior stress calculation (code) independent
of the boundary conditions. The “body” force takes the form:

o 4 Axvj

Gide—drag _ A (1—he) o (Ancioa(p)u — Ascianz(9) Vi) (2.113)
, 4 T Ag

Gy = Tzf(l — he¢) sz (Ancaralp)v — Ascaiaz(p)V20) 2.114)

In fact, the above discretization is not quite complete because it assumes that the bathymetry at velocity points is
deeper than at neighboring vorticity points, e.g. 1 — hy, <1 — h¢

S/R MOM_U_SIDEDRAG, MOM_V_SIDEDRAG
Gside—drag (gside—drag . yF (Jocal to MOM_FLUXFORM.F )

2.14.6 Vertical dissipation

Vertical viscosity terms are discretized with only partial adherence to the variable grid lengths introduced by the finite
volume formulation. This reduces the formal accuracy of these terms to just first order but only next to boundaries;
exactly where other terms appear such as linear and quadratic bottom drag.

. 1
v—diss
= ) .
G, Arphy K18 (2.115)
GU—diss _ 1 0L T23 (2.116)
v Arfhs ’
—diss 1
G}L)U d = Gnhmék’rgg (2117)

represents the general discrete form of the vertical dissipation terms.

In the interior the vertical stresses are discretized:

T13 = Av E(Sku
1

T23 = AU E(Sk’l}
1

733 = AUTT_ftskw

It should be noted that in the non-hydrostatic form, the stress tensor is even less consistent than for the hydrostatic (see
Wajsowicz (1993) [Waj93]). It is well known how to do this properly (see Griffies and Hallberg (2000) [GH00]) and
is on the list of to-do’s.

S/R MOM_U_RVISCFLUX, MOM_V_RVISCFLUX

713 ¢ fVrUp, fVrDw (local to MOM_FLUXFORM.F )
Tog : fVrUp, fVrDw (local to MOM_FLUXFORM.F )

As for the lateral viscous terms, the free-slip condition is equivalent to simply setting the stress to zero on boundaries.
The no-slip condition is implemented as an additional term acting on top of the interior and free-slip stresses. Bottom
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drag represents additional friction, in addition to that imposed by the no-slip condition at the bottom. The drag is cast
as a stress expressed as a linear or quadratic function of the mean flow in the layer above the topography:

1 Y7

hottom—drag _ <2AU xo Tt Cd\/27 KE ) u (2.118)
1 :

ngttom—drag _ <2Av A +ry 4Oy 2 KEJ> v (2.119)

where these terms are only evaluated immediately above topography. r, (bottomDragLinear) has units of m.s~! and a
typical value of the order 0.0002 ms~!. Cy (bottomDragQuadratic) is dimensionless with typical values in the range
0.001-0.003.

S/R MOM_U_BOTTOMDRAG, MOM_V_BOTTOMDRAG
hottom=drag j \. . bottom=drag j Ay . yF (local to MOM_FLUXFORM.F )

2.14.7 Derivation of discrete energy conservation

These discrete equations conserve kinetic plus potential energy using the following definitions:

KE = % (uzl +0¥ 4 Gnh’wzk) (2.120)
2.14.8 Mom Diagnostics
<-Name->|Levs|<-parsing code->|<-— Units ——>|<- Tile (max=80c)
VISCAHZ | 15 |Sz MR Im*~2/s |Harmonic Visc Coefficient (m2/s),_,
— (Zeta Pt)
VISCA4Z | 15 |SZ MR Im*~4/s |Biharmonic Visc Coefficient (m4/s)_,
< (Zeta Pt)
VISCAHD | 15 |SM MR |Im~2/s |Harmonic Viscosity Coefficient (m2/s)
— (DlV Pt)
VISCA4D | 15 |SM MR Im™~4/s |Biharmonic Viscosity Coefficient (m4/
—s) (Div Pt)
VAHZMAX | 15 |SZ MR Im*~2/s |CFL-MAX Harm Visc Coefficient (m2/s)
— (Zeta Pt)
VA4ZMAX | 15 |SZ MR Im™~4/s |CFL-MAX Biharm Visc Coefficient (m4/
—s) (Zeta Pt)
VAHDMAX | 15 |SM MR Im"~2/s |CFL-MAX Harm Visc Coefficient (m2/s)_,
— (Div Pt)
VA4DMAX | 15 |SM MR Im™~4/s |CFL-MAX Biharm Visc Coefficient (m4/
—s) (Div Pt)
VAHZMIN | 15 |SZ MR Im~2/s |RE-MIN Harm Visc Coefficient (m2/s),,
— (Zeta Pt)
VA4ZMIN | 15 |SZ MR Im~4/s |RE-MIN Biharm Visc Coefficient (m4/s)
- (Zeta Pt)
VAHDMIN | 15 |SM MR Im*~2/s |RE-MIN Harm Visc Coefficient (m2/s)_
— (Div Pt)
VA4DMIN | 15 |SM MR Im~4/s |[RE-MIN Biharm Visc Coefficient (m4/s)
— (Div Pt)

(continues on next page)
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(continued from previous page)

VAHZLTH | 15 |SZ MR Im*~2/s |Leith Harm Visc Coefficient (m2/s)_,

— (Zeta Pt)

VA4ZLTH | 15 |SZ MR Im~4/s |Leith Biharm Visc Coefficient (m4/s)
— (Zeta Pt)

VAHDLTH | 15 |SM MR Im*~2/s |Leith Harm Visc Coefficient (m2/s)_,

— (Div Pt)

VA4DLTH | 15 |SM MR Im*~4/s |Leith Biharm Visc Coefficient (m4/s)
— (Div Pt)

VAHZLTHD| 15 |SZ MR Im~2/s |LeithD Harm Visc Coefficient (m2/s)_,

— (Zeta Pt)

VA4ZLTHD| 15 |SZ MR |Im~4/s |LeithD Biharm Visc Coefficient (m4/s)
— (Zeta Pt)

VAHDLTHD| 15 |SM MR Im*~2/s |LeithD Harm Visc Coefficient (m2/s)_,

— (Div Pt)

VA4DLTHD| 15 |SM MR Im~4/s |LeithD Biharm Visc Coefficient (m4/s)
— (Div Pt)

VAHZSMAG| 15 |SZ MR |Im~2/s | Smagorinsky Harm Visc Coefficient (m2/
—s) (Zeta Pt)

VA4ZSMAG| 15 |SZ MR Im™~4/s | Smagorinsky Biharm Visc Coeff. (m4/s)_,
— (Zeta Pt)

VAHDSMAG| 15 |SM MR Im~2/s | Smagorinsky Harm Visc Coefficient (m2/
—s) (Div Pt)

VA4DSMAG| 15 |SM MR Im™~4/s | Smagorinsky Biharm Visc Coeff. (m4/s)_,
— (Div Pt)

momKE | 15 |SM MR |Im~2/s"2 |[Kinetic Energy (in momentum Eqg.)
momHDiv | 15 |SM MR |s™=1 |Horizontal Divergence (in momentum Eq.
)

momVort3]| 15 |SZ MR |s~-1 |3rd component (vertical) of Vorticity
Strain | 15 |SZ MR |s~=1 |Horizontal Strain of Horizontal
—Velocities

Tension | 15 |SM MR [s™=1 |Horizontal Tension of Horizontal
—Velocities

UBotDrag| 15 |UU 129MR Im/s”2 |U momentum tendency from Bottom Drag
VBotDrag| 15 |VV 128MR Im/s”2 |V momentum tendency from Bottom Drag
USidDrag]| 15 |UU 131MR Im/s”2 |U momentum tendency from Side Drag
VSidDrag]| 15 |VV 130MR Im/s”2 |V momentum tendency from Side Drag
Um_Diss | 15 |UU 133MR Im/s”2 |U momentum tendency from Dissipation
Vm_Diss | 15 |VV 132MR |m/s”2 |V momentum tendency from Dissipation
Um_Advec| 15 |UU 135MR Im/s”2 |U momentum tendency from Advection,,
—terms

Vm_Advec| 15 |VV 134MR Im/s”2 |V momentum tendency from Advection
—terms

Um_Cori | 15 |UU 137MR Im/s”2 |U momentum tendency from Coriolis term
Vm_Cori | 15 |VV 136MR |m/s”2 |V momentum tendency from Coriolis term
Um_Ext | 15 |UU 137MR Im/s”2 |U momentum tendency from external
—forcing

Vm_Ext | 15 |VvVv 138MR |m/s”2 |V momentum tendency from external
—forcing

Um_Advz3| 15 |UU 141MR |m/s”2 |U momentum tendency from Vorticity,,
—Advection

Vm_AdvZz3]| 15 |VV 140MR Im/s”2 |V momentum tendency from Vorticity,,
—Advection

Um_AdvRe| 15 |UU 143MR |m/s”2 |U momentum tendency from vertical
—Advection (Explicit part)

Vm_AdvRe| 15 |VV 142MR |m/s”2 |V momentum tendency from vertical
—Advection (Explicit part)

ADVx_Um | 15 |UM 145MR Im~4/s"2 | Zonal Advective Flux of U
—,momentum (continues on next page)
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(continued from previous page)

ADVy_Um | 15 |VZ 144MR Im~4/s"2 |[Meridional Advective Flux of U
—momentum

ADVrE_Um| 15 |WU LR Im~4/s"2 |Vertical Advective Flux of U
—momentum (Explicit part)

ADVx_Vm | 15 |UZ 148MR Im~4/s"2 | Zonal Advective Flux of V
—momentum

ADVy_Vm | 15 |VM 147MR Im~4/s”2 |[Meridional Advective Flux of V
—momentum

ADVrE_Vm| 15 |WV LR Im~4/s”"2 |Vertical Advective Flux of V
—momentum (Explicit part)

VISCx_Um| 15 |UM 151MR Im~4/s"2 | Zonal Viscous Flux of U momentum
VISCy_Um| 15 |VZ 150MR Im~4/s”2 |[Meridional Viscous Flux of U momentum
VISrE_Um| 15 |WU LR Im~4/s2 |Vertical Viscous Flux of U momentum
— (Explicit part)

VISrI_Um| 15 |WU LR Im~4/s”2 |Vertical Viscous Flux of U momentum
— (Implicit part)

VISCx_Vm| 15 |UZ 155MR Im~4/s"2 | Zonal Viscous Flux of V momentum
VISCy_Vm| 15 |VM 154MR Im~4/s”2 |[Meridional Viscous Flux of V momentum
VISrE_Vm| 15 |WV LR Im~4/s"2 |Vertical Viscous Flux of V momentum,,
— (Explicit part)

VISrI_Vm| 15 |WV LR Im~4/s"2 |Vertical Viscous Flux of V momentum

— (Implicit part)

2.15 Vector invariant momentum equations

The finite volume method lends itself to describing the continuity and tracer equations in curvilinear coordinate sys-
tems. However, in curvilinear coordinates many new metric terms appear in the momentum equations (written in
Lagrangian or flux-form) making generalization far from elegant. Fortunately, an alternative form of the equations,
the vector invariant equations are exactly that; invariant under coordinate transformations so that they can be applied
uniformly in any orthogonal curvilinear coordinate system such as spherical coordinates, boundary following or the
conformal spherical cube system.

The non-hydrostatic vector invariant equations read:

=

T+ 2+ OANT—bF+VB=V 7 (2.121)

which describe motions in any orthogonal curvilinear coordinate system. Here, B is the Bernoulli function and 5 =
V A ¥ is the vorticity vector. We can take advantage of the elegance of these equations when discretizing them and
use the discrete definitions of the grad, curl and divergence operators to satisfy constraints. We can also consider
the analogy to forming derived equations, such as the vorticity equation, and examine how the discretization can be
adjusted to give suitable vorticity advection among other things.

The underlying algorithm is the same as for the flux form equations. All that has changed is the contents of the “G’s”.
For the time-being, only the hydrostatic terms have been coded but we will indicate the points where non-hydrostatic
contributions will enter:

G, = G{:U + fo’v + ngw + GgmB + ng-rz + Gﬁ—dissip 4 Gz—dissip (2.122)
Gy = GI* + GF + G + GP + G+ G s 4 G e (2.123)
Gw _ Giu + Gg}lv + G%u + ngB + Gz)fdissip + Gz;dissip (2124)

S/R MOM_VECINV
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G, : gU(DYNVARS.h)
G, : gV (DYNVARS.h)
Gy : gW (NH_VARS.h)

2.15.1 Relative vorticity
The vertical component of relative vorticity is explicitly calculated and use in the discretization. The particular form
is crucial for numerical stability; alternative definitions break the conservation properties of the discrete equations.
Relative vorticity is defined:

r 1

C3:I<:A<(

0iAyev — 6 Az u) (2.125)

where A¢ is the area of the vorticity cell presented in the vertical and I' is the circulation about that cell.

S/R MOM_CALC_RELVORT3
(3 : vort3 (local to MOM_VECINV.F )

2.15.2 Kinetic energy

The kinetic energy, denoted K I, is defined:

1 —i —j —k
KE = (u? + 02+ eppw?) (2.126)

S/R MOM_CALC_KE
KE : KE (local to MOM_VECINV.F)

2.15.3 Coriolis terms

The potential enstrophy conserving form of the linear Coriolis terms are written:

=
Gi’u = Aa’;c hic Al’ghsv (2127)
1 f —
GiY = —— = Ay.hy, (2.128)
Y Ayc h( yg “

Here, the Coriolis parameter f is defined at vorticity (corner) points.

The potential enstrophy conserving form of the non-linear Coriolis terms are written:

1 G

Ggﬁv _ Axchic Azghyv (2.129)
R —r

G = & lé;?; Ayt (2.130)
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The Coriolis terms can also be evaluated together and expressed in terms of absolute vorticity f + (3. The potential
enstrophy conserving form using the absolute vorticity is written:

| T
GIY 4 G5 = Ef £ Nt (2.131)
c ¢
1 7i7ij
T T (2.132)
c ¢

The distinction between using absolute vorticity or relative vorticity is useful when constructing higher order advection
schemes; monotone advection of relative vorticity behaves differently to monotone advection of absolute vorticity.
Currently the choice of relative/absolute vorticity, centered/upwind/high order advection is available only through
commented subroutine calls.

S/R MOM_VI_CORIOLIS, MOM_VI_U_CORIOLIS, MOM_VI_V_CORIOLIS

GIv, GV 1 uCf (local to MOM_VECINV.F)
Gf* GS™ : vCf (local to MOM_VECINV.F)

2.15.4 Shear terms

The shear terms ((ow and (;w) are are discretized to guarantee that no spurious generation of kinetic energy is possible;
the horizontal gradient of Bernoulli function has to be consistent with the vertical advection of shear:

1 JE—; k
Gizw - m.Acu) (0w — €nnd;jw) (2.133)

k

K

A’ (851 — enndjw) (2.134)

1
GSw —
N .ASAT‘th

S/R MOM_VI_U_VERTSHEAR, MOM_VI_V_VERTSHEAR

G$2 : uCf (local to MOM_VECINV.F )
G$v : vCf (local to MOM_VECINV.F )

2.15.5 Gradient of Bernoulli function

Go:B — 5:(¢' + KE) (2.135)

Az,

1
GB = —45;(¢ + KE) (2.136)
Axy J

S/R MOM_VI_U_GRAD_KE, MOM_VI_V_GRAD_KE

GO=KE . yCf (local to MOM_VECINV.F)

GOMF . yCf (local to MOM_VECINV.F )
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2.15.6 Horizontal divergence

The horizontal divergence, a complimentary quantity to relative vorticity, is used in parameterizing the Reynolds
stresses and is discretized:
1

'ACh’C

D = (0i Ayghywu + 6;Azghv) (2.137)

S/RMOM_CALC_KE
D : hDiv (local to MOM_VECINV.F)

2.15.7 Horizontal dissipation

The following discretization of horizontal dissipation conserves potential vorticity (thickness weighted relative vortic-
ity) and divergence and dissipates energy, enstrophy and divergence squared:

o 1
h—dissip _ (ArD — AruD*) — ———§. AC— A * .
el Amc&( D paD*) Ayuhw%hc( ¢C — Acal”) (2.138)
—dissi 1 * 1 *
Gh—dissiv — A p, e (A = Acl) 4 1 -03(ApD — ApaD”) (2.139)
where
1
D* = i (6:AYghw VU + §; Az h V)
1
= A—C((SiAyCVQU — 0;Az.V?u)

S/R MOM_VI_HDISSIP

Gh=dissip . yDissip (local to MOM_VI_HDISSIP.F)
Gh—dissip . yDissip (local to MOM_VI_HDISSIP.F)

2.15.8 Vertical dissipation

Currently, this is exactly the same code as the flux form equations.

. 1
Gudiss — Arsh 8kT13 (2.140)
w
, 1
Gu—diss — Arrh Sk T3 (2.141)

represents the general discrete form of the vertical dissipation terms.

In the interior the vertical stresses are discretized:

1
= A,—96
T13 Ar, kU
_ oL
T23 = ’L)ATC kU

S/R MOM_U_RVISCFLUX, MOM_V_RVISCFLUX
Ty3, To3 : vrf (local to MOM_VECINV.F)
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2.16 Tracer equations

The basic discretization used for the tracer equations is the second order piece-wise constant finite volume form of the
forced advection-diffusion equations. There are many alternatives to second order method for advection and alternative
parameterizations for the sub-grid scale processes. The Gent-McWilliams eddy parameterization, KPP mixing scheme
and PV flux parameterization are all dealt with in separate sections. The basic discretization of the advection-diffusion
part of the tracer equations and the various advection schemes will be described here.

2.16.1 Time-stepping of tracers: ABII

The default advection scheme is the centered second order method which requires a second order or quasi-second
order time-stepping scheme to be stable. Historically this has been the quasi-second order Adams-Bashforth method
(ABII) and applied to all terms. For an arbitrary tracer, 7, the forced advection-diffusion equation reads:

8t7' + GZd’U = G;fo + GT (2142)

orc

where G, G3;;p and G5

rdus are the tendencies due to advection, diffusion and forcing, respectively, namely:

orc

Glap = OzuT + 0yv7 + OpwT — TV - v (2.143)

Gligy =V - KVT (2.144)
and the forcing can be some arbitrary function of state, time and space.

The term, 7V - v, is required to retain local conservation in conjunction with the linear implicit free-surface. It only
affects the surface layer since the flow is non-divergent everywhere else. This term is therefore referred to as the
surface correction term. Global conservation is not possible using the flux-form (as here) and a linearized free-surface
(Griffies and Hallberg (2000) [GHOO0] , Campin et al. (2004) [CAHMO04]).

The continuity equation can be recovered by setting Gg;rf = Gfore = 0and 7 = 1.

The driver routine that calls the routines to calculate tendencies are CALC_GT and CALC_GS for temperature and
salt (moisture), respectively. These in turn call a generic advection diffusion routine GAD_CALC_RHS that is called
with the flow field and relevant tracer as arguments and returns the collective tendency due to advection and diffusion.
Forcing is add subsequently in CALC_GT or CALC_GS to the same tendency array.

S/R GAD_CALC_RHS
T : tau ( argument )
G : gTracer (argument )
F,. : fVerT (argument )

The space and time discretization are treated separately (method of lines). Tendencies are calculated at time levels n
and n — 1 and extrapolated to n + 1/2 using the Adams-Bashforth method:

Gnt1/2) _ (% + G (% + G- (2.145)

where G(") = Goaw T Ghips + G5, at time step n. The tendency at n — 1 is not re-calculated but rather the tendency
at n is stored in a global array for later re-use.

S/R ADAMS_BASHFORTH2

G +1/2) : gTracer ( argument on exit )
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G : gTracer (argument on entry )
G™=1 : ¢TrNm] ( argument )
€ : ABeps (PARAMS.h)

The tracers are stepped forward in time using the extrapolated tendency:

7_(n+1) — T(n) +AtG(n+1/2)

(2.146)

S/R TIMESTEP_TRACER

7(+1) : oTracer ( argument on exit )
7(") : tracer (argument on entry )
G(+1/2) : gTracer ( argument )

At : deltaTtracer (PARAMS.h )

Strictly speaking the ABII scheme should be applied only to the advection terms

. However, this scheme is only used

in conjunction with the standard second, third and fourth order advection schemes. Selection of any other advection
scheme disables Adams-Bashforth for tracers so that explicit diffusion and forcing use the forward method.

2.17 Advection schemes

2.17.1 Linear advection schemes

The advection schemes known as centered second order, centered fourth order, first order upwind and upwind biased
third order are known as linear advection schemes because the coefficient for interpolation of the advected tracer are
linear and a function only of the flow, not the tracer field it self. We discuss these first since they are most commonly

used in the field and most familiar.

2.17.1.1 Centered second order advection-diffusion

The basic discretization, centered second order, is the default. It is designed to be consistent with the continuity
equation to facilitate conservation properties analogous to the continuum. However, centered second order advection
is notoriously noisy and must be used in conjunction with some finite amount of diffusion to produce a sensible

solution.

The advection operator is discretized:

AArih Gly, = 0:Fy + 6;Fy + 61 Fy

adv

where the area integrated fluxes are given by:

F,= U7
Fy= V&
F.= W7

The quantities U, V and W are volume fluxes. defined as:
U= AysArshy,u
V= Az,Arshsv
W = Acw

(2.147)
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For non-divergent flow, this discretization can be shown to conserve the tracer both locally and globally and to globally
conserve tracer variance, 72. The proof is given in Adcroft (1995) [Adc95] and Adcroft et al. (1997) [AHM97] .

S/R GAD_C2_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer ( argument )

S/R GAD_C2_ADV_Y

Fy : vT (argument )
V' : vTrans ( argument )
T : tracer (argument )

S/R GAD_C2_ADV_R

F, : wT (argument )
W : rTrans ( argument )
T : tracer ([argument )

2.17.1.2 Third order upwind bias advection

Upwind biased third order advection offers a relatively good compromise between accuracy and smoothness. It is not
a “positive” scheme meaning false extrema are permitted but the amplitude of such are significantly reduced over the
centered second order method.

The third order upwind fluxes are discretized:

)

1 1 1
. 7 1 1
Fy = VT — 66”7- + §|V|5786“T

k

1 1 1
Wr — 65“7- + §|W|5k6§kk7'

=
I

At boundaries, ;7 is set to zero allowing d,,,, to be evaluated. We are currently examine the accuracy of this boundary
condition and the effect on the solution.

S/R GAD_U3_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer (argument )

S/R GAD_U3_ADV_Y

F, : vT (argument )
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V : vTrans ( argument )
T : tracer ( argument )

S/R GAD_U3_ADV_R

F, : wT (argument )
W : rTrans ( argument )
T : tracer (argument )

2.17.1.3 Centered fourth order advection

Centered fourth order advection is formally the most accurate scheme we have implemented and can be used to
great effect in high resolution simulations where dynamical scales are well resolved. However, the scheme is noisy,
like the centered second order method, and so must be used with some finite amount of diffusion. Bi-harmonic is
recommended since it is more scale selective and less likely to diffuse away the well resolved gradient the fourth order

scheme worked so hard to create.

The centered fourth order fluxes are discretized:

1

%

UT - 6(5”7
71 J
V’T - 65“7_
71 k
Wr— 65117‘

As for the third order scheme, the best discretization near boundaries is under investigation but currently ;7 = 0 on a

boundary.

S/R GAD_C4_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer ( argument )

S/R GAD_C4_ADV_Y

F, : vT (argument )
V : vTrans ( argument )
T : tracer ( argument )

S/R GAD_C4_ADV_R
F, : wT (argument )
W : rTrans ( argument )
T : tracer (argument )
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2.17.1.4 First order upwind advection

Although the upwind scheme is the underlying scheme for the robust or non-linear methods given in Section 2.17.2,
we haven’t actually implemented this method for general use. It would be very diffusive and it is unlikely that it could
ever produce more useful results than the positive higher order schemes.

Upwind bias is introduced into many schemes using the abs function and it allows the first order upwind flux to be
written:

1

Fp= U7 - |UloiT
o1

Fy= V7 —|V|oT
1

Fo= W7 oW

If for some reason the above method is desired, the second order flux limiter scheme described in Section 2.17.2.1
reduces to the above scheme if the limiter is set to zero.

2.17.2 Non-linear advection schemes

Non-linear advection schemes invoke non-linear interpolation and are widely used in computational fluid dynamics
(non-linear does not refer to the non-linearity of the advection operator). The flux limited advection schemes belong
to the class of finite volume methods which neatly ties into the spatial discretization of the model.

When employing the flux limited schemes, first order upwind or direct-space-time method, the time-stepping is
switched to forward in time.

2.17.2.1 Second order flux limiters

The second order flux limiter method can be cast in several ways but is generally expressed in terms of other flux
approximations. For example, in terms of a first order upwind flux and second order Lax-Wendroff flux, the limited
flux is given as:

F = Fy + () Frw (2.148)
where t(r) is the limiter function,
1
Fy =um — —|u|d;T
2
is the upwind flux,

FLW = F1 + %(1 — C)(SiT

is the Lax-Wendroff flux and ¢ = % is the Courant (CFL) number.
The limiter function, ¥ (r), takes the slope ratio

Ti—1 — Ti—2

r=————Y u>0
Ti — Ti—1
Ti+1 — Ty
r=-"_ 'V u<o0
Ti — Ti—1

as its argument. There are many choices of limiter function but we only provide the Superbee limiter (Roe 1995
[Roe85]):

¥ (r) = max|[0, min[1, 2r], min[2, r]]
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S/R GAD_FLUXLIMIT_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer ( argument )

S/R GAD_FLUXLIMIT_ADV_Y

F, : vT (argument )
V : vTrans ( argument )
T : tracer ( argument )

S/R GAD_FLUXLIMIT_ADV_R
F, : wT (argument )
W : rTrans ( argument )
T : tracer (argument )

2.17.2.2 Third order direct space-time

The direct space-time method deals with space and time discretization together (other methods that treat space and
time separately are known collectively as the “Method of Lines”). The Lax-Wendroff scheme falls into this category;
it adds sufficient diffusion to a second order flux that the forward-in-time method is stable. The upwind biased third
order DST scheme is:

FZU(Tifl-i-d()(Ti—7'1;1)-‘1-(11(7'1;1—Tl‘,g)) YV u>0

2.149
F=u(r—do(ri —Ti—1) —di(mi41 — 7)) ¥V u<0 ( )

where
d 1 2
-G D)
di= (=l + e

The coefficients dy and d; approach 1/3 and 1/6 respectively as the Courant number, ¢, vanishes. In this limit, the
conventional third order upwind method is recovered. For finite Courant number, the deviations from the linear method
are analogous to the diffusion added to centered second order advection in the Lax-Wendroff scheme.

The DST3 method described above must be used in a forward-in-time manner and is stable for 0 < |¢| < 1. Although
the scheme appears to be forward-in-time, it is in fact third order in time and the accuracy increases with the Courant
number! For low Courant number, DST3 produces very similar results (indistinguishable in Figure 2.12) to the linear
third order method but for large Courant number, where the linear upwind third order method is unstable, the scheme
is extremely accurate (Figure 2.13) with only minor overshoots.

S/R GAD_DST3_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer (argument )
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S/R GAD_DST3_ADV_Y

Fy : vT (argument )
V : vTrans ( argument )
T : tracer ( argument )

S/R GAD_DST3_ADV_R

F,. : wT (argument )
W : rTrans ( argument )
T : tracer ( argument )

2.17.2.3 Third order direct space-time with flux limiting

The overshoots in the DST3 method can be controlled with a flux limiter. The limited flux is written:

1 1
F= 5(u + |ul) (Ti,1 +(rt)(ri — Ti,l)) + §(u — |ul) (Tl;l +(r7)(m — Ti,l)) (2.150)
where

= Ti—1 — Tj—2
Ti — Ti—1

_ Ti+1 — T4

ro o= R —
Ti — Ti—1

and the limiter is the Sweby limiter:

¥ (r) = max|[0, min[min(1, dg + dy7], 1= Cr]]

S/R GAD_DST3FL_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer ( argument )

S/R GAD_DST3FL_ADV_Y

Fy : vT (argument )
V : vTrans ( argument )
T : tracer (argument )

S/R GAD_DST3FL_ADV_R

F,. : wT (argument )
W : rTrans ( argument )
T : tracer ( argument )
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2.17.2.4 Multi-dimensional advection

In many of the aforementioned advection schemes the behavior in multiple dimensions is not necessarily as good as
the one dimensional behavior. For instance, a shape preserving monotonic scheme in one dimension can have severe
shape distortion in two dimensions if the two components of horizontal fluxes are treated independently. There is a
large body of literature on the subject dealing with this problem and among the fixes are operator and flux splitting
methods, corner flux methods, and more. We have adopted a variant on the standard splitting methods that allows the
flux calculations to be implemented as if in one dimension:

1 1
n+1/3 _ n - s pT(m\__ .n_— 5
T 7" — At <A$51F (™) —71 Aa:(;lu)
1 1
Fr2/3 0 ntl/3 Ay (Ay(;jpy(TnH/«%) _ Ay(;w) (2.151)

1 1
n+3/3 _ n+2/3 _ A . F* n+2/3y _ .n_~ ¢
T T t (AT(Sk (r )—T Ar(slw>

In order to incorporate this method into the general model algorithm, we compute the effective tendency rather than
update the tracer so that other terms such as diffusion are using the n time-level and not the updated n+ 3/3 quantities:

n 1
Ga:l;)l/Q — E(T7L+3/3 _ TTL)

So that the over all time-stepping looks likes:

7_n+1 =7+ At (Gn+1/2 + Gdiff(Tn) + G?oreing)

adv

S/R GAD_ADVECTION

T : tracer (argument )
n+1/2

Goaw '~ ¢ glracer (argument )

Iy, F,, F, :aF (local )

U : uTrans ( local )

V : vTrans (local )

W : rTrans ( local )

A schematic of multi-dimension time stepping for the cube sphere configuration is show in Figure 2.11 .

2.17.3 Comparison of advection schemes

Table 2.2 shows a summary of the different advection schemes available in MITgem. “AB” stands for Adams-
Bashforth and “DST” for direct space-time. The code corresponds to the number used to select the corresponding
advection scheme in the parameter file (e.g., tempAdvScheme=3 in file data selects the 3rd order upwind advec-
tion scheme for temperature advection).
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Figure 2.11: Multi-dimensional advection time-stepping with cubed-sphere topology.
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Table 2.2: MITgcm Advection Schemes
Advection Scheme Code| Use Use multi- | Stencil (1- | Comments
AB? dim? D)

Ist order upwind 1 no yes’ 3 linear 7, non-
linear ¢

centered 2nd order 2 yes no 3 linear

3rd order upwind 3 yes no 5 linear T

centered 4th order 4 yes no 5 linear

2nd order DST (Lax-Wendroff) 20 no yes' 3 linear 7, non-
linear ¥

3rd order DST 30 no yes 5 linear 7, non-
linear ¢

2nd order flux limiters 77 no yes 5 non-linear

3rd order DST flux limiter 33 no yes' 5 non-linear

piecewise parabolic w/“null” limiter 40 no yes 7 non-linear

piecewise parabolic w/“mono” limiter 41 no yes 7 non-linear

piecewise parabolic w/“weno” limiter 42 no yes 7 non-linear

piecewise quartic w/“null” limiter 50 no yes 9 non-linear

piecewise quartic w/“mono” limiter 51 no yes 9 non-linear

piecewise quartic w/“weno” limiter 52 no yes 9 non-linear

7th order one-step method w/monotonicity | 7 no yes 9 non-linear

preserving limiter

second order-moment Prather 80 no yes 3 non-linear

second order-moment Prather w/limiter 81 no yes 3 non-linear

yes" indicates that either the multi-dim advection algorithm or standard approach can be utilized, controlled by a
namelist parameter multiDimAdvection (in these cases, given that these schemes was designed to use multi-dim ad-
vection, using the standard approach is not recommended). The minimum size of the required tile overlap region
(OLx, OLx) is (stencil size -1)/2. The minimum overlap required by the model in general is 2, so for some of the
above choices the advection scheme will not cost anything in terms of an additional overlap requirement, but es-
pecially given a small tile size, using scheme 7 for example would require costly additional overlap points (note a
cube sphere grid with a “wet-corner” requires doubling this overlap!) In the ‘Comments’ column, 7 refers to tracer
advection, ¥ momentum advection.

Shown in Figure 2.12 and Figure 2.13 is a 1-D comparison of advection schemes. Here we advect both a smooth hill
and a hill with a more abrupt shock. Figure 2.12 shown the result for a weak flow (low Courant number) whereas
Figure 2.13 shows the result for a stronger flow (high Courant number).

Figure 2.14, Figure 2.15 and Figure 2.16 show solutions to a simple diagonal advection problem using a selection of
schemes for low, moderate and high Courant numbers, respectively. The top row shows the linear schemes, integrated
with the Adams-Bashforth method. Theses schemes are clearly unstable for the high Courant number and weakly
unstable for the moderate Courant number. The presence of false extrema is very apparent for all Courant numbers.
The middle row shows solutions obtained with the unlimited but multi-dimensional schemes. These solutions also
exhibit false extrema though the pattern now shows symmetry due to the multi-dimensional scheme. Also, the schemes
are stable at high Courant number where the linear schemes weren’t. The bottom row (left and middle) shows the
limited schemes and most obvious is the absence of false extrema. The accuracy and stability of the unlimited non-
linear schemes is retained at high Courant number but at low Courant number the tendency is to lose amplitude in
sharp peaks due to diffusion. The one dimensional tests shown in Figure 2.12 and Figure 2.13 show this phenomenon.

Finally, the bottom left and right panels use the same advection scheme but the right does not use the multi-dimensional
method. At low Courant number this appears to not matter but for moderate Courant number severe distortion of the
feature is apparent. Moreover, the stability of the multi-dimensional scheme is determined by the maximum Courant
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Figure 2.12: Comparison of 1-D advection schemes: Courant number is 0.05 with 60 points and solutions are shown
for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind, DST3, third order upwind
and second order upwind. b) Shows the centered schemes; Lax-Wendroff, DST4, centered second order, centered
fourth order and finite volume fourth order. c) Shows the second order flux limiters: minmod, Superbee, MC limiter
and the van Leer limiter. d) Shows the DST3 method with flux limiters due to Sweby with p =1, u = ¢/(1 — ¢) and
a fourth order DST method with Sweby limiter, u = ¢/(1 — ¢) .
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Figure 2.13: Comparison of 1-D advection schemes: Courant number is 0.89 with 60 points and solutions are shown
for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind and DST3. Third order
upwind and second order upwind are unstable at this Courant number. b) Shows the centered schemes; Lax-Wendroff,
DST4. Centered second order, centered fourth order and finite volume fourth order are unstable at this Courant number.
¢) Shows the second order flux limiters: minmod, Superbee, MC limiter and the van Leer limiter. d) Shows the DST3
method with flux limiters due to Sweby with p = 1, u = ¢/(1 — ¢) and a fourth order DST method with Sweby
limiter, u = ¢/(1 —¢) .
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number applied of each dimension while the stability of the method of lines is determined by the sum. Hence, in the
high Courant number plot, the scheme is unstable.

With many advection schemes implemented in the code two questions arise: “Which scheme is best?”” and “Why don’t
you just offer the best advection scheme?”. Unfortunately, no one advection scheme is “the best” for all particular
applications and for new applications it is often a matter of trial to determine which is most suitable. Here are some
guidelines but these are not the rule;

* If you have a coarsely resolved model, using a positive or upwind biased scheme will introduce significant
diffusion to the solution and using a centered higher order scheme will introduce more noise. In this case,
simplest may be best.

* If you have a high resolution model, using a higher order scheme will give a more accurate solution but scale-
selective diffusion might need to be employed. The flux limited methods offer similar accuracy in this regime.

« If your solution has shocks or propagating fronts then a flux limited scheme is almost essential.

* If your time-step is limited by advection, the multi-dimensional non-linear schemes have the most stability (up
to Courant number 1).

* If you need to know how much diffusion/dissipation has occurred you will have a lot of trouble figuring it out
with a non-linear method.

* The presence of false extrema is non-physical and this alone is the strongest argument for using a positive
scheme.

2.18 Shapiro Filter

The Shapiro filter (Shapiro 1970) [Sha70] is a high order horizontal filter that efficiently remove small scale grid noise
without affecting the physical structures of a field. It is applied at the end of the time step on both velocity and tracer
fields.

Three different space operators are considered here (S1,S2 and S4). They differ essentially by the sequence of deriva-
tive in both X and Y directions. Consequently they show different damping response function specially in the diagonal
directions X+Y and X-Y.

Space derivatives can be computed in the real space, taking into account the grid spacing. Alternatively, a pure
computational filter can be defined, using pure numerical differences and ignoring grid spacing. This later form is
stable whatever the grid is, and therefore specially useful for highly anisotropic grid such as spherical coordinate grid.
A damping time-scale parameter 7,54, defines the strength of the filter damping.

The three computational filter operators are :

G+ (o))

Tshap 4
At 1

(G 05}
S+ 03]

At 1 At 1

—d0:)"[1 — =6,;i)"

Tshap (4 ) ][ Tshap (4 ]j) ]
In addition, the S2 operator can easily be extended to a physical space filter:

At Lga—zn
(=Y}

Slc: [1-1/2

S2c¢ : 11—

Sdc : 1-

S2g : 1-

Tshap

with the Laplacian operator 62 and a length scale parameter L,j,q,. The stability of this S2¢g filter requires Lpq), <
Min(Gb) (Az, Ay).
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Figure 2.14: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.01 with 30 x 30 points and solutions are shown for T=1/2. White lines indicate zero crossing
(ie. the presence of false minima). The left column shows the second order schemes; top) centered second order with
Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third
order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method
and bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-
Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the
Superbee flux limiter (second order) applied independently in each direction (method of lines).
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Figure 2.15: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.27 with 30 x 30 points and solutions are shown for T=1/2. White lines indicate zero crossing
(ie. the presence of false minima). The left column shows the second order schemes; top) centered second order with
Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third
order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method
and bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-
Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the
Superbee flux limiter (second order) applied independently in each direction (method of lines).
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Figure 2.16: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.47 with 30 x 30 points and solutions are shown for T=1/2. White lines indicate zero crossings
and initial maximum values (ie. the presence of false extrema). The left column shows the second order schemes; top)
centered second order with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle
column shows the third order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order
direct space-time method and bottom) the same with flux limiting. The top right panel shows the centered fourth order
scheme with Adams-Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right
panel shows the Superbee flux limiter (second order) applied independently in each direction (method of lines).
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2.18.1 SHAP Diagnostics

SHAP_dT | 5 |SM MR |K/s | Temperature Tendency due to Shapiro Filter
SHAP_dS | 5 |SM MR |g/kg/s |Specific Humidity Tendency due to Shapiro Filter
SHAP_dU | 5 |UU 148MR |m/s"2 |Zonal Wind Tendency due to Shapiro Filter
SHAP_dV | 5 |VV 147MR |m/s"2 |[Meridional Wind Tendency due to Shapiro Filter

2.19 Nonlinear Viscosities for Large Eddy Simulation

In Large Eddy Simulations (LES), a turbulent closure needs to be provided that accounts for the effects of subgridscale
motions on the large scale. With sufficiently powerful computers, we could resolve the entire flow down to the
molecular viscosity scales (L, ~ lcm). Current computation allows perhaps four decades to be resolved, so the
largest problem computationally feasible would be about 10m. Most oceanographic problems are much larger in
scale, so some form of LES is required, where only the largest scales of motion are resolved, and the subgridscale
effects on the large-scale are parameterized.

To formalize this process, we can introduce a filter over the subgridscale L: u, — %, and L: b — b. This filter
has some intrinsic length and time scales, and we assume that the flow at that scale can be characterized with a single
velocity scale (V) and vertical buoyancy gradient (N2). The filtered equations of motion in a local Mercator projection
about the gridpoint in question (see Appendix for notation and details of approximation) are:

gy fady . — TN ~ TN 2L
Du _ vsinf Mg On _ _ (Du _Du) V7u (2.152)
Dt Rosiné, Ro Oz Dt Dt Re
—~ ~ . == = 2
D usind  Mgoor (Do _Dvy V7w (2.153)
Dt Rosinf Ro 0y Dt Dt Re
Dw -0 <Dw Dw> V2w
— + =—| — - —
Dt Fri)2 Dt Dt Re
D (DB Dby, V¥
Dt B Dt Dt PrRe
ou v ow
2
du  Ov)\_ odw _, 2.154
. <8x + Gy) + 0z ( )

Tildes denote multiplication by cos 8/ cos  to account for converging meridians.

The ocean is usually turbulent, and an operational definition of turbulence is that the terms in parentheses (the *eddy’
terms) on the right of (2.152) - (2.154)) are of comparable magnitude to the terms on the left-hand side. The terms
proportional to the inverse of , instead, are many orders of magnitude smaller than all of the other terms in virtually
every oceanic application.
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2.19.1 Eddy Viscosity

A turbulent closure provides an approximation to the eddy’ terms on the right of the preceding equations. The simplest
form of LES is just to increase the viscosity and diffusivity until the viscous and diffusive scales are resolved. That is,
we approximate (2.152) - (2.154):

= —_~ 2= 82u

Du _ Duy Vil o2 (2.155)
Dt Dt Rer,  Rey,
— -~ 9 %%

Dv _Dv) Vil | o2 (2.156)
Dt Dt Rern  Re,
Sy N 22— *w

Dw _Dw) Vi | 5 (2.157)
Dt Dt Rey, Re,
o6 Db\ wib , 5

Dt Dt)  PrRe, ' PrRe,

2.19.1.1 Reynolds-Number Limited Eddy Viscosity

One way of ensuring that the gridscale is sufficiently viscous (i.e., resolved) is to choose the eddy viscosity A;, so that
the gridscale horizontal Reynolds number based on this eddy viscosity, Rey, is O(1). That is, if the gridscale is to be
viscous, then the viscosity should be chosen to make the viscous terms as large as the advective ones. Bryan et al.
(1975) [BMP75] notes that a computational mode is squelched by using Re;, <2.

MITgcm users can select horizontal eddy viscosities based on Rej, using two methods. 1) The user may estimate the
velocity scale expected from the calculation and grid spacing and set viscAh to satisfy Re;, < 2. 2) The user may
use viscAhReMax, which ensures that the viscosity is always chosen so that Re;, < viscAhReMax. This last option
should be used with caution, however, since it effectively implies that viscous terms are fixed in magnitude relative to
advective terms. While it may be a useful method for specifying a minimum viscosity with little effort, tests Bryan et
al. (1975) [BMP75] have shown that setting viscAhReMax =2 often tends to increase the viscosity substantially over
other more ’physical’ parameterizations below, especially in regions where gradients of velocity are small (and thus
turbulence may be weak), so perhaps a more liberal value should be used, e.g. viscAhReMax =10.

While it is certainly necessary that viscosity be active at the gridscale, the wavelength where dissipation of energy or
enstrophy occurs is not necessarily L = A, /U. In fact, it is by ensuring that either the dissipation of energy in a 3-d
turbulent cascade (Smagorinsky) or dissipation of enstrophy in a 2-d turbulent cascade (Leith) is resolved that these
parameterizations derive their physical meaning.

2.19.1.2 Vertical Eddy Viscosities

Vertical eddy viscosities are often chosen in a more subjective way, as model stability is not usually as sensitive to
vertical viscosity. Usually the "observed’ value from finescale measurements is used (e.g. viscAr= 1 x 10~4m?/s).
However, Smagorinsky (1993) [Sma93] notes that the Smagorinsky parameterization of isotropic turbulence implies a
value of the vertical viscosity as well as the horizontal viscosity (see below).
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2.19.1.3 Smagorinsky Viscosity

Some suggest (see Smagorinsky 1963 [Sma63]; Smagorinsky 1993 [Sma93]) choosing a viscosity that depends on the
resolved motions. Thus, the overall viscous operator has a nonlinear dependence on velocity. Smagorinsky chose his
form of viscosity by considering Kolmogorov’s ideas about the energy spectrum of 3-d isotropic turbulence.

Kolmogorov supposed that energy is injected into the flow at large scales (small k) and is ’cascaded’ or transferred
conservatively by nonlinear processes to smaller and smaller scales until it is dissipated near the viscous scale. By
setting the energy flux through a particular wavenumber k, ¢, to be a constant in k, there is only one combination
of viscosity and energy flux that has the units of length, the Kolmogorov wavelength. It is L.(v) oc me1/413/4
(the 7 stems from conversion from wavenumber to wavelength). To ensure that this viscous scale is resolved in a
numerical model, the gridscale should be decreased until L.(v) > L (so-called Direct Numerical Simulation, or
DNS). Alternatively, an eddy viscosity can be used and the corresponding Kolmogorov length can be made larger than

the gridscale, L (Ay,) oc w1/ 4A2/ * (for Large Eddy Simulation or LES).

There are two methods of ensuring that the Kolmogorov length is resolved in MITgecm. 1) The user can estimate
the flux of energy through spectral space for a given simulation and adjust grid spacing or viscAh to ensure that
L.(Ap) > L; 2) The user may use the approach of Smagorinsky with viscC2Smag, which estimates the energy flux at
every grid point, and adjusts the viscosity accordingly.

Smagorinsky formed the energy equation from the momentum equations by dotting them with velocity. There are
some complications when using the hydrostatic approximation as described by Smagorinsky (1993) [Sma93]. The
positive definite energy dissipation by horizontal viscosity in a hydrostatic flow is ¥ D?, where D is the deformation
rate at the viscous scale. According to Kolmogorov’s theory, this should be a good approximation to the energy flux
at any wavenumber ¢ ~ vD?. Kolmogorov and Smagorinsky noted that using an eddy viscosity that exceeds the
molecular value v should ensure that the energy flux through viscous scale set by the eddy viscosity is the same as

it would have been had we resolved all the way to the true viscous scale. That is, € = ApgmagD . If we use this
approximation to estimate the Kolmogorov viscous length, then

Le(Ansmag) o 7671/4A2{94mag ~ 7T(Ah5ma952)71/4A2{94mag = ﬂA,ng2ma9571/2 (2.158)

To make L(Apsmag) scale with the gridscale, then
viscC2Smag\? . —
Ansmag = <7T g) L2|D| (2.159)

Where the deformation rate appropriate for hydrostatic flows with shallow-water scaling is

— — 2 — — 2
D= (2800 4 (0n, 0Y (2.160)
or Oy Jdy Oz
The coefficient viscC2Smag is what an MITgcm user sets, and it replaces the proportionality in the Kolmogorov length

with an equality. Others (Griffies and Hallberg, 2000 [GH00]) suggest values of viscC2Smag from 2.2 to 4 for oceanic
problems. Smagorinsky (1993) [Sma93] shows that values from 0.2 to 0.9 have been used in atmospheric modeling.

Smagorinsky (1993) [Sma93] shows that a corresponding vertical viscosity should be used:

. 2 — 2 ~ 2
Avsmag = viscC2Smag 772 ou L [ (2.161)
™ 0z 0z

This vertical viscosity is currently not implemented in MITgcm.
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2.19.1.4 Leith Viscosity

Leith (1968, 1996) [Lei68] [Lei96] notes that 2-D turbulence is quite different from 3-D. In 2-D turbulence, energy
cascades to larger scales, so there is no concern about resolving the scales of energy dissipation. Instead, another
quantity, enstrophy, (which is the vertical component of vorticity squared) is conserved in 2-D turbulence, and it
cascades to smaller scales where it is dissipated.

Following a similar argument to that above about energy flux, the enstrophy flux is estimated to be equal to the
positive-definite gridscale dissipation rate of enstrophy 1 ~ Ap,reitr|Vws|?. By dimensional analysis, the enstrophy-
dissipation scale is L, (ApLeitn) o wAifeithn’l/G

and the resulting eddy viscosity are

. Thus, the Leith-estimated length scale of enstrophy-dissipation

Loy(Anpein) o< TAY2  n~ V6 = p AV Vg3 (2.162)
. . 3
AnLeith = (vuscC72rLe|th) L3|Vws| (2.163)
o (05 oa\l® [0 (85 oa\]°
_ ]| (v _cu g (ov _ou (2.164)
[Veas \/[596 (3x ayﬂ +[5y (396 51/”

The runtime flag useFullLeith controls whether or not to calculate the full gradients for the Leith viscosity (.TRUE.)
or to use an approximation (.FALSE.). The only reason to set useFullLeith = .FALSE. is if your simulation fails when
computing the gradients. This can occur when using the cubed sphere and other complex grids.

2.19.1.5 Modified Leith Viscosity

The argument above for the Leith viscosity parameterization uses concepts from purely 2-dimensional turbulence,
where the horizontal flow field is assumed to be non-divergent. However, oceanic flows are only quasi-two dimen-
sional. While the barotropic flow, or the flow within isopycnal layers may behave nearly as two-dimensional turbu-
lence, there is a possibility that these flows will be divergent. In a high-resolution numerical model, these flows may
be substantially divergent near the grid scale, and in fact, numerical instabilities exist which are only horizontally
divergent and have little vertical vorticity. This causes a difficulty with the Leith viscosity, which can only respond to
buildup of vorticity at the grid scale.

MITgcem offers two options for dealing with this problem. 1) The Smagorinsky viscosity can be used instead of
Leith, or in conjunction with Leith — a purely divergent flow does cause an increase in Smagorinsky viscosity; 2) The
viscC2LeithD parameter can be set. This is a damping specifically targeting purely divergent instabilities near the
gridscale. The combined viscosity has the form:

: NG . . 6
AnLeith = LB\/<VISCC72TLe'th) |Vws|? + (W) |VV - |2 (2.165)

_ _ 2 — — 2
_ o [(0n Ov o (o %
= 9 (ou o 9 (odu  0Ov (2.166)
IVV -] = \/L?x (596 * 5y)] * [3.@ <5$ - ayﬂ

Whether there is any physical rationale for this correction is unclear, but the numerical consequences are good. The
divergence in flows with the grid scale larger or comparable to the Rossby radius is typically much smaller than the
vorticity, so this adjustment only rarely adjusts the viscosity if viscC2LeithD = viscC2Leith. However, the rare regions
where this viscosity acts are often the locations for the largest vales of vertical velocity in the domain. Since the CFL
condition on vertical velocity is often what sets the maximum timestep, this viscosity may substantially increase
the allowable timestep without severely compromising the verity of the simulation. Tests have shown that in some
calculations, a timestep three times larger was allowed when viscC2LeithD = viscC2Leith.
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2.19.1.6 Quasi-Geostrophic Leith Viscosity

A variant of Leith viscosity can be derived for quasi-geostrophic dynamics. This leads to a slightly different equation
for the viscosity that includes a contribution from quasigeostrophic vortex stretching (Bachman et al. 2017 [BFKP17]).
The viscosity is given by

AAs\®
v = ( : 5) V3(52) + V(¥ % Vi) + 0 (2.167)

where A is a tunable parameter of O(1), As = \/AzAy is the grid scale, fZ is the vertical component of the Coriolis
parameter, vy, is the horizontal velocity, N? is the Brunt-Viisili frequency, and b is the buoyancy.

However, the viscosity given by (2.167) does not constrain purely divergent motions. As such, a small O(¢) correction
is added

AAs\®
Ve = ( . ) \/lvh(fz) + vh(v X Vh*) + az%vhbp + |V[V : Vh]‘2 (2.168)
This form is, however, numerically awkward; as the Brunt-Viisild Frequency becomes very small in regions of weak
or vanishing stratification, the vortex stretching term becomes very large. The resulting large viscosities can lead to
numerical instabilities. Bachman et al. (2017) [BFKP17] present two limiting forms for the viscosity based on flow
parameters such as F'r,, the Froude number, and Ro., the Rossby number. The second of which,

(AA3>3
Ve =
s
Fr2

2
\/mz'n (|Vh,q2* + 3z%vhb|, <1 + Rioz

*

(2.169)

2
T F) |vhq2*|) L IVIV vl

has been implemented and is active when #define ALLOW_LEITH_QG is included in a copy of
MOM_COMMON_OPTIONS.h in a code mods directory (specified through -mods command line option in gen-
make?2).

LeithQG viscosity is designed to work best in simulations that resolve some mesoscale features. In simulations
that are too coarse to permit eddies or fine enough to resolve submesoscale features, it should fail gracefully. The
non-dimensional parameter viscC2LeithQG corresponds to A in the above equations and scales the viscosity; the
recommended value is 1.

There is no reason to use the quasi-geostrophic form of Leith at the same time as either standard Leith or modified
Leith. Therefore, the model will not run if non-zero values have been set for these coefficients; the model will stop
during the configuration check. LeithQG can be used regardless of the setting for useFullLeith. Just as for the other
forms of Leith viscosity, this flag determines whether or not the full gradients are used. The simplified gradients were
originally intended for use on complex grids, but have been shown to produce better kinetic energy spectra even on
very straightforward grids.

To add the LeithQG viscosity to the GMRedi coefficient, as was done in some of the simulations in Bachman et
al. (2017) [BFKP17], #define ALLOW_LEITH_QG must be specified, as described above. In addition to this,
the compile-time flag ALLOW_GM_LEITH_QG must also be defined in a (—mods) copy of GMREDI_OPTIONS.h
when the model is compiled, and the runtime parameter GM_useleithQG set to .TRUE. in data.gmredi. This will
use the value of viscC2LeithQG specified in the data input file to compute the coefficient.
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2.19.1.7 Courant-Freidrichs—Lewy Constraint on Viscosity

Whatever viscosities are used in the model, the choice is constrained by gridscale and timestep by the
Courant—Freidrichs-Lewy (CFL) constraint on stability:

L2
A -
hS I
L4
1= 32A¢

The viscosities may be automatically limited to be no greater than these values in MITgcm by specifying viscAhGrid-
Max < 1 and viscA4GridMax < 1. Similarly-scaled minimum values of viscosities are provided by viscAhGridMin
and viscA4GridMin, which if used, should be set to values < 1. L is roughly the gridscale (see below).

Following Griffies and Hallberg (2000) [GHOO], we note that there is a factor of Azx? /8 difference between the
harmonic and biharmonic viscosities. Thus, whenever a non-dimensional harmonic coefficient is used in the MITgcm
(e.g. viscAhGridMax < 1), the biharmonic equivalent is scaled so that the same non-dimensional value can be used
(e.g. viscA4GridMax < 1).

2.19.1.8 Biharmonic Viscosity

Holland (1978) [Hol78] suggested that eddy viscosities ought to be focused on the dynamics at the grid scale, as larger
motions would be "resolved’. To enhance the scale selectivity of the viscous operator, he suggested a biharmonic eddy
viscosity instead of a harmonic (or Laplacian) viscosity:

S e 4= 92U
Du . Diu ~ _th + 922 (2170)
Dt Dt R€4 Rev

Di _Dv\ ,-Viv 5
ﬁt Re4 Rev

Dw Dw —V%@ ?;7?
i L 9=
Dt Re4 Rev

D Dby _ Vi 43
Dt Di) PrRes PrRe,
Griffies and Hallberg (2000) [GHOO] propose that if one scales the biharmonic viscosity by stability considerations,

then the biharmonic viscous terms will be similarly active to harmonic viscous terms at the gridscale of the model, but
much less active on larger scale motions. Similarly, a biharmonic diffusivity can be used for less diffusive flows.

In practice, biharmonic viscosity and diffusivity allow a less viscous, yet numerically stable, simulation than harmonic
viscosity and diffusivity. However, there is no physical rationale for such operators being of leading order, and more
boundary conditions must be specified than for the harmonic operators. If one considers the approximations of (2.155)
- (2.158) and (2.170) - (2.171) to be terms in the Taylor series expansions of the eddy terms as functions of the large-
scale gradient, then one can argue that both harmonic and biharmonic terms would occur in the series, and the only
question is the choice of coefficients. Using biharmonic viscosity alone implies that one zeros the first non-vanishing
term in the Taylor series, which is unsupported by any fluid theory or observation.

Nonetheless, MITgcm supports a plethora of biharmonic viscosities and diffusivities, which are controlled with pa-
rameters named similarly to the harmonic viscosities and diffusivities with the substitution h — 4 in the MITgcm
parameter name. MITgcm also supports biharmonic Leith and Smagorinsky viscosities:

iscC4S 2 L4
AtSmag =  2=OMIEY =) (2.171)
T 8
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A_Lgﬂmtth) N 21m)
™ s

However, it should be noted that unlike the harmonic forms, the biharmonic scaling does not easily relate to whether
energy-dissipation or enstrophy-dissipation scales are resolved. If similar arguments are used to estimate these scales
and scale them to the gridscale, the resulting biharmonic viscosities should be:

iscC4 o=
Adgmag = (V'Scsmag) L5|V2| 2.173)
T
¢ | viscCaLeith\'"* _ viscC4LeithD \ '? _ 5174
Agpeith = L — |V2w3|2 + — |V2V - a2 (2.174)
Thus, the biharmonic scaling suggested by Griffies and Hallberg (2000) [GHOO] implies:
D] o< L|V*,|
|V@s| o< L|V2@s|

It is not at all clear that these assumptions ought to hold. Only the Griffies and Hallberg (2000) [GHOO] forms are
currently implemented in MITgcm.

2.19.1.9 Selection of Length Scale

Above, the length scale of the grid has been denoted L. However, in strongly anisotropic grids, L, and L, will be
quite different in some locations. In that case, the CFL condition suggests that the minimum of L, and L, be used.
On the other hand, other viscosities which involve whether a particular wavelength is 'resolved’ might be better suited
to use the maximum of L, and L,. Currently, MITgcm uses useAreaViscLength to select between two options. If
false, the square root of the harmonic mean of Li and Lz is used for all viscosities, which is closer to the minimum
and occurs naturally in the CFL constraint. If useAreaViscLength is true, then the square root of the area of the grid
cell is used.

2.19.2 Mercator, Nondimensional Equations

The rotating, incompressible, Boussinesq equations of motion (Gill, 1982) [Gil82] on a sphere can be written in
Mercator projection about a latitude 6y and geopotential height z = r — ry. The nondimensional form of these
equations is:

D& ©sind dr  AFr*Mp, cosf Fr’Mpo,aw  Rok - V2u
Ro== — Mp — 4 70y = — 2.175
ODt sin O + Roor + e sin 6 v r/H + Re ( )
Do asinf om pRotan §(a? + %)  Fr’Mg,ow  Roy - V*u
Ro 2V M, 2E — - 2.176
°Dt + sin 6 MR dy r/L r/H + Re ( )
~ 272 | ~2 2125 T2
FYQ/\Q%_b+81_Acot00u:Au ( +v)+Fr/\z Vu 2.177)
Dt 0z Mg, Mpgo(r/L) Re
Db w— V2b
Dt v PrRe
ou  Ov ow
2
ou Ovy ow_ 2.178
a <8x + 8y> + 0z ( )
Where
:cosﬁo i u* 5 v*
T cos®’  Vu TV
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Dimensional variables are denoted by an asterisk where necessary. If we filter over a grid scale typical for ocean

models:

Im < L < 100km

0.0001 < A <1

0.00lm/s < V < 1 m/s

fo < 0.0001 s !

0.0ls' < N <0.0001s"!

these equations are very well approximated by

RoD _ ¥sind . Om _ AFr? Mp,cosf  RoVZi
Dt sin 6y Roor psin Oy v Re
Ro& N asinf dr _ RoV?v
Dt sinfy fto 0y  Re
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(2.179)

(2.180)

(2.181)

(2.182)

(2.183)

Neglecting the non-frictional terms on the right-hand side is usually called the ’traditional” approximation. It is appro-
priate, with either large aspect ratio or far from the tropics. This approximation is used here, as it does not affect the
form of the eddy stresses which is the main topic. The frictional terms are preserved in this approximate form for later

comparison with eddy stresses.
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CHAPTER
THREE

GETTING STARTED WITH MITGCM

This chapter is divided into two main parts. The first part, which is covered in sections Section 3.1 through Section 3.6,
contains information about how to download, build and run MITgcm. We believe the best way to familiarize yourself
with the model is to run one of the tutorial examples provided in the MITgcm repository (see Section 4), so would
suggest newer MITgcm users jump there following a read-through of the first part of this chapter. Information is also
provided in this chapter on how to customize the code when you are ready to try implementing the configuration you
have in mind, in the second part (Section 3.8). The code and algorithm are described more fully in Section 2 and
Section 6 and chapters thereafter.

In this chapter and others (e.g., chapter Contributing to the MITgcm), for arguments where the user is expected to
replace the text with a user-chosen name, userid, etc., our convention is to show these as upper-case text surrounded
by « », such as «USER_MUST_REPLACE_TEXT_HERE». The « and » characters are NOT typed when the text is
replaced.

3.1 Where to find information

There is a web-archived support mailing list for the model that you can email at MITgcm-support@mitgem.org once
you have subscribed.

To sign up (subscribe) for the mailing list (highly recommended), click here

To browse through the support archive, click here

3.2 Obtaining the code

The MITgem code and documentation are under continuous development and we generally recommend that one
downloads the latest version of the code. You will need to decide if you want to work in a “git-aware” environment
(Method 1) or with a one-time “stagnant” download (Method 2). We generally recommend method 1, as it is more
flexible and allows your version of the code to be regularly updated as MITgcm developers check in bug fixes and new
features. However, this typically requires at minimum a rudimentary understanding of git in order to make it worth
one’s while.

Periodically we release an official checkpoint (or “tag”). We recommend one download the latest code, unless there
are reasons for obtaining a specific checkpoint (e.g. duplicating older results, collaborating with someone using an
older release, etc.)

99


mailto:MITgcm-support@mitgcm.org
http://mailman.mitgcm.org/mailman/listinfo/mitgcm-support/
http://mailman.mitgcm.org/pipermail/mitgcm-support/

MITgcm Documentation, Release checkpoint660-816-gb6703a8da

3.2.1 Method 1

This section describes how to download git-aware copies of the repository. In a terminal window, cd to the directory
where you want your code to reside. Type:

o)

% git clone https://github.com/MITgcm/MITgcm.git

This will download the latest available code. If you now want to revert this code to a specific checkpoint release,
first cd into the MITgcem directory you just downloaded, then type git checkout checkpoint«XXX» where
«XXX>» is the checkpoint version.

Alternatively, if you prefer to use ssh keys (say for example, you have a firewall which won’t allow a https download),
type:

)

% git clone git@github.com:MITgcm/MITgcm.git

You will need a GitHub account for this, and will have to generate a ssh key though your GitHub account user settings.

The fully git-aware download is over several hundred MB, which is considerable if one has limited internet download
speed. In comparison, the one-time download zip file (Method 2, below) is order 100 MB. However, one can obtain
a truncated, yet still git-aware copy of the current code by adding the option ——depth=1 to the git clone command
above; all files will be present, but it will not include the full git history. However, the repository can be updated going
forward.

3.2.2 Method 2

This section describes how to do a one-time download of MITgem, NOT git-aware. In a terminal window, cd to the
directory where you want your code to reside. To obtain the current code, type:

o

% wget https://github.com/MITgcm/MITgcm/archive/master.zip

For specific checkpoint release XXX, instead type:

)

% wget https://github.com/MITgcm/MITgcm/archive/checkpoint«XXX».zip

3.3 Updating the code

There are several different approaches one can use to obtain updates to MITgcm; which is best for you depends a bit
on how you intend to use MITgcm and your knowledge of git (and/or willingness to learn). Below we outline three
suggested update pathways:

1. Fresh Download of MITgcm

This approach is the most simple, and virtually foolproof. Whether you downloaded the code from a static zip file
(Method 2) or used the git clone command (Method 1), create a new directory and repeat this procedure to download
a current copy of MITgem. Say for example you are starting a new research project, this would be a great time to grab
the most recent code repository and keep this new work entirely separate from any past simulations. This approach
requires no understanding of git, and you are free to make changes to any files in the MIT repo tree (although we
generally recommend that you avoid doing so, instead working in new subdirectories or on separate scratch disks as
described here, for example).

2. Using git pull to update the (unmodified) MITgcm repo tree

If you have downloaded the code through a git clone command (Method I above), you can incorporate any changes to
the source code (including any changes to any files in the MITgcm repository, new packages or analysis routines, etc.)
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that may have occurred since your original download. There is a simple command to bring all code in the repository
to a ‘current release’ state. From the MITgcm top directory or any of its subdirectories, type:

o

% git pull

and all files will be updated to match the current state of the code repository, as it exists at GitHub. (Note: if you plan
to contribute to MITgcm and followed the steps to download the code as described in Section 5, you will need to type
git pull upstream instead.)

This update pathway is ideal if you are in the midst of a project and you want to incorporate new MITgcm features
into your executable(s), or take advantage of recently added analysis utilties, etc. After the git pull, any changes in
model source code and include files will be updated, so you can repeat the build procedure (Section 3.5) and you will
include all these new features in your new executable.

Be forewarned, this will only work if you have not modified ANY of the files in the MITgcm repository (adding new
files is ok; also, all verification run subdirectories build and run are also ignored by git). If you have modified files
and the git pull fails with errors, there is no easy fix other than to learn something about git (continue reading. . .)

3. Fully embracing the power of git!

Git offers many tools to help organize and track changes in your work. For example, one might keep separate projects
on different branches, and update the code separately (using git pull) on these separate branches. You can even
make changes to code in the MIT repo tree; when git then tries to update code from upstream (see Figure 5.1), it
will notify you about possible conflicts and even merge the code changes together if it can. You can also use git
commit to help you track what you are modifying in your simulations over time. If you’re planning to submit a pull
request to include your changes, you should read the contributing guide in Section 5, and we suggest you do this model
development in a separate, fresh copy of the code. See Section 5.2 for more information and how to use git effectively
to manage your workflow.

3.4 Model and directory structure

The “numerical” model is contained within a execution environment support wrapper. This wrapper is designed to
provide a general framework for grid-point models; MITgcm is a specific numerical model that makes use of this
framework (see Section 6.2 for additional detail). Under this structure, the model is split into execution environment
support code and conventional numerical model code. The execution environment support code is held under the
eesupp directory. The grid point model code is held under the model directory. Code execution actually starts in the
eesupp routines and not in the model routines. For this reason the top-level main.F is in the eesupp/src directory. In
general, end-users should not need to worry about the wrapper support code. The top-level routine for the numerical
part of the code is in model/src/the_model_main.F. Here is a brief description of the directory structure of the model
under the root tree.

model: this directory contains the main source code. Also subdivided into two subdirectories: model/inc (in-
cludes files) and model/src (source code).

eesupp: contains the execution environment source code. Also subdivided into two subdirectories: eesupp/inc
and eesupp/src.

pkg: contains the source code for the packages. Each package corresponds to a subdirectory. For example,
pkg/gmredi contains the code related to the Gent-McWilliams/Redi scheme, pkg/seaice the code for a dynamic
seaice model which can be coupled to the ocean model. The packages are described in detail in Section 8 and
Section 9].

doc: contains MITgem documentation in reStructured Text (rst) format.

tools: this directory contains various useful tools. For example, genmake? is a script written in bash that should
be used to generate your makefile. The subdirectory tools/build_options contains ‘optfiles’ with the compiler
options for many different compilers and machines that can run MITgcm (see Section 3.5.2.2). This directory
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also contains subdirectories tools/adjoint_options and tools/OAD_support that are used to generate the tangent
linear and adjoint model (see details in Section 7).

* utils: this directory contains various utilities. The utils/matlab subdirectory contains matlab scripts for read-
ing model output directly into matlab. The subdirectory utils/python contains similar routines for python.
utils/scripts contains C-shell post-processing scripts for joining processor-based and tiled-based model output.

* verification: this directory contains the model examples. See Section 4.
* jobs: contains sample job scripts for running MITgem.
* Isopt: Line search code used for optimization.

* optim: Interface between MITgcm and line search code.

3.5 Building the model

3.5.1 Quickstart Guide

To compile the code, we use the make program. This uses a file (Make £1i1e) that allows us to pre-process source files,
specify compiler and optimization options and also figures out any file dependencies. We supply a script (genmake?2),
described in section Section 3.5.2, that automatically generates the Makefile for you. You then need to build the
dependencies and compile the code (Section 3.5.3).

As an example, assume that you want to build and run experiment verification/exp2. Let’s build the code in verifica-
tion/exp2/build:

% cd verification/exp2/build

First, generate the Makefile:

$ ../../../tools/genmake2 -mods ../code -optfile «/PATH/TO/OPTFILE»

The -mods command line option tells genmake?2 to override model source code with any files in the subdirectory
. . /code (here, you need to configure the size of the model domain by overriding MITgem’s default SIZE.h with an
edited copy ../code/SIZE.h containing the specific domain size for exp2).

The -optfile command line option tells genmake2 to run the specified opifile, a bash shell script, dur-
ing genmake2’s execution. An optfile typically contains definitions of environment variables, paths, compiler
options, and anything else that needs to be set in order to compile on your local computer system or clus-
ter with your specific Fortan compiler. As an example, we might replace «/PATH/TO/OPTFILE» with
./../..Jtools/build_options/linux_amd64_ifortl1 for use with the Intel Fortran compiler (version 11 and above) on
a linux x86_64 platform. This and many other optfiles for common systems and Fortran compilers are located in
tools/build_options.

-mods, —optfile, and many additional genmake2 command line options are described more fully in Section
3.5.2.1. Detailed instructions on building with MPI are given in Section 3.5.4.

Once a Makefile has been generated, we create the dependencies with the command:

)

% make depend

It is important to note that the make depend stage will occasionally produce warnings or errors if the dependency
parsing tool is unable to find all of the necessary header files (e.g., netcdf . inc, or worse, say it cannot find a
Fortran compiler in your path). In some cases you may need to obtain help from your system administrator to locate
these files.

Next, one can compile the code using:
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)

% make

Assuming no errors occurred, the make command creates an executable called mitgcmuv.
Now you are ready to run the model. General instructions for doing so are given in section Section 3.6.
3.5.2 Generating a Makefile using genmake2

A shell script called genmake?2 for generating a Makefile is included as part of MITgecm. Typically genmake?2
is used in a sequence of steps as shown below:

./../../tools/genmake2 -mods ../code -optfile «/PATH/TO/OPTFILE»
make depend
make

o° o° o

The first step above creates a unix-style Makefile. The Makefile is used by make to specify how to compile the
MITgcm source files (for more detailed descriptions of what the make tools are, and how they are used, see here).

This section describes details and capabilities of genmake2, located in the tools directory. genmake?2 is a shell script
written to work in bash (and with all “sh”—compatible shells including Bourne shells). Like many unix tools, there is
a help option that is invoked thru genmake2 -h. genmake?2 parses information from the following sources, in this
order:

1. Command-line options (see Section 3.5.2.1)

2. A genmake_local fileif one is found in the current directory. This is a bash shell script that is executed prior
to the optfile (see step #3), used in some special model configurations and/or to set some options that can affect
which lines of the optfile are executed. For example, this genmake_local file is required for a special setup,
building a ‘MITgcm coupler’ executable; in a more typical setup, one will not require a genmake_local file.

3. An “options file” a.k.a. optfile (a bash shell script) specified by the command-line option ~optfile «/
PATH/TO/OPTFILE», as mentioned briefly in Section 3.5.1 and described in detail in Section 3.5.2.2.

4. A packages.conf file (if one is found) with the specific list of packages to compile (see Section 8.1.1). The
search path for file packages. conf is first the current directory, and then each of the -mods directories in
the given order (as described Zere).

When you run the genmake?2 script, typical output might be as follows:

% ../../../tools/genmake2 -mods ../code -optfile ../../../tools/build_options/linux_
—amd64_gfortran

GENMAKE

A program for GENerating MAKEfiles for the MITgcm project.
For a quick list of options, use "genmake2 -h"
or for more detail see the documentation, section "Building the model"
(under "Getting Started") at: https://mitgcm.readthedocs.io/
=== Processing options files and arguments ===
getting local config information: none found
Warning: ROOTDIR was not specified ; try using a local copy of MITgcm found at "../../

e e

getting OPTFILE information:

using OPTFILE="../../../tools/build_options/linux_amd64_gfortran"
getting AD_OPTFILE information:
using AD_OPTFILE="../../../tools/adjoint_options/adjoint_default"

(continues on next page)
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(continued from previous page)

check Fortran Compiler... pass (set FC_CHECK=5/5)
check makedepend (local: 0, system: 1, 1)

=== Checking system libraries ===

Do we have the system() command using gfortran... yes
Do we have the fdate() command using gfortran... vyes
Do we have the etime () command using gfortran... c,r: yes (SbR)
Can we call simple C routines (here, "cloc()") using gfortran... yes
Can we unlimit the stack size using gfortran... vyes
Can we register a signal handler using gfortran... vyes
Can we use stat () through C calls... yes
Can we create NetCDF-enabled binaries... vyes
skip check for LAPACK Libs
Can we call FLUSH intrinsic subroutine... vyes

=== Setting defaults ===
Adding MODS directories: ../code
Making source files in eesupp from templates
Making source files in pkg/exch2 from templates
Making source files in pkg/regrid from templates

=== Determining package settings ===

getting package dependency info from ../../../pkg/pkg_depend
getting package groups info from ../../../pkg/pkg_groups
checking list of packages to compile:

using PKG_LIST="../code/packages.conf"

before group expansion packages are: oceanic -kpp —-gmredi cd_code
replacing "oceanic" with: gfd gmredi kpp
replacing "gfd" with: mom_common mom_fluxform mom_vecinv generic_advdiff debug,
—mdsio rw monitor
after group expansion packages are: mom_common mom_fluxform mom_vecinv generic_
—advdiff debug mdsio rw monitor gmredi kpp -kpp -gmredi cd_code
applying DISABLE settings
applying ENABLE settings
packages are: cd_code debug generic_advdiff mdsio mom_common mom_fluxform mom_
—vecinv monitor rw
applying package dependency rules
packages are: cd_code debug generic_advdiff mdsio mom_common mom_fluxform mom_
—vecinv monitor rw
Adding STANDARDDIRS='eesupp model'
Searching for *OPTIONS.h files in order to warn about the presence

of "#define "-type statements that are no longer allowed:
found CPP_EEOPTIONS="../../../eesupp/inc/CPP_EEOPTIONS.h"
found CPP_OPTIONS="../../../model/inc/CPP_OPTIONS.h"

Creating the list of files for the adjoint compiler.

=== Creating the Makefile ===
setting INCLUDES
Determining the list of source and include files
Writing makefile: Makefile
Add the source list for AD code generation
Making list of "exceptions" that need ".p" files
Making list of NOOPTFILES
Add rules for links
Adding makedepend marker

=== Done ===

(continues on next page)
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(continued from previous page)

original 'Makefile' generated successfully
=> next steps:

> make depend

> make (<—— to generate executable)

In the above, notice:

we did not specify ROOTDIR, i.e., a path to your MITgcm repository, but here we are building code from within
the repository (specifically, in one of the verification subdirectory experiments). As such, genmake?2 was smart
enough to locate all necessary files on its own. To specify a remote ROOTDIR, see here.

we specified the optfile linux_amd64_gfortran based on the computer system and Fortran compiler we used
(here, a linux 64-bit machine with gfortran installed).

genmake?2 did some simple checking on availability of certain system libraries; all were found (except LAPACK,
which was not checked since it is not needed here). NetCDF only requires a ‘yes’ if you want to write netCDF
output; more specifically, a ‘no’ response to “Can we create NetCDF-enabled binaries” will disable including
pkg/mnc and switch to output plain binary files. While the makefile can still be built with other ‘no’ responses,
sometimes this will foretell errors during the make depend or make commands.

any .F or . h files in the —-mods directory . . /code will also be compiled, overriding any MITgcm repository
versions of files, if they exist.

a handful of packages are being used in this build; see Section 8.1.1 for more detail about how to enable and
disable packages.

genmake?2 terminated without error (note output at end after === Done ===), generating Makefile and a
log file genmake.log. As mentioned, this does not guarantee that your setup will compile properly, but if
there are errors during make depend or make, these error messages and/or the standard output from gen-
make2 or genmake . log may provide clues as to the problem. If instead genmake?2 finishes with a warning
message Warning: FORTRAN compiler test failed, this means that genmake?2 is unable to lo-
cate the Fortran compiler or pass a trivial “hello world” Fortran compilation test. In this case, you should see
genmake . log for errors and/or seek assistance from your system administrator; these tests need to pass in
order to proceed to the make steps.

3.5.2.1 Command-line options:

genmake?2 supports a number of helpful command-line options. A complete list of these options can be obtained by:

)

% genmake2 -h

The most important command-line options are:

-optfile «/PATH/TO/OPTFILE» (or shorter: —of ) specifies the optfile that should be used for a particular

build.

If no optfile is specified through the command line, genmake2 will try to make a reasonable guess from the list
provided in tools/build_options. The method used for making this guess is to first determine the combination
of operating system and hardware and then find a working Fortran compiler within the user’s path. When these
three items have been identified, genmake2 will try to find an optfile that has a matching name. See Section
3.5.2.2.

-mods '«DIR1 DIR2 DIR3 ...»' specifies a list of directories containing “modifications”. These directories

contain files with names that may (or may not) exist in the main MITgcm source tree but will be overridden
by any identically-named sources within the —mods directories. Note the quotes around the list of directories,
necessary given multiple arguments.

The order of precedence for versions of files with identical names:
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* “mods” directories in the order given (e.g., will use copy of file located in DIR1 instead of DIR2)
* Packages either explicitly specified or included by default

» Packages included due to package dependencies

* The “standard dirs” (which may have been specified by the —~standarddirs option below)

—-rootdir «/PATH/TO/MITGCMDIR» specify the location of the MITgcm repository top directory (ROOTDIR).
By default, genmake2 will try to find this location by looking in parent directories from where genmake?2 is
executed (up to 5 directory levels above the current directory).

In the quickstart example above (Section 3.5.1) we built the executable in the build directory of the exper-
iment. Below, we show how to configure and compile the code on a scratch disk, without having to copy
the entire source tree. The only requirement is that you have genmake2 in your $PATH, or you know the
absolute path to genmake?2. In general, one can compile the code in any given directory by following this pro-
cedure. Assuming the model source is in ~/MITgcm, then the following commands will build the model in
/scratch/exp2-runl:

oe

cd /scratch/exp2-runl

~/MITgcm/tools/genmake2 -rootdir ~/MITgcm -mods ~/MITgcm/verification/exp2/code
make depend

make

o° o

oe

As an alternative to specifying the MITgcm repository location through the —rootdir command-line option,
genmake?2 recognizes the environment variable $SMITGCM_ROOTDIR.

—-standarddirs «/PATH/TO/STANDARDDIR» specify a path to the standard MITgcm directories for source
and includes files. By default, model and eesupp directories (src and inc) are the “standard dirs”. This
command can be used to reset these default standard directories, or instead NOT include either model or eesupp
as done in some specialized configurations.

—oad generates a makefile for an OpenAD build (see Section 7.5)

—adoptfile «/PATH/TO/FILE» (or shorter: —adof ) specifies the “adjoint” or automatic differentiation op-
tions file to be used. The file is analogous to the optfile defined above but it specifies information for the AD
build process. See Section 7.2.3.4.

The default file is located in tools/adjoint_options/adjoint_default and it defines the “TAF” and “TAMC” com-
piler options.

-mpi enables certain MPI features (using CPP #define) within the code and is necessary for MPI builds (see
Section 3.5.4).

—omp enables OpenMP code and compiler flag OMPFLAG (see Section 3.5.5).

—ieee use IEEE numerics (requires support in optfile). This option is typically a good choice if one wants to compare
output from different machines running the same code. Note using IEEE disables all compiler optimizations.

—devel use IEEE numerics (requires support in optfile) and add additional compiler options to check array bounds
and add other additional warning and debugging flags.

-make «/PATH/TO/GMAKE» due to the poor handling of soft-links and other bugs common with the make ver-
sions provided by commercial unix vendors, GNU make (sometimes called gmake) may be preferred. This
option provides a means for specifying the make executable to be used.

While it is possible to use genmake2 command-line options to set the Fortran or C compiler name (-fc and —cc re-
spectively), we generally recommend setting these through an opifile, as discussed in Section 3.5.2.2. Other genmake?2
options are available to enable performance/timing analyses, etc.; see genmake?2 —h for more info.
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3.5.2.2 Optfiles in tools/build_options directory:

The purpose of the optfiles is to provide all the compilation options for particular “platforms” (where “platform”
roughly means the combination of the hardware and the compiler) and code configurations. Given the combi-
nations of possible compilers and library dependencies (e.g., MPI or netCDF) there may be numerous optfiles
available for a single machine. The naming scheme for the majority of the optfiles shipped with the code is
OS_HARDWARE_COMPILER where

OS is the name of the operating system (generally the lower-case output of a linux terminal uname command)

HARDWARE is a string that describes the CPU type and corresponds to output from a uname -m command. Some
common CPU types:

amdé64 use this code for x86_64 systems (most common, including AMD and Intel 64-bit CPUs)
ia64 is for Intel IA64 systems (eg. Itanium, Itanium?2)
ppc is for (old) Mac PowerPC systems

COMPILER is the compiler name (generally, the name of the Fortran compiler executable). MITgcm is primarily
written in FORTRAN 77. Compiling the code requires a FORTRAN 77 compiler. Any more recent compiler
which is backwards compatible with FORTRAN 77 can also be used; for example, the model will build suc-
cessfully with a Fortran 90 or Fortran 95 compiler. A C99 compatible compiler is also need, together with a
C preprocessor . Some optional packages make use of Fortran 90 constructs (either free-form formatting, or
dynamic memory allocation); as such, setups which use these packages require a Fortran 90 or later compiler
build.

There are existing optfiles that work with many common hardware/compiler configurations; we first suggest you peruse
the list in tools/build_options and try to find your platform/compiler configuration. These are the most common:

¢ linux_amd64_gfortran
¢ linux_amd64_ifortl1

* linux_amd64_ifort+impi
e linux_amd64_pgf77

The above optfiles are all for linux x86_64 (64-bit) systems, utilized in many large high-performance computing
centers. All of the above will work with single-threaded, MPI, or shared memory (OpenMP) code configurations.
gfortran is GNU Fortran, ifort is Intel Fortran, pgf77 is PGI Fortran (formerly known as “The Portland Group”).
Note in the above list there are two ifort optfiles: linux_amd64_ifort+impi is for a specific case of using ifort
with the Intel MPI library (a.k.a. impi), which requires special define statements in the optfile (in contrast with
Open MPI or MVAPICH?2 libraries; see Section 3.5.4). Note that both ifort optfiles require ifort version 11 or higher.
Many clusters nowadays use environment modules, which allows one to easily choose which compiler to use through
module load «MODULENAME», automatically configuring your environment for a specific compiler choice (type
echo $PATH to see where genmake?2 will look for compilers and system software).

In most cases, your platform configuration will be included in the available optfiles list and will result in a usable
Makefile being generated. If you are unsure which optfile is correct for your configuration, you can try not speci-
fying an optfile; on some systems the genmake2 program will be able to automatically recognize the hardware, find a
compiler and other tools within the user’s path, and then make a best guess as to an appropriate optfile from the list in
the tools/build_options directory. However, for some platforms and code configurations, new optfiles must be written.
To create a new optfile, it is generally best to start with one of the defaults and modify it to suit your needs. Like
genmake?2, the optfiles are all written in bash (or using a simple sh—compatible syntax). While nearly all environment
variables used within genmake?2 may be specified in the optfiles, the critical ones that should be defined are:

FC the Fortran compiler (executable) to use on . F files, e.g., ifort or gfortran, or if using MPI, the mpi-wrapper
equivalent, e.g., mpif77
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F90C the Fortran compiler to use on .F90 files (only necessary if your setup includes a package which contains
.F90 source code)

CC similarly, the C compiler to use, e.g., 1cc or gcc, or if using MPI, the mpi-wrapper equivalent, e.g., mpicc
DEFINES command-line options passed to the compiler
CPP the C preprocessor to use, and any necessary command-line options, e.g. cpp —-traditional -P

CFLAGS, FFLAGS command-line compiler flags required for your C and Fortran compilers, respectively, to compile
and execute properly. See your C and Fortran compiler documentation for specific options and syntax.

FOPTIM command-line optimization Fortran compiler settings. See your Fortran compiler documentation for specific
options and syntax.

NOOPTFLAGS command-line settings for special files that should not be optimized using the FOPTIM flags
NOOPTFILES list of source code files that should be compiled using NOOPTFLAGS settings

INCLUDES path for additional files (e.g., netcdf . inc, mpif . h) to include in the compilation using the command-
line —I option

INCLUDEDIRS path for additional files to be included in the compilation
LIBS path for additional library files that need to be linked to generate the final executable, e.g., 1ibnetcdf.a

For example, an excerpt from an optfile which specifies several of these variables (here, for the linux-amd64 architec-
ture using the PGI Fortran compiler) is as follows:

if test "xSMPI" = xtrue ; then
CC=mpicc
FC=mpif77
F90C=mpif90
else
CC=pgcc
FC=pgf77
F90C=pgf90
fi

DEFINES="-DWORDLENGTH=4"
if test "xSALWAYS_USE_F90" = x1 ; then
FC=SF90C
else
DEFINES="S$DEFINES -DNML_EXTENDED_F77"
fi
CPP='"cpp -traditional -P'
FO90FIXEDFORMAT="-Mfixed'
EXTENDED_SRC_FLAG='-Mextend'
GET_FC_VERSION="-V"
OMPFLAG="-mp"'

NOOPTFLAGS="'-00"
NOOPTFILES=""

FFLAGS="S$FFLAGS -byteswapio -Ktrap=fp"
#- might want to use '-r8' for fizhi pkg:
#FFLAGS="SFFLAGS -r8"

if test "xS$IEEE" = x ; then #- with optimisation:

FOPTIM="'-tp k8-64 -pc=64 -02 -Mvect=sse'

#FOPTIM="SFOPTIM —-fastsse -03 —-Msmart —-Mvect=cachesize:1048576,transform"
else #- no optimisation + IEEE

(continues on next page)
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(continued from previous page)

#FFLAGS="SFFLAGS -Mdclchk" #- pkg/zonal_filt does not pass with declaration-check
FOPTIM='-pc=64 -00 -Kieee'
fi

FO0FLAGS=$SFFLAGS
FO90OPTIM=SFOPTIM

The above list of environment variables typically specified in an optfile is by no means complete; additional variables
may be required for your specific setup and/or your specific Fortran (or C) compiler.

If you write an optfile for an unrepresented machine or compiler, you are strongly encouraged to submit the optfile to
the MITgcm project for inclusion. MITgem developers are willing to provide help writing or modifing optfiles. Please
submit the file through the GitHub issue tracker or email the MITgcm-support@mitgecm.org list.

Instructions on how to use optfiles to build MPI-enabled executables is presented in Section 3.5.4.

3.5.3 make commands

Following a successful build of Makefile, type make depend. This command modifies the Makefile by at-
taching a (usually, long) list of files upon which other files depend. The purpose of this is to reduce re-compilation if
and when you start to modify the code. The make depend command also creates local links for all source files from
the source directories (see “-mods” description in Section 3.5.2.1), so that all source files to be used are visible from
the local build directory, either as hardcopy or as symbolic link.

IMPORTANT NOTE: Editing the source code files in the build directory will not edit a local copy (since these are
just links) but will edit the original files in model/src (or model/inc) or in the specified —mods directory. While the
latter might be what you intend, editing the master copy in model/src is usually NOT what is intended and may cause
grief somewhere down the road. Rather, if you need to add to the list of modified source code files, place a copy of
the file(s) to edit in the —mods directory, make the edits to these —mods directory files, go back to the build directory
and type make Clean, and then re-build the makefile (these latter steps critical or the makefile will not link to this
newly edited file).

The final make invokes the C preprocessor to produce the “little f files (. £ and . £90) and then compiles them
to object code using the specified Fortran compiler and options. The C preprocessor step converts a number of CPP
macros and #ifdef statements to actual Fortran and expands C-style # include statements to incorporate header
files into the “little £ files. CPP style macros and #1i fde f statements are used to support generating different compile
code for different model configurations. The result of the build process is an executable with the name mitgcmuv.

Additional make “targets” are defined within the makefile to aid in the production of adjoint (Section 7.2.2) and other
versions of MITgcm.

On computers with multiple processor cores, the build process can often be sped up appreciably using the command:

)

% make -3 2

where the “2” can be replaced with a number that corresponds to the number of cores (or discrete CPUs) available.
In addition, there are several housekeeping make clean options that might be useful:
* make clean removes files that make generates (e.g., *.0 and *.f files)

* make Clean removes files and links generated by make and make depend; strongly recommended for
“un-clean” directories which may contain the (perhaps partial) results of previous builds

* make CLEAN removes pretty much everything, including any executables and output from genmake2
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3.5.4 Building with MPI

Building MITgcm to use MPI libraries can be complicated due to the variety of different MPI implementations avail-
able, their dependencies or interactions with different compilers, and their often ad-hoc locations within file systems.
For these reasons, its generally a good idea to start by finding and reading the documentation for your machine(s) and,
if necessary, seeking help from your local systems administrator.

The steps for building MITgecm with MPI support are:

1.

Make sure you have MPI libraries installed on your computer system or cluster. Different Fortran compilers
(and different versions of a specific compiler) will generally require a custom version (of a MPI library) built
specifically for it. On environment module-enabled clusters, one typically must first load a Fortran compiler,
then specific MPI libraries for that compiler will become available to load. If libraries are not installed, MPI
implementations and related tools are available including:

¢ Open MPI
¢ MVAPICH2
* MPICH
e Intel MPI
Ask you systems administrator for assistance in installing these libraries.

Determine the location of your MPI library “wrapper” Fortran compiler, e.g., mpif77 or mpifort etc.
which will be used instead of the name of the fortran compiler (gfortran, ifort, pgi77 etc.) to
compile your code. Often the directory in which these wrappers are located will be automatically added
to your $PATH environment variable when you perform a module load «SOME_MPI_MODULE»; thus,
you will not need to do anything beyond the module load itself. If you are on a cluster that does
not support environment modules, you may have to manually add this directory to your path, e.g., type
PATH=$PATH:«ADD_ADDITIONAL_PATH_TO_MPI_WRAPPER_HERE» in a bash shell.

Determine the location of the includes file mpif . h and any other MPI-related includes files. Often these files
will be located in a subdirectory off the main MPI library include/. In all optfiles in tools/build_options, it is
assumed environment variable SMPI__INC_DIR specifies this location; SMPI_INC_DIR should be set in your
terminal session prior to generating a Makefile.

Determine how many processors (i.e., CPU cores) you will be using in your run, and modify your configuration’s
SIZE.h (located in a “modified code” directory, as specified in your genmake2 command-line). In SIZE.h, you
will need to set variables nPx*nPy to match the number of processors you will specify in your run script’s
MITgcm execution statement (i.e., typically mpirun or some similar command, see Section 3.6.1). Note that
MITgcem does not use dynamic memory allocation (a feature of Fortran 90, not FORTRAN 77), so all array
sizes, and hence the number of processors to be used in your MPI run, must be specified at compile-time in
addition to run-time. More information about the MITgcm WRAPPER, domain decomposition, and how to
configure SIZE.h can be found in Section 6.3.

. Build the code with the genmake2 —mpi option using commands such as:

oe

./../../tools/genmake2 -mods=../code -mpi -of=«/PATH/TO/OPTFILE»
make depend
make

o\

o°
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3.5.5 Building with OpenMP

Unlike MPI, which requires installation of additional software support libraries, using shared memory (OpenMP) for
multi-threaded executable builds can be accomplished simply through the genmake2 command-line option —omp:

oe

../../../tools/genmake2 -mods=../code -omp -of=«/PATH/TO/OPTFILE»
make depend
make

o\

o°

While the most common optfiles specified in Section 3.5.2.2 include support for the —omp option, some optfiles in
tools/build_options do not include support for multi-threaded executable builds. Before using one of the less common
optfiles, check whether OMPF LAG is defined.

Note that one does not need to specify the number of threads until runtime (see Section 3.6.2). However, the default
maximum number of threads in MITgcm is set to a (low) value of 4, so if you plan on more you will need to change
this value in eesupp/inc/EEPARAMS.h in your modified code directory.

3.6 Running the model

If compilation finished successfully (Section 3.5) then an executable called mitgcmuv will now exist in the local
(build) directory.

To run the model as a single process (i.e., not in parallel) simply type (assuming you are still in the bui 1d directory):

o\

cd ../run

In -s ../input/«* .

cp ../build/mitgcmuv .
./mitgcmuv

o° o

o\

Here, we are making a link to all the support data files (in . . /input/) needed by the MITgcm for this experiment,
and then copying the executable from the the build directory. The . / in the last step is a safe-guard to make sure you
use the local executable in case you have others that might exist in your $PATH. The above command will spew out
many lines of text output to your screen. This output contains details such as parameter values as well as diagnostics
such as mean kinetic energy, largest CFL number, etc. It is worth keeping this text output with the binary output so we
normally re-direct the stdout stream as follows:

% ./mitgcmuv > output.txt

In the event that the model encounters an error and stops, it is very helpful to include the last few line of this output.
txt file along with the (st derr) error message within any bug reports.

For the example experiment in verification/exp2, an example of the output is kept in verification/exp2/results/output.txt
for comparison. You can compare your output . txt with the corresponding one for that experiment to check that
your set-up indeed works. Congratulations!
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3.6.1 Running with MPI

Run the code with the appropriate MPI “run” or “exec” program provided with your particular implementation of MPI.
Typical MPI packages such as Open MPI will use something like:

% mpirun -np 4 ./mitgcmuv

Sightly more complicated scripts may be needed for many machines since execution of the code may be controlled
by both the MPI library and a job scheduling and queueing system such as Slurm, PBS/TORQUE, LoadLeveler, or
any of a number of similar tools. See your local cluster documentation or system administrator for the specific syntax
required to run on your computing facility.

3.6.2 Running with OpenMP

Assuming the executable mitgcmuv was built with OpenMP (see Section 3.5.5), the syntax to run a multi-threaded
simulation is the same as running single-threaded (see Section 3.6), except that the following additional steps are
required beforehand:

1. Environment variables for the number of threads and the stacksize need to be set prior to executing the model.
The exact names of these environment variables differ by Fortran compiler, but are typically some variant of
OMP_NUM_THREADS and OMP_STACKSIZE, respectively. For the latter, in your run script we recommend
adding the line export OMP_STACKSIZE=400M (or for a C shell-variant, setenv OMP_STACKSIZE
400M). If this stacksize setting is insufficient, MITgcm will crash, in which case a larger number can be used.
Similarly, OMP_NUM_THREADS should be set to the exact number of threads you require.

2. In file eedata you will need to change namelist parameters nTx and nTy to reflect the number of threads in
x and y, respectively (for a single-threaded run, nTx =nTy=1). The value of nTx *nTy must equal the value of
environment variable OMP_NUM_THREADS (or its name-equivalent for your Fortan compiler) or MITgem will
terminate during its initialization with an error message.

MITgcem will take the number of tiles used in the model (as specified in SIZE.h) and the number of threads (nTx and
nTy from file eedata), and in running will spread the tiles out evenly across the threads. This is done independently
for x and y. As such, the number of tiles in x (variable nSx as defined in SIZE.h) must divide evenly by the number
of threads in x (namelist parameter nTx), and similarly for nSy and nTy, else MITgcm will terminate on initialization.
More information about the MITgcm WRAPPER, domain decomposition, and how to configure SIZE.h can be found
in Section 6.3.
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3.6.3 Output files

The model produces various output files and, when using pkg/mnc (i.e., netCDF), sometimes even directories. De-
pending upon the I/O package(s) selected at compile time (either pkg/mdsio, pkg/mnc, or both as determined by
packages.conf) and the run-time flags set (in data.pkg), the following output may appear. More complete
information describing output files and model diagnostics is described in Section 9.

3.6.3.1 Raw binary output files

The “traditional” output files are generated by the pkg/mdsio (see Section 9.2).The pkg/mdsio model data are written
according to a “meta/data” file format. Each variable is associated with two files with suffix names .data and .
meta. The . data file contains the data written in binary form (big endian by default). The .meta file is a “header”
file that contains information about the size and the structure of the . data file. This way of organizing the output is
particularly useful when running multi-processors calculations.

At a minimum, the instantaneous “state” of the model is written out, which is made of the following files:
* U.00000nIter - zonal component of velocity field (m/s and positive eastward).
* V.00000nIter - meridional component of velocity field (m/s and positive northward).

* W.00000nIter - vertical component of velocity field (ocean: m/s and positive upward, atmosphere: Pa/s and
positive towards increasing pressure i.e., downward).

e T.00000nIter - potential temperature (ocean: °C, atmosphere: °K).
* 5.00000nIter - ocean: salinity (psu), atmosphere: water vapor (g/kg).
* Eta.00000nIter - ocean: surface elevation (m), atmosphere: surface pressure anomaly (Pa).

The chain 00000nIter consists of ten figures that specify the iteration number at which the output is written out.
For example, U. 0000000300 is the zonal velocity at iteration 300.

In addition, a “pickup” or “checkpoint” file called:
* pickup.00000nIter

is written out. This file represents the state of the model in a condensed form and is used for restarting the integration
(at the specific iteration number). Some additional parameterizations and packages also produce separate pickup files,

e.g.,
* pickup_cd.00000nIter if the C-D scheme is used (see C_D Scheme)
* pickup_seaice.00000nIter if the seaice package is turned on (see SEAICE Package)

e pickup_ptracers.00000nIter if passive tracers are included in the simulation (see PTRACERS Pack-
age)
Rolling checkpoint files are the same as the pickup files but are named differently. Their name contain the chain

ckptA or ckptB instead of 00000nIter. They can be used to restart the model but are overwritten every other
time they are output to save disk space during long integrations.
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3.6.3.2 NetCDF output files

pkg/mnc is a set of routines written to read, write, and append netCDF files. Unlike the pkg/mdsio output, the
pkg/mnc—generated output is usually placed within a subdirectory with a name such as mnc_output_ (by default,
netCDF tries to append, rather than overwrite, existing files, so a unique output directory is helpful for each separate
run).

The pkg/mnc output files are all in the “self-describing” netCDF format and can thus be browsed and/or plotted using
tools such as:

e ncdump is a utility which is typically included with every netCDF install, and converts the netCDF binaries into
formatted ASCII text files.

* ncview is a very convenient and quick way to plot netCDF data and it runs on most platforms. Panoply is a
similar alternative.

* MATLAB, GrADS, IDL and other common post-processing environments provide built-in netCDF interfaces.
3.6.4 Looking at the output
3.6.4.1 MATLAB

Raw binary output

The repository includes a few MATLAB utilities to read binary output files written in the /pkg/mdsio format. The
MATLAB scripts are located in the directory utils/matlab under the root tree. The script utils/matlab/rdmds.m reads
the data. Look at the comments inside the script to see how to use it.

Some examples of reading and visualizing some output in MATLAB:

% matlab

>> H=rdmds ('Depth');

>> contourf (H');colorbar;

>> title('Depth of fluid as used by model');

>> eta=rdmds ('Eta',10);
>> imagesc(eta');axis ij;colorbar;
>> title('Surface height at iter=10");

>> [eta,iters,M]=rdmds ('Eta',NaN); % this will read all dumped iterations
>> % iter numbers put in variable 'iters'; 'M' is a character string w/metadata
>> for n=l:length(iters); imagesc(eta(:,:,n)"');axis ij;colorbar;pause(.5);end

Typing help rdmds in MATLAB will pull up further information on how to use the rdmds utility.

NetCDF output

Similar scripts for netCDF output (e.g., utils/matlab/rdmnc.m) are available and they are described in Section 9.3.
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3.6.4.2 Python

Install the MITgcmutils python package following the instructions in Section 11.1.

Raw binary output

The following example shows how to load in some data:

# python
from MITgcmutils import mds

Eta = mds.rdmds ('Eta', itrs=10)

For more information about this function and its options, see the API docs, MITgcmutils.mds. rdmds ().

NetCDF output

The netCDF output is currently produced with one file per processor. This means the individual tiles
need to be stitched together to create a single netCDF file that spans the model domain. The script
utils/python/MITgcmutils/scripts/gluemncbig can do this efficiently from the command line. If you have installed
the MITgcmutils package, a copy of gluemncbig should be on your path. For usage information, see Section 11.1.9.

The following example shows how to use the xarray python package to read the resulting netCDF file into Python:

# python
import xarray as xr

Eta = xr.open_dataset ('Eta.nc')

3.7 Customizing the Model Configuration - Code Parameters and
Compilation Options

3.7.1 Model Array Dimensions

MITgcm’s array dimensions need to be configured for each unique model domain. The size of each tile (in dimensions
x, y, and vertical coordinate r) the “overlap” region of each tile (in x and y), the number of tiles in the = and y
dimensions, and the number of processes (using MPI) in the x and y dimensions all need to be specified in SIZE.h.
From these parameters, global domain-size variables Nx, Ny are computed by the model. See a more technical
discussion of SIZE.h parameters in in Section 6.3.1, and a detailed explanation of an example SIZE.h setup in tutorial
Baroclinic Ocean Gyre.
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Parameter | Default SIZE.h | Description

sNx 30 number of points in x dimension in a single tile

sNy 15 number of points in y dimension in a single tile

Nr 4 number of points in r dimension

OLx 2 number of “overlap” points in  dimension for a tile
OLy 2 number of “overlap” points in y dimension for a tile
nSx 2 number of tile per process in x dimension

nSy 4 number of tile per process in y dimension

nPx 1 number of processes in  dimension

nPy 1 number of processes in y dimension

Note the repository version of SIZE.h includes several lines of text at the top that will halt compilation with errors.
Thus, to use MITgem you will need to copy SIZE.h to a code modification directory and make edits, including deleting
or commenting out the offending lines of text.

3.7.2 C Preprocessor Options

The CPP flags relative to the “numerical model” part of the code are defined and set in the file CPP_OPTIONS.h in the
directory model/inc/. In the parameter tables in Section 3.8 we have noted CPP options that need to be changed from
the default to enable specific runtime parameter to be used properly. Also note many of the options below are for
less-common situations or are somewhat obscure, so newer users of the MITgcm are encouraged to jump to Section
3.8 where more basic runtime parameters are discussed.

CPP Flag Name Default | Description

SHORTWAVE_HEATING #undef provide separate shortwave heating file, allowing
shortwave to penetrate below surface layer

ALLOW_GEOTHERMAL_FLUX #undef include code for applying geothermal heat flux at
the bottom of the ocean

ALLOW_FRICTION_HEATING #undef include code to allow heating due to friction (and
momentum dissipation)

ALLOW_ADDFLUID #undef allow mass source or sink of fluid in the inte-
rior (3D generalization of oceanic real-fresh water
flux)

ATMOSPHERIC_LOADING #define | include code for atmospheric pressure-loading
(and seaice-loading) on ocean surface

ALLOW_BALANCE_FLUXES #undef include balancing surface forcing fluxes code

ALLOW_BALANCE_RELAX #undef include balancing surface forcing relaxation code

CHECK_SALINITY_FOR_NEGATIVE_VALUES | #undef include code checking for negative salinity

EXCLUDE_FFIELDS _LOAD #undef exclude external forcing-fields load; code allows

reading and simple linear time interpolation of
oceanic forcing fields, if no specific pkg (e.g.,
pkg/exf) is used to compute them

INCLUDE_PHIHYD_CALCULATION_CODE #define include code to calculate ¢p,yq

INCLUDE_CONVECT_CALL #define include code for convective adjustment mixing al-
gorithm

INCLUDE_CALC_DIFFUSIVITY_CALL #define include codes that calculates (tracer) diffusivities
and viscosities

ALLOW_3D DIFFKR #undef allow full 3D specification of vertical diffusivity

ALLOW_BL79_LAT_VARY #undef allow latitudinally varying Bryan and Lewis 1979

[BL79] vertical diffusivity

continues on next page
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Table 3.1 — continued from previous page

CPP Flag Name

Default

Description

EXCLUDE_PCELL_MIX_CODE

#undef

exclude code for partial-cell effect (physical or en-
hanced) in vertical mixing; this allows accounting
for partial-cell in vertical viscosity and diffusion,
either from grid-spacing reduction effect or as ar-
tificially enhanced mixing near surface & bottom
for too thin grid-cell

ALLOW_SOLVE4_PS_AND_DRAG

#undef

include code for combined surface pressure and
drag implicit solver

INCLUDE_IMPLVERTADV_CODE

#define

include code for implicit vertical advection

ALLOW_ADAMSBASHFORTH_3

#undef

include code for Adams-Bashforth 3rd-order

EXACT_CONSERV

#define

include code for “exact conservation” of fluid in
free-surface formulation (recompute divergence
after pressure solver)

NONLIN_FRSURF

#undef

allow the use of non-linear free-surface formu-
lation; implies that grid-cell thickness (hFactors)
varies with time

ALLOW_NONHYDROSTATIC

#undef

include non-hydrostatic and 3D pressure solver
codes

ALLOW_EDDYPSI

#undef

include GM-like eddy stress in momentum code
(untested, not recommended)

ALLOW_CG2D_NSA

#undef

use non-self-adjoint (NSA) conjugate-gradient
solver

ALLOW_SRCG

#define

include code for single reduction conjugate gradi-
ent solver

SOLVE_DIAGONAL_LOWMEMORY

#undef

low memory footprint (not suitable for
AD) choice for implicit solver routines
solve_*diagonal.F

SOLVE_DIAGONAL_KINNER

#undef

choice for implicit solver routines
solve_*diagonal.F suitable for AD

COSINEMETH_III

#define

selects implementation form of cos ¢ scaling of
bi-harmonic term for viscosity (note, CPP op-
tion for tracer diffusivity set independently in
GAD_OPTIONS.h)

ISOTROPIC_COS_SCALING

#undef

selects isotropic scaling of harmonic and bi-
harmonic viscous terms when using the cos ¢
scaling (note, CPP option for tracer diffusivity set
independently in GAD_OPTIONS.h)

By default, MITgcm includes several core packages, i.e., these packages are enabled during genmake?2 execution if
a file packages.conf is not found. See Section 8.1.1 for more information about packages.conf, and see
pkg/pkg_groups for more information about default packages and package groups. These default packages are as

follows:
* pkg/mom_common
* pkg/mom_fluxform
* pkg/mom_vecinv
* pkg/generic_advdiff
* pkg/debug
* pkg/mdsio
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* pkg/rw
¢ pkg/monitor

Additional CPP options that affect the model core code are set in files ${PKG}_OPTIONS. h located in these pack-
ages’ directories. Similarly, optional (non-default) packages also include package-specific CPP options that must be
setin files $ {PKG}_OPTIONS.h.

The file eesupp/inc/CPP_EEOPTIONS.h does not contain any CPP options that typically will need to be modified by
users.

3.8 Customizing the Model Configuration - Runtime Parameters

When you are ready to run the model in the configuration you want, the most straightforward approach is to use and
adapt the setup of a tutorial or verification experiment (described in Section 4) that is the closest to your configuration.
Then, the amount of setup will be minimized. In this section, we document the complete list of MITgcm model
namelist runtime parameters set in file data, which needs to be located in the directory where you will run the model.
Model parameters are defined and declared in the file PARAMS.h and their default values are generally set in the
routine set_defaults.F, otherwise when initialized in the routine ini_parms.F. Section 3.8.9 documents the “execution
environment” namelist parameters in file eedata, which must also reside in the current run directory. Note that
runtime parameters used by (non-default) MITgcm packages are not documented here but rather in Section 8 and
Section 9, and prescribed in package-specific data.$ {pkg} namelist files which are read in via package-specific
${pkg}_readparms.F where ${pkg} is the package name (see Section 8.1.1).

In what follows, model parameters are grouped into categories related to configuration/computational domain, algo-
rithmic parameters, equations solved in the model, parameters related to model forcing, and simulation controls. The
tables below specify the namelist parameter name, the namelist parameter group in data (and eedata in Section
3.8.9), the default value, and a short description of its function. Runtime parameters that require non-default CPP
options to be set prior to compilation (see Section 3.7) for proper use are noted.

3.8.1 Parameters: Configuration, Computational Domain, Geometry, and Time-
Discretization

3.8.1.1 Model Configuration

buoyancyRelation is set to OCEANIC by default, which employes a z-coordinate vertical axis. To simulate an ocean
using pressure coordinates in the vertical, set it to OCEANICP. For atmospheric simulations, buoyancyRelation needs
to be set to ATMOSPHERIC, which also uses pressure as the vertical coordinate. The default model configuration is
hydrostatic; to run a non-hydrostatic simulation, set the logical variable nonHydrostatic to . TRUE ..

Parameter Group Default Description

buoyancyRelation PARMO1 | OCEANIC | buoyancy relation (OCEANIC, OCEANICP, or ATMOSPHERIC)

quasiHydrostatic PARMO1 | FALSE quasi-hydrostatic formulation on/off flag

rhoRefFile PARMO1 | ' filename for reference density profile (kg/m?); activates anelastic
form of model

nonHydrostatic PARMO1 | FALSE non-hydrostatic formulation on/off flag; requires #define AL-
LOW_NONHYDROSTATIC
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3.8.1.2 Grid

Four different grids are available: Cartesian, spherical polar, cylindrical, and curvilinear (which includes the cubed
sphere). The grid is set through the logical variables usingCartesianGrid, usingSphericalPolarGrid, usingCylindrical-
Grid, and usingCurvilinearGrid. Note that the cylindrical grid is designed for modeling a rotating tank, so that x is the
azimuthual direction, y is the radial direction, and r is vertical coordinate (see tutorial rotating tank).

The variable xgOrigin sets the position of the western most gridcell face in the = dimension (Cartesian, meters;
spherical and cyclindrical, degrees). For a Cartesian or spherical grid, the southern boundary is defined through the
variable ygOrigin which corresponds to the latitude of the southern most gridcell face (Cartesian, meters; spherical,
degrees). For a cyclindrical grid, a positive ygOrigin (m) adds an inner cylindrical boundary at the center of the tank.
The resolution along the = and y directions is controlled by the 1-D arrays delX (meters for a Cartesian grid, degrees
otherwise) and delY (meters for Cartesian and cyclindrical grids, degrees spherical). On a spherical polar grid, you
might decide to set the variable cosPower which is set to 0 by default and which represents n in (cos )", the power of
cosine of latitude to multiply horizontal viscosity and tracer diffusivity. The vertical grid spacing is set through the 1-D
array delR (z-coordinates: in meters; p-coordinates, in Pa). Using a curvilinear grid requires complete specification
of all horizontal MITgcm grid variables, either through a default filename (link to new doc section) or as specified by
horizGridFile.

The variable seal.ev_Z represents the standard position of sea level, in meters. This is typically set to 0 m for the
ocean (default value). If instead pressure is used as the vertical coordinate, the pressure at the top (of the atmosphere
or ocean) is set through top_Pres, typically 0 Pa. As such, these variables are analogous to xgOrigin and ygOrigin
to define the vertical grid axis. But they also are used for a second purpose: in a z-coordinate setup, top_Pres sets
a reference top pressure (required in a non-linear equation of state computation, for example); note that 1 bar (i.e.,
typical Earth atmospheric sea-level pressure) is added already, so the default is O Pa. Similarly, for a p-coordinate
setup, sealLev_Z is used to set a reference geopotential (after gravity scaling) at the top of the ocean or bottom of the
atmosphere.

Parameter Group Default Description

usingCartesianGrid PARMO04 | TRUE use Cartesian grid/coordinates on/off flag

usingSphericalPolarGrid PARMO04 | FALSE use spherical grid/coordinates on/off flag

usingCylindricalGrid PARMO04 | FALSE use cylindrical grid/coordinates on/off flag

usingCurvilinearGrid PARMO04 | FALSE use curvilinear grid/coordinates on/off flag

xgOrigin PARMO4 | 0.0 west edge x-axis origin (Cartesian: m; spherical and cy-
clindrical: degrees longitude)

20rigin PARMO04 | 0.0 South edge y-axis origin (Cartesian and cyclindrical: m;

spherical: degrees latitude)

dxSpacing PARMO04 | unset z-axis uniform grid spacing, separation between cell faces
(Cartesian: m; spherical and cyclindrical: degrees)

delX PARMO4 | dxSpacing 1D array of x-axis grid spacing, separation between cell
faces (Cartesian: m; spherical and cyclindrical: degrees)

delXFile PARMO4 | ' filename containing 1D array of z-axis grid spacing

dySpacing PARMO04 | unset y-axis uniform grid spacing, separation between cell faces
(Cartesian and cyclindrical: m; spherical: degrees)

delY PARMO4 | dySpacing 1D array of x-axis grid spacing, separation between cell
faces (Cartesian and cyclindrical: m; spherical: degrees)

delYFile PARMO4 | ' filename containing 1D array of y-axis grid spacing

cosPower PARMO1 | 0.0 power law n in (cos¢)™ factor for horizontal (harmonic
or biharmonic) viscosity and tracer diffusivity (spherical
polar)

delR PARMO4 | computed vertical grid spacing 1D array ([r] unit)

using
delRc

continues on next page
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Table 3.2 — continued from previous page

Parameter Group Default Description
delRc PARMO04 | computed vertical cell center spacing 1D array ([r] unit)
using delR

delRFile PARMO4 | ' filename for vertical grid spacing 1D array ([r] unit)

delRcFile PARMO4 | ' filename for vertical cell center spacing 1D array ([r] unit)

rSphere PARMO04 | 6.37E+06 radius of sphere for spherical polar or curvilinear grid (m)

sealev_Z PARMO4 | 0.0 reference height of sea level (m)

top_Pres PARMO4 | 0.0 top pressure (p-coordinates) or top reference pressure (z-
coordinates) (Pa)

selectFindRoSurf PARMO1 | 0 select method to determine surface reference pressure from
orography (atmos.-only)

horizGridFile PARMO4 | ' filename containing full set of horizontal grid variables
(curvilinear)

radius_fromHorizGrid PARMO04 | rSphere radius of sphere used in input curvilinear horizontal grid
file (m)

phiEuler PARMO4 | 0.0 Euler angle, rotation about original z-axis (spherical polar)
(degrees)

thetaEuler PARMO4 | 0.0 Euler angle, rotation about new z-axis (spherical polar)
(degrees)

psiEuler PARMO4 | 0.0 Euler angle, rotation about new z-axis (spherical polar)
(degrees)

3.8.1.3 Topography - Full and Partial Cells

For the ocean, the topography is read from a file that contains a 2-D(z,y) map of bathymetry, in meters for z-
coordinates, in pascals for p-coordinates. The bathymetry is specified by entering the vertical position of the ocean
floor relative to the surface, so by convention in z-coordinates bathymetry is specified as negative numbers (“depth”
is defined as positive-definite) whereas in p-coordinates bathymetry data is positive. The file name is represented by
the variable bathyFile. See our introductory tutorial setup Section 4.1 for additional details on the file format. Note no
changes are required in the model source code to represent enclosed, periodic, or double periodic domains: periodicity
is assumed by default and is suppressed by setting the depths to O m for the cells at the limits of the computational
domain.

To use the partial cell capability, the variable hFacMin needs to be set to a value between 0.0 and 1.0 (it is set to
1.0 by default) corresponding to the minimum fractional size of a gridcell. For example, if a gridcell is 500 m thick
and hFacMin is set to 0.1, the minimum thickness for a “thin-cell” for this specific gridcell is 50 m. Thus, if the
specified bathymetry depth were to fall exactly in the middle of this 500m thick gridcell, the initial model variable
hFacC(z,y, ) would be set to 0.5. If the specified bathymetry depth fell within the top 50m of this gridcell (i.e., less
than hFacMin), the model bathymetry would snap to the nearest legal value (i.e., initial hFacC(z, y, ) would be equal
to 0.0 or 0.1 depending if the depth was within 0-25 m or 25-50 m, respectively). Also note while specified bathymetry
bottom depths (or pressures) need not coincide with the model’s levels as deduced from delR, any depth falling below
the model’s defined vertical axis is truncated.

Parameter Group Default Description
bathyFile PARMOS | ' ' filename for 2D bathymetry (ocean) (z-coor.: m, negative; p-
coor.: Pa, positive)
topoFile PARMOS | ' filename for 2D surface topography (atmosphere) (m)
addWwallFile PARMOS | ' ! filename for 2D western cell-edge “thin-wall”
addSwallFile PARMOS | ' ! filename for 2D southern cell-edge “thin-wall”
hFacMin PARMO1 | 1.0E+00 minimum fraction size of a cell
hFacMinDr PARMO1 | 1.0E+00 minimum dimensional size of a cell ([r] unit)
continues on next page
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Table 3.3 — continued from previous page

Parameter Group Default Description

hFacInf PARMOI1 | 2.0E-01 lower threshold fraction for surface cell; for non-linear free sur-
face only, see parameter nonlinFreeSurf

hFacSup PARMO1 | 2.0E+00 upper threshold fraction for surface cell; for non-linear free sur-
face, only see parameter nonlinFreeSurf

useMind4hFacEdges PARMO4 | FALSE set hFacW, hFacS as minimum of adjacent hFacC on/off flag

pCellMix_select PARMO4 | 0 option/factor to enhance mixing at the surface or bottom (0- 99)

pCellMix_maxFac PARMO4 | 1.0E+04 maximum enhanced mixing factor for too thin partial-cell (non-
dim.)

pCellMix_delR PARMO4 | 0.0 thickness criteria for too thin partial-cell ([] unit)

3.8.1.4 Physical Constants

Parameter Group Default Description

rhoConst PARMOL1 | rhoNil vertically constant reference density (Boussinesq) (kg/m?)

gravity PARMO1 | 9.81E+00 gravitational acceleration (m/s”)

gravityFile PARMOL | ' filename for 1D gravity vertical profile (m/s%)

gBaro PARMOLI | gravity gravity constant in barotropic equation (m/s”)

3.8.1.5 Rotation

For a Cartesian or cylindical grid, the Coriolis parameter f is set through the variables fO (in s~!) and beta ( %; in

m~'s™"), which corresponds to a Coriolis parameter f = f, + By (the so-called 3-plane).

Parameter Group Default Description
rotationPeriod PARMO1 | 8.6164E+04 rotation period (s)
omega PARMOLI | 27 /rotationPeriod angular velocity (rad/s)
selectCoriMap PARMOLI | depends on grid | Coriolis map options
(Cartesian and e 0: f-plane
cylindrical=1, * 1: beta-plane
spherical and * 2: spherical Coriolis (= 22 sin ¢)
curvilinear=2) ¢ 3: read 2D field from file
{0 PARMO1 | 1.0E-04 reference Coriolis parameter (Cartesian or cylindrical grid)
(1/s)
beta PARMO1 | 1.0E-11 [ (Cartesian or cylindrical grid) (m s
fPrime PARMO1 | 0.0 2€) cos ¢ parameter (Cartesian or cylindical grid) (1/s); i.e.,

for cos ¢ Coriolis terms from horizontal component of ro-
tation vector (also sometimes referred to as reciprocal Cori-
olis parm.)

3.8. Customizing the Model Configuration - Runtime Parameters
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3.8.1.6 Free Surface

The logical variables rigidLid and implicitFreeSurface specify your choice for ocean upper boundary (or lower bound-
ary if using p-coordinates); set one to . TRUE. and the other to . FALSE.. These settings affect the calculations of
surface pressure (for the ocean) or surface geopotential (for the atmosphere); see Section 3.8.2.

Parameter Group Default Description
implicitFreeSurface PARMOI1 | TRUE implicit free surface on/off flag
rigidLid PARMO1 | FALSE rigid lid on/off flag
useRealFreshWaterFlux | PARMO1 | FALSE use true E-P-R freshwater flux (changes free surface/sea
level) on/off flag
implicSurfPress PARMO1 | 1.0E+00 implicit fraction of the surface pressure gradient (0-1)
implicDiv2Dflow PARMO1 | 1.0E+00 implicit fraction of the barotropic flow divergence (0-1)
implicitNHPress PARMOL1 | implicSurfPress implicit fraction of the non-hydrostatic pressure gradient
(0-1); for non-hydrostatic only, see parameter nonHydro-
static
nonlinFreeSurf PARMO1 | O non-linear free surface options (-1,0,1,2,3; see Table 2.1);
requires #define NONLIN_FRSURF
select_rStar PARMO1 | O vertical coordinate option
* O:user
e >0: use r*
see Table 2.1; requires #define NONLIN_FRSURF
selectNHfreeSurf PARMO1 | O non-hydrostatic free surface formulation option
* 0: don’t use
* >0: use
requires non-hydrostatic formulation, see parameter non-
Hydrostatic
exactConserv PARMO1 | FALSE exact total volume conservation (recompute divergence af-

ter pressure solver) on/off flag

3.8.1.7 Time-Discretization

The time steps are set through the real variables deltaTMom and deltaTtracer (in seconds) which represent the time
step for the momentum and tracer equations, respectively (or you can prescribe a single time step value for all param-
eters using deltaT). The model “clock” is defined by the variable deltaTClock (in seconds) which determines the I/O
frequencies and is used in tagging output. Time in the model is thus computed as:

model time = baseTime + iteration number * deltaTClock

Parameter Group Default Description
deltaT PARMO3 | 0.0 default value used for model time step parameters (s)
deltaTClock PARMO3 | deltaT timestep used for model clock (s): used for I/O frequency and
tagging output and checkpoints
deltaTmom PARMO3 | deltaT momentum equation timestep (s)
deltaTtracer PARMO3 | deltaT tracer equation timestep (s)
dTtracerLev PARMO3 | deltaTtracer | tracer equation timestep specified at each vertical level (s)
deltaTfreesurf PARMO3 | deltaTmom | free-surface equation timestep (s)
baseTime PARMO3 | 0.0 model base time corresponding to iteration O (s)
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3.8.2 Parameters: Main Algorithmic Parameters

3.8.2.1 Pressure Solver

By default, a hydrostatic simulation is assumed and a 2-D elliptic equation is used to invert the pressure field. If using
a non-hydrostatic configuration, the pressure field is inverted through a 3-D elliptic equation (note this capability is
not yet available for the atmosphere). The parameters controlling the behavior of the elliptic solvers are the variables
cg2dMaxlters and cg2dTargetResidual for the 2-D case and cg3dMaxIters and cg3dTargetResidual for the 3-D case.

Parameter Group Default Description
cg2dMaxlters PARMO2 | 150 upper limit on 2D conjugate gradient solver iterations
cg2dTargetResidual | PARMO2 | 1.0E-07 2D conjugate gradient target residual (non-dim. due to
RHS normalization )
cg2dTargetResWunit | PARMO2 | -1.0E+00 2D conjugate gradient target residual (v units); <0: use
RHS normalization, i.e., cg2dTargetResidual instead
cg2dPreCondFreq PARMO2 | 1 frequency (in number of iterations) for updating cg2d pre-
conditioner; for non-linear free surface only, see parameter
nonlinFreeSurf
cg2dUseMinResSol | PARMO2 | O unless flat-bottom,
Cartesian * 0: use last-iteration/converged cg2d solution
* 1: use solver minimum-residual solution
cg3dMaxlters PARMO2 | 150 upper limit on 3D conjugate gradient solver iterations; re-
quires #define ALLOW_NONHYDROSTATIC
cg3dTargetResidual | PARMO2 | 1.0E-07 3D conjugate gradient target residual (non-dim.
due to RHS normalization ); requires #define AL-
LOW_NONHYDROSTATIC
useSRCGSolver PARMO2 | FALSE use conjugate gradient solver with single reduction (single
call of mpi_allreduce)
printResidualFreq PARMO?2 | 1 unless debuglevel | frequency (in number of iterations) of printing conjugate
>4 gradient residual
integr_GeoPot PARMO1 | 2 select method to integrate geopotential
* 1: finite volume
» £1: finite difference
uniformLin_PhiSurf | PARMO1 | TRUE use uniform by relation for ¢4 on/off flag
deepAtmosphere PARMO04 | FALSE don’t make the thin shell/shallow water approximation
nh_Am?2 PARMO1 | 1.0E+00 non-hydrostatic terms scaling factor; requires #define AL-
LOW_NONHYDROSTATIC

3.8.2.2 Time-Stepping Algorithm

The Adams-Bashforth stabilizing parameter is set through the variable abEps (dimensionless). The stagger baroclinic
time stepping algorithm can be activated by setting the logical variable staggerTimeStep to . TRUE..

3.8. Customizing the Model Configuration - Runtime Parameters
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Parameter Group Default Description

abEps PARMO3 | 1.0E-02 Adams-Bashforth-2 stabilizing weight (non-dim.)

alph_AB PARMO3 | 0.5E+00 Adams-Bashforth-3 primary factor (non-dim.); requires #define
ALLOW_ADAMSBASHFORTH_3

beta_AB PARMO3 | 5/12 Adams-Bashforth-3 secondary factor (non-dim.); requires #de-
fine ALLOW_ADAMSBASHFORTH_3

staggerTimeStep PARMO1 | FALSE use staggered time stepping (thermodynamic vs. flow variables)
on/off flag

multiDimAdvection PARMO1 | TRUE use multi-dim. advection algorithm in schemes where non multi-
dim. is possible on/off flag

implicitIntGravWave PARMO1 | FALSE treat internal gravity waves implicitly on/off flag; requires #de-
fine ALLOW_NONHYDROSTATIC

3.8.3 Parameters: Equation of State

The form of the equation of state is controlled by the model configuration and eosType.

For the atmosphere, eosType must be set to IDEALGAS.

For the ocean, several forms of the equation of state are available:

¢ For a linear approximation, set eosType to LINEAR), and you will need to specify the thermal and haline
expansion coefficients, represented by the variables tAlpha (in K™') and sBeta (in psu™'). Because the model
equations are written in terms of perturbations, a reference thermodynamic state needs to be specified. This is
done through the 1-D arrays tRef and sRef. tRef specifies the reference potential temperature profile (in °C for
the ocean and K for the atmosphere) starting from the level k=1. Similarly, sRef specifies the reference salinity
profile (in psu or g/kg) for the ocean or the reference specific humidity profile (in g/kg) for the atmosphere.

* MITgcm offers several approximations to the full (oceanic) non-linear equation of state that can be selected as
eosType:

'POLYNOMIAL': This approximation is based on the Knudsen formula (see Bryan and Cox 1972
[BC72]). For this option you need to generate a file of polynomial coefficients called POLY3.
COEFFS. To do this, use the program utils/knudsen2/knudsen2.f under the model tree (a
Makefile is available in the same directory; you will need to edit the number and the val-
ues of the vertical levels in knudsen2.f so that they match those of your configuration).

"UNESCO’: The UNESCO equation of state formula (IES80) of Fofonoff and Millard (1983)
[FRMS83]. This equation of state assumes in-situ temperature, which is not a model variable;
its use is therefore discouraged.

"JMD95Z’: A modified UNESCO formula by Jackett and McDougall (1995) [JM95], which uses
the model variable potential temperature as input. The ’Z’ indicates that this equation of state
uses a horizontally and temporally constant pressure pg = —gpoZ.

"JMD95P’ : A modified UNESCO formula by Jackett and McDougall (1995) [JM95], which uses
the model variable potential temperature as input. The 'P’ indicates that this equation of state
uses the actual hydrostatic pressure of the last time step. Lagging the pressure in this way
requires an additional pickup file for restarts.

"MDJWF'’ : A more accurate and less expensive equation of state than UNESCO by McDougall et al.
(2003) [MJWEFO03], also using the model variable potential temperature as input. It also requires
lagging the pressure and therefore an additional pickup file for restarts.

"TEOS10’: TEOS-10 is based on a Gibbs function formulation from which all thermodynamic
properties of seawater (density, enthalpy, entropy sound speed, etc.) can be derived in a ther-
modynamically consistent manner; see http://www.teos-10.org. See IOC et al. (2010) [ISI10],
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McDougall and Parker (2011) [MB11], and Roquet et al. (2015) [RMMB15] for implemen-
tation details. It also requires lagging the pressure and therefore an additional pickup file for
restarts. Note at this time a full implementation of TEOS10 (i.e. ocean variables of conserva-
tive temperature and practical salinity, including consideration of surface forcings) has not been
implemented; also note the original 48-term polynomial term is used, not the newer, preferred

75-term polynomial.

For these non-linear approximations, neither a reference profile of temperature or salinity is required,
except for a setup where implicitIntGravWave is set to . TRUE. or selectP_inEOS_Zc=1.

Note that salinity can can be expressed in either practical salinity units (psu, i.e., unit-less) or g/kg, depending on the
choice of equation of state. See Millero (2010) [Mil10] for a detailed discussion of salinity measurements, and why
use of the latter is preferred, in the context of the ocean equation of state.

Parameter Group Default Description
eosType PARMO1 | LINEAR equation of state form
tRef PARMO1 | 20.0 °C (ocn) or | 1D vertical reference temperature profile (°C or K)
300.0 K (atm)
tRefFile PARMO1 | ' filename for reference temperature profile (°C or K)
thetaConst PARMO1 | tRef(k=1) vertically constant reference temp. for atmosphere p* coor-
dinates (°K); for ocean, specify instead of tRef or tRefFile
for vertically constant reference temp. (°C )
sRef PARMO1 | 30.0 psu (ocn) or 0.0 | 1D vertical reference salinity profile (psu or g/kg)
(atm)
sRefFile PARMO1 | ' filename for reference salinity profile (psu or g/kg)
selectP_inEOS_Zc PARMO1 | depends on eosType | select which pressure to use in EOS for z-coor.
e 0: use —gp.2
s Lruse prey = — [ —gp(Lref, Sref, Pref)dz
* 2: hydrostatic dynamical pressure
* 3: use full hyd.+non-hyd. pressure
for IMD95P, UNESCO, MDJWF, TEOS10 default=2, oth-
erwise default =0
rhonil PARMO1 | 9.998E+02 reference density for linear EOS (kg/m?)
tAlpha PARMO1 | 2.0E-04 linear EOS thermal expansion coefficient (1/°C)
sBeta PARMO1 | 7.4E-04 linear EOS haline contraction coefficient (1/psu)

3.8.3.1 Thermodynamic Constants

Parameter Group Default Description

HeatCapacity_Cp PARMO1 | 3.994E+03 specific heat capacity C, (ocean) (J/kg/K)

celsius2K PARMO1 | 2.7315E+02 conversion constant °C to Kelvin

atm_Cp PARMO1 | 1.004E+03 specific heat capacity C, dry air at const. press. (J/kg/K)

atm_Rd PARMO1 | atm_Cp*(2/7) gas constant for dry air (J/kg/K)

atm_Rq PARMO1 | 0.0 water vapor specific volume anomaly relative to dry air (g/kg)

atm_Po PARMO1 | 1.0E+05 atmosphere standard reference pressure (for potential temp.
defn.) (Pa)

3.8. Customizing the Model Configuration - Runtime Parameters
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3.8.4 Parameters: Momentum Equations

3.8.4.1 Configuration

There are a few logical variables that allow you to turn on/off various terms in the momentum equation. These variables
are called momViscosity, momAdvection, useCoriolis, momStepping, metricTerms, and momPressureForcing and by
default are set to . TRUE .. Vertical diffusive fluxes of momentum can be computed implicitly by setting the logical
variable implicitViscosity to . TRUE .. The details relevant to both the momentum flux-form and the vector-invariant
form of the equations and the various (momentum) advection schemes are covered in Section 2.

Parameter Group Default Description
momStepping PARMOI1 | TRUE momentum equation time-stepping on/off flag
momViscosity PARMO1 | TRUE momentum friction terms on/off flag
momAdvection PARMOI1 | TRUE advection of momentum on/off flag
momPressureForcing PARMO1 | TRUE pressure term in momentum equation on/off flag
metricTerms PARMOI1 | TRUE include metric terms (spherical polar, momentum flux-
form) on/off flag
useNHMTerms PARMO1 | FALSE use “non-hydrostatic form” of metric terms on/off flag;
(see Section 2.14.4; note these terms are non-zero in many
model configurations beside non-hydrostatic)
momImplVertAdv PARMO1 | FALSE momentum implicit vertical advection on/off flag; requires
#define INCLUDE_IMPLVERTADV_CODE
implicitViscosity PARMO1 | FALSE implicit vertical viscosity on/off flag
interViscAr_pCell PARMO4 | FALSE account for partial-cell in interior vertical viscosity on/off
flag
momDissip_In_AB PARMO3 | TRUE use Adams-Bashforth time stepping for dissipation ten-
dency
useCoriolis PARMO1 | TRUE include Coriolis terms on/off flag
use3dCoriolis PARMOI1 | TRUE include cos ¢ Coriolis terms on/off flag
selectCoriScheme PARMO1 | O Coriolis scheme selector
* 0: original scheme
* 1: wet-point averaging method
* 2: Flux-Form: energy conserving; Vector-Inv: hFac
weighted average
* 3: Flux-Form: energy conserving using wet-point
method; Vector-Inv: energy conserving with hFac
weight
vectorInvariantMomentum PARMO1 | FALSE use vector-invariant form of momentum equations flag
useJamartMomAdv PARMO1 | FALSE use Jamart wetpoints method for relative vorticity advec-
tion (vector invariant form) on/off flag
selectVortScheme PARMO1 | 1 vorticity scheme (vector invariant form) options
* 0,1: enstrophy conserving forms
e 2: energy conserving form
* 3: energy and enstrophy conserving form
see Sadourny 1975 [Sad75] and Burridge & Haseler 1977
[BH77]
upwind Vorticity PARMO1 | FALSE bias interpolation of vorticity in the Coriolis term (vector
invariant form) on/off flag
useAbsVorticity PARMO1 | FALSE use f + ¢ in Coriolis terms (vector invariant form) on/off
flag
continues on next page
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Table 3.7 — continued from previous page

Parameter Group Default Description

highOrderVorticity PARMO1 | FALSE use 3rd/4th order interpolation of vorticity (vector invariant
form) on/off flag

upwindShear PARMO1 | FALSE use Ist order upwind for vertical advection (vector invari-
ant form) on/off flag

selectKEscheme PARMO1 | 0 kinetic energy computation in Bernoulli function (vector

invariant form) options
* 0: standard form
* 1: area-weighted standard form
* 2: as 0 but account for partial cells
* 3: as | w/partial cells
see mom_calc_ke.F

3.8.4.2 Initialization

The initial horizontal velocity components can be specified from binary files uVellnitFile and vVellnitFile. These
files should contain 3-D data ordered in an (z, y, ) fashion with k=1 as the first vertical level (surface level). If no file
names are provided, the velocity is initialized to zero. The initial vertical velocity is always derived from the horizontal
velocity using the continuity equation. In the case of a restart (from the end of a previous simulation), the velocity
field is read from a pickup file (see Section 3.8.7) and the initial velocity files are ignored.

Parameter Group Default Description

uVellnitFile PARMOS | ' filename for 3D specification of initial zonal velocity field (m/s)

vVellnitFile PARMOS | ' ! filename for 3D specification of initial meridional velocity field
(m/s)

pSurfInitFile PARMOS | ' filename for 2D specification of initial free surface position ([r]
unit)

3.8.4.3 General Dissipation Scheme

The lateral eddy viscosity coefficient is specified through the variable viscAh (in m?s™"). The vertical eddy viscosity
coefficient is specified through the variable viscAr (in [7]?s~!, where [r] is the dimension of the vertical coordinate).
In addition, biharmonic mixing can be added as well through the variable viscA4 (in m*s™").

Parameter Group Default Description

viscAh PARMOL1 | 0.0 lateral eddy viscosity (m%/s)

viscAhD PARMO1 | viscAh lateral eddy viscosity acts on divergence part (m?/s)

viscAhZ PARMOL1 | viscAh lateral eddy viscosity acts on vorticity part (¢ points) (m”/s)

viscAhW PARMO1 | viscAhD lateral eddy viscosity for mixing vertical momentum (non-
hydrostatic form) (m?/s); for non-hydrostatic only, see parameter
nonHydrostatic

viscAhDfile PARMOS | ' filename for 3D specification of lateral eddy viscosity (diver-
gence part) (m?/s); requires #define ALLOW_3D_VISCAH in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscAhZfile PARMOS | ' filename for 3D specification of lateral eddy viscosity (vortic-
ity part, ( points); requires #define ALLOW_3D_VISCAH in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscAhGrid PARMO1 | 0.0 grid-dependent lateral eddy viscosity (non-dim.)

viscAhMax PARMO1 | 1.0E+21 maximum lateral eddy viscosity (m*/s)

continues on next page
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Table 3.8 — continued from previous page

Parameter Group Default Description

viscAhGridMax PARMO1 | 1.0E+21 maximum lateral eddy (grid-dependent) viscosity (non-dim.)

viscAhGridMin PARMO1 | 0.0 minimum lateral eddy (grid-dependent) viscosity (non-dim.)

viscAhReMax PARMO1 | 0.0 minimum lateral eddy viscosity based on Reynolds number (non-
dim.)

viscC2leith PARMO1 | 0.0 Leith harmonic viscosity factor (vorticity part, ¢ points) (non-dim.)

viscC2leithD PARMO1 | 0.0 Leith harmonic viscosity factor (divergence part) (non-dim.)

viscC2LeithQG PARMO1 | 0.0 Quasi-geostrophic Leith viscosity factor (non-dim.)

viscC2smag PARMO1 | 0.0 Smagorinsky harmonic viscosity factor (non-dim.)

viscA4 PARMO1 | 0.0 lateral biharmonic viscosity (m?*/s)

viscA4D PARMOL1 | viscA4 lateral biharmonic viscosity (divergence part) (m*/s)

viscA4Z PARMO1 | viscA4 lateral biharmonic viscosity (vorticity part, ¢ points) (m*/s)

viscA4W PARMO1 | viscA4D lateral biharmonic viscosity for mixing vertical momentum (non-
hydrostatic form) (m*/s); for non-hydrostatic only, see parameter
nonHydrostatic

viscA4Dfile PARMOS | ' filename for 3D specification of lateral biharmonic viscosity (di-

vergence part) (m?*/s); requires #define ALLOW_3D_VISCA4 in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscA4Zfile PARMOS | ' filename for 3D specification of lateral biharmonic viscosity (vor-
ticity part, ¢ points); requires #define ALLOW_3D_VISCA4 in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscA4Grid PARMO1 | 0.0 grid dependent biharmonic viscosity (non-dim.)

viscA4Max PARMO1 | 1.0E+21 maximum biharmonic viscosity (m*/s)

viscA4GridMax PARMO1 | 1.0E+21 maximum biharmonic (grid-dependent) viscosity (non-dim.)

viscA4GridMin PARMO1 | 0.0 minimum biharmonic (grid-dependent) viscosity (mon-dim.)

viscA4ReMax PARMO1 | 0.0 minimum biharmonic viscosity based on Reynolds number (non-
dim.)

viscC4leith PARMO1 | 0.0 Leith biharmonic viscosity factor (vorticity part, ¢ points) (non-
dim.)

viscC4leithD PARMO1 | 0.0 Leith biharmonic viscosity factor (divergence part) (non-dim.)

viscC4smag PARMO1 | 0.0 Smagorinsky biharmonic viscosity factor (non-dim.)

useFullLeith PARMO1 | FALSE use full form of Leith viscosities on/off flag

useSmag3D PARMO1 | FALSE use  isotropic 3D  Smagorinsky  harmonic  viscosi-

ties flag; requires  #define ALLOW_SMAG_3D in
pkg/mom_common/MOM_COMMON_OPTIONS.h

smag3D_coeff PARMO1 | 1.0E-02 isotropic 3D Smagorinsky coefficient (non-
dim.); requires #define ALLOW_SMAG_3D in
pkg/mom_common/MOM_COMMON_OPTIONS.h

useStrainTensionVisc | PARMO1 | FALSE flag to use strain-tension form of viscous operator

useAreaViscLength PARMO1 | FALSE flag to use area for viscous L? instead of harmonic mean of
L. L,?

viscAr PARMOL1 | 0.0 vertical eddy viscosity ([r]°/s)

visCArNr PARMO1 | 0.0 vertical profile of vertical eddy viscosity ([r]*/s)

pCellMix_viscAr PARMO4 | viscArNr | vertical viscosity for too thin partial-cell ([]*/s)
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3.8.4.4 Sidewall/Bottom Dissipation

Slip or no-slip conditions at lateral and bottom boundaries are specified through the logical variables no_slip_sides
and no_slip_bottom. If set to .FALSE., free-slip boundary conditions are applied. If no-slip boundary conditions
are applied at the bottom, a bottom drag can be applied as well. Two forms are available: linear (set the variable
bottomDragLinear in [r]/s, ) and quadratic (set the variable bottomDragQuadratic, [r]/m).

Parameter Group Default Description
no_slip_sides PARMO1 | TRUE viscous BCs: no-slip sides on/off flag
sideDragFactor PARMO1 | 2.0E+00 side-drag scaling factor (2.0: full drag) (non-dim.)
no_slip_bottom PARMO1 | TRUE viscous BCs: no-slip bottom on/off flag
bottomDragLinear PARMO1 | 0.0 linear bottom-drag coefficient ([r]/s)
bottomDragQuadratic PARMO1 | 0.0 quadratic bottom-drag coefficient ([]/m)
selectBotDragQuadr PARMO1 | -1 select quadratic bottom drag discretization option

e -1: not used

* 0: average KE from grid center to u, v location

¢ 1: use local velocity norm @ w, v location

e 2: as 1 with wet-point averaging of other velocity compo-

nent
if bottomDragQuadratic # 0. then default is O

selectlmplicitDrag PARMO1 | 0 top/bottom drag implicit treatment options

 0: fully explicit

 1: implicit on provisional velocity, i.e., before V7 incre-

ment
o 2: fully implicit
if =2, requires #define ALLOW_SOLVE4_PS_AND_DRAG

bottomVisc_pCell PARMO1 | FALSE account for partial-cell in bottom viscosity (using

no_slip_bottom = . TRUE . ) on/off flag

3.8.5 Parameters: Tracer Equations

This section covers the tracer equations, i.e., the potential temperature equation and the salinity (for the ocean) or
specific humidity (for the atmosphere) equation.

3.8.5.1 Configuration

The logical variables tempAdvection, and tempStepping allow you to turn on/off terms in the temperature equation
(similarly for salinity or specific humidity with variables saltAdvection etc.). These variables all default to a value of
. TRUE.. The vertical diffusive fluxes can be computed implicitly by setting the logical variable implicitDiffusion to

.TRUE..

Parameter Group Default Description

tempStepping PARMOI1 | TRUE temperature equation time-stepping on/off flag

tempAdvection PARMO1 | TRUE advection of temperature on/off flag

tempAdvScheme PARMO1 | 2 temperature horizontal advection scheme selector (see Ta-
ble 2.2)

temp VertAdvScheme PARMO1 | tempAdvScheme | temperature vertical advection scheme selector (see Table
2.2)

tempImplVertAdv PARMO1 | FALSE temperature implicit vertical advection on/off flag

continues on next page
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Table 3.9 — continued from previous page

Parameter Group Default Description

addFrictionHeating PARMO1 | FALSE include frictional heating in temperature equation on/off
flag; requires #define ALLOW_FRICTION_HEATING

temp_stayPositive PARMO1 | FALSE use  Smolarkiewicz hack to ensure tempera-
ture stays positive on/off flag; requires #de-
fine GAD_SMOLARKIEWICZ_HACK in
pkg/generic_advdiff/fGAD_OPTIONS.h

saltStepping PARMO1 | TRUE salinity equation time-stepping on/off flag

saltAdvection PARMO1 | TRUE advection of salinity on/off flag

saltAdvScheme PARMO1 | 2 salinity horizontal advection scheme selector (see Table
2.2)

saltVertAdvScheme PARMO1 | saltAdvScheme salinity vertical advection scheme selector (see Table 2.2)

saltlmpl VertAdv PARMO1 | FALSE salinity implicit vertical advection on/off flag

salt_stayPositive PARMO1 | FALSE use Smolarkiewicz hack to ensure salin-
ity stays positive on/off flag; requires  #de-
fine GAD_SMOLARKIEWICZ_HACK in
pkg/generic_advdiff/GAD_OPTIONS.h

implicitDiffusion PARMOI1 | FALSE implicit vertical diffusion on/off flag

interDiffKr_pCell PARMO4 | FALSE account for partial-cell in interior vertical diffusion on/off
flag

linFSConserveTr PARMOI1 | TRUE correct source/sink of tracer due to use of linear free sur-
face on/off flag

doAB_onGtGs PARMO3 | TRUE apply Adams-Bashforth on tendencies (rather than on T,S)

on/off flag

3.8.5.2 Initialization

The initial tracer data can be contained in the binary files hydrogThetaFile and hydrogSaltFile. These files should
contain 3-D data ordered in an (x, y, r) fashion with k=1 as the first vertical level. If no file names are provided, the
tracers are then initialized with the values of tRef and sRef discussed in Section 3.8.3. In this case, the initial tracer
data are uniform in x and y for each depth level.

Parameter Group Default Description

hydrogThetaFile PARMOS | ' ' filename for 3D specification of initial potential temperature (°C)

hydrogSaltFile PARMOS | ' filename for 3D specification of initial salinity (psu or g/kg)

maskIniTemp PARMOS | TRUE apply (center-point) mask to initial hydrographic theta data
on/off flag

maskIniSalt PARMOS5 | TRUE apply (center-point) mask to initial hydrographic salinity on/off
flag

checkIniTemp PARMOS5 | TRUE check if initial theta (at wet-point) identically zero on/off flag

checkIniSalt PARMOS5 | TRUE check if initial salinity (at wet-point) identically zero on/off flag
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3.8.5.3 Tracer Diffusivities

Lateral eddy diffusivities for temperature and salinity/specific humidity are specified through the variables diffKhT
and diffKhS (in m?/s). Vertical eddy diffusivities are specified through the variables diffKrT and diffKrS.In addition,
biharmonic diffusivities can be specified as well through the coefficients diffK4T and diffK4S (in m*/s). The Gent and
McWilliams parameterization for advection and mixing of oceanic tracers is described in Section 8.4.1.

Parameter Group Default Description

diffKhT PARMO1 | 0.0 Laplacian diffusivity of heat laterally (m?/s)

diffK4T PARMO1 | 0.0 biharmonic diffusivity of heat laterally (m*/s)

diffKsT PARMO1 | 0.0 Laplacian diffusivity of heat vertically (m*/s)

diffKrd4T PARMO1 | 0.0 biharmonic diffusivity of heat vertically (m?/s)

diffKrNrT PARMO1 | 0.0 at k=top vertical profile of vertical diffusivity of temperature (m?*/s)

pCellMix_diffKr PARMO04 | diffKrNr vertical diffusivity for too thin partial-cell ([r]*/s)

diffKhS PARMO1 | 0.0 Laplacian diffusivity of salt laterally (m?/s)

diffK4S PARMO1 | 0.0 biharmonic diffusivity of salt laterally (m*/s)

diffKrS PARMO1 | 0.0 Laplacian diffusivity of salt vertically (m*/s)

diffKr4S PARMO1 | 0.0 biharmonic diffusivity of salt vertically (m*/s)

diffKrNrS PARMO1 | 0.0 at k=top vertical profile of vertical diffusivity of salt (m?/s)

diffKrFile PARMOS | ' ' filename for 3D specification of vertical diffusivity (m?%/s); re-
quires #define ALLOW_3D_DIFFKR

diffKrBL79surf PARMO1 | 0.0 surface diffusivity for Bryan & Lewis 1979 [BL79] (m%/s)

diffKrBL79deep PARMO1 | 0.0 deep diffusivity for Bryan & Lewis 1979 [BL79] (m?/s)

diffKrBL79scl PARMO1 | 2.0E+02 depth scale for Bryan & Lewis 1979 [BL79] (m)

diffKrBL79Ho PARMOI1 | -2.0E+03 turning depth for Bryan & Lewis 1979 [BL79] (m)

diffKrBLEQsurf PARMO1 | 0.0 same as diffKrBL79surf but at equator; requires #define AL-
LOW_BL79_LAT_VARY

diffKrBLEQdeep PARMO1 | 0.0 same as diffKrBL79deep but at equator; requires #define AL-
LOW_BL79_LAT_VARY

diffKrBLEQscl PARMO1 | 2.0E+02 same as diffKrBL79scl but at equator; requires #define AL-
LOW_BL79_LAT_VARY

diffKrBLEQHo PARMO1 | -2.0E+03 same as diffKrBL79Ho but at equator; requires #define AL-
LOW_BL79_LAT_VARY

BL79LatVary PARMO1 | 3.0E+01 transition from diffKrBLEQ to diffKrBL79 parms at this latitude;
requires #define ALLOW_BL79_LAT_VARY

3.8.5.4 Ocean Convection

In addition to specific packages that parameterize ocean convection, two main model options are available. To use
the first option, a convective adjustment scheme, you need to set the variable cadjFreq, the frequency (in seconds)
with which the adjustment algorithm is called, to a non-zero value (note, if cadjFreq set to a negative value by the
user, the model will set it to the model clock time step). The second option is to parameterize convection with implicit
vertical diffusion. To do this, set the logical variable implicitDiffusion to . TRUE . and the real variable ivdc_kappa (in
m?/s) to an appropriate tracer vertical diffusivity value for mixing due to static instabilities (typically, several orders of
magnitude above the background vertical diffusivity). Note that cadjFreq and ivdc_kappa cannot both have non-zero
value.
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Parameter Group Default Description
ivdc_kappa PARMO1 | 0.0 implicit vertical diffusivity for convection (m?/s)
cAdjFreq PARMO3 | 0 frequency of convective adj. scheme; <0: sets value to deltaTclock
(s)
hMixCriteric PARMO1 | -0.8E+00
pena * <0: specifies AT (°C) to define ML depth where Ap = AT x
dp/dT occurs
* >1: define ML depth where local strat. exceeds mean strat.
by this factor (non-dim.)
hMixSmooth PARMO1 | 0.0 use this fraction of neighboring points (for smoothing) in ML cal-

culation (0-1; 0: no smoothing)

3.8.6 Parameters: Model Forcing

The forcing options that can be prescribed through runtime parameters in data are easy to use but somewhat limited
in scope. More complex forcing setups are possible with optional packages such as pkg/exf or pkg/rbcs, in which case
most or all of the parameters in this section can simply be left at their default value.

3.8.6.1 Momentum Forcing

This section only applies to the ocean. You need to generate wind-stress data into two files zonal WindFile and merid-
WindFile corresponding to the zonal and meridional components of the wind stress, respectively (if you want the stress
to be along the direction of only one of the model horizontal axes, you only need to generate one file). The format of
the files is similar to the bathymetry file. The zonal (meridional) stress data are assumed to be in pascals and located
at U-points (V-points). See the MATLAB program gendata.m in the input directories of verification for
several tutorial example (e.g. gendata.m in the barotropic gyre tutorial) to see how simple analytical wind forcing data
are generated for the case study experiments.

Parameter Group Default Description

momForcing PARMO1 | TRUE included external forcing of momentum on/off flag

zonalWindFile PARMOS | ' ' filename for 2D specification of zonal component of wind forc-
ing (N/m?)

meridWindFile PARMOS | ' ' filename for 2D specification of meridional component of wind
forcing (N/m?)

momForcingOutAB PARMO3 | 0 1: take momentum forcing out of Adams-Bashforth time step-
ping

momTidalForcing PARMO1 | TRUE tidal forcing of momentum equation on/off flag (requires tidal
forcing files)

ploadFile PARMOS | ' filename for 2D specification of atmospheric pressure loading
(ocean z-coor. only) (Pa)
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3.8.6.2 Tracer Forcing

A combination of flux data and relaxation terms can be used for driving the tracer equations. For potential temperature,
heat flux data (in W/m?) can be stored in the 2-D binary file surfQnetfile. Alternatively or in addition, the forcing
can be specified through a relaxation term. The SST data to which the model surface temperatures are restored
are stored in the 2-D binary file thetaClimFile. The corresponding relaxation time scale coefficient is set through the
variable tauThetaClimRelax (in seconds). The same procedure applies for salinity with the variable names EmPmRfile,
saltClimFile, and tauSaltClimRelax for freshwater flux (in m/s) and surface salinity (in psu or g/kg) data files and
relaxation timescale coefficient (in seconds), respectively.

Parameter Group Default Description

tempForcing PARMO1 | TRUE external forcing of temperature forcing on/off flag

surfQnetFile PARMOS| ' filename for 2D specification of net total heat flux (W/m?)

surfQswFile PARMOS| ' filename for 2D specification of net shortwave flux (W/m?);
requires #define SHORTWAVE_HEATING

tauThetaClimRelax PARMO3 | 0.0 temperature (surface) relaxation time scale (s)

lambdaThetaFile PARMOS | ' ' filename for 2D specification of inverse temperature (sur-
face) relaxation time scale (1/s)

ThetaClimFile PARMOS | ' filename for specification of (surface) temperature relax-
ation values (°C)

balanceThetaClimRelax | PARMO1 | FALSE subtract global mean heat flux due to temp. relaxation

flux every time step on/off flag; requires #define AL-
LOW_BALANCE_RELAX

balanceQnet PARMO1 | FALSE subtract global mean Qnet every time step on/off flag; re-
quires #define ALLOW_BALANCE_FLUXES
geothermalFile PARMOS | ' filename for 2D specification of geothermal heating

flux through bottom (W/m?); requires #define AL-
LOW_GEOTHERMAL_ FLUX

temp_EvPrRn PARMOI1 | UNSET temperature of rain and evaporated water (unset, use local
temp.) (°C)

allowFreezing PARMO1 | FALSE limit (ocean) temperature at surface to >=-1.9°C

saltForcing PARMOI1 | TRUE external forcing of salinity forcing on/off flag

convertFW2Salt PARMO1 | 3.5E+01 salinity used to convert freshwater flux to salt flux (-1: use

local S) (psu or g/kg) (note default is -1 if useRealFreshWa-
terFlux= . TRUE.)

rhoConstFresh PARMOL1 | rhoConst constant reference density for fresh water (rain) (kg/m?)

EmPmRFile PARMOS | ' filename for 2D specification of net freshwater flux (m/s)

saltFluxFile PARMOS | ' filename for 2D specification of salt flux (from seaice)
(psu.kg/m?/s)

tauSaltClimRelax PARMO3 | 0.0 salinity (surface) relaxation time scale (s)

lambdaSaltFile PARMOS | ' filename for 2D specification of inverse salinity (surface) re-
laxation time scale (1/s)

saltClimFile PARMOS | ' filename for specification of (surface) salinity relaxation val-
ues (psu or g/kg)

balanceSaltClimRelax PARMO1 | FALSE subtract global mean flux due to salt relaxation every time
step on/off flag

balanceEmPmR PARMO1 | FALSE subtract global mean EmPmR every time step on/off flag;
requires #define ALLOW_BALANCE_FLUXES

salt_EvPrRn PARMO1 | 0.0 salinity of rain and evaporated water (psu or g/kg)

selectAddFluid PARMO1 | O add fluid to ocean interior options (-1, 0: off, or 1); requires

#define ALLOW_ADDFLUID

continues on next page
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Table 3.11 — continued from previous page

Parameter Group Default Description

temp_addMass PARMO1 | temp_EvPrRn | temp. of added or removed (interior) water (°C); requires
#define ALLOW_ADDFLUID

salt_addMass PARMOL1 | salt_EvPrRn salinity of added or removed (interior) water (°C); requires
#define ALLOW_ADDFLUID

addMassFile PARMOS | ' filename for 3D specification of mass source/sink
(+=source, kg/s); requires #define ALLOW_ADDFLUID

balancePrintMean PARMO1 | FALSE print subtracted balancing means to STDOUT on/off flag;
requires #define ALLOW_BALANCE_FLUXES and/or
#define ALLOW_BALANCE_RELAX

latBandClimRelax PARMO3 | whole domain | relaxation to (T,S) climatology equatorward of this latitude
band is applied

tracForcingOutAB PARMO3 | O 1: take T, S, and pTracer forcing out of Adams-Bashforth
time stepping

3.8.6.3 Periodic Forcing

To prescribe time-dependent periodic forcing, concatenate successive time records into a single file ordered in a
(z, y,time) fashion and set the following variables: periodicExternalForcing to . TRUE ., externForcingPeriod to the
period (in seconds between two records in input files) with which the forcing varies (e.g., 1 month), and externForc-
ingCycle to the repeat time (in seconds) of the forcing (e.g., 1 year; note externForcingCycle must be a multiple of
externForcingPeriod). With these variables specified, the model will interpolate the forcing linearly at each iteration.

Parameter Group Default Description

periodicExternalForcing PARMO3 | FALSE allow time-dependent periodic forcing on/off flag
externForcingPeriod PARMO3 | 0.0 period over which forcing varies (e.g. monthly) (s)
externForcingCycle PARMO3| 0.0 period over which the forcing cycle repeats (e.g. one year) (s)

3.8.7 Parameters: Simulation Controls

3.8.7.1 Run Start and Duration

The beginning of a simulation is set by specifying a start time (in seconds) through the real variable startTime or by
specifying an initial iteration number through the integer variable nlterQ. If these variables are set to non-zero values,
the model will look for a pickup” file (by default, pickup.0000nIter0) to restart the integration. The end of a
simulation is set through the real variable endTime (in seconds). Alternatively, one can instead specify the number
of time steps to execute through the integer variable nTimeSteps. Iterations are referenced to deltaTClock, i.e., each
iteration is deltaTClock seconds of model time.

Parameter Group Default Description

nlter0 PARMO3 | 0 starting timestep iteration number for this integration

nTimeSteps PARMO3 | O number of (model clock) timesteps to execute

nEndlIter PARMO3 | 0 run ending timestep iteration number (alternate way to prescribe
nTimeSteps)

startTime PARMO3 | baseTime run start time for this integration (s) (alternate way to prescribe
nlter0)

endTime PARMO3 | 0.0 run ending time (s) (with startTime, alternate way to prescribe
nTimeSteps)
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3.8.7.2 Input/Output Files

The precision with which to read binary data is controlled by the integer variable readBinaryPrec, which can take
the value 32 (single precision) or 64 (double precision). Similarly, the precision with which to write binary data is
controlled by the integer variable writeBinaryPrec. By default, MITgcm writes output (snapshots, diagnostics, and
pickups) separately for individual tiles, leaving it to the user to reassemble these into global files, if needed (scripts are
available in utils/). There are two options however to have the model do this for you. Setting globalFiles to . TRUE.
should always work in a single process setup (including multi-threaded processes), but for MPI runs this will depend
on the platform — it requires simultaneous write access to a common file (permissible in typical Lustre setups, but
not on all file systems). Alternatively, one can set useSingleCpulO to . TRUE. to generate global files, which should
always work, but requires additional mpi-passing of data and may result in slower execution.

Parameter Group Default Description
globalFiles PARMO1 | FALSE write output “global” (i.e. not per tile) files on/off flag
useSingleCpulO PARMOI1 | FALSE only master MPI process does I/O (producing global output files)
the_run_name PARMOS | ' string identifying the name of the model “run” for meta files
readBinaryPrec PARMO1 | 32 precision used for reading binary files (32 or 64)
writeBinaryPrec PARMOL1 | 32 precision used for writing binary files (32 or 64)
outputTypesInclusive PARMO3 | FALSE allows writing of output files in multiple formats (i.e. pkg/mdsio
and pkg/mnc)
rwSuffixType PARMO3 | 0 controls the format of the pkg/mdsio binary file “suffix”
¢ 0: use iteration number (mylter, 110.10)
e 1: 100*myTime
e 2: myTime
* 3: myTime/360
e 4: myTime/3600
where myTime is model time in seconds
mdsioLocalDir PARMOS | ' ! if not blank, read-write output tiled files from/to this directory
name (+four-digit processor-rank code)

3.8.7.3 Frequency/Amount of Output

The frequency (in seconds) with which output is written to disk needs to be specified. dumpFreq controls the frequency
with which the instantaneous state of the model is written. monitorFreq controls the frequency with which monitor
output is dumped to the standard output file(s). The frequency of output is referenced to deltaTClock.

Parameter Group Default Description
dumpFreq PARMO3 | 0.0 interval to write model state/snapshot data (s)
dumplnitAndLast | PARMO3 | TRUE write out initial and last iteration model state on/off flag
diagFreq PARMO3 | 0.0 interval to write additional intermediate (debugging cg2d/3d)
output (s)
monitorFreq PARMO3 | lowest of other out- | interval to write monitor output (s)
put *Freq parms
monitorSelect PARMO3 | 2 (3 if fluid is water) | select group of monitor variables to output
* 1: dynamic variables only
* 2: add vorticity variables
* 3: add surface variables
debugLevel PARMOLI | depends on debug- | level of printing of MITgcm activity messages/statistics (1-5,
Mode higher -> more activity messages)
plotLevel PARMO1 | debuglevel controls printing of field maps (1-5, higher -> more fields)

3.8. Customizing the Model Configuration - Runtime Parameters
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3.8.7.4 Restart/Pickup Files

chkPtFreq and pchkPtFreq control the output frequency of rolling and permanent pickup (a.k.a. checkpoint) files,
respectively. These frequencies are referenced to deltaTClock.

Parameter Group Default Description

pChkPtFreq PARMO3 | 0.0 permanent restart/pickup checkpoint file write interval ( s )

chkPtFreq PARMO3 | 0.0 rolling restart/pickup checkpoint file write interval (s )

pickupSuff PARMO3 | ' force run to use pickups (even if nlter) =0) and read files with
this suffix (10 char. max)

pickupStrictlyMatch PARMO3 | TRUE force pickup (meta) file formats to exactly match (or terminate
with error) on/off flag

writePickupAtEnd PARMO3 | FALSE write a (rolling) pickup file at run completion on/off flag

usePickupBeforeC54 PARMO1 | FALSE initialize run using old pickup format from code prior to check-
point54a

startFromPickupAB2 PARMO3 | FALSE using Adams-Bashforth-3, start using Adams-

Bashforth-2  pickup format; requires  #define  AL-
LOW_ADAMSBASHFORTH_3

3.8.8 Parameters Used In Optional Packages

Some optional packages were not written with package-specific namelist parameters in a data. $ {pkg} file; or for
historical and/or other reasons, several package-specific namelist parameters remain in data.

3.8.8.1 C-D Scheme

(package pkg/cd_code)

If you run at a sufficiently coarse resolution, you might choose to enable the C-D scheme for the computation of the
Coriolis terms. The variable tauCD, which represents the C-D scheme coupling timescale (in seconds) needs to be set.

Parameter Group Default Description

useCDscheme PARMO1 | FALSE use C-D scheme for Coriolis terms on/off flag

tauCD PARMO3 | deltaTMom C-D scheme coupling timescale (s)

rCD PARMO3 | 1 - deltaTMom/tauCD | C-D scheme normalized coupling parameter (non-dim.)
epsAB_CD PARMO3 | abEps Adams-Bashforth-2 stabilizing weight used in C-D scheme

3.8.8.2 Automatic Differentiation

(package pkg/autodiff; see Section 7)

Parameter Group Default Description
nTimeSteps_I2 PARMO3 | 4 number of inner timesteps to execute per timestep
adjdumpFreq PARMO3 | 0.0 interval to write model state/snapshot data adjoint run (s)
adjMonitorFreq PARMO3 | 0.0 interval to write monitor output adjoint run (s)
adTapeDir PARMOS | ' if not blank, read-write checkpointing files from/to this directory
name
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3.8.9 Execution Environment Parameters

If running multi-threaded (i.e., using shared memory/OpenMP), you will need to set nTx and/or nTy so that n'Tx*nTy
is the total number of threads (per process).

The parameter useCubedSphereExchange needs to be changed to . TRUE . if you are using any type of grid composed
of interconnected individual faces, including the cubed sphere topology or a lat-lon cap grid. See (needs section to be
written).

Note that setting flag debugMode to . TRUE. activates a separate set of debugging print statements than parameter
debuglevel (see Section 3.8.7.3). The latter controls print statements that monitor model activity (such as opening
files, etc.), whereas the former produces a more coding-oriented set of print statements (e.g., entering and exiting
subroutines, etc.)

Parameter Group Default Description

useCubedSphereExchange | EEPARMS | FALSE use cubed-sphere topology domain on/off flag

nTx EEPARMS | 1 number of threads in the x direction

nTy EEPARMS | 1 number of threads in the y direction

useCoupler EEPARMS | FALSE communicate with other model components through a cou-
pler on/off flag

useSETRLSTK EEPARMS | FALSE call C routine to set environment stacksize to ‘unlimited’

useSIGREG EEPARMS | FALSE enable signal handler to receive signal to terminate run
cleanly on/off flag

debugMode EEPARMS | FALSE print additional debugging messages; also “flush” STD-
OUT file unit after each print

printMaplIncludesZeros EEPARMS | FALSE text map plots of fields should ignore exact zero values
on/off flag

maxLengthPrt1D EEPARMS | 65 maximum number of 1D array elements to print to standard
output

3.9 MITgcm Input Data File Format

MITgcem input files for grid-related data (e.g., delXFile), forcing fields (e.g., tauThetaClimRelax), parameter fields
(e.g., viscAhZfile), etc. are assumed to be in “flat” or “unblocked” binary format . For historical reasons, MITgcm
files use big-endian byte ordering, NOT little-endian which is the more common default for today’s computers. Thus,
some care is required to create MITgcm-readable input files.

* Using MATLAB: When writing binary files, MATLAB’s fopen command includes a MACHINEFORMAT op-
tion \’b\" which instructs MATLAB to read or write using big-endian byte ordering. 2-D arrays should be
index-ordered in MATLAB as (x, y) and 3-D arrays as (z, y, 2); data is ordered from low to high in each index,
with z varying most rapidly.

An example to create a bathymetry file (from tutorial Barotropic Ocean Gyre, a simple enclosed, flat-bottom
domain) is as follows:

o)

ieee='b'; % big endian format

o

accuracy='real*4'; % this is single precision

Ho=5000; % ocean depth in meters
nx=62; % number of gridpoints in x-direction
ny=62; % number of gridpoints in y-direction

% Flat bottom at z=-Ho

(continues on next page)
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(continued from previous page)

h=-Ho*ones (nx,ny) ;

% Walls (surrounding domain) - generate bathymetry file

h([1l end], :)=0;

h(:,[1 end])=0;

fid=fopen ('bathy.bin', 'w',ieee); fwrite(fid,h,accuracy); fclose(fid);

e Using Python: Any Python script used to generate MITgcm input files must manually swap the byte ordering
before writing. This can be accomplished with the command:

if sys.byteorder == 'little': data.byteswap (True)

or, convert as follows while writing an array to a file:

’data.astype('>f4').tofile(‘data.bin')

Note that 2-D and 3-D arrays should be index-ordered as (y, x) and (z, y, =), respectively, to be written in proper
ordering for MITgcm.

The above MATLAB example translated to Python is as follows:

import numpy as np

import sys

Ho=5000; # ocean depth in meters

nx=62; # number of gridpoints in x-direction
ny=62; # number of gridpoints in y-direction

# Flat bottom at z=-Ho
h=-Ho*np.ones ( (ny,nx));

# Walls (surrounding domain) - generate bathymetry file
hl:, (0,-1)1=0;

h[{(0,-1),:1=0;

# save as single precision with big-endian byte-ordering
h.astype('>f4') .tofile('bathy.bin'")

A more complicated example of using Python to generate input date is provided in verifica-
tion/seaice_itd/input/gendata.py.

* Using Fortran: To create flat binary files in Fortran, open with syntax OPEN (..., ACCESS='DIRECT',
...) (i.e., NOT ACCESS="'SEQUENTIAL" which includes additional metadata). By default Fortran will use
the local computer system’s native byte ordering for reading and writing binary files, which for most systems
will be little-endian. One therefore has two options: after creating a binary file in Fortran, use MATLAB or
Python (or some other utility) to read in and swap the bytes in the process of writing a new file; or, determine
if your local Fortran has a compiler flag to control byte-ordering of binary files. Similar to MATLAB, 2-D and
3-D arrays in Fortran should be index-ordered as (z, y) and (z, y, 2), respectively.

Using NetCDF format for input files is only partially implemented at present in MITgcem, and use is thus discouraged.

Input files are by default single-precision real numbers (32-bit, realx4), but can be switched to double precision by

setti

ng namelist parameter readBinaryPrec (PARMO1 in file data) to a value of 64.
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CHAPTER
FOUR

MITGCM TUTORIAL EXAMPLE EXPERIMENTS

The full MITgem distribution comes with a set of pre-configured numerical experiments. Some of these example
experiments are tests of individual parts of the model code, but many are fully fledged numerical simulations. Full
tutorials exist for a few of the examples, and are documented in sections Section 4.1 - Section 4.14. The other
examples follow the same general structure as the tutorial examples, see below. All example experiments are located
in subdirectories under the directory verification. A list of additional experiments (i.e, not documented as full tutorials),
with brief description, is provided in Section 4.15 and Section 4.16.

Each example experiment directory has the following subdirectories:
* code: contains code specific to the example. At a minimum, this directory includes the following files:

— code/packages.conf: declares the list of packages or package groups to be used. If not included, the
default set of packages is located in pkg/pkg_groups. Package groups are simply convenient collections
of commonly used packages which are defined in pkg/pkg_groups (see Using MITgcm Packages). Some
packages may require other packages or may require their absence (that is, they are incompatible) and
these package dependencies are listed in pkg/pkg_depend.

— code/SIZE.h: declares the size of underlying computational grid. This file is compiled instead of the
MITgem repository version model/inc/SIZE.h.

— The code/ directory may include other files and subroutines specific to the experiment, i.e., containing
changes from the standard repository version. For example, some experiments contains CPP header op-
tions files to enable or disable some parts of the code at compile time; the most common ones would be
model/inc/CPP_OPTIONS.h for core model options and «<PKG»_OPTIONS.h for individual packages.

* input: contains the input data files required to run the example. At a minimum, the input directory contains
the following files:

input/data: this file, written as a namelist, specifies the main parameters for the experiment.

input/data.pkg: contains parameters relative to the packages used in the experiment.

input/eedata: this file contains “execution environment” data. This consists of a specification of the
number of threads to use in = and y. For multi-threaded execution,these will be set to numbers greater than
1.

Forcing and topography file(s), as well as files describing the initial state of the experiment and any other
supporting data. Required support files vary from experiment to experiment, depending on the setup.

e results: this directory contains the output file out put . t xt produced by the simulation example. This file
is useful for comparison with your own output when you run the experiment.

* build: this directory is initially empty and should be used to compile the model and generate the executable.

e run: this directory is initially empty and should be used to run the executable. From the (empty) run direc-
tory, link files from input using the command 1n -s ../input/* ., then execute the file . ./input/
prepare_run if it exists. If you are running one of the experiment variations, i.e., using input . «KOTHER»,
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first link files from input . «KOTHER» (running . . /input . «OTHER» /prepare_run if it exists) and next
link files from input (and run ../input/prepare_run). Following this procedure, file links from
input . «OTHER» will NOT be overwritten by identically named files in input.

4.1 Barotropic Ocean Gyre

(in directory verification/tutorial_barotropic_gyre/)

This example experiment demonstrates using the MITgem to simulate a barotropic, wind-forced, ocean gyre circula-
tion. The experiment is a numerical rendition of the gyre circulation problem described analytically by Stommel in
1948 [Sto48] and Munk in 1950 [Mun50], and numerically in Bryan (1963) [Bry63]. Note this tutorial assumes a basic
familiarity with ocean dynamics and geophysical fluid dynamics; readers new to the field may which to consult one of
the standard texts on these subjects, such as Vallis (2017) [Val17] or Cushman-Roisin and Beckers (2011) [CRB11].

In this experiment the model is configured to represent a rectangular enclosed box of fluid, 1200 x 1200 km in lateral
extent. The fluid depth H = 5 km. The fluid is forced by a zonal wind stress, 7, that varies sinusoidally in the north-
south direction and is constant in time. Topologically the grid is Cartesian and the Coriolis parameter f is defined
according to a mid-latitude beta-plane equation

fy) = fo+By
where ¥ is the distance along the ‘north-south’ axis of the simulated domain. For this experiment fj is set to 10~%s~!
and 8 = 10"s 'm~1
The sinusoidal wind-stress variations are defined according to

Ta(y) = =70 cos<wL%>

where L, is the lateral domain extent and 7y is set to 0.1N m2.

Figure 4.1 summarizes the configuration simulated.

4.1.1 Equations Solved

The model is configured in hydrostatic form (the MITgcm default). The implicit free surface form of the pressure
equation described in Marshall et al. (1997) [MHPA97] is employed. A horizontal Laplacian operator V7 provides
viscous dissipation. The wind-stress momentum input is added to the momentum equation for the ‘zonal flow’, w.
This effectively yields an active set of equations for this configuration as follows:

Du
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where u and v are the « and y components of the flow vector 4, 7 is the free surface height, Aj, the horizontal Laplacian
viscosity, p. is the fluid density, and g the acceleration due to gravity.
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Figure 4.1: Schematic of simulation domain and wind-stress forcing function for barotropic gyre numerical experi-
ment. The domain is enclosed by solid walls at x = 0, 1200 km and at y = 0, 1200 km.

4.1.2 Discrete Numerical Configuration

The domain is discretized with a uniform grid spacing in the horizontal set to Az = Ay = 20 km, so that there are
sixty ocean grid cells in the x and y directions. The numerical domain includes a border row of “land” cell surrounding
the ocean cells, so the numerical grid size is 62 x 62 (if these land cells were not included, the domain would be periodic
in both the z and y directions).

Vertically the model is configured using a single layer in depth, Az, of 5000 m.

4.1.2.1 Numerical Stability Criteria

Let’s start with our choice for the model’s time step. To minimize the amount of required computational resources,
typically one opts for as large a time step as possible while keeping the model solution stable. The advective
Courant—Friedrichs-Lewy (CFL) condition (see Adcroft 1995 [Adc95]) for an extreme maximum horizontal flow
speed is:

At
S, =2 (|uA ) < 0.5 for stability (4.4)

x

The 2 factor on the left is because we have a 2-D problem (in contrast with the more familiar 1-D canonical stability
analysis); the right hand side is 0.5 due to our default use of Adams-Bashforth2 (see Section 2.5) rather than the more
familiar value of 1 that one would obtain using a forward Euler scheme. In our configuration, let’s assume our solution
will achieve a maximum |u| = 1 ms™! (in reality, current speeds in our solution will be much smaller). To keep At
safely below the stability threshold, let’s choose At = 1200 s (= 20 minutes), which results in S, = 0.12.

The numerical stability for inertial oscillations using Adams-Bashforth II (Adcroft 1995 [Adc95])
S; = fAt < 0.5 for stability 4.5)

evaluates to 0.12 for our choice of At, which is below the stability threshold.

There are two general rules in choosing a horizontal Laplacian eddy viscosity Ap:
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* the resulting Munk layer width should be at least as large (preferably, larger) than the lateral grid spacing;
* the viscosity should be sufficiently small that the model is stable for horizontal friction, given the time step.

Let’s use this first rule to make our choice for Ay, and check this value using the second rule. The theoretical Munk
boundary layer width (as defined by the solution zero-crossing, see Pedlosky 1987 [Ped87]) is given by:

2 Ah %
M, =T (2n (4.6)
(%)

For our configuration we will choose to resolve a boundary layer of ~ 100 km, or roughly across five grid cells, so we
set A;, = 400 m? s™! (more precisely, this sets the full width at M., = 124 km). This choice ensures that the frictional
boundary layer is well resolved.

Given our choice of At, the stability parameter for the horizontal Laplacian friction (Adcroft 1995 [Adc95])

ApAt
Sy =2 (4 Ah > ) < 0.6 for stability @.7)
T

evaluates to 0.0096, which is well below the stability threshold. As in (4.4) the above criteria is for a 2D problem
using Adams-Bashforth2 time stepping, with the 0.6 value on the right replacing the more familiar 1 that is obtained
using a forward Euler scheme.

See Section 2.5 for additional details on Adams-Bashforth time-stepping and numerical stability criteria.

4.1.3 Configuration

The model configuration for this experiment resides under the directory verification/tutorial_barotropic_gyre/.
The experiment files

* verification/tutorial_barotropic_gyre/code/SIZE.h

* verification/tutorial_barotropic_gyre/input/data

* verification/tutorial_barotropic_gyre/input/data.pkg

* verification/tutorial_barotropic_gyre/input/eedata

* verification/tutorial_barotropic_gyre/input/bathy.bin

* verification/tutorial_barotropic_gyre/input/windx_cosy.bin

contain the code customizations and parameter settings for this experiment. Below we describe these customizations
in detail.

Note: MITgcem’s defaults are configured to simulate an ocean rather than an atmosphere, with vertical z-coordinates.
To model the ocean using pressure coordinates using MITgcm, additional parameter changes are required; see tutorial
ocean_in_p. To switch parameters to model an atmosphere, see tutorial Held_Suarez.

4.1.3.1 Compile-time Configuration

File code/SIZE.h
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Listing 4.1: verification/tutorial_barotropic_gyre/code/SIZE.h

OOOOOOOOOOOOO000000000000000008
O
ae)

Q
53]
o
ae)

IROUTINE: SIZE.h
| INTERFACE :
include SIZE.h
IDESCRIPTION: \bv

R R R R R

*

SIZE.h Declare size of underlying computational grid.

|

* *
| The design here supports a three-dimensional model grid

| with indices I,J and K. The three-dimensional domain

| is comprised of nPxxnSx blocks (or tiles) of size sNx

| along the first (left-most index) axis, nPyxnSy blocks

| of size sNy along the second axis and one block of size

| Nr along the vertical (third) axis.

| Blocks/tiles have overlap regions of size OLx and OLy

| along the dimensions that are subdivided.

* *
\ev

Voodoo numbers controlling data layout:

sNx :: Number of X points in tile.

sNy :: Number of Y points in tile.

OLx :: Tile overlap extent in X.

OLy :: Tile overlap extent in Y.

nSx :: Number of tiles per process in X.

nSy :: Number of tiles per process in Y.

nPx :: Number of processes to use in X.

nPy :: Number of processes to use in Y.

Nx Number of points in X for the full domain.
Ny Number of points in Y for the full domain.
Nr Number of points in vertical direction.

INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy
INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy

INTEGER Nx
INTEGER Ny
INTEGER Nr
PARAMETER (
sNx = 62,
sNy = 62,
OLx = 2,
OLy = 2,
nsSx = 1,
nsSy = 1,
nPx = 1,
nPy = 1,
Nx = sNxx*nSx*nPx,
Ny = sNyxnSyxnPy,
Nr = 1)

(continues on next page)
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(continued from previous page)

Q

MAX_OLX :: Set to the maximum overlap region size of any array
MAX_OLY that will be exchanged. Controls the sizing of exch
routine buffers.

INTEGER MAX_OLX
INTEGER MAX_OLY

PARAMETER ( MAX_OLX
& MAX_OLY

OLx,
OLy )

Here we show a modified model/inc source code file, customizing MITgcm’s array sizes to our model domain. This
file must be uniquely configured for any model setup; using the MITgem default model/inc/SIZE.h will in fact cause
a compilation error. Note that MITgcm’s storage arrays are allocated as static variables (hence their size must be
declared in the source code), in contrast to some model codes which declare array sizes dynamically, i.e., through
runtime (namelist) parameter settings.

For this first tutorial, our setup and run environment is the most simple possible: we run on a single process (i.e., NOT
MPI and NOT multi-threaded) using a single model “file”. For a more complete explanation of the parameter choices
to use multiple tiles, see the tutorial Baroclinic Gyre.

45

46

47

48

49

50

51

52

55

53

54

* These lines set parameters sNx and sNy, the number of grid points in the x and y directions, respectively.

&

sNx
sNy

= 62,
= 62,

* These lines set parameters OLx and OLy in the x and y directions, respectively. These values are the overlap
extent of a model tile, the purpose of which will be explained in later tutorials. Here, we simply specify the
required minimum value (2) in both x and y.

OLx
OLy

- 2,
- 2,

* These lines set parameters nSx, nSy, nPx, and nPy, the number of model tiles and the number of processes in
the x and y directions, respectively. As discussed above, in this tutorial we configure a single model tile on a
single process, so these parameters are all set to the value one.

23 I s B ]

nsx
nsSy
nPx
nPy

~ ~ 0~

Il
e

~

* This line sets parameter Nr,

level.

the number of points in the vertical dimension. Here we use just a single vertical

Nr

= 1)

¢ Note these lines summarize the horizontal size of the model domain (NOT to be edited).

&

Nx
Ny

sNx*nSx*nPx,
sNy*nSy=*nPy,

Further information and examples about how to configure model/inc/SIZE.h are given in Section 6.3.1.
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4.1.3.2 Run-time Configuration

File input/data

Listing 4.2: verification/tutorial_barotropic_gyre/input/data

# Model parameters
# Continuous equation parameters
&PARMO1
viscAh=4.E2,
f0=1.E-4,
beta=1.E-11,
rhoConst=1000.,
gBaro=9.81,
rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,
# momAdvection=.FALSE.,
tempStepping=.FALSE.,
saltStepping=.FALSE.,
&

# Elliptic solver parameters
&PARMO2
cg2dTargetResidual=1.E-7,
cg2dMaxIters=1000,

&

# Time stepping parameters
&PARMO3
nIter0=0,
nTimeSteps=10,
deltaT=1200.0,
pChkptFreqgq=31104000.0,
chkptFreg=15552000.0,
dumpFreg=15552000.0,
monitorFregq=1200.,
monitorSelect=2,

#-for longer run (3.0 yr):

# nTimeSteps=77760,

# monitorFreqg=864000.,
&

# Gridding parameters
&PARMO4
usingCartesianGrid=.TRUE.,
delX=62%20.E3,
delY=62%20.E3,
xgOrigin=-20.E3,
ygOrigin=-20.E3,
delR=5000.,

&

# Input datasets

&PARMOS

bathyFile='bathy.bin'
zonalWindFile="'windx_cosy.bin',
#zonalWindFile="'windx_siny.bin"',

(continues on next page)
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(continued from previous page)

meridWindFile=,

&

This file, reproduced completely above, specifies the main parameters for the experiment. The parameters that are
significant for this configuration (shown with line numbers to left) are as follows.

PARMO1 - Continuous equation parameters

» This line sets parameter viscAh, the horizontal Laplacian viscosity, to 400 m? s~

1

viscAh=4.E2,

 These lines set fy and 5 (the Coriolis parameter fO and the gradient of the Coriolis parameter beta) for our

beta-plane to 1 x 10™* s and 1 x 10~ m™'s™!, respectively.

f0=1.E-4,
beta=1.E-11,

* This line sets parameter rhoConst, the Boussinesq reference density p.. in (4.1), to 1000 kg/m?.

rhoConst=1000.,

* This line sets parameter gBaro, the acceleration due to gravity g (in the free surface terms in (4.1) and (4.2)), to

9.81 m/s2. This is the MITgcm default value, i.e., the value used if this line were not included in data. One
might alter this parameter for a reduced gravity model, or to simulate a different planet, for example.

gBaro=9.81,

 These lines set parameters rigidLid and implicitFreeSurface in order to suppress the rigid lid formulation of the

11

surface pressure inverter and activate the implicit free surface formulation.

rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,

This line sets parameter momAdvection to suppress the (non-linear) momentum of advection terms in the mo-
mentum equations. However, note the # in column 1: this “comments out” the line, so using the above data
file verbatim will in fact include the momentum advection terms (i.e., MITgcm default for this parameter is
TRUE). We’ll explore the linearized solution (i.e., by removing the leading #) in Section 4.1.5. Note the ability
to comment out a line in a namelist file is not part of standard Fortran, but this feature is implemented for all
MITgem namelist files.

# momAdvection=.FALSE.,

* These lines set parameters tempStepping and saltStepping to suppress MITgecm’s forward time integration of

temperature and salt in the tracer equations, as these prognostic variables are not relevant for the model solution
in this configuration. By default, MITgcm solves equations governing these two (active) tracers; later tutorials
will demonstrate how additional passive tracers can be included in the solution. The advantage of NOT solving
the temperature and salinity equations is to eliminate many unnecessary computations. In most typical config-
urations however, one will want the model to compute a solution for 7" and S, which typically comprises the
majority of MITgem’s processing time.

tempStepping=.FALSE.,
saltStepping=.FALSE.,
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PARMO2 - Elliptic solver parameters

e The first line sets the tolerance (parameter cg2dTargetResidual) that the 2-D conjugate gradient solver, the
iterative method used in the pressure method algorithm, will use to test for convergence. The second line sets
parameter cg2dMaxIters, the maximum number of iterations. The solver will iterate until the residual falls below
this target value (here, set to 1 x 10~7) or until this maximum number of solver iterations is reached (here, set
to a maximum 1000 iterations). Typically, the solver will converge in far fewer than 1000 iterations, but it does
not hurt to allow for a large number. The chosen value for the target residual happens to be the MITgem default,
and will serve well in most model configurations.

cg2dTargetResidual=1.E-7,
cgz2dMaxIters=1000,

PARMO3 - Time stepping parameters

24

25

32

33

34

26

27

* This line sets the starting (integer) iteration number for the run. Here we set the value to zero, which starts the
model from a new, initialized state. If nlterO is non-zero, the model would require appropriate pickup files (i.e.,
restart files) in order to continue integration of an existing run.

nIter0=0,

* This line sets parameter nTimeSteps, the (integer) number of timesteps the model will integrate forward. Below,
we have set this to integrate for just 10 time steps, for MITgcm automated testing purposes (Section 5.5). To
integrate the solution to near steady state, uncomment the line further down where we set the value to 77760
time steps. When you make this change, be sure to also uncomment the next line that sets monitorFreq (see
below).

nTimeSteps=10,

#-for longer run (3.0 yr):
# nTimeSteps=77760,
# monitorFreg=864000.,

 This line sets parameter deltaT, the timestep used in stepping forward the model, to 1200 seconds. In com-
bination with the larger value of nTimeSteps mentioned above, we have effectively set the model to integrate
forward for 77760 x 1200 s = 3.0 years (based on 360-day years), long enough for the solution to approach
equilibrium.

deltaT=1200.0,

» These lines control the frequency at which restart (a.k.a. pickup) files are dumped by MITgcm. Here the value of
pChkptFreq is set to 31,104,000 seconds (=1.0 years) of model time; this controls the frequency of “permanent”
checkpoint pickup files. With permanent files, the model’s iteration number is part of the file name (as the
filename “suffix”; see Section 4.1.4.2) in order to save it as a labelled, permanent, pickup state. The value of
ChkptFreq is set to 15,552,000 seconds (=0.5 years); the pickup files written at this frequency but will NOT
include the iteration number in the filename, instead toggling between ckptA and ckptB in the filename, and
thus these files will be overwritten with new data every 2 x 15,552,000 seconds. Temporary checkpoint files
can be written more frequently without requiring additional disk space, for example to peruse (or re-run) the
model state prior to an instability, or restart following a computer crash, etc. Either type of checkpoint file can
be used to restart the model.

pChkptFreq=31104000.0,
chkptFreg=15552000.0,
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e This line sets parameter dumpFreq, frequency of writing model state snapshot diagnostics (of relevance in this
setup: variables u, v, and 7). Here, we opt for a snapshot of model state every 15,552,000 seconds (=0.5 years),
or after every 12960 time steps of integration.

29 dumpFreg=15552000.0,

* These lines are set to dump monitor output (see Section 9.4) every 1200 seconds (i.e., every time step) to standard
output. While this monitor frequency is needed for MITgcm automated testing, this is too much output for our
tutorial run. Comment out this line and uncomment the line where monitorFreq is set to 864,000 seconds, i.e.,
output every 10 days. Parameter monitorSelect is set to 2 here to reduce output of non-applicable quantities for
this simple example.

30 monitorFreg=1200.,
3l monitorSelect=2,

PARMO4 - Gridding parameters

¢ This line sets parameter usingCartesianGrid, which specifies that the simulation will use a Cartesian coordinate
system.

39 usingCartesianGrid=.TRUE.,

* These lines set the horizontal grid spacing of the model grid, as vectors delX and delY (i.e., Az and Ay
respectively). This syntax indicates that we specify 62 values in both the z and y directions, which matches
the domain size as specified in SIZE.h. Grid spacing is set to 20 x 10® m (=20 km).

40 delX=62x20.E3,
41 delY=62%x20.E3,

* The cartesian grid default origin is (0,0) so here we set the origin with parameters xgOrigin and ygOrigin to
(-20000,-20000), accounting for the bordering solid wall. The centers of the grid boxes will thus be at -10 km,
10 km, 30 km, 50 km, ..., in both = and y directions.

42 xgOrigin=-20.E3,
43 ygOrigin=-20.E3,

* This line sets parameter delR, the vertical grid spacing in the z-coordinate (i.e., Az), to 5000 m.

44 delR=5000.,

PARMOS - Input datasets

* This line sets parameter bathyFile, the name of the bathymetry file. See Section 4.1.3.2 for information about
the file format.

49 bathyFile='bathy.bin'

* These lines specify the names of the files from which the surface wind stress is read. There is a separate file
for the x-direction (zonalWindFile) and the y-direction (meridWindFile). Note, here we have left the latter
parameter blank, as there is no meridional wind stress forcing in our example.

50 zonalWindFile='windx_cosy.bin',
s1. | #zonalWindFile='windx_siny.bin',
52 meridWindFile=,
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File input/data.pkg

Listing 4.3: verification/tutorial_barotropic_gyre/input/data.pkg

# Packages
&PACKAGES
&

This file does not set any namelist parameters, yet is necessary to run — only standard packages (i.e., those compiled
in MITgcm by default) are required for this setup, so no other customization is necessary. We will demonstrate how
to include additional packages in other tutorial experiments.

File input/eedata

Listing 4.4: verification/tutorial_barotropic_gyre/input/eedata

# Example "eedata" file
# Lines beginning "#" are comments
# nTx :: No. threads per process in X
# nTy :: No. threads per process in Y
# debugMode :: print debug msg (sequence of S/R calls)
&EEPARMS
nTx=1,
nTy=1,
&
# Note: Some systems use & as the namelist terminator (as shown here).
# Other systems use a / character.

This file uses standard default values (i.e., MITgcm default is single-threaded) and does not contain customizations
for this experiment.

File input /bathy.bin

This file is a 2-D(x, ) map of bottom bathymetry, specified as the z-coordinate of the solid bottom boundary. Here,
the value is set to -5000 m everywhere except along the N, S, E, and W edges of the array, where the value is set to
0 (i.e., “land”). As discussed in Section 4.1.2, the domain in MITgcm is assumed doubly periodic (i.e., periodic in
both z- and y-directions), so boundary walls are necessary to set up our enclosed box domain. The matlab program
verification/tutorial_barotropic_gyre/input/gendata.m was used to generate this bathymetry file. By default, this file is
assumed to contain 32-bit (single precision) binary numbers. See Section 3.9 for additional information on MITgcm
input data file format specifications.

File input /windx_cosy.bin

Similar to file input/bathy.bin, this file is a 2-D(x,y) map of 7, wind stress values, formatted in the same
manner. The units are Nm™2. Although 7, is only a function of y in this experiment, this file must still define a
complete 2-D map in order to be compatible with the standard code for loading forcing fields in MITgecm. The matlab
program verification/tutorial_barotropic_gyre/input/gendata.m was used to generate this wind stress file. To run the
barotropic jet variation of this tutorial example (see Figure 4.4), you will in fact need to run this matlab program to

generate the file input/windx_siny.bin.
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4.1.4 Building and running the model

To configure and compile the code (following the procedure described in Section 3.5.1):

cd build

../../../tools/genmake2 -mods ../code ««—of my_platform_optionFile»»
make depend

make

cd ..

To run the model (following the procedure in Section 3.6):

cd run

In -s ../input/x*

In -s ../build/mitgcmuv .
./mitgcmuv > output.txt

4.1.4.1 Standard output

Your run’s standard output file should be similar to verification/tutorial_barotropic_gyre/results/output.txt. The stan-
dard output is essentially a log file of the model run. The following information is included (in rough order):

e startup information including MITgcm checkpoint release number and other execution environment information,
and a list of activated packages (including all default packages, as well as optional packages).

* the text from all data . x and other critical files (in our example here, eedata, SIZE.h, data, and data.pkg).

* information about the grid and bathymetry, including dumps of all grid variables (only if Cartesian or spherical
polar coordinates used, as is the case here).

* all runtime parameter choices used by the model, including all model defaults as well as user-specified parame-
ters.

* monitor statistics at regular intervals (as specified by parameter monitorFreq in data. See Section 9.4).

 output from the 2-D conjugate gradient solver. More specifically, statistics from the right-hand side of the
elliptic equation — for our linear free-surface, see eq. (2.15) — are dumped for every model time step. If the
model solution blows up, these statistics will increase to infinity, so one can see exactly when the problem
occurred (i.e., to aid in debugging). Additional solver variables, such as number of iterations and residual, are
included with the monitor statistics.

¢ a summary of end-of-run execution information, including user-, wall- and system-time elapsed during execu-
tion, and tile communication statistics. These statistics are provided for the overall run, and also broken down
by time spent in various subroutines.

Different setups using non-standard packages and/or different parameter choices will include additional or different
output as part of the standard output. It is also possible to select more or less output by changing the parameter
debuglevel in data; see (missing doc for pkg debug).

STDERR. 0000 - if errors (or warnings) occurred during the run, helpful warning and/or error message(s) would
appear in this file.
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4.1.4.2 Other output files

In addition to raw binary data files with .data extension, each binary file has a corresponding .meta file. These
plain-text files include information about the array size, precision (i.e., f1oat 32 or float 64), and if relevant, time
information and/or a list of these fields included in the binary file. The .meta files are used by MITgem utils when
binary data are read.

The following output files are generated:
Grid Data: see Section 2.11 for definitions and description of the Arakawa C-grid staggering of model variables.
* XC, YC - grid cell center point locations
* XG, YG - locations of grid cell vertices
* RC, RF - vertical cell center and cell faces positions
e DXC, DYC - grid cell center point separations (Figure 2.8 b)
* DXG, DYG - separation of grid cell vertices (Figure 2.8 a)
* DRC, DRF - separation of vertical cell centers and faces, respectively

e RAC, RAS, RAW, RAZ - areas of the grid “tracer cells”, “southern cells”, “western cells” and “vorticity cells”,
respectively (Figure 2.8)

* hFacC, hFacS, hFacW - fractions of the grid cell in the vertical which are “open” as defined in the center
and on the southern and western boundaries, respectively. These variables effectively contain the configuration
bathymetric (or topographic) information.

* Depth - bathymetry depths

All these files contain 2-D(z, y) data except RC, RF, DRC, DRF, which are 1-D(z), and hFacC, hFacS, hFacW, which
contain 3D(x, y, z) data. Units for the grid files depends on one’s choice of model grid; here, they are all in given in
meters (or m? for areas).

All the 2-D grid data files contain . 001 . 001 in their filename, e.g., DXC.001.001.data — this is the tile number
in .XXX.YYY format. Here, we have just a single tile in both x and y, so both tile numbers are 001. Using multiple
tiles, the default is that the local tile grid information would be output separately for each tile (as an example, see the
baroclinic gyre tutorial, which is set up using multiple tiles), producing multiple files for each 2-D grid variable.

State Variable Snapshot Data:

Eta.0000000000.001.001.data, Eta.0000000000.001.001.meta - thisis a binary data snapshot of
model dynamic variable etaN (the free-surface height) and its meta file, respectively. Note the tile number is included
in the filename, as is the iteration number 0000000000, which is simply the time step (the iteration number here is
referred to as the “suffix” in MITgcm parlance; there are options to change this suffix to something other than iteration
number). In other words, this is a dump of the free-surface height from the initialized state, iteration O; if you load
up this data file, you will see it is all zeroes. More interesting is the free-surface height after some time steps have
occurred. Snapshots are written according to our parameter choice dumpFreq, here set to 15,552,000 seconds, which
is every 12960 time steps. We will examine the model solutions in Section 4.1.5. The free-surface height is a 2-D(z, y)
field.

Snapshot files exist for other prognostic model variables, in particular filenames starting with U (uVel), v (uVel), T
(theta), and S (salt); given our setup, these latter two fields remain uniform in space and time, thus not very interesting
until we explore a baroclinic gyre setup in tutorial_baroclinic_gyre. These are all 3-D(x, y, 2) fields. The format for
the file names is similar to the free-surface height files. Also dumped are snapshots of diagnosed vertical velocity W
(wVel) (note that in non-hydrostatic simulations, W is a fully prognostic model variable).

Checkpoint Files:

The following pickup files are generated:
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* pickup.0000025920.001.001.data, pickup.0000025920.001.001.meta, etc. - written at
frequency set by pChkptFreq

e pickup.ckptA.001.001.data, pickup.ckptA.001.001.meta, pickup.ckptB.001.001.
data, pickup.ckptB.001.001.meta - written at frequency set by ChkptFreq

Other Model Output Data: Model output related to reference density and hydrostatic pressure, in files Rhoref,
PHrefC, PHrefF, PH, and PHL, is discussed in depth here in tutorial Baroclinic Ocean Gyre (as these data are not
terribly interesting in this single-layer setup).

4.1.5 Model Solution

After running the model for 77,760 time steps (3.0 years), the solution is near equilibrium. Given an approximate
timescale of one month for barotropic Rossby waves to cross our model domain, one might expect the solution to
require several years to achieve an equilibrium state. The model solution of free-surface height 1 (proportional to
streamfunction) at ¢ = 3.0 years is shown in Figure 4.2. For further details on this solution, particularly examining
the effect of the non-linear terms with increasing Reynolds number, the reader is referred to Pedlosky (1987) [Ped87]
section 5.11.

MITgcm Barotropic Gyre Free-Surface Height (m)
e — — T T T

1200 0.04
F ———
/_’\
1000 | T 1 0.03
800 |- i 0.02
£ 600 | 0.01
400 0
200 1-0.01
/
0 : ‘ ‘ ‘ ; | 4-0.02
0 200 400 600 800 1000 1200

Figure 4.2: MITgcm solution to the barotropic gyre example after ¢ = 3.0 years of model integration. Free surface
height is shown in meters.

Using matlab for example, visualizing output using the utils/matlab/rdmds.m utility to load the binary data in Eta.
0000077760.001.001.data is as simple as:
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addpath ../../../utils/matlab/

XC=rdmds ('XC'"'); YC=rdmds ('YC');

Eta=rdmds ('Eta', 77760);

contourf (XC/1000,YC/1000,Eta, [-.04:.01:.04]1); colorbar;

colormap ((flipud(hot))); set(gca, 'XLim', [0 1200]); set(gca, 'YLim', [0 1200])

or using python (you will need to install the MITgcmutils package, see Section 3.6.4.2):

from MITgcmutils import mds

import matplotlib.pyplot as plt

XC = mds.rdmds ('XC'); YC = mds.rdmds ('YC")

Eta = mds.rdmds ('Eta', 77760)

plt.contourf (XC, YC, Eta, np.linspace(-0.02, 0.05,8), cmap='hot_r'")
plt.colorbar(); plt.show()

Let’s simplify the example by considering the linear problem where we neglect the advection of momentum terms. In
other words, replace g’; and D 7 with 6“ and 2 St » respectively, in in (4.1) and (4.2). To do so, we uncomment (i.e.,
remove the leading #) in the hne # momAdvectlon= .FALSE., infile data and re-run the model. Any existing

output files will be overwritten.

For the linearized equations, the Munk layer (equilibrium) analytical solution is given by:

To f x . Yy \[ZE 1 \[z
n(x,y)zpchﬁ(l—Lm)ﬂ'sm(ﬂ'Ly) ll—exp(% )(c F+7 sin %, )]

where 4, = (%) Figure 4.3 displays the MITgcm output after switching off momentum advection vs. the analyti-

cal solution to the linearized equations. Success!

MITgcm Barotropic Gyre Llnearlzed Solution Barotropic Gyre Analytical Solution

=
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km km

Figure 4.3: Comparison of free surface height for the near-equilibrium MITgcm solution (¢ = 3.0 years) with momen-
tum advection switched off (left) and the analytical equilibrium solution to the linearized equation (right).

Finally, let’s examine one additional simulation where we change the cosine profile of wind stress forcing to a
sine profile. First, run the matlab script verification/tutorial_barotropic_gyre/input/gendata.m to generate the al-
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ternate sine profile wind stress, and place a copy in your run directory. Then, in file data, replace the line
zonalWindFile="windx_cosy.bin’, with zonalWindFile="'windx_siny.bin’,.

MITgcm Barotropic Jet Free-Surface Height (m)
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800 B -0.02
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0 | ! w w ! -0.06
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km

Figure 4.4: MITgcm equilibrium solution to the barotropic setup with alternate sine profile of wind stress forcing,
producing a barotropic jet.

The free surface solution given this forcing is shown in Figure 4.4. Two “half gyres” are separated by a strong jet.
We’ll look more at the solution to this “barotropic jet” setup in later tutorial examples.

4.2 Baroclinic Ocean Gyre

(in directory: verification/tutorial_baroclinic_gyre)

This section describes an example experiment using MITgem to simulate a baroclinic, wind and buoyancy-forced,
double-gyre ocean circulation. Unlike tutorial barotropic gyre, which used a Cartesian grid and a single vertical layer,
here the grid employs spherical polar coordinates with 15 vertical layers. The configuration is similar to the double-
gyre setup first solved numerically in Cox and Bryan (1984) [CB84]: the model is configured to represent an enclosed
sector of fluid on a sphere, spanning the tropics to mid-latitudes, 60° x 60° in lateral extent. The fluid is 1.8 km deep
and is forced by a zonal wind stress which is constant in time, 7, varying sinusoidally in the north-south direction.
The Coriolis parameter, f, is defined according to latitude ¢

f(p) = 2Qsin(p)
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with the rotation rate, 2 set to 8621”6 43_1 (i.e., corresponding the to standard Earth rotation rate). The sinusoidal

wind-stress variations are defined according to

T2 (@) = —79 cos (27rg0 _ %>
L,

where L, is the lateral domain extent (60°), ¢, is set to 15°N and 79 is 0.1 N m~2. Figure 4.5 summarizes the
configuration simulated. As indicated by the axes in the lower left of the figure, the model code works internally
in a locally orthogonal coordinate (z,y, z). For this experiment description the local orthogonal model coordinate
(z,y, z) is synonymous with the coordinates (A, ¢, r) shown in Figure 1.20. Initially the fluid is stratified with a
reference potential temperature profile that varies from # = 30 °C in the surface layer to = 2 °C in the bottom layer.
The equation of state used in this experiment is linear:

p=po(l—ayld) (4.8)
which is implemented in the model as a density anomaly equation
p' = —pocgt) 4.9)

with pg = 999.8kgm > and oy = 2 x 10~* K. Given the linear equation of state, in this configuration the model
state variable for temperature is equivalent to either in-situ temperature, T, or potential temperature, 6. For consistency
with later examples, in which the equation of state is non-linear, here we use the variable 6 to represent temperature.

T 0.1 Nm> J =2Qsin75

H=1800 m
[ =2Qsinl5°

\ L,=60° \ /

Figure 4.5: Schematic of simulation domain and wind-stress forcing function for baroclinic gyre numerical experi-
ment. The domain is enclosed by solid walls.

Temperature is restored in the surface layer to a linear profile:
1 * * emaw - G’min
Fo=——(0-10"), 0" = ————(¢— o) (4.10)
T L,

where the relaxation timescale 79 = 30 days and 6,,,4, = 30° C, 0,5, = 0° C.
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4.2.1 Equations solved

For this problem the implicit free surface, HPE form of the equations (see Section 1.3.4.2; Section 2.4) described
in Marshall et al. (1997) [MHPA97] are employed. The flow is three-dimensional with just temperature, 6, as an
active tracer. The viscous and diffusive terms provides viscous dissipation and a diffusive sub-grid scale closure for
the momentum and temperature equations, respectively. A wind-stress momentum forcing is added to the momentum
equation for the zonal flow, u. Other terms in the model are explicitly switched off for this experiment configuration
(see Section 4.2.3). This yields an active set of equations solved in this configuration, written in spherical polar
coordinates as follows:

Du uv 1 op’ 0 ou
U g, W - @ (—A (a2 = F, 411
Dt fo a tan + Pc COS O + Vi (= AnViu) + 0z ( 82) 7 ( )
Dv u? 1 op 0 ov
- - Zr (= — [ —-A.=— ) = 4.12
Dt+fu+ atangaercaa@Jth ( Ahvhv)+az< Azaz> Fo (4.12)
on 1 OHu OHucosy
Zi = 4.13
ot  acose < oA * Op ) 0 +-13)
Do 0 00
1 + Vi (=6 Vi0) + 7 <H28z> = Fy (4.14)
0
P = gpen + / gp'dz (4.15)

where u and v are the components of the horizontal flow vector « on the sphere (u = \v= ), a is the distance from
the center of the Earth, p. is a fluid density (which appears in the momentum equations, and can be set differently
than pg in (4.9)), A;, and A, are horizontal and vertical viscosity, and xj, and ,, are horizontal and vertical diffusivity,
respectively. The terms Hu and H© are the components of the vertical integral term given in equation (1.35) and
explained in more detail in Section 2.4. However, for the problem presented here, the continuity relation (4.13) differs
from the general form given in Section 2.4, equation (2.10) because the source terms P — £ + R are all zero.

The forcing terms F,,, F,, and Fy are applied as source terms in the model surface layer and are zero in the interior.
The windstress forcing, F,, and F,, is applied in the zonal and meridional momentum equations, respectively; in this
configuration, F,, = pCTAIZS (where Az is the depth of the surface model gridcell), and F,, = 0. Similarly, Fy is
applied in the temperature equation, as given by (4.10).

In (4.15) the pressure field, p’, is separated into a barotropic part due to variations in sea-surface height, n, and a
hydrostatic part due to variations in density, p’, integrated through the water column. Note the g in the first term on the
right hand side is MITgem parameter gBaro whereas in the seond term g is parameter gravity; allowing for different
gravity constants here is useful, for example, if one wanted to slow down external gravity waves.

. . .. 2 . .
In the momentum equations, lateral and vertical boundary conditions for the V2 and % operators are specified in the
runtime configuration - see Section 4.2.3. For temperature, the boundary condition along the bottom and sidewalls is
zero-flux.

4.2.2 Discrete Numerical Configuration

The domain is discretized with a uniform grid spacing in latitude and longitude AX = Ay = 1°, so that there are 60
active ocean grid cells in the zonal and meridional directions. As in tutorial Barotropic Ocean Gyre, a border row of
land cells surrounds the ocean domain, so the full numerical grid size is 62x62 in the horizontal. The domain has 15
levels in the vertical, varying from Az = 50 m deep in the surface layer to 190 m deep in the bottom layer, as shown
by the faint red lines in Figure 4.5. The internal, locally orthogonal, model coordinate variables x and y are initialized
from the values of A, ¢, AX and Ay in radians according to:

x = acos(p)A, Az = acos(p)AX
y = ap, Ay = aly
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See Section 1.6.1 for additional description of spherical coordinates.

As described in Section 2.16, the time evolution of potential temperature 6 in (4.14) is evaluated prognostically. The
centered second-order scheme with Adams-Bashforth II time stepping described in Section 2.16.1 is used to step
forward the temperature equation.

Prognostic terms in the momentum equations are solved using flux form as described in Section 2.14. The pressure

forces that drive the fluid motions, %’;\ and %” , are found by summing pressure due to surface elevation 1 and the

hydrostatic pressure, as discussed in Section 4.2.1. The hydrostatic part of the pressure is diagnosed explicitly by
integrating density. The sea-surface height is found by solving implicitly the 2-D (elliptic) surface pressure equation
(see Section 2.4).

4.2.2.1 Numerical Stability Criteria

The analysis in this section is similar to that discussed in tutorial Barotropic Ocean Gyre, albeit with some added
wrinkles. In this experiment, we not only have a larger model domain extent, with greater variation in the Coriolis
parameter between the southernmost and northernmost gridpoints, but also significant variation in the grid Ax spacing.

In order to choose an appropriate time step, note that our smallest gridcells (i.e., in the far north) have Ax =~ 29 km,
which is similar to our grid spacing in tutorial Barotropic Ocean Gyre. Thus, using the advective CFL condition, first
assuming our solution will achieve maximum horizontal advection |¢,, 44| ~ 1 ms™)

imam At oqe
S, =2 ("') < 0.5 for stability (4.16)
Ax

we choose the same time step as in tutorial Barotropic Ocean Gyre, At = 1200 s (= 20 minutes), resulting in .S, = 0.08.
Also note this time step is stable for propagation of internal gravity waves: approximating the propagation speed as
V/g"h where ¢’ is reduced gravity (our maximum Ap using our linear equation of state is poagA# = 6 kg/m?) and h is
the upper layer depth (we’ll assume 150 m), produces an estimated propagation speed generally less than |¢p,q.| = 3
ms~! (see Adcroft 1995 [Adc95] or Gill 1982 [Gil82]), thus still comfortably below the threshold.

Using our chosen value of At, numerical stability for inertial oscillations using Adams-Bashforth II
S; = fAt < 0.5 for stability 4.17)

evaluates to 0.17 for the largest f value in our domain (1.4 x 10~% s7!), below the stability threshold.

To choose a horizontal Laplacian eddy viscosity Ay, note that the largest Az value in our domain (i.e., in the south) is
=~ 110 km. With the Munk boundary width as follows,

2w Ah %
M, =X (£ (4.18)
a(%)

in order to to have a well resolved boundary current in the subtropical gyre we will set A, = 5000 m
in a boundary current resolved across two to three grid cells in the southern portion of the domain.

2 57! This results

Given that our choice for Ay, in this experiment is an order of magnitude larger than in tutorial Barotropic Ocean Gyre,
let’s re-examine the stability of horizontal Laplacian friction:
ApAt

Sin =2 (4 5 > < 0.6 for stability (4.19)
Az

evaluates to 0.057 for our smallest Az, which is below the stability threshold. Note this same stability test also applies
to horizontal Laplacian diffusion of tracers, with rj, replacing Ay, but we will choose k;, < Ay, so this should not
pose any stability issues.

Finally, stability of vertical diffusion of momentum:
A, At

Sy =4 5 < 0.6 for stability (4.20)
Az
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Here we will choose A, = 1 x 1072 m? 57!, so S;,, evaluates to 0.02 for our minimum Az, well below the stability
threshold. Note if we were to use Adams Bashforth II for diffusion of tracers the same check would apply, with x,
replacing A,. However, we will instead choose an implicit scheme for computing vertical diffusion of tracers (see
Section 4.2.3.2), which is unconditionally stable.

4.2.3 Configuration

The model configuration for this experiment resides under the directory verification/tutorial_baroclinic_gyre/.
The experiment files

* verification/tutorial_baroclinic_gyre/code/packages.conf

* verification/tutorial_baroclinic_gyre/code/SIZE.h

* verification/tutorial_baroclinic_gyre/code/DIAGNOSTICS_SIZE.h

* verification/tutorial_baroclinic_gyre/input/data

* verification/tutorial_baroclinic_gyre/input/data.pkg

e verification/tutorial_baroclinic_gyre/input/data.mnc

* verification/tutorial_baroclinic_gyre/input/data.diagnostics

* verification/tutorial_baroclinic_gyre/input/eedata

* verification/tutorial_baroclinic_gyre/input/bathy.bin

* verification/tutorial_baroclinic_gyre/input/windx_cosy.bin

* verification/tutorial_baroclinic_gyre/input/SST_relax.bin

contain the code customizations, parameter settings, and input data files for this experiment. Below we describe these
customizations in detail.

4.2.3.1 Compile-time Configuration

File code/packages.conf

Listing 4.5: verification/tutorial_baroclinic_gyre/code/packages.conf

#-— list of packages (or group of packages) to compile for this experiment:
gfd

diagnostics

mnc

Here we specify which MITgcm packages we want to include in our configuration. gfd is a pre-defined “package
group” (see Using MITgcm Packages) of standard packages necessary for most setups; it is also the default compiled
packages setting and the minimum set of packages necessary for GFD-type setups. In addition to package group gfd
we include two additional packages (individual packages, not package groups), mnc and diagnostics. Package mnc is
required for output to be dumped in netCDF format. Package diagnostics allows one to choose output from a extensive
list of model diagnostics, and specify output frequency, with multiple time averaging or snapshot options available.
Without this package enabled, output is limited to a small number of snapshot output fields. Subsequent tutorial
experiments will explore the use of packages which expand the physical and scientific capabilities of MITgem, e.g.,
such as physical parameterizations or modeling capabilities for tracers, ice, etc., that are not compiled unless specified.
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File code/SIZE.h

Listing 4.6: verification/tutorial_baroclinic_gyre/code/SIZE.h

Q
oY)
O
av]

IROUTINE: SIZE.h

| INTERFACE:
include SIZE.h
IDESCRIPTION: \bv

* *

SIZE.h Declare size of underlying computational grid.

== == *

|

*

| The design here supports a three-dimensional model grid
| with indices I,J and K. The three-dimensional domain

| is comprised of nPxxnSx blocks (or tiles) of size sNx

| along the first (left-most index) axis, nPyxnSy blocks
| of size sNy along the second axis and one block of size
| Nr along the vertical (third) axis.

| Blocks/tiles have overlap regions of size OLx and OLy

| along the dimensions that are subdivided.

*

== == e ——————————————— *

\ev

Voodoo numbers controlling data layout:

QOO0 000000000000000000000a0

sNx :: Number of X points in tile.

sNy :: Number of Y points in tile.

OLx :: Tile overlap extent in X.

OLy :: Tile overlap extent in Y.

nSx :: Number of tiles per process in X.

nSy :: Number of tiles per process in Y.

nPx :: Number of processes to use in X.

nPy :: Number of processes to use in Y.

Nx :: Number of points in X for the full domain.
Ny :: Number of points in Y for the full domain.
Nr :: Number of points in vertical direction.

Q
53]
O
o

INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy
INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy

INTEGER Nx

INTEGER Ny

INTEGER Nr

PARAMETER (

& sNx = 31,
& sNy = 31,
& OLx = 2,
& OLy = 2,
& nsSx = 2,
& nsSy = 2,
& nbPx = 1,
& nPy = 1,
& Nx = sNxx*nSx*nPx,

(continues on next page)
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(continued from previous page)

Q

& Ny = sNyxnSyxnPy,

Nr = 15)
MAX_OLX :: Set to the maximum overlap region size of any array
MAX_OLY that will be exchanged. Controls the sizing of exch

routine buffers.
INTEGER MAX_OLX
INTEGER MAX_OLY
PARAMETER ( MAX_OLX = 0OLx,
& MAX_OLY OLy )

For this second tutorial, we will break the model domain into multiple tiles. Although initially we will run the model
on a single processor, a multi-tiled setup is required when we demonstrate how to run the model using either MPI or
using multiple threads.

The following lines calculate the horizontal size of the global model domain (NOT to be edited). Our values for SIZE.h
parameters below must multiply so that our horizontal model domain is 62 x62:

53

54

& Nx = sNxx*nSx*nPx,
& Ny

sNy*nSy*nPy,

Now let’s look at all individual SIZE.h parameter settings.

45

46

47

48

49

50

51

52

 Although our model domain is 62x62, here we specify the size of a single tile to be one-half that in both x

and y. Thus, the model requires four of these tiles to cover the full ocean sector domain (see below, where we
set nSx and nSy). Note that the grid can only be subdivided into tiles in the horizontal dimensions, not in the
vertical.

& sNx = 31,
& sNy = 31,

As in tutorial Barotropic Ocean Gyre, here we set the overlap extent of a model tile to the value 2 in both = and
y. In other words, although our model tiles are sized 31x31, in MITgcm array storage there are an additional 2
border rows surrounding each tile which contain model data from neighboring tiles. Some horizontal advection
schemes and other parameter and setup choices require a larger overlap setting (see Table 2.2). In our configu-
ration, we are using a second-order center-differences advection scheme (the MITgcm default) which does not
requires setting a overlap beyond the MITgcm minimum 2.

& OLx = 2,
& OLy = 2,

These lines set parameters nSx and nSy, the number of model tiles in the x and y directions, respectively, which
execute on a single process. Initially, we will run the model on a single core, thus both nSx and nSy are set to 2
so that all 2 x 2 = 4 tiles are integrated forward in time.

nsSx = 2,
& nsSy = 2,

These lines set parameters nPx and nPy, the number of processes to use in the = and y directions, respectively.
As noted, initially we will run using a single process, so for now these parameters are both set to 1.

& nPx = 1,
nPy = 1,

» Here we tell the model we are using 15 vertical levels.
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55 & Nr = 15)

File code/DIAGNOSTICS_SIZE.h

Listing 4.7: verification/tutorial_baroclinic_gyre/code/DIAGNOSTICS_SIZE.h

C Diagnostics Array Dimension
C ___________________________
C ndiagMax :: maximum total number of available diagnostics
C numlists :: maximum number of diagnostics list (in data.diagnostics)
C numperlist :: maximum number of active diagnostics per list (data.diagnostics)
C numLevels :: maximum number of levels to write (data.diagnostics)
C numDiags :: maximum size of the storage array for active 2D/3D diagnostics
C nRegions :: maximum number of regions (statistics-diagnostics)
C sizRegMsk :: maximum size of the regional-mask (statistics-diagnostics)
C nStats :: maximum number of statistics (e.g.: aver,min,max ...)
C diagSt_size:: maximum size of the storage array for statistics-diagnostics
C Note : may need to increase "numDiags" when using several 2D/3D diagnostics,
C and "diagSt_size" (statistics-diags) since values here are deliberately small.
INTEGER ndiagMax
INTEGER numlists, numperlist, numLevels
INTEGER numDiags
INTEGER nRegions, sizRegMsk, nStats
INTEGER diagSt_size
PARAMETER ( ndiagMax = 500 )
PARAMETER ( numlists = 10, numperlist = 50, numLevels=2xNr )

PARAMETER ( nRegions = 0 , sizRegMsk = 1 , nStats = 4 )

(
(

PARAMETER ( numDiags = 20xNr )
(

PARAMETER ( diagSt_size = 10%Nr )

CEH3 ;;; Local Variables: x#*%*
CEH3 ;;; mode:fortran x#*x*
CEH3 ;;; End: x#*x*

In the default version /pkg/diagnostics/DIAGNOSTICS_SIZE.h the storage array for diagnostics is purposely set quite
small, in other words forcing the user to assess how many diagnostics will be computed and thus choose an appropriate
size for a storage array. In the above file we have modified the value of parameter numDiags:

21 PARAMETER ( numDiags = 20%Nr )

from its default value 1«Nr, which would only allow a single 3-D diagnostic to be computed and saved, to 20+Nr,
which will permit up to some combination of up to 20 3-D diagnostics or 300 2-D diagnostic fields.
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4.2.3.2 Run-time Configuration

File input/data

Listing 4.8: verification/tutorial_baroclinic_gyre/input/data

# Model parameters

# Continuous equation parameters
&PARMO1
viscAh=5000.,
viscAr=1.E-2,
no_slip_sides=.TRUE.,
no_slip_bottom=.FALSE.,
diffKhT=1000.,
diffKrT=1.E-5,
ivdc_kappa=1.,
implicitDiffusion=.TRUE.,
eosType="'LINEAR',
tRef=30.,27.,24.,21.,18.,15.,13.,11.,9.,7.,6.,5.,4.,3.,2.,
tAlpha=2.E-4,
sBeta=0.,
rhoNil=999.8,
gravity=9.81,
rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,
exactConserv=.TRUE.,
saltStepping=.FALSE.,

# globalFiles=.TRUE.,
&

# Elliptic solver parameters
&PARMO2
cg2dTargetResidual=1.E-7,
cg2dMaxIters=1000,

&

# Time stepping parameters
&PARMO3
startTime=0.,
endTime=12000.,
deltaT=1200.,
pChkptFreg=622080000.,
chkptFreg=155520000.,
dumpFreg=31104000.,
monitorFreg=1200.,
monitorSelect=2,
tauThetaClimRelax=2592000.,

#-for longer run (100 yrs)

# endTime = 3110400000.,

# monitorFreg=2592000.,
&

# Gridding parameters

&PARMO0O4
usingSphericalPolarGrid=.TRUE.,
delX=62+1.,

delY=62x1.,

(continues on next page)
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(continued from previous page)

xgOrigin=-1.,
ygOrigin=14.,
delr=50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180.,190.,

&

&PARMOS

bathyFile='bathy.bin',
zonalWindFile="'windx_cosy.bin',
thetaClimFile='SST_relax.bin',

&

Parameters for this configuration are set as follows.

PARMO1 - Continuous equation parameters

* These lines set parameters viscAh and viscAr, the horizontal and vertical Laplacian viscosities respectively, to
5000 m? s7' and 1 x 1072 m? s™'. Note the subscript r is used for the vertical, reflecting MITgcm’s generic 7-
vertical coordinate capability (i.e., the model is capable of using either a z-coordinate or a p-coordinate system).

viscAh=5000.,
viscAr=1.E-2,

* These lines set parameters to specify the boundary conditions for momentum on the model domain sidewalls and
bottom. Parameter no_slip_sides is set to . TRUE ., i.e., no-slip lateral boundary conditions (the default), which
will yield a Munk (1950) [Mun50] western boundary solution. Parameter no_slip_bottom is set to .FALSE.,
i.e., free-slip bottom boundary condition (default is true). If instead of a Munk layer we desired a Stommel
(1948) [Sto48] western boundary layer solution, we would opt for free-slip lateral boundary conditions and
no-slip conditions along the bottom.

no_slip_sides=.TRUE.,
no_slip_bottom=.FALSE.,

* These lines set parameters diffKhT and diffKrT, the horizontal and vertical Laplacian temperature diffusivities
respectively, to 1000 m? s~! and 1 x 10~° m? s~!.The boundary condition on this operator is zero-flux at all
boundaries.

diffKhT=1000.,
diffKrT=1.E-5,

* By default, MITgcm does not apply any parameterization to mix statically unstable columns of water. In a
coarse resolution, hydrostatic configuration, typically such a parameterization is desired. We recommend a
scheme which simply applies (presumably, large) vertical diffusivity between statically unstable grid cells in
the vertical. This vertical diffusivity is set by parameter ivdc_kappa, which here we set to 1.0 m? s~!. This
scheme requires that implicitDiffusion is set to . TRUE. (see Section 2.6; more specifically, applying a large
vertical diffusivity to represent convective mixing requires the use of an implicit time-stepping method for
vertical diffusion, rather than Adams Bashforth II). Alternatively, a traditional convective adjustment scheme is
available; this can be activated through the cAdjFreq parameter, see Section 3.8.5.4.

ivdc_kappa=1.,
implicitDiffusion=.TRUE.,

* The following parameters tell the model to use a linear equation of state. Note a list of Nr (=15, from SIZE.h)
potential temperature values in °C is specified for parameter tRef, ordered from surface to depth. tRef is used
for two purposes here. First, anomalies in density are computed using this reference 0, 6’ (x,y, 2) = 0(z,y, 2) —
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Ore f(z); see use in (4.8) and (4.9). Second, the model will use these reference temperatures for its initial state,
as we are not providing a pickup file nor specifying an initial temperature hydrographic file (in later tutorials
we will demonstrate how to do so). For each depth level the initial and reference profiles will be uniform in x
and 3. Note when checking static stability or computing N2, the density gradient resulting from these specified
reference levels is added to Op’/0z from (4.9). Finally, we set the thermal expansion coefficient vy (tAlpha) as
used in (4.8) and (4.9), while setting the haline contraction coefficient (sBeta) to zero (see (4.8), which omits a
salinity contribution to the linear equation of state; like tutorial Barotropic Ocean Gyre, salinity is not included
as a tracer in this very idealized model setup).

12 eosType="LINEAR',

13 tRef=30.,27.,24.,21.,18.,15.,13.,11.,9.,7.,6.,5.,4.,3.,2.,
14 tAlpha=2.E-4,

15 sBeta=0.,

« This line sets parameter pg (rhoNil) to 999.8 kg/m?, the surface reference density for our linear equation of state,
i.e., the density of water at tRef(k=1). This value will also be used as p. (parameter thoConst) in (4.11)-(4.15),
lacking a separate explicit assignment of rhoConst in data. Note this value is the model default value for
rhoNil.

16 ’ rhoNil=999.8,

* This line sets parameter gravity, the acceleration due to gravity ¢ in (4.15), and this value will also be used to
set gBaro, the barotopic (i.e., free surface-related) gravity parameter which we set in tutorial Barotropic Ocean
Gyre. This is the MITgcm default value.

3

gravity=9.81,

* These lines set parameters which prescribe the linearized free surface formulation, similar to tutorial Barotropic
Ocean Gyre. Note we have added parameter exactConserv, set to . TRUE . : this instructs the model to recompute
divergence after the pressure solver step, ensuring volume conservation of the free surface solution (the model
default is NOT to recompute divergence, but given the small numerical cost, we typically recommend doing so).

18 rigidLid=.FALSE.,
19 implicitFreeSurface=.TRUE.,
20 exactConserv=.TRUE.,

* As in tutorial Barotropic Ocean Gyre, we suppress MITgem’s forward time integration of salt in the tracer
equations.

21 saltStepping=.FALSE.,
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PARMO2 - Elliptic solver parameters

These parameters are unchanged from tutorial Barotropic Ocean Gyre.

PARMO3 - Time stepping parameters

¢ In tutorial Barotropic Ocean Gyre we specified a starting iteration number nlterQ and a number of time steps to
integrate, nTimeSteps. Here we opt to use another approach to control run start and duration: we set a startTime
and endTime, both in units of seconds. Given a starting time of 0.0, the model starts from rest using specified
initial values of temperature (here, as previously noted, from the tRef parameter) rather than attempting to restart
from a saved checkpoint file. The specified value for endTime, 12000.0 seconds is equivalent to 10 time steps,
set for testing purposes. To integrate over a longer, more physically relevant period of time, uncomment the
endTime and monitorFreq lines located near the end of this parameter block. Note, for simplicity, our units
for these time choices assume a 360-day “year” and 30-day “month” (although lacking a seasonal cycle in
our forcing, defining a “year” is immaterial; we will demonstrate how to apply time-varying forcings in later
tutorials).

3 startTime=0.,
34 endTime=12000.,

# | #-for longer run (100 yrs)
4 | # endTime = 3110400000.,
4 |# monitorFreg=2592000.,

¢ Remaining time stepping parameter choices (specifically, At, checkpoint frequency, output frequency, and mon-
itor settings) are described in tutorial Barotropic Ocean Gyre; refer to the description here.

35 deltaT=1200.,

36 pChkptFregq=622080000.,
37 chkptFreg=155520000.,
38 dumpFreg=31104000.,

39 monitorFregq=1200.,

40 monitorSelect=2,

e The parameter tauThetaClimRelax sets the time scale, in seconds, for restoring potential temperature in the
model’s top surface layer (see (4.10)). Our choice here of 2,592,000 seconds is equal to 30 days.

41 tauThetaClimRelax=2592000.,

PARMO4 - Gridding parameters

* This line sets parameter usingSphericalPolarGrid, which specifies that the simulation will use spherical polar
coordinates (and affects the interpretation of other grid coordinate parameters).

49 usingSphericalPolarGrid=.TRUE.,

¢ These lines set the horizontal grid spacing, as vectors delX and delY (i.e., Az and Ay respectively), with units
of degrees as dictated by our choice usingSphericalPolarGrid. As before, this syntax indicates that we specify
62 values in both the = and y directions, which matches the global domain size as specified in SIZE.h. Our
ocean sector domain starts at 0° longitude and 15° N; accounting for a surrounding land row of cells, we thus
set the origin in longitude to —1.0° and in latitude to 14.0°. Again note that our origin specifies the southern
and western edges of the gridcell, not the cell center location. Setting the origin in latitude is critical given that it
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affects the Coriolis parameter f (which appears in (4.11) and (4.12)); the default value for ygOrigin is 0.0°. Note
that setting xgOrigin is optional, given that absolute longitude does not appear in the equation discretization.

50 delX=62+1.,
51 delY=62«1.,
52 xgOrigin=-1.,
53 ygOrigin=14.,

 This line sets parameter delR, the vertical grid spacing in the z-coordinate (i.e., Az), to a vector of 15 depths
(in meters), from 50 m in the surface layer to a bottom layer depth of 190 m. The sum of these specified depths
equals 1800 m, the full depth H of our idealized ocean sector.

54 delr=50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180.,190.,

PARMOS5 - Input datasets

e Similar to tutorial Barotropic Ocean Gyre, these lines specify filenames for bathymetry and surface wind stress
forcing files.

58 bathyFile='bathy.bin',
59 zonalWindFile="windx_cosy.bin',

* This line specifies parameter thetaClimFile, the filename for the (2-D) restoring temperature field.

60 thetaClimFile='SST_relax.bin',

File input/data.pkg
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Listing 4.9: verification/tutorial_baroclinic_gyre/input/data.pkg

# Packages (lines beginning "#" are comments)
&PACKAGES
useMNC=.TRUE.,
useDiagnostics=.TRUE.,
&

Here we activate two MITgcm packages that are not included with the model by default: package mnc (see Section
9.3) specifies that model output should be written in netCDF format, and package diagnostics (see Section 9.1) allows
user-selectable diagnostic output. The boolean parameters set are useMNC and useDiagnostics, respectively. Note
these add-on packages also need to be specified when the model is compiled, see Section 4.2.3.1. Apart from these
two additional packages, only standard packages (i.e., those compiled in MITgcm by default) are required for this
setup.

File input/data.mnc

Listing 4.10: verification/tutorial_baroclinic_gyre/input/data.mnc

# Example "data.mnc" file
&MNC_01
monitor_mnc=.FALSE.,
mnc_use_outdir=.TRUE.,
mnc_outdir_str='mnc_test_',
&

This file sets parameters which affect package pkg/mnc behavior; in fact, with pkg/mnc enabled, it is required (many
packages look for file data . «PACKAGENAME» and will terminate if not present). By setting the parameter moni-
tor_mnc to .FALSE. we are specifying NOT to create separate netCDF output files for pkg/monitor output, but rather
to include this monitor output in the standard output file (see Section 4.1.4). See Section 9.3.1.2 for a complete listing
of pkg/mnc namelist parameters and their default settings.

Note that unlike raw binary output, which overwrites any existing files, when using mnc output the model will create
new directories if the parameters mnc_use_outdir and mnc_outdir_str are set. However, if those parameters are not set
the model will terminate with an error if one attempts to overwrite an existing file (i.e., if re-running in a previous run
directory, one needs to delete all » . nc files before restarting).

File input/data.diagnostics

Listing 4.11: verification/tutorial_baroclinic_gyre/input/data.diagnostics

# Diagnostic Package Choices

# dumpAtLast (logical): always write output at the end of simulation (default=F)
# diag_mnc (logical): write to NetCDF files (default=useMNC)

#-—-for each output-stream:

# fileName (n) : prefix of the output file name (max 80c long) for outp.stream n
# frequency(n):< 0 : write snap-shot output every |frequency| seconds

# > 0 : write time-average output every frequency seconds

# timePhase (n) : write at time = timePhase + multiple of |frequency|

# averagingFreq : frequency (in s) for periodic averaging interval

# averagingPhase : phase (in s) for periodic averaging interval

(continues on next page)
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(continued from previous page)

# repeatCycle

# levels(:,n) list
# when
# fields(:,n) list
# (see
# missing_value (n)

# fileFlags (n)
o

&DIAGNOSTICS_LIST

number of averaging intervals in 1 cycle

of levels to write to

this entry is missing,
of selected diagnostics fields
"available_diagnostics.log"

file (Notes: declared as REAL)

select all common levels of this list
(8.c) in outp.stream n

file for the full list of diags)

missing value for real-type fields in output file "n"

specific code

(8c string)

for output file "n"

', "MXLDEPTH',

', "WVEL ',

fields(1:3,1) = 'ETAN ', 'TRELAX
fileName (1) = 'surfDiag',
frequency (1) = 31104000.,
fields (1:5,2) = 'THETA ', "PHIHYD ',
'UVEL ', "VVEL

# did not specify levels => all levels are selected
fileName (2) = 'dynDiag',
frequency (2) = 31104000.,

&

# ,,,,,,,,,,,,,,,,,,,,

# diagSt_mnc
# diagSt_regMaskFile
# nSetRegMskFile
# set_regMask (1)
# wval_regMask (i)

(logical) :

file containing the
number of region-mask
region-mask set-index

region "i" identifier

write stat-diags to NetCDF files

(default=diag_mnc)
region-mask to read-in

sets within the region-mask file
that identifies the region "i"
value in the region mask

#-—for each output-stream:

# stat_fName (n) prefix of the output file name (max 80c long) for outp.stream n

# stat_freg(n):< 0 write snap-shot output every |stat_freqgl| seconds

# > 0 write time-average output every stat_freq seconds

# stat_phase(n) write at time = stat_phase + multiple of |stat_freq]|

# stat_region(:,n) list of "regions" (default: 1 region only=global)

# stat_fields(:,n) list of selected diagnostics fields (8.c) in outp.stream n
# (see "available_diagnostics.log" file for the full list of diags)
# ____________________

&DIAG_STATIS_PARMS

stat_fields(1:2,1) = 'THETA ', "TRELAX ',
stat_fName (1) = 'dynStDiag',
stat_freqg(l) = 2592000.,

&

DIAGNOSTICS_LIST - Diagnostic Package Choices

In this section we specify what diagnostics we want to compute, how frequently to compute them, and the name
of output files. Multiple diagnostic fields can be grouped into individual files (i.e., an individual output file here is
associated with a ‘list’ of diagnostics).

fields(1:3,1) = 'ETAN ', '"TRELAX ', '"MXLDEPTH',
fileName (1) = 'surfDiag',
frequency (1) = 31104000.,

The above lines tell MITgem that our first list will consist of three diagnostic variables:

e ETAN - the linearized free surface height (m)
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» TRELAX - the heat flux entering the ocean due to surface temperature relaxation (W/m?)

* MXLDEPTH - the depth of the mixed layer (m), as defined here by a given magnitude decrease in density from
the surface (we’ll use the model default for Ap)

Note that all these diagnostic fields are 2-D output. 2-D and 3-D diagnostics CANNOT be mixed in a diagnostics
list. These variables are specified in parameter fields: the first index is specified as 1: «NUMBER_OF_DIAGS»,
the second index designates this for diagnostics list 1. Next, the output filename for diagnostics list 1 is specified in
variable fileName. Finally, for this list we specify variable frequency to provide time-averaged output every 31,104,000
seconds, i.e., once per year. Had we entered a negative value for frequency, MITgcm would have instead written
snapshot data at this interval. Next, we set up a second diagnostics list for several 3-D diagnostics.

fields(1:5,2) = 'THETA ', '"PHIHYD ',
'"UVEL ', '"VVEL ', "WVEL ',
# did not specify levels => all levels are selected
fileName (2) = 'dynDiag',
frequency (2) = 31104000.,

The diagnostics in list 2 are:
» THETA - potential temperature (°C )
» PHYHYD - hydrostatic pressure potential anomaly (m?/s?)
* UVEL, VVEL, WVEL - the zonal, meridional, and vertical velocity components respectively (m/s)

Here we did not specify parameter levels, so all depth levels will be included in the output. An example of syntax
to limit which depths are outputis levels (1:5,2) = 1.,2.,3.,, which would dump just the top three levels.
We again specify an output file name via parameter fileName, and specify a time-average period of one year through
parameter frequency.

DIAG_STATIS_PARMS - Diagnostic Per Level Statistics

It is also possible to request output statistics averaged for global mean and by level average (for 3-D diagnostics) over
the full domain, and/or for a pre-defined (x,y) region of the model grid. The statistics computed for each diagnostic
are as follows:

* (area weighted) mean (in both space and time, if time-averaged frequency is selected)

¢ (area weighted) standard deviation

* minimum value

* maximum value

* volume of the area used in the calculation (multiplied by the number of time steps if time-averaged).

While these statistics could in theory also be calculated (by the user) from 2-D and 3-D DIAGNOSTICS_LIST output,
the advantage is that much higher frequency statistical output can be achieved without filling up copious amounts of
disk space.

Options for namelist DIAG_STATIS_PARMS are set as follows:

stat_fields(1:2,1) = 'THETA ', '"TRELAX ',
stat_fName (1) = 'dynStDiag',
stat_freqg(l) = 2592000.,

The syntax here is analogous with DIAGNOSTICS_LIST namelist parameters, except the parameter names begin
with stat (here, stat_fields, stat_fName, stat_freq). Frequency can be set to snapshot or time-averaged output, and
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multiple lists of diagnostics (i.e., separate output files) can be specified. The only major difference from DIAGNOS-
TICS_LIST syntax is that 2-D and 3-D diagnostics can be mixed in a list. As noted, it is possible to select limited
horizontal regions of interest, in addition to the full domain calculation.

File input/eedata

Listing 4.12: verification/tutorial_baroclinic_gyre/input/eedata

# Example "eedata" file
# Lines beginning "#" are comments
# nTx :: No. threads per process in X
# nTy :: No. threads per process in Y
# debugMode :: print debug msg (sequence of S/R calls)
&EEPARMS
nTx=1,
nTy=1,
&
# Note: Some systems use & as the namelist terminator (as shown here).
# Other systems use a / character.

As shown, this file is configured for a single-threaded run, but will be modified later in this tutorial for a multi-threaded
setup (Section 4.2.6).

Files input /bathy.bin, input/windx_cosy.bin

The purpose and format of these files is similar to tutorial Barotropic Ocean Gyre, and were generated by matlab
script verification/tutorial_baroclinic_gyre/input/gendata.m. See Section 3.9 for additional information on MITgcm
input data file format specifications.

File input/SST_relax.bin

This file specifies a 2-D(x,y) map of surface relaxation temperature values, as generated by verifica-
tion/tutorial_baroclinic_gyre/input/gendata.m.

4.2.4 Building and running the model

To build and run the model on a single processor, follow the procedure outlined in Section 4.1.4. To run the model
for a longer period (i.e., to obtain a reasonable solution; for testing purposes, by default the model is set to run only a
few time steps) uncomment the lines in data which specify larger numbers for parameters endTime and monitorFreq.
This will run the model for 100 years, which will likely take several hours on a single processor (depending on your
computer specs); below we also give instructions for running the model in parallel either using MPI or multi-threaded
(OpenMP), which will cut down run time significantly.
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4.2.4.1 Output Files

As in tutorial Barotropic Ocean Gyre, standard output is produced (redirected into file output . txt as specified
in Section 4.1.4); like before, this file includes model startup information, parameters, etc. (see Section 4.1.4.1).
And because we set monitor_mnc =.FALSE. in data.mnc, our standard output file will include all monitor statistics
output. Note monitor statistics and cg2d information are evaluated over the global domain, despite the bifurcation of
the grid into four separate tiles. As before, the file STDERR. 0000 will contain a log of any run-time errors.

With pkg/mnc compiled and activated in data . pkg, other output is in netCDF format: grid information, snapshot
output specified in data, diagnostics output specified in data.diagnostics and separate files containing hy-
drostatic pressure data (see below). There are two notable differences from standard binary output. Recall that we
specified that the grid was subdivided into four separate tiles (in S/ZE.h); instead of a . XXX .YYY . file naming scheme
for different tiles (as discussed here), with pkg/nmc the file names contain . t «nnn» . where «nnn» is the tile number.
Secondly, model data from multiple time snapshots (or periods) is included in a single file. Although an iteration
number is still part of the file name (here, 0000000000), this is the iteration number at the start of the run (instead
of marking the specific iteration number for the data contained in the file, as the case for standard binary output). Note
that if you dump data frequently, standard binary can produce huge quantities of separate files, whereas using netCDF
will greatly reduce the number of files. On the other hand, the netCDF files created can instead become quite large.

To more easily process and plot our results as a single array over the full domain, we will first reassemble the in-
dividual tiles into a new netCDF format global data file. To accomplish this, we will make use of utility script
utils/python/MITgcmutils/scripts/gluemncbig. From the output run directory, type:

oe

In -s ../../../utils/python/MITgcmutils/scripts/gluemncbig .
./gluemncbig -o grid.nc mnc_test_x/grid.t*.nc

./gluemncbig -o state.nc mnc_test_=*/statex.t*.nc
./gluemncbig -o dynDiag.nc mnc_test_x/dynDiag*.t*.nc
./gluemncbig -o surfDiag.nc mnc_test_x/surfDiagx.t*.nc
./gluemncbig -o phiHyd.nc mnc_test_=*/phiHydx*.t*.nc
./gluemncbig -o phiHydLow.nc mnc_test_*/phiHydLow*.t*.nc

o o o0 oo o

oe

For help using this utility, type gluemncbig —--help; note a python installation must for available for this script
to work. The files grid.nc, state.nc, etc. are concatenated from the separate t001, £t002, t003, £004 files
into global grid files of horizontal dimension 62x62.

Let’s proceed through the netcdf output that is produced.

* grid.nc - includes all the model grid variables used by MITgcm. This includes the grid cell center points
and separation (XC, YC, dxC, dyC), corner point locations and separation (XG, YG, dxG, dyG), the separation
between velocity points (dyU, dxV), vertical coordinate location and separation (RC, RF, drC, drF), grid cell
areas (rA, rAw, rAs, rAz), and bathymetry information (Depth, HFacC, HFacW, HFacS). See Section 2.11 for
definitions and description of the C grid staggering of these variables. There are also grid variables in vector
form that are not used in the MITgcm source code (X, Y, Xpl, Ypl, Z, Zpl, Zu, Zl); see description in grid.
nc. The variables named p1 include an additional data point and are dimensioned +1 larger than the standard
array size; for example, Xp1 is the longitude of the gridcell left corner, and includes an extra data point for the
last gridcell’s right corner longitude.

* state.nc - includes snapshots of state variables U, V, W, Temp, S, and Eta at model times T in seconds
(variable iter(T) stores the model iteration corresponding with these model times). Also included are vector
forms of grid variables X, Y, Z, Xpl, Ypl, and ZI. As mentioned, in model output-by-tile files, e.g., state.
0000000000.t001.nc, theiteration number 0000000000 is the parameter nlterO for the model run (recall,
we initialized our model with nlter) =0). Snapshots of model state are written for model iterations 0, 25920,
51840, ... according to our data file parameter choice dumpFreq (dumpFreg/deltaT = 25920).

e surfDiag.nc - includes output diagnostics as specified from list 1 in data.diagnostics. Here we specified
that list 1 include 2-D diagnostics ETAN, TRELAX, and MXLDEPTH. Also includes an array of model times
corresponding to the end of the time-average period, the iteration number corresponding to these model times,
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and vector forms of grid variables which describe these data. A Z index is included in the output arrays, even
though its dimension is one (given that this list contains only 2-D fields).

* dynDiag.nc - similar to surfDiag.nc except this file contains the time-averaged 3-D diagnostics we spec-
ified in list 2 of data.diagnostics: THETA, PHIHYD, UVEL, VVEL, WVEL.

e phiHyd.nc, phiHydLow.nc - these files contain a snapshot 3-D field of hydrostatic pressure potential
anomaly (p’/p., see Section 1.3.6) and a snapshot 2-D field of bottom hydrostatic pressure potential anomaly,
respectively. These are technically not MITgcm state variables, as they are computed during the time step (nor-
mal snapshot state variables are dumped after the time step), ergo they are not included in file state.nc. Like
state.nc output however these fields are written at interval according to dumpFreq, except are not written
out at time nlter0 (i.e., have one time record fewer than state.nc). Also note when writing standard binary
output, these filenames begin as PH and PHL respectively.

The hydrostatic pressure potential anomaly ¢’ is computed as follows:

1 O
¢ = o <pcgn + / (p— po)gd2>

following (4.8), (4.9) and (4.15). Note that with the linear free surface approximation, the contribution of the free
surface position 7 to ¢’ involves the constant density p. and not the density anomaly p’, in contrast with contributions
from below z = 0.

Several additional files are output in standard binary format. These are:

RhoRef.data, RhoRef.meta -thisisa 1-D (k=1...Nr) array of reference density, defined as:

Pref(k) = pPo (1 - O‘G(aref(k) - aref(l)))

PHrefC.data, PHrefC.meta, PHrefF.data, PHrefF.meta -these are 1-D (k=1...Nr for PHrefC and
k=1...Nr+1 for PHrefF) arrays containing a reference hydrostatic “pressure potential” ¢ = p/p. (see Section 1.3.6).
Using a linear equation of state, PHrefC is simply %Clzl’ with output computed at the midpoint of each vertical
cell, whereas PHre fF is computed at the surface and bottom of each vertical cell. Note that these quantities are not
especially useful when using a linear equation of state (to compute the full hydrostatic pressure potential, one would
use RhoRef and integrate downward, and add phiHyd, rather than use these fields), but are of greater utility using a
non-linear equation of state.

pickup.ckptA.001.001.data, pickup.ckptA.001.001.meta, pickup.0000518400.001.001.
data, pickup.0000518400.001.001.meta etc. - as described in detail in rutorial Barotropic Gyre, these
are temporary and permanent checkpoint files, output in binary format. Note that separate checkpoint files are written
for each model tile.

And finally, because we are using the diagnostics package, upon startup the file available_diagnostics.log
will be generated. This (plain text) file contains a list of all diagnostics available for output in this setup, including a
description of each diagnostic and its units, and the number of levels for which the diagnostic is available (i.e., 2-D or
3-D field). This list of available diagnostics will change based on what packages are included in the setup. For example,
if your setup includes a seaice package, many seaice diagnostics will be listed in available_diagnostics.log
that are not available for our tutorial Baroclinic Gyre setup.
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4.2.5 Running with MPI

In the verification/tutorial_baroclinic_gyre/code  directory there is a  alternate file  verifica-
tion/tutorial _baroclinic_gyre/code/SIZE.h_mpi. Overwrite verification/tutorial_baroclinic_gyre/code/SIZE.h
with this file and re-compile the model from scratch (the most simple approach is to create a new build directory
build_mpi; if instead you wanted to re-compile in your existing build directory, you should make CLEAN first,
which will delete any existing files and dependencies you had created previously):

% ../../../tools/genmake2 -mods ../code -mpi -of=«/PATH/TO/OPTFILE»
% make depend
% make

Note we have added the option —mpi to the genmake2 command that generates the makefile. A successful build
requires MPI libraries installed on your system, and you may need to add to your $PATH environment variable and/or
set environment variable $MPI_INC_DIR (for more details, see Section 3.5.4). If there is a problem finding MPI
libraries, genmake?2 output will complain.

Several lines in verification/tutorial_barotropic_gyre/code/SIZE.h_mpi are different from the standard version. First,
we change nSx and nSy to 1, so that each process integrates the model for a single tile.

49 & nsSx = 1,
50 & nsSy = 1,

Next, we we change nPx and nPy so that we use two processes in each dimension, for a total of 2 x 2 = 4 processes.
Effectively, we have subdivided the model grid into four separate tiles, and the model equations are solved in parallel
on four separate processes (presumably, on a unique physical processor or core). Because of the overlap regions (i.e.,
gridpoints along the tile edges are duplicated in two or more tiles), and limitations in the transfer speed of data between
processes, the model will not run 4 x faster, but should be at least 2-3x faster than running on a single process.

51 & nPx = 2,
52 & nPy = 2,

Finally, to run the model (from your run directory), using four processes running in parallel:

)

% mpirun -np 4 ../build_mpi/mitgcmuv

On some systems the MPI run command (and the subsequent command-line option —np) might be something other
than mpi run; ask your local system administrator. When using a large HPC cluster, prior steps might be required to
allocate four processors to your job, and/or it might be necessary to write this command within a batch scheduler script;
again, check with your local system documentation or system administrator. If four processors are not available when
you execute the above mpirun command, an error will occur. It is no longer necessary to redirect standard output to
a file such as output . t xt; rather, separate STDOUT . xxxx and STDERR. xxxx files are created by each process,
where xxxx is the process number (starting from 0000). Other than some additional MPI-related information, the
standard output content is identical to that from the single-process run.

4.2.6 Running with OpenMP

To run multi-threaded (using shared memory, OpenMP), the original SIZE.h file is used. In our example, for com-
patibility with MITgcem festing protocols, we will run using two separate threads, but the user should feel free to
experiment using four threads if their local machine contains four cores. Like the previous section we must first re-
compile the executable from scratch, using a special command line option (for this configuration, —omp). However
it is not necessary to specify how many threads at compile-time (unlike MPI, which requires specific processor count
information to be set in SIZE.h). Create and navigate into a new build directory build_openmp and type:
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% ../../../tools/genmake2 -mods ../code -omp -of=«/PATH/TO/OPTFILE»
% make depend
% make

In a run directory, overwrite the contents of eedata with file verification/tutorial_baroclinic_gyre/input/eedata.mth.
The parameter nTy is changed; we now specify to use two threads across the y-domain. Since our model domain
is subdivided into four tiles, each thread will now integrate two tiles in the x-domain. Alternatively, to run a multi-
threaded example using four threads, both lines should be set to 2.

8 nTx=1,
9 nTy=2,

To run the model, we first need to set two environment variables, before invoking the executable:

oe

export OMP_STACKSIZE=400M
export OMP_NUM_THREADS=2
../build_openmp/mitgcmuv >output.txt

o\

o°

Your system’s environment variables may differ from above; see Section 3.6.2 and/or ask your system administrator
(also note, above is bash shell syntax; different syntax is required for C shell). The important point to note is that we
must tell the operating system environment how many threads will be used, prior to running the executable. The total
number of threads set in OMP_NUM_THREADS must match nTx * nTy as specified in file eedata. Moreover, the
model domain must be subdivided into sufficient number of tiles in SIZE.h through the choices of nSx and nSy: the
number of tiles (nSx * nSy) must be equal to or greater than the number of threads. More specifically, nSx must be
equal to or an integer multiple of nTx, and nSy must be equal to or an integer multiple of nTy.

Also note that at this time, pkg/mnc is automatically disabled for multi-threaded setups, so output is dumped in
standard binary format (i.e., using pkg/msdio). You will receive a gentle warning message if you run this multi-
threaded setup and keep useMNC set to . TRUE. in data.pkg. The full filenames for grid variables (e.g., XC, YC,
etc.), snapshot output (e.g., Eta, T, PHL) and pkg/diagnostics output (e.g., surfDiag, oceStDiag, etc.) include
a suffix that contains the time iteration number and tile identification (tile 001 includes .001.001 in the filename,
tile 002 .002.001, tile 003 .001.002, and tile 004 .002.002). Unfortunately there is no analogous script to
utils/python/MITgcmutils/scripts/gluemncbig to concatenate raw binary files, but it is relatively straightforward to do
so in matlab (reading in files using utils/matlab/rdmds.m), or equally simple in python — or, one could simply set
globalFiles to . TRUE. and the model will output global files for you (note, this global option is not available for
pkg/mnc output). One additional difference between pkg/msdio and pkg/mnc is that Diagnostics Per Level Statistics
are written in plain text, not binary, with pkg/msdio.

4.2.7 Model solution

In this section, we will examine details of the model solution, using annual mean time average data provided in
diagnostics files dynStDiag.nc, dynDiag.nc, and surfDiag.nc. See companion matlab file or python file
which shows example code to create figures plotted in this section.

Our ocean sector model is forced mechanically by wind stress and thermodynamically though temperature relaxation
at the surface. As such, we expect our solution to not only exhibit wind-driven gyres in the upper layers, but also
include a deep, overturning circulation. Our focus in this section will be on the former; this component of the solution
equilibrates on a time scale of decades, more or less, whereas the deep cell depends on a slower, diffusive timescale.
We will begin by examining some of our Diagnostics Per Level Statistics output, to assess how close we are to
equilibration at different ocean model levels. Recall we’ve requested these statistics to be computed monthly.

Load diagnostics TRELAX_ave, THETA_lv_avg, and THETA_1lv_std from file dynStDiag.nc. In Figure
4.6a we plot the global model surface mean heat flux (TRELAX_ave) as a function of time. At the beginning of the
run, we observe that the ocean is cooling dramatically; this is mainly because our ocean surface layer is initialized to
a uniform 30° C (as specified /ere), which results in very strong relaxation initially in the northern portion of ocean
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model, where the restoring temperature is just above 0° C. (As an aside comment, such large initialization shocks are
often best avoided if possible, as they may cause model instability, which may necessitate smaller time steps at model
onset and/or more realistic initial conditions.) However, this initial burst of cooling quickly diminishes over the first
decade of integration, as the surface layer approaches temperature values close to the specified profile; see Figure 4.6b
where the mean temperature at surface, thermocline, and abyssal depth are plotted as a function of time. Note that
while the total heat flux shows that the global heat content is slowly decreasing, even after 100 years, the temperature
of the deepest water is slowly warming. In Figure 4.6¢ we plot standard deviation of temperature (by level) over time.
Given that each level is initialized at uniform temperature, initially the standard deviation is zero, but should tend to
level off at some non-zero value over time, as the solution at each depth equilibrates. Not surprisingly, the largest
gradients in temperature exist at the surface, whereas in the abyss the differences in temperature are quite small. In
summary, we conclude that while the surface appears to approach equilibrium rapidly, even after 100 years there are
changes occurring in deep circulation, presumably related to the meridional overturning circulation. We leave it as
an exercise to the reader to integrate the solution further and/or examine and calculate the meridional overturning
circulation strength over time.

Next, let’s examine the effect of wind stress on the ocean’s upper layers. Given the orientation of the wind stress and
its variation over a full sine wave as shown in Figure 4.5 (crudely mimicking easterlies in the tropics, mid-latitude
westerlies, and polar easterlies), we anticipate a double-gyre solution, with a subtropical gyre and a subpolar gyre.
Let’s begin by examining the free surface solution (load diagnostics ETAN and TRELAX from file surfDiag.nc).
In Figure 4.7 we show contours of free surface height (ETAN; this is what we plotted in our barotropic gyre tutorial
solution) overlaying a 2-D color plot of TRELAX (red is where heat is released from the ocean, blue where heat
enters the ocean), averaged over year 100. Note that a subtropical gyre is readily apparent, as suggested by geostropic
currents in balance with the free surface elevation (not shown, but the reader is encouraged to load diagnostics UVEL
and VVEL and plot the circulation at various levels). Heat is entering the ocean mainly along the southern boundary,
where upwelling of cold water is occurring, but also along the boundary current between 50°N and 65°N, where we
would expect southward flow (i.e., advecting water that is colder than the local restoring temperature). Heat is exiting
the ocean where the western boundary current transports warm water northward, before turning eastward into the
basin at 40°N, and also weakly throughout the higher latitude bands, where deeper mixed layers occur (not shown, but
variations in mixed layer depth can be easily visualized by loading diagnostic MXLDEP TH).

So what happened to our model solution subpolar gyre? Let’s compute depth-integrated velocity Uy, V3 (units: m?
s™1) and use it calculate the barotropic transport streamfunction:

v _ov
aya bt_(%c

Compute Up; by summing the diagnostic UVEL multiplied by gridcell depth (grid.nc variable drF, i.e., the sep-
aration between gridcell faces in the vertical). Now do a cumulative sum of —Uy,; times the gridcell spacing the in
the y direction (you will need to load grid.nc variable dyG, the separation between gridcell faces in y). A plot of
the resulting W field is shown in Figure 4.8. Note one could also cumulative sum V},; times the grid spacing in the
z-direction and obtain a similar result.

Upt = —

When velocities are integrated over depth, the subpolar gyre is readily apparent, as might be expected given our wind
stress forcing profile. The pattern in Figure 4.8 in fact resembles the double-gyre free surface solution we observed in
Figure 4.4 from tutorial Barotropic Ocean Gyre, when our model grid was only a single layer in the vertical.

Is the magnitude of ¥ we obtain in our solution reasonable? To check this, consider the Sverdrup transport:
VX T

B

If we plug in a typical mid-latitude value for 3 (2 x 101! m™! s™') and note that 7 varies by 0.1 Nm™ over 15° latitude,
and multiply by the width of our ocean sector, we obtain an estimate of approximately 20 Sv. This estimate agrees
reasonably well with the strength of the circulation in Figure 4.8.

PUbt =k
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Figure 4.6: a) Surface heat flux due to temperature restoring, negative values indicate heat flux out of the ocean; b)
and c) potential temperature mean and standard deviation by level, respectively.
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Figure 4.7: Contours of free surface height (m) averaged over year 100; shading is surface heat flux due to temperature
restoring (W/m?), blue indicating cooling.
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Figure 4.8: Barotropic streamfunction (Sv) as computed over year 100.

Finally, let’s examine the model solution potential temperature field averaged over year 100. Read in diagnostic
THETA from the file dynDiag.nc. Figure 4.9a shows a plan view of temperature at 220 m depth (vertical level
k=4). Figure 4.9b shows a slice in the zz plane at 28.5°N (y-dimension j=15), through the center of the subtropical

gyre.

The dynamics of the subtropical gyre are governed by Ventilated Thermocline Theory (see, for example, Pedlosky
(1996) [Ped96] or Vallis (2017) [Vall7]). Note the presence of warm “mode water”” on the western side of the basin;
the contours of the warm water in the southern half of the sector crudely align with the free surface heights we observed
in Figure 4.8. In Figure 4.9b note the presence of a thermocline, i.e., the bunching up of the contours between 200 m
and 400 m depth, with weak stratification below the thermocline. What sets the penetration depth of the subtropical
gyre? Following a simple advective scaling argument (see Vallis (2017) [Vall7] or Cushman-Roisin and Beckers
(2011) [CRBI11]; this is obtained via thermal wind and the linearized barotropic vorticity equation), the depth of the
thermocline h should scale as:

h— (wef%)? _ <(T/Ly)fLm >
BAb B’

where w, is a representive value for Ekman pumping, Ab = gp’/pq is the variation in buoyancy across the gyre, and
L, and L, are length scales in the x and y directions, respectively. Plugging in applicable values at 30°N, we obtain
an estimate for h of 200 m, which agrees quite well with that observed in Figure 4.9b.
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Figure 4.9: Contour plot of potential temperature at year 100 a) at a depth of 220 m and b) through a section at 28.5°N.
Contour interval is 2K.

4.3 Southern Ocean Reentrant Channel Example

(in directory verification/tutorial_reentrant_channel/)

This example experiment simulates flow through a reentrant channel, crudely mimicking the Antartic Circumpolar
Current. The fluid is forced by a zonal wind stress, 7., that varies sinusoidally in the north-south direction and is
constant in time, and by temperature relaxation at the surface and northern boundary. The grid is Cartesian and the
Coriolis parameter f is defined according to a mid-latitude beta-plane equation f(y) = fo + By ; here we choose
fo < 0 to place our domain in the Southern Hemisphere. A linear EOS is used with density only depending on T, and
there is no sea ice.

Although important aspects of the of the Southern Ocean and Antarctic Circumpolar Current were realized in the
early 20th Century (e.g., Sverdrup 1933 [Sve33]), understanding this system has been a major research focus in recent
decades. Many significant breakthroughs in understanding its dynamics, role in the global ocean circulation, and role
in the climate system have been achieved (e.g., Marshall and Radko 2003 [MRO03]; Olbers and Visbeck 2004 [OV04];
Marshall and Speer 2012 [MS12]; Nikurashin and Vallis 2012 [NV 12]; Armour et al. 2016 [AMS+16];Sallée 2018
[Sal18]). Much of this understanding came about using simple, idealized reentrant channel models in the spirit of the
model described in this tutorial. The configuration here is fairly close to that employed in Abernathy et al. (2011)
[AMF11] (using the MITgcm) with some important differences, such as our introduction of a deep north-south ridge.

We assume the reader is familiar with a basic MITgem setup, as introduced in tutorial Barotropic Ocean Gyre and
tutorial Baroclinic Ocean Gyre. Although the setup here is again quite idealized, we introduce many new features
and capabilities of MITgcm. Novel aspects include using MITgem packages to augment the physical modeling ca-
pabilities, discussion of partial cells to represent topography, and an introduction to the layers diagnostics package
(/pkg/layers). Our initial focus is on running and comparing coarse-resolution solutions with and without activating
the Gent-McWilliams (“GM”) (1990) [GM90] mesoscale eddy parameterization (/pkg/gmredi). As first noted in Dan-
abashoglu et al. (1994) [DMG94], use of GM in coarse resolution models improves global temperature distribution,
poleward and surface heat fluxes, and locations of deep-water formation (see also the Gent 2011 [Gen| 1] perspective
on two decades GM usage in ocean models). At the end of this tutorial, we will describe how to increase resolution
to an eddy-permitting regime, detailing the few necessary changes in code and parameters, and examine this high-
resolution solution. In our discussion, our focus will be on highlighting how the representation of mesoscale eddies
plays a significant role in governing the equilibrium state.

Below we describe the idealized configuration in detail (see Figure 4.10). The sinusoidal wind-stress variations are
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defined thus:

T2 (y) = 70 sin Lw ,
2L,

where L, is the lateral domain extent and 7y is set to 0.2 N m~2. Surface temperature restoring varies linearly from
10 °C at the northern boundary to -2 °C at the southern end. A wall is placed at the southern boundary of our domain,
thus our setup is only reentrant in the east-west direction. Because MITgcm assumes a periodic domain in both the
east-west and north-south directions, our southern wall effectively functions as a wall at the northern boundary as
well. The full water column in the northern boundary is a “sponge layer”; relaxing temperature though the full water
column will partially constrain the stratification, and in the eddy-permitting solution will absorb any eddies reaching
the northern boundary (truly acting as a “sponge”). As shown in Figure 4.10, a north-south ridge runs through the
bottom topography, which is otherwise flat with a depth H of 3980 m. A sloping notch cuts through the middle of
the ridge; in the latitude band where the notch exists, potential vorticity f/H contours are unblocked, which permits
a vigorous zonal barotropic jet. Shaved cells are used to represent the topography.

7

Tt N\
2

-1500 H=3980 m

Reentrant

%aknnel

Figure 4.10: Schematic of simulation domain, bottom topography, and wind-stress forcing function for the idealized
reentrant channel numerical setup. A full-depth solid wall at 4y = 0 is not shown; because MITgcm is also periodic in
the north-south direction, this acts as a wall on the north boundary.

Similar to both tutorial Barotropic Ocean Gyre and tutorial Baroclinic Ocean Gyre, we use a linear equation of state
which is a function of temperature only (temperature is our only model tracer field). Figure 4.11 shows initial con-
ditions in temperature at the northern and southern end of the domain. Initial temperature decreases exponentially
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from the relaxation SST profile to -2 °C at depth H. Note that this same northern boundary profile is used to restore
temperature in the model’s sponge layer, as discussed above.

0 Temperature: Initial Conditions
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Figure 4.11: Initial conditions in temperature at the northern and southern boundaries. Note this same northern
boundary profile is used as relaxation temperature in the model’s sponge layer.

4.3.1 Equations Solved
The active set of equations solved is identical to those employed in tutorial Baroclinic Ocean Gyre (i.e., hydrostatic

with an implicit linearized free surface), except here we use standard Cartesian geometry rather than spherical polar
coordinates:

/
Du —fu+ Lov + Vi - (AR Vpu) + % <Azau> =Fu

Dt pe O 0z @21)
Dv 1 op/ 0 Ov ’
Dt + fu+ EFy + Vi (—ApViv) + 92 <—Azaz) =F,
6” =
5+ (#ii) =0
Do 0 ol
Ft + V- (*Iihvhe) -+ % <H282’> =Fo 4.22)
0
P = gpen + / gp'dz (4.23)

Forcing term F,, is applied as a source term in the model surface layer and zero in the interior, and source term F,, is
zero everywhere. The forcing term Fy is applied as temperature relaxation in the surface layer and throughout the full
depth in the two northern-most rows (in the coarse resolution setup) of the model domain.
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4.3.2 Discrete Numerical Configuration

The coarse-resolution domain is discretized with a uniform Cartesian grid spacing in the horizontal set to Az =
Ay = 50 km, so that there are 20 grid cells in the = direction and 40 in the y direction. There are 49 levels in
the vertical, ranging from 5.5 m depth at the surface to 149 m at depth. An “optimal grid” vertical spacing here
was generated using the hyperbolic tangent method of Stewart et al. (2017) [SHG+17], implemented in Python at
https://github.com/kialstewart/vertical_grid_for_ocean_models, based on input parameters of ocean depth (4000 m),
minimum (surface) depth (5 m), and maximum depth (150 m). In ocean modeling, it is generally advantageous to
have finer resolution in the upper ocean (as was also done previously in tutorial Baroclinic Ocean Gyre), but note that
the transition to deeper layers should be done gradually, in the interests of solution fidelity and stability. Although our
topography is idealized, the topography is not a priori discretized to levels matching the vertical grid, and we make
use of MITgcm’s ability to represent “partial cells” (see Section 2.11.6).

Otherwise, the numerical configuration is similar to that of tutorial Baroclinic Ocean Gyre), with an important dif-
ference: we use a high-order advection scheme (“7th order one-step method w/limiter”, tempAdvScheme parameter
code 7) for potential temperature instead of center second-ordered differences (which is used in tutorials Barotropic
Ocean Gyre and Baroclinic Ocean Gyre and is the model default). This will enable us to use the same numerical
scheme in both coarse-resolution and eddy-permitting simulations. Note that this advection scheme does NOT use
Adams-Bashforth time stepping for potential temperature, instead using its own time stepping scheme. The fixed flux
form of the momentum equations are solved, as described in Section 2.14, with an implicit linear free surface (Section
2. 4) Laplaman diffusion of tracers and momentum is employed. The pressure forces that drive the fluid motions,

%’; and 6’; are found by summing pressure due to surface elevation 7 and the hydrostatic pressure, as discussed in
Section 4.2.1. The sea-surface height is found by solving implicitly the 2-D (elliptic) surface pressure equation (see
Section 2.4).

Additional changes in the numerical configuration for the eddy-permitting simulation are discussed in Section 4.3.5.2.

4.3.2.1 Numerical Stability Criteria

The numerical considerations behind our setup are not trivial. We do not wish the thermocline to be diffused away by
numerics. Accordingly, we employ a vertical diffusivity acting on temperature typical of background values observed
in the ocean, 1 x 10~° m? s~!). We now examine numerical stability criteria to help choose and assess parameters for
our coarse resolution study: parameters used in the eddy-permitting setup are discussed in Section 4.3.5.2.

We anticipate development of a large barotropic flow through the notch in the topographic ridge which will have
implications for the length of the timestep we will be able to use. Let us consider the advective CFL condition (4.24)
and the stability of inertial oscillations (4.25):

o elA
S, =2 <W> < 0.5 for stability (4.24)
Az
S; = fAt < 0.5 for stability (4.25)

where |4, | is the maximum horizontal velocity. We anticipate |¢;,q. | of order ~ 1 ms™. Note that barotropic currents
of this speed over a jet of order ~ 100 km in lateral scale will result in a barotropic flow of the order of hundreds of
Sverdups. At a resolution of 50 km, (4.24) then implies that the timestep must be less than 12000 s and (4.25) implies
a timestep less than 3500 s. Here we make a conservative choice of At = 1000 s to keep fAt under 0.20.

How shall we set the horizontal viscosity? From the numerical stability criteria:
S; =4A At( 1 + ! ><10f tabilit (4.26)
= —+ — .0 for stabili .
l h A2 Ayg y

Note that the threshold in (4.26) is < 1.0 instead of < 0.6 due to our specification (in input/data) that momentum
dissipation NOT be solved using Adams-Bashforth, as discussed below. With At = 1000 s, we can choose Ay, to
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be as large as order 1 x 10° m? s™'. However, such a value would result in a very viscous solution. We anticipate a
boundary current along the deep ridge and sloping notch on a scale given by Munk scaling:

2r A
M, = l(l
ERN
We can set Ay, to as low as 100 m? s! and still comfortably resolve the Munk boundary layer on our grid. However,
guided by an ensemble of runs exploring parameter space, we found the solution with A, = 100 s™', while stable,
was rather noisy. As a compromise, a value of A, = 2000 m? s™! reduced solution noise whilst also controlling the

strength of the barotropic current. This is the value used here. Also note with this choice A, /Ax gives a velocity
scaling of 4 cm/s, a reasonable value.

)%, (4.27)

Regarding the vertical viscosity, we choose to solve this term implicitly (Euler backward time-stepping) by setting
implicitViscosity to . TRUE. in input/data, which results in no additional stability constraint on the model timestep
(see Section 2.6). Otherwise, given that our vertical resolution is quite fine near the surface (approximately 5 m), the
following stability criteria would have applied:

A, At

Sty = 4—— < 1.0 for stability (4.28)
Az

which effectively would limit our choice for A, to very small values. For simplicity, and given that away from the
equator coarse resolution models are typically not very sensitive to the value of vertical viscosity, we pick a constant
value of A, = 3 x 1072 m? s™! over the full domain, somewhere in between (in geometric mean sense) typical values
found in the mixed layer (~ 1072) and in the deep ocean (~ 10~%) (Roach et al. 2015 [RPBR15]) Note this implicit
scheme is also used for vertical diffusion of tracers, for which it can also be used to represent convective adjustment
(again, because it is unconditionally stable regardless of diffusivity value).

4.3.3 Configuration

The model configuration for this experiment resides under the directory verification/tutorial_reentrant_channel/.
The experiment files

* verification/tutorial_reentrant_channel/code/SIZE.h

e verification/tutorial_reentrant_channel/code/LAYERS_SIZE.h

¢ verification/tutorial reentrant_channel/code/DIAGNOSTICS_SIZE.h

* verification/tutorial_reentrant_channel/input/data

* verification/tutorial_reentrant_channel/input/data.pkg

* verification/tutorial_reentrant_channel/input/data.gmredi

* verification/tutorial_reentrant_channel/input/data.rbcs

* verification/tutorial_reentrant_channel/input/data.layers

* verification/tutorial_reentrant_channel/input/data.diagnostics

* verification/tutorial_reentrant_channel/input/eedata

* verification/tutorial_reentrant_channel/input/bathy.50km.bin

* verification/tutorial_reentrant_channel/input/zonal_wind.50km.bin

* verification/tutorial_reentrant_channel/input/T_surf.50km.bin

* verification/tutorial_reentrant_channel/input/temperature.50km.bin

* verification/tutorial_reentrant_channel/input/T_relax_mask.50km.bin

contain the code customizations and parameter settings for this experiment. Below we describe these customizations
in detail.
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4.3.3.1 Compile-time Configuration

File code/packages.conf

Listing 4.13: verification/tutorial_reentrant_channel/code/packages.conf

#-— list of packages (or group of packages) to compile for this experiment:
gfd

gmredi

rbcs

layers

diagnostics

In addition to the pre-defined standard package group gfd, we define four additional packages.

» Package pkg/gmredi (see GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization): This implements
the Gent and McWilliams parameterization (as first described in Gent and McWilliams 1990 [GM90]) of
geostrophic eddies. This mixes along sloping neutral surfaces (here, just 1" surfaces). It is used instead of
large prescribed diffusivities aligned in the horizontal plane (parameter diffKh). In Section 4.3.5.1 we will
illustrate the marked improvement in the solution resulting from the use of this parameterization.

» Package pkg/rbes (see RBCS Package): The default MITgem code library permits relaxation boundary condi-
tions only at the ocean surface; in the setup here, we relax temperature over the full-depth zz plane along our
domain’s northern border. By including the pkg/rbes code library in our model build, we can relax selected
fields (tracers or horizontal velocities) in any 3-D location.

We also include two packages which augment MITgcem’s diagnostic capabilities.

» Package pkg/layers: This calculates the thickness and transport of layers of specified density (or temperature, or
salinity; here, temperature and density are aligned because of our simple equation of state). Further explanation
of pkg/layers parameter options and output is given below.

» Package pkg/diagnostics: This selects which fields to output, and at what frequencies. This was introduced in

tutorial Baroclinic Ocean Gyre.

File code/SIZE.h

Listing 4.14: verification/tutorial_reentrant_channel/code/SIZE.h

CBOP

C 'ROUTINE: SIZE.h

¢} | INTERFACE:

C include SIZE.h

C IDESCRIPTION: \bv

C * == St e e e e e ] et e e D DD D Dl e *
C | SIZE.h Declare size of underlying computational grid.

C * *
C | The design here supports a three-dimensional model grid

C | with indices I,J and K. The three-dimensional domain

C | is comprised of nPx*nSx blocks (or tiles) of size sNx

C | along the first (left-most index) axis, nPyxnSy blocks

C | of size sNy along the second axis and one block of size

C | Nr along the vertical (third) axis.

C | Blocks/tiles have overlap regions of size OLx and OLy

c | along the dimensions that are subdivided.

¢} * *

(continues on next page)

184 Chapter 4. MITgcm Tutorial Example Experiments



https://github.com/MITgcm/MITgcm/blob/master/pkg/gmredi
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKh
https://github.com/MITgcm/MITgcm/blob/master/pkg/rbcs
https://github.com/MITgcm/MITgcm/blob/master/pkg/rbcs
https://github.com/MITgcm/MITgcm/blob/master/pkg/layers
https://github.com/MITgcm/MITgcm/blob/master/pkg/layers
https://github.com/MITgcm/MITgcm/blob/master/pkg/diagnostics

39

40

41

42

43

44

45

46

47

48

49

60

61

62

63

MITgcm Documentation, Release checkpoint660-816-gb6703a8da

(continued from previous page)

C \ev
C
C Voodoo numbers controlling data layout:
C sNx :: Number of X points in tile.
C sNy :: Number of Y points in tile.
C OLx :: Tile overlap extent in X.
C OLy :: Tile overlap extent in Y.
C nSx :: Number of tiles per process in X.
C nSy :: Number of tiles per process in Y.
C nPx :: Number of processes to use in X.
C nPy :: Number of processes to use in Y.
C Nx :: Number of points in X for the full domain.
C Ny :: Number of points in Y for the full domain.
C Nr :: Number of points in vertical direction.
CEOP
INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy
INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy
INTEGER Nx
INTEGER Ny
INTEGER Nr
PARAMETER (
& sNx = 20,
& sNy = 10,
& OLx = 4,
& OLy = 4,
& nsSx = 1,
& nsSy = 4,
& nbPx = 1,
& nPy = 1,
& Nx = sNxx*nSx*nPx,
& Ny = sNyxnSyxnPy,
& Nr = 49)
C MAX_OLX :: Set to the maximum overlap region size of any array
C MAX_OLY that will be exchanged. Controls the sizing of exch
C routine buffers.

INTEGER MAX_OLX
INTEGER MAX_OLY

PARAMETER ( MAX_OLX = OLx,
& MAX_OLY = OLy )

Our model tile size is defined above to be 20 x 10 gridpoints, so four tiles (i.e., nSy =4) are required to span the
full domain in y. Note that our overlap sizes (OLx, OLy) are set to 4 in this tutorial, as required by our choice of
advection scheme (see discussion in Section 4.3.2.1 and Table 2.2 from which this required overlap can be obtained);
in tutorial Baroclinic Ocean Gyre this was set to 2, which is the mimimum required for the default center second-
ordered differences scheme. For this setup we will specify a reasonably high resolution in the vertical, using 49 levels.
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File code/LAYERS_SIZE.h

Listing 4.15: verification/tutorial_reentrant_channel/code/LAYERS_SIZE.h

c — — — — -
C » Compiled-in size options for the LAYERS package =*
C
C - Just as you have to define Nr in SIZE.h, you must define the number
C of vertical layers for isopycnal averaging so that the proper array
c sizes can be declared in the LAYERS.h header file.
C
C - Variables -
C NLayers :: the number of isopycnal layers (must match data.layers)
C FineGridFact :: how many fine-grid cells per dF cell
C FineGridMax :: the number of points in the finer vertical grid
C used for interpolation
C layers_maxNum :: max number of tracer fields used for layer averaging
INTEGER Nlayers, FineGridFact, FineGridMax, layers_maxNum
PARAMETER ( Nlayers = 37 )
PARAMETER ( FineGridFact = 10 )
PARAMETER( FineGridMax = Nr * FineGridFact )
PARAMETER ( layers_maxNum = 1 )

As noted above in this file’s comments, we must set the discrete number of layers to use in our diagnostic calculations.
The model default is 20 layers. Here we set PARAMETER ( Nlayers = 37 ) and so choose 37 layers. In making this
choice, one needs to ensure sufficiently fine layer bounds in the density (or temperature) range of interest, while also
possible to specify fairly coarse bounds in other density ranges. The specific temperatures defining layer bounds will
be prescribed in input/data.layers

File code/DIAGNOSTICS_SIZE.h

Listing 4.16: verification/tutorial_reentrant_channel/code/DIAGNOSTICS_SIZE.h

C Diagnostics Array Dimension
C ___________________________
C ndiagMax :: maximum total number of available diagnostics
c numlists :: maximum number of diagnostics list (in data.diagnostics)
C numperlist :: maximum number of active diagnostics per list (data.diagnostics)
C numLevels :: maximum number of levels to write (data.diagnostics)
C numDiags :: maximum size of the storage array for active 2D/3D diagnostics
C nRegions :: maximum number of regions (statistics-diagnostics)
C sizRegMsk :: maximum size of the regional-mask (statistics-diagnostics)
C nStats :: maximum number of statistics (e.g.: aver,min,max ...)
C diagSt_size:: maximum size of the storage array for statistics-diagnostics
C Note : may need to increase "numDiags" when using several 2D/3D diagnostics,
C and "diagSt_size" (statistics-diags) since values here are deliberately small.
INTEGER ndiagMax
INTEGER numlists, numperlist, numLevels
INTEGER numDiags
INTEGER nRegions, sizRegMsk, nStats
INTEGER diagSt_size
PARAMETER ( ndiagMax = 500 )
PARAMETER( numlists = 10, numperlist = 50, numLevels=2%Nr )
PARAMETER ( numDiags = 35x%Nr )
PARAMETER ( nRegions = 0 , sizRegMsk = 1 , nStats = 4 )

(continues on next page)
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(continued from previous page)

PARAMETER ( diagSt_size = 10%Nr )

Here the parameter numDiags has been changed to allow a combination of up to 35 3-D diagnostic fields or 1715
(=35*49) 2-D fields.

4.3.3.2 Run-time Configuration

File input/data

Listing 4.17: verification/tutorial_reentrant_channel/input/data

# Model parameters

# Continuous equation parameters
&PARMO1

# Viscosity
viscAh=2000.,
viscAr=3.E-3,
implicitViscosity=.TRUE.,

# Diffusivity and convection
diffKhT=0.,
diffKrT=1.E-5,
ivdc_kappa=1.,
implicitDiffusion=.TRUE.,

# Coriolis parameter
f0=-1.363e-4,
beta=1.313e-11,
selectCoriScheme=1,

# Density and equation of state

# Temp only active tracer, no salinity
rhoConst=1035.,
rhoNil=1035.,
eosType='LINEAR',
tAlpha=2.E-4,
sBeta =0.E-4,
tRef= 49%5.,
saltStepping=.FALSE.,

# activate partial cells
hFacMinDr=5.,
hFacMin=0.1,

# free surface parameters
rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,
exactConserv=.TRUE.,

# advection scheme
tempAdvScheme=7,
staggerTimeStep=.TRUE.,

#- for non-GM coarse run, set horizontal diffusivity non-zero:
# diffKhT=1000.,

#

#- for eddy-permitting run, uncomment the following:

# viscC2Leith = 1.,

# useFullLeith=.TRUE.,

# viscAhGridMax = 0.5,

(continues on next page)
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(continued from previous page)

# useSingleCpulO=.TRUE.,
#- and comment out above statement viscAh=2000.,
&

# Elliptic solver parameters
&PARMO2
cg2dTargetResidual=1.E-7,
cg2dMaxIters=1000,

&

# Time stepping parameters
&PARMO3

nIter0=0,

nTimeSteps=10,
deltaT=1000.0,
pChkptFreg=31104000.0,
chkptFreg=15552000.0,
dumpFreg=0,
monitorFreg=1200.,
monitorSelect=2,
tauThetaClimRelax=864000.,
momDissip_In_AB=.FALSE.,

#- change monitor frequency for longer run:
# monitorFreg=864000.,
#
#- nTimesteps for 30 yrs, coarse:
# nTimeSteps=933120,
#
#- nTimesteps for 30 yrs, eddy-permitting:
# nTimeSteps=3732480,
#
#- for eddy-permitting run, also need to change timestep:
# deltaT=250.0,
&

# Gridding parameters
&PARMO0O4
usingCartesianGrid=.TRUE.,
delX=20+x50.E3,
delY=40%50.E3,
delR= 5.48716549, 6.19462098, 6.99291201, 7.89353689,
8.90937723, 10.05483267, 11.34595414, 12.80056778,
14.43837763, 16.28102917, 18.35210877, 20.67704362,
23.28285446, 26.1976981 , 29.45012046, 33.06792588,
37.07656002, 41.496912 , 46.34247864, 51.61592052,
57.30518684, 63.37960847, 69.78661289, 76.44996107,
83.27047568, 90.13003112, 96.89898027, 103.44631852,
109.65099217, 115.4122275 , 120.65692923, 125.34295968,
129.45821977, 133.01641219, 136.05088105, 138.60793752,
140.74074276, 142.50436556, 143.95220912, 145.133724 ,
146.09317287, 146.86917206, 147.49475454, 147.99774783,
148.40131516, 148.72455653, 148.98310489, 149.18968055,
149.35458582,

#- for eddy-permitting run, change delX and delY 50->5 km:
# delX=200%x5.E3,

(continues on next page)
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(continued from previous page)

# delY=400x5.E3,
&

# Input datasets

&PARMOS

bathyFile='bathy.50km.bin"
zonalWindFile="'zonal_wind.50km.bin’',
thetaClimFile='SST_relax.50km.bin"',
hydrogThetaFile='temperature.50km.bin"',

#- for eddy-permitting run, use files generated by gendata_5km.m:
# bathyFile='bathy.5km.bin'
# zonalWindFile='zonal_wind.5km.bin"',
# thetaClimFile='SST_ relax.5km.bin',
# hydrogThetaFile='temperature.5km.bin',
&

This file, reproduced in its entirety above, specifies the main parameters for the experiment. Parameters for this
configuration (shown with line numbers to left) are as follows.

PARMO1 - Continuous equation parameters

e These lines set the horizontal and vertical Laplacian viscosities. As in earlier tutorials, we use a spatially
uniform value for viscosity in both the horizontal and vertical. We set viscosity to be solved implicitly, using
the backward method, as discussed in Section 4.3.2.1.

5 viscAh=2000.,
6 viscAr=3.E-3,
7 implicitViscosity=.TRUE.,

These lines set the horizontal and vertical diffusivities. In the standard (coarse resolution) configuration the
Gent-McWilliams parameterization (pkg/gmredi) is activated, and we set the horizontal diffusivity to zero
(which is the default value). Similar to tutorial Baroclinic Ocean Gyre, we set a large vertical diffusivity
(ivdc_kappa) for mixing unstable water columns, which requires implicit numerical treatment of vertical diffu-
sion.

9 diffKhT=0.,

10 diffKrT=1.E-5,

1 ivdc_kappa=1.,

12 implicitDiffusion=.TRUE.,

The first two lines below set the model’s Coriolis parameters (fO and beta) to values representative of the lati-
tude band encompassing the Antarctic Circumpolar Current. In the last line we set the model to use the Jamart
and Ozer (1986) [JO86] wet-points averaging method, in lieu of the model default (see Section 2.14.2; param-
eter options here are given in Section 3.8.4). The method affects the discretization of the Coriolis terms in
the momentum equations. In this setup — as we will show, the jet is dominated by barotropic potential vor-
ticity conservation — it turns out the solution is rather sensitive to this discretization (particularly adjacent to
topography). We tested both the default and wet-points methods, and found the wet-points method closer to the
eddy-permitting solution, where obviously the discretization of the Coriolis term is better resolved.

14 f0=-1.363e-4,
15 beta=1.313e-11,
16 selectCoriScheme=1,
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* These lines set parameters related to the density and equation of state. Here we choose the same value for the

Boussinesq reference density rhoConst as our value rhoNil, for the linear equation of state. To keep things
simple, as well as speed up model run-time, we limit ourselves to a single tracer, temperature, and tell the model
not to step salinity forward in time or include salinity in the equation of state. Also note we use a uniform
reference temperature (tRef) throughout the water column. We will be specifying a file for initial conditions
of temperature in our simulation, and so tRef will not be used for this purpose (as it was in tutorial Baroclinic
Ocean Gyre). Thus, tRef is only employed here as a reference to compute density anomalies. In principle, one
could define tRef to a more representative array of values at each level, but for most applications any gain in
numerical accuracy is small, and a single representative value suffices.

rhoConst=1035.,
rhoNil=1035.,
eosType="LINEAR',
tAlpha=2.E-4,

sBeta =0.E-4,

tRef= 49«5.,
saltStepping=.FALSE.,

These lines activate the use of partial cells, as described in Section 2.11.6. hFacMin=0.1 permits partial cells that
are as small as 10% of the full cell depth, but with hFacMinDr=5.0 m this partial cell must also be at least 5 m in
depth. Note that the model default of hFacMin=1.0 disables partial cells, i.e., values from a specified bathymetry
file are rounded up or down to match grid depth interface levels (model variable rF). See also Section 3.8.1.3 for
general information on using these parameters and below for additional information about partial cells in this
setup.

hFacMinDr=5.,
hFacMin=0.1,

These lines activate the implicit free surface formulation (Section 2.4) with the exact conservation option en-
abled, similar to tutorial Baroclinic Ocean Gyre.

rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,
exactConserv=.TRUE.,

This instructs the model to use a 7th order monotonicity-preserving advection scheme (code 7) — basically, a
higher-order, more accurate, less noisy advection scheme — instead of the center-differences, 2nd order model
default scheme (code 2). The downside here is additional computations, costly if running with many tracers,
and a larger necessary overlap size in SIZE.h, which may get costly if one parallelizes the model into many
small tiles. We will use the same scheme for both coarse and eddy-permitting resolutions; using the higher-
order scheme is particularly helpful in the high resolution setup. When using non-Adams-Bashforth advection
schemes (see Table 2.2), the flag staggerTimeStep should be set to . TRUE ..

tempAdvScheme=7,
staggerTimeStep=.TRUE.,
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PARMO2 - Elliptic solver parameters

These parameters are unchanged from tutorials Barotropic Ocean Gyre and Baroclinic Ocean Gyre.

PARMO3 - Time stepping parameters

* For testing purposes the tutorial is set to integrate 10 time steps, but uncomment the line futher down in the file
setting nTimeSteps to integrate the solution for 30 years.

56 nIter0=0,
57 nTimeSteps=10,

71 | # nTimeSteps=933120,

» Remaining time stepping parameters are as described in earlier tutorials. See Section 4.3.2.1 for a discussion on
our choice of deltaT.

58 deltaT=1000.0,

59 pChkptFreg=31104000.0,
60 chkptFreg=15552000.0,
6l dumpFreqg=0,

62 monitorFreg=1200.,

63 monitorSelect=2,

* As in tutorial Baroclinic Ocean Gyre we set the timescale, in seconds, for relaxing potential temperature in the
model’s top layer (note: relaxation timescale for the northern boundary sidewalls is set in data.rbcs, not here).
Our choice of 864,000 seconds is equal to 10 days.

64 tauThetaClimRelax=864000.,

* This instructs the model to NOT apply Adams-Bashforth scheme to the viscosity tendency and other dissipation
terms (such as side grad and bottom drag) in the momentum equations (the default is to use Adams-Bashforth
for all terms); instead, dissipation is computed using a explicit, forward, first-order scheme. For our coarse
resolution setup with uniform harmonic viscosity, this setting is not strictly necessary (and does not noticeably
change results). However, for our eddy-permitting run we will use a difference scheme for setting viscosity, and
for stability requires this setting.

65 momDissip_In_AB=.FALSE.,

PARMO4 - Gridding parameters

* We specify a Cartesian coordinate system with 20 gridpoints in x and 40 gridpoints in y, with (default) origin
(0,0).

82 usingCartesianGrid=.TRUE.,
83 delX=20%«50.E3,
84 delY=40%50.E3,

* We set the vertical grid spacing for 49 vertical levels, ranging from thickness of approximately 5.5 m at the
surface to 149 m at depth. When varying cell thickness in this manner, one must be careful that vertical grid
spacing varies smoothly with depth; see Section 4.3.2 for details on how this specific grid spacing was generated.
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85 delR= 5.48716549, 6.19462098, 6.99291201, 7.89353689,
86 8.90937723, 10.05483267, 11.34595414, 12.80056778,
87 14.43837763, 16.28102917, 18.35210877, 20.67704362,
88 23.28285446, 26.1976981 , 29.45012046, 33.06792588,
89 37.07656002, 41.496912 , 46.34247864, 51.61592052,
9% 57.30518684, 63.37960847, 69.78661289, 76.44996107,
91 83.27047568, 90.13003112, 96.89898027, 103.44631852,
92 109.65099217, 115.4122275 , 120.65692923, 125.34295968,
93 129.45821977, 133.01641219, 136.05088105, 138.60793752,
94 140.74074276, 142.50436556, 143.95220912, 145.133724 ,
95 146.09317287, 146.86917206, 147.49475454, 147.99774783,
9 148.40131516, 148.72455653, 148.98310489, 149.18968055,
97 149.35458582,

PARMOS5 - Input datasets

* The following lines set file names for the bathymetry, zonal wind forcing, and climatological surface temperature
relaxation files (these files are all 2-D fields, see below)

106 bathyFile='bathy.50km.bin’
107 zonalWindFile="zonal_wind.50km.bin"',
108 thetaClimFile='SST_relax.50km.bin"',

* This last line specifies the name of the 3-D file containing initial conditions for temperature (as noted above,
tRef values specified in namelist PARMO1 are NOT used for the initial state).

109 hydrogThetaFile='temperature.50km.bin"',

File input/data.pkg

Listing 4.18: verification/tutorial_reentrant_channel/input/data.pkg

# Packages

&PACKAGES
useGMRedi=.TRUE.,
useRBCS=.TRUE.,
uselayers=.TRUE.,
useDiagnostics=.TRUE.,

#- for non-GM or eddy-permitting run, deactivate GMRedi package:
# useGMRedi=.FALSE.,
&

* These first two lines affect the model physics packages we’ve included in our build, pkg/gmredi and pkg/rbcs. In
our standard configuration, we will activate both (but in an second run, we will opt to NOT activate pkg/gmredi).

3 useGMRedi=.TRUE.,
4 useRBCS=.TRUE.,

» These lines instruct the model to activate both diagnostics packages we’ve included in our build, pkg/layers and
pkg/diagnostics.
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5 uselayers=.TRUE.,
6 useDiagnostics=.TRUE.,

File input/data.gmredi

Listing 4.19: verification/tutorial_reentrant_channel/input. GM/data.gmredi

# GM-Redi package parameters:

# GM_background_K: GM diffusion coefficient
# GM_taper_scheme: slope clipping or one of the tapering schemes
&GM_PARMO1

GM_background_K = 1000.,

GM_taper_scheme = 'dm95"',

GM_AdvForm =.TRUE.,

&

Note that this file is ignored with pkg/gmredi disabled (in input/data.pkg, useGMRedi=.FALSE.), but must be
present when enabled. Parameter choices are as follows.

e Parameter background_K sets the Gent-McWilliams “thickness diffusivity”, which determines the strength of
the parameterized geostrophic eddies in flattening sloping isopycnal surfaces. By default, this parameter is
also used as diffusivity for the Redi component of the parameterization, which diffuses tracers along isoneutral
surfaces. It is possible to set the Redi diffusivity to a separate value from the thickness diffusivity by setting
parameter GM_isopycK in the above list. However, in this setup with a single tracer determining density, it
would not serve any purpose because diffusion of temperature along surfaces of constant temperature has no
1mpact.

GM_background_K = 1000.,

* By default, pkg/gmredi does not select a tapering scheme (see Section 8.4.1.5); however, for best results, one
should be selected. Here we choose the tapering approach described in Danabasoglu and McWilliams (1995)
[DJCMO5]. Additional choices for the tapering scheme (or alternatively, the more simple slope clipping ap-
proach), and why such a scheme is necessary, are described in the GMRedi package documentation.

GM_taper_scheme = 'dm95"',

* We select the advective or “bolus” form of the parameterization, which specifies that GM fluxes are parame-
terized into a bolus advective transport, rather than implemented as a “skewflux” transport via added terms
in the diffusion tensor (see Griffies 1998 [Gri98]). The skewflux form is the package default. Analytically,
these forms are identical, but in practice are discretized differently. For instance, the bolus form will, by de-
fault, advect tracers with combined eulerian and bolus transport (i.e, residual transport) which then inherits the
higher order precision of the selected advection scheme 7. This can lead to noticeably different solutions in
some setups (anecdotally, particularly where you have steeply sloping isopycnals near boundaries). For diag-
nostic purposes, the bolus form permits a straightforward calculation of the actual advective transport (from the
GM part), whereas obtaining this transport using the skewflux form is less straightforward due to discretization
issues.

GM_AdvForm =.TRUE.,
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File input/data.rbcs

Listing 4.20: verification/tutorial_reentrant_channel/input/data.rbcs

# RBCS package parameters:
&RBCS_PARMO1

useRBCtemp=.TRUE.,

tauRelaxT=864000.,
relaxMaskFile="'T_relax_mask.50km.bin'
relaxTFile="temperature.50km.bin"',

#- for eddy-permitting run, use files generated by gendata_5km.m:
# relaxMaskFile='T_relax_mask.5km.bin’
# relaxTFile='temperature.5km.bin',

&

# RBCS for pTracers (read this namelist only when ptracers pkg is compiled)
&RBCS_PARMO2
&

Setting parameter useRBCtemp to . TRUE . instructs pkg/rbcs that we will be restoring temperature (and by default,
it will not restore salinity, nor velocity, nor any other passive tracers). tauRelaxT sets the relaxation timescale for 3-D
temperature restoring to 864,000 s or 10 days. The remaining two parameters are a filename for a 3-D mask of gridpoint
locations to restore (relaxMaskFile), and a filename for a 3-D field of restoring temperature values (relaxTFile). See
below for further description of these fields.

File input/data.layers

Listing 4.21: verification/tutorial_reentrant_channel/input/data.layers

&LAYERS_PARMO1

layers_name (1) ='TH',
layers_bounds(1:38,1)= -2.00, -1.75, -1.50, -1.25,
-1.00, -0.75, -0.50, -0.25,

0.00, 0.25, 0.50, 0.75,
1.00, 1.25, 1.50, 1.75,
2.00, 2.25, 2.50, 2.75,
3.00, 3.25, 3.50, 3.75,
4.00, 4.25, 4.50, 5.0,
5.5, 6.0, 6.5, 7.0,
7.5, 8.0, 8.5, 9.0,
9.5, 10.0,

&

pkg/layers consists of online calculations which separate water masses into

specified layers, either by temperature, salinity, or density. Note that parameters here include an array index of 1; it is
possible to diagnose layers in both temperature and salinity simultaneously, for example, in which case one would add
a second set of parameters with array index 2. Even though layers_maxNum is set to 1 (i.e, only allows a for single
layers coordinate) in LAYERS_SIZE.h, the index is still required.

* The parameter layers_name is set to ' TH' which specifies temperature as our layers coordinate.

layers_name(l) ='TH',

» Parameter layers_bounds specifies the discretization of the layers coordinate system; we span from the lowest
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possible model temperature (i.e., the coldest restoring temperature at the surface or northern boundary, -2 °C)
to the warmest model temperature (i.e., the warmest restoring temperature, 10 °C). The number of values here
must be Nlayers +1, as specified in LAYERS_SIZE.h. Here, Nlayers is set to 37, so we have 38 discrete
layers_bounds). pkg/layers will not complain if the discretization does not span the full range of existing water
in the model ocean; it will simply ignore water masses (and their transport) that fall outside the specified range
in layers_bounds (this will make it impossible however to close the layer volume budget). Also note that the
range must be monotonically increasing, even if this results in a layers coordinate k=1:Nlayers that proceeds in
the opposite sense as the depth coordinate (i.e., the k=1 layers coordinate is at the ocean bottom, whereas the
k=1 depth coordinate refers to the ocean surface layer).

layers_bounds(1:38,1)= -2.00, -1.75, -1.50, -1.25,
-1.00, -0.75, -0.50, -0.25,
0.00, 0.25, 0.50, 0.75,
1.00, 1.25, 1.50, 1.75,
2.00, 2.25, 2.50, 2.75,
3.00, 3.25, 3.50, 3.75,
4.00, 4.25, 4.50, 5.0,
5.5, 6.0, 6.5, 7.0,
7.5, 8.0, 8.5, 9.0,
9.5, 10.0,

File input/data.diagnostics

Listing 4.22: verification/tutorial_reentrant_channel/input/data.diagnostics

# Diagnostic Package Choices

# ____________________

# dumpAtLast (logical): always write output at the end of simulation (default=F)
# diag_mnc (logical): write to NetCDF files (default=useMNC)

#-—-for each output-stream:

# fileName (n) : prefix of the output file name (max 80c long) for outp.stream n

# frequency(n):< 0 : write snap-shot output every |frequency| seconds

# > 0 : write time-average output every frequency seconds

# timePhase (n) : write at time = timePhase + multiple of |frequency|

# averagingFreq : frequency (in s) for periodic averaging interval

# averagingPhase : phase (in s) for periodic averaging interval

# repeatCycle : number of averaging intervals in 1 cycle

# levels(:,n) : list of levels to write to file (Notes: declared as REAL)

# when this entry is missing, select all common levels of this list
# fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n

# (see "available_diagnostics.log" file for the full list of diags)
# missing_value(n) : missing value for real-type fields in output file "n"

# fileFlags (n) : specific code (8c string) for output file "n"

# ____________________

&DIAGNOSTICS_LIST
# write pkg diagnostics output to separate subdirectory
diagMdsDir = 'Diags'

# 2D diagnostics

fields(1:3,1) = 'TRELAX ', 'MXLDEPTH', 'ETAN ',
frequency (1) = 31104000.,
filename (1) = '2D_diags',

# 3D state variables
fields(1:5,2) = 'THETA ', 'VVEL ', 'UVEL ',

(continues on next page)
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(continued from previous page)

'WVEL ', 'CONVADJ ',
frequency (2) = 31104000.,
filename (2) = 'state',

# Heat budget terms
fields(1:7,3) = 'ADVx_TH ', 'ADVy_TH ', 'ADVr_TH ',
'DFxXE_TH ', 'DFyE_TH ', 'DFrI_TH ',
'DFrE_TH ',

frequency (3) = 31104000.,

filename (3) = 'heat_3D',
# Residual mean flow - Layers Package

fields(1:3,4) = 'LaVH1ITH ', 'LaHs1TH ', 'LaValTH '
frequency (4) = 31104000.,

fileName (4) = 'layDiag',

# GM diagnostics
#— Note: comment out this diagnostics list below if useGMRedi=.FALSE.

# or you will get warnings messages in STDERR
fields(1:2,5) = 'GM_PsiX ', 'GM_PsiY ',
frequency (5) = 31104000.,
filename (5) = 'GM_diags',
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
#- Eddy-permitting run, diagnose vorticity (not computed when using uniform Ah)
# fields(1l:2,6) = 'momVort3', 'momHDiv ',
# frequency (6) = 31104000.,
# filename (6) = 'state_vort',
&
# ____________________
# Parameter for Diagnostics of per level statistics:
# ____________________
# diagSt_mnc (logical): write stat-diags to NetCDF files (default=diag_mnc)
# diagSt_regMaskFile : file containing the region-mask to read-in
# nSetRegMskFile : numpber of region-mask sets within the region-mask file
# set_regMask (i) : region-mask set-index that identifies the region "i"
# wval_regMask (1) : region "i" identifier value in the region mask
#——for each output-stream:
# stat_fName(n) : prefix of the output file name (max 80c long) for outp.stream n
# stat_freg(n):< 0 : write snap-shot output every |stat_freq| seconds
# > 0 write time-average output every stat_freq seconds
# stat_phase (n) : write at time = stat_phase + multiple of |stat_freq]|
# stat_region(:,n) : list of "regions" (default: 1 region only=global)
# stat_fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n
# (see "available_diagnostics.log" file for the full list of diags)
# ,,,,,,,,,,,,,,,,,,,,
&DIAG_STATIS_PARMS
stat_fields(1:2,1) = 'THETA ', "TRELAX ',
stat_freqg(l) = 864000.,
stat_fName (1) = 'dynStDiag',
&
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DIAGNOSTICS_LIST - Diagnostic Package Choices

See tutorial Baroclinic Ocean Gyre for a detailed explanation of parameter settings to customize data.diagnostics to a
desired set of output diagnostics.

We have divided the output diagnostics into several separate lists (recall, 2-D output fields cannot be mixed with 3-D
fields!!!) The first two lists are quite similar to what used in tutorial Baroclinic Ocean Gyre: specifically, several key
2-D diagnostics are in one file (surface restoring heat flux, mixed layer depth, and free surface height), and several 3-D
diagnostics and state variables in another (theta, velocity components, convective adjustment index).

In diagnostics list 3, we specify horizontal advective heat fluxes (ADVx_TH and ADVy_TH in = and y directions,
respectively), vertical advective heat flux (ADVr_TH), horizontal diffusive heat fluxes (DFxE_TH and DFyE_TH),
and vertical diffusive heat flux (DFrI_TH and DFrE_TH). Note the latter is broken into separate implicit and explicit
components, respectively, the latter of which will only be non-zero if pkg/gmredi activated. Although we will not
examine these 3-D diagnostics below when describing the model solution, the zonal terms are needed to compute
zonally-averaged meridional heat transport, and all terms needed for a diagnostic attempt at reconciling a heat budget
of the model solution.

fields(1:7,3) = 'ADVx_TH ', 'ADVy_TH ', 'ADVr_TH ',
'"DFXE_TH ', 'DFyE_TH ', 'DFrI_TH ',
'DFrE_TH ',

frequency (3) = 31104000.,

filename (3) = 'heat_3D',

In diagnostics list 4, we specify several pkg/layers diagnostics. In our setup we use a linear equation of state based
solely on temperature, so we will diagnose layers of temperature in the model solution, as shown in Figure 4.12.

Figure 4.12: Schematic of pkg/layers diagnostics.

fields(1:3,4) = 'LaVHITH ', 'LaHsl1lTH ', 'LaValTH '
frequency (4) = 31104000.,
fileName (4) = 'layDiag',

Diagnostic LaVH1TH is the integrated meridional mass transport in the layer; here we request an annual mean time
average (via the frequency parameter setting), which will effectively output the quantity vh (m? s™'). LaHs1TH
is the layer thickness h (m) calculated at “v” points (see Section 2.11.4). LaValTH is the layer average meridional
velocity v (m/s). These diagnostics are all 3-D fields, albeit the vertical dimension here is the layer discretization
in temperature space, which was defined in data.layers. See Section 4.3.5.1 for examples using these diagnostics to
calculate the residual circulation and the meridional overturning circulation in density coordinates.
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DIAG_STATIS_PARMS - Diagnostic Per Level Statistics

Here we specify statistical diagnostics of potential temperature and surface relaxation heat flux, output every ten days,
to assess how well the model has equilibrated. See tutorial Baroclinic Ocean Gyre for a more complete description of
syntax and output produced by these diagnostics.

File input/eedata

This file uses standard default values (single-threaded) and does not contain customizations for this experiment.

File input /bathy.50km.bin

This is a 2-D(z,y) map of bottom bathymetry, as generated by the MATLAB program verifica-
tion/tutorial_reentrant_channel/input/gendata.50km.m (input files are 32-bit single precision, by default). Our
bathymetry file has active ocean grid cells along both the eastern and western boundaries (i.e., no land points or walls
are present along either boundary), and thus our model will be fully zonally reentrant. While our northern boundary
also consists entirely of active ocean points, we prescribe a wall along the southern end of our model domain, therefore
the model is NOT meridionally reentrant.

Unlike in previous examples, where the bathymetry was discretized to match depths of defined vertical grid faces (rF,
see Figure 2.9), we have a more complicated bottom bathymetry as defined using a sine function for our bottom ridge.
The model default in such case is to round the bathymetry up or down to the nearest allowed vertical cell face level.
However, the model permits the use of “partial cells” (sometimes also referred to as “shaved” or “lopped” cells),
which can provide dramatic improvements in model solution (see Adcroft et al. 1997 [AHM97]). Here, we activate
partial cells though parameter choices hFacMin and hFacMinDr in input/data, as discussed above. The fraction of a
vertical cell that contains fluid is represented in the 3-D output variable hFacC, which will have a value of 0.0 beneath
the ocean floor (and at land points), 1.0 at an active full-depth ocean cell, and a number between hFacMin and 1.0 for
a partial ocean cell. As such, hFacC is often quite useful as a “mask” when computing diagnostics using model output.

As an example, consider horizontal location (10,15) in out setup here, located in our bottom ridge along the sloping
notch. In our bathymetry file, the vertical level is specified as -2382.3 m. This falls between vertical faces located
at -2360.1 and -2504.0 [these are grid variable rF(39:40)]. Thus, this grid cell will be included in the active ocean
domain as a thin, yet legal, partial cell: hFacC(10,15,39)=0.154.

File input/zonal_wind.50km.bin, input/SST_ relax.50km.bin

These files are 2-D(x, y) maps of zonal wind stress 7,, (Nm™) and surface relaxation temperature (°C), as generated
by program verification/tutorial_reentrant_channel/input/gendata_50km.m. Note that a 2-D(z, y) file is expected even
though as specified, both 7, and SST field are only f(y).

File input /temperature.50km.bin

This file specifies a 3-D(z,y,z) map of temperature (°C), as generated by verifica-
tion/tutorial_reentrant_channel/input/gendata_50km.m (see Figure 4.11). Note again a 3-D(z, y, 2) file is expected
despite temperature begin only f(y, z). This file is used here for two purposes: first, as specified in input/data, these
values are used for temperature initial conditions; secondly, this file was also specified in input/data.rbcs as a 3-D field
used for temperature relaxation purposes.
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File input/T_relax_mask.50km.bin

This file specifies a 3-D(z, y, z) mask, as required by /pkg/rbcs to inform the model which gridpoints to relax. These
values should be between 0.0 and 1.0, with 0.0 for no restoring, 1.0 for full restoring, with fractional values as a multi-
plicative factor to effectively weaken restoring at that location (see Section 8.3.2). Here, we select a value of 1.0 along
the model northern wall for all sub-surface depths (relaxation at the surface is specified using input/SST_relax.
50km.Dbin, otherwise you would be restoring the surface layer twice), and use a fractional value for the zz plane of
grid cells just south of the northern border (see verification/tutorial_reentrant_channel/input/gendata_50km.m).

4.3.4 Building and running the model

This model can be built and run using the standard procedure described in Section 3.5 and Section 3.6. (see also
README).

For testing purposes the model is set to run 10 time steps. For a reasonable solution, we suggest running for 30 years,
which requires changing nTimeSteps to 933120. When making this edit, also change monitorFreq to something more
reasonable, say 10 days (=864000.). Using a single processor core, it should take 12 hours or so to run 30 years;
to speed this up using MPI, re-compile using nPy=4, and nSy=1, in SIZE.h and recompile with the —mpi flag (see
Section 3.6.1 for instructions how to run using MPI, here you will be using 4 cores). As an exercise, see if you can
speed it up further using additional processor cores, e.g., by decreasing the tile size in x and increasing nPx.

As configured, the model runs with pkg/gmredi activated, i.e., usesGMRedi=. TRUE . in data.pkg. In Section 4.3.5.1
we will also examine a model solution using old-fashioned large horizontal diffusion with pkg/gmredi deactivated.
The same executable can be used for the non-GM run. Set useGMRedi=.FALSE. in data.pkg, and also set dif-
fKhT=1000. in data namelist PARMO1. Also, comment out the lines for diagnostics list 5 in data.diagnostics or you
will get (non-fatal) warning messages in STDERR.

In Section 4.3.5.2 we will present results with the resolution increased by an order of magnitude, eddy-permitting.
Additional required changes to the code and parameters are discussed.

4.3.5 Model Solution

See verification/tutorial_reentrant_channel/analysis/matlab_plots.m for MATLAB analysis code to compute and plot
Figure 4.14 through Figure 4.23.

4.3.5.1 Coarse Resolution Solution

Before examining the circulation and temperature structure of the solution, let’s first assess whether the solution is
approaching a quasi-equilibrium state after 30 years of integration. Typically, one might expect a solution given this
setup to equilibrate over a timescale of a hundred years or more, given the depth of the domain and the prescribed weak
vertical diffusivity. As in tutorial Baroclinic Ocean Gyre, we will make use of the ‘Diagnostic Per Level Statistics’
to assess equilibrium; specifically, we will look at the change in surface (restoring) heat flux over time, as well as the
potential temperature field. In this tutorial we use standard native Fortan (binary) output files (using pkg/mdsio) rather
than netCDF output (as done in tutorial Baroclinic Ocean Gyre). Important note: when using pkg/mdsio, the statistical
diagnostics output is written in plain text, NOT binary format. An advantage is that this permits a simple unix cat or
more command to display the file to the terminal window as integration proceeds, i.e., for a quick check that results
look reasonable. The disadvantage however is that some additional parsing is required to generate some plots using
these data. Making use of MITgcm shell script utils/scripts/extract_StD, in a terminal window (in the run directory)

type

o°

./../../utils/scripts/extract_StD dynStDiag.0000000000.txt STATDIAGS dat
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where dynStDiag.0000000000. txt is the name of our statistical diagnostics output file, STATDIAGS is a name
we chose for files generated by running the script, with extension dat. This shell script extracts data into the following
(plain text) files:

¢ STATDIAGS_head.dat - header file containing metadata

* STATDIAGS_Iter.dat - list of iteration numbers for which statdiags dumped

* STATDIAGS_THETA.dat - statdiags for field THETA (diagnostic field specified in input/data.diagnostics)

» STATDIAGS_TRELAX.dat - statdiags for field TRELAX (diagnostic field specified in input/data.diagnostics)

The files STATDIAGS_Iter.dat and STATDIAGS_«DIAGNAME» .dat are simple column(s) of data that can be
loaded or read in as an array of numbers using any basic analysis tool. Here we will make use of another MITgcm
utility, utils/matlab/Read_StD.m, which uses MATLAB to make life a bit more simple for reading in all statistical
diagnostic data. In a MATLAB session type

>> [nlIter,reglist,time, stdiagout,listFlds,listK]=read_StD('STATDIAGS', 'dat','all_flds

* nlter = number of iterations (i.e., time records) dumped

* regList = list of region numbers (=0 here, as we did not define any regions, by default global output only)
e time(:,1) = iteration numbers ; time(:,2) = time in simulation (seconds)

* listFlds = list of fields dumped

¢ listK = for each field, lists number of k levels dumped

* stdiagout = 5 dimensional output array ( kLev, time_rec, region_rec, [ave,std,min,max,vol], fld_rec ) where
kLev=1 is depth-average, kLev=2:50 is for depths rC(1:49)

On the left side of Figure 4.13 we show time series of global surface heat flux. In the first decade there is rapid
adjustment, with a much slower trend in both mean and standard deviation in years 10-30. In the mean there remains
a significant heat flux into the ocean in the run without GM (solid), whereas with GM (dashed) the net heat uptake is
also positive, but smaller. The panels on the right show potential temperature at the surface, mid-level (270 m) and
at depth. Note in particular the warming trend at depth in the run without GM. The SST series display a much less
obvious trend (as might be expected given rapid restoring of SST). Examining these results, we see that after 30 years
our run is not at full equilibrium, presumably due to the long timescale for vertical diffusion. And, we infer that less
surface heating is penetrating to depth in the GM solution. This difference is also obvious in Figure 4.14 where we
plot zonal mean temperature: note the deeper thermocline in the left panel (without GM), in addition to the deeper
mixed layer (and warmer surface) in the southern half of the model domain. The differences in convective adjustment
are remarkable, as shown in Figure 4.15; here we plot a plan view of diagnostic CONVADJ, which is the fraction of the
time steps a grid cell is convectively unstable, at 92 m depth. Note that at this depth, convection is limited to grid cells
near the southern boundary in the GM run, whereas a significant portion of the domain is convecting in the non-GM
run: as discussed in Gent (2011) [Genl1], the Deacon cell advects cold water northward at the surface, resulting in
unstable water columns and excessively deep mixed layers. Clearly, the temperature structure of the model solution is
sensitive to our mesoscale eddy parameterization (we will explore this further).

Figure 4.16 shows the barotropic streamfunction without GM (left) and with GM (right). The pattern is quite similar in
both simulations, characterized by a jet centered in the latitude bands with the deep notch, with some deflection to the
south after the jet squeezes through the notch. There is a balance between negative relative vorticity, as the jet curves
northward through the notch and then southward again, and increasing f to the north (from the beta-plane) such that
barotropic potential vorticity is conserved. North of the notch, we see in Figure 4.14 the ocean is much more stratified,
with dynamics presumably more baroclinic.
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Figure 4.13: Left: time series of area-integrated heat flux into the surface ocean (blue) and its standard deviation
(magenta). Right: area-mean temperature at the surface (top, cyan), in the thermocline (middle, green), and at depth
(bottom, red). In all panels, solid curves show non-GM run, dashed curves include GM.
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Figure 4.14: Zonal-mean temperature (shaded) and zonal-mean mixed layer depth (black line) averaged over simula-
tion year 30. Left plot is from non-GM run, right using GM.
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Figure 4.15: Convective adjustment index: O= never convectively unstable during year 30, 1= always convectively
unstable. Left plot is from non-GM run, right using GM.
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Figure 4.16: Barotropic streamfunction averaged over over simulation year 30. Left plot is from non-GM run, right
using GM. Contour interval is 20 Sv.
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Figure 4.17 shows the Eulerian meridional overturning circulation for the non-GM run (left) and GM run (right).
Again, they appear quite similar; what we are observing here is known as a “Deacon Cell” (Deacon 1937 [Dea37];
Bryan 1991 [Bry91]) forced by surface Ekman transport to the north (see also D66s and Webb 1994 [DW94], Speer et
al. 2000 [SS00]), with downwelling in the northern half of the basin and upwelling in the south. The magnitude of this
cell, on the order of 1-2 Sverdrups, may not seem very impressive, but it is important to consider our zonal domain
spans only about 1/20th of the 60th parallel south; scaled up, the magnitude of this cell is quite large. Some local
recirculation occurs in the latitude bands where the ridge slopes down to the center of the deep notch. The centers of
these recirculations occur in the bottom 2000 m, where stratification is quite weak, so much of water recirculated here
falls within a very narrow density class. The deep ridge effectively creates east-west sidewalls at depth, thus able to
support an overturning in thermal wind balance, whereas no sidewalls exist in the upper portion of the water column.
There is little overturning associated with the deep jet flowing through the flat bottom of the notch.

Also worth noting is that we see some evidence of noise (jaggedy contours) in Figure 4.17, despite our rather large
choice of A;,=2000 m? s for (uniform) horizontal viscosity and our higher-order advective scheme. These noise
artifacts increase fairly dramatically for smaller choices of Ay, although we tested the solution remains stable for Ay,
decreased by an order of magnitude.
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Figure 4.17: Eulerian meridional overturning circulation (shaded) averaged over simulation year 30. Left plot is from
non-GM run, right using GM. Contour interval is 0.5 Sv.

When using pkg/gmredi, it is often desirable to diagnose an eddy bolus velocity, or a bolus transport, in order to
compute the residual circulation (Ferrari 2003 [FP03]), the Lagrangian transport in the ocean (i.e., which effects
tracer transport; see, for example, Wolfe 2014 [Wol14]). Unfortunately the bolus velocity is not directly available
from MITgcm, but must be computed from other GM diagnostics, which differ if the skew flux or bolus/advective
form of GM is selected. Here we choose the later form in data.gmredi (GM_AdvForm =.TRUE.), for which a bolus
streamfunction diagnostic is available, thus the bolus velocity can be readily computed (see matlab_plots.m; obtaining
the bolus velocity, for reasons of gridding, is a bit more straightforward using the advective form). In Figure 4.18 we’ve
computed and added the bolus velocity to the Eulerian velocity. We see that the upper meridional overturning cell has
weakened in magnitude, particularly in the northern half of the domain. The eddy parameterization will attempt
to flatten sloping isopycnals seen in Figure 4.14, creating a bolus overturning circulation in the opposite sense to the
Deacon Cell. The magnitude of the GM thickness diffusion effectively controls the strength of the eddy transport; here
we observed only partial cancellation of the Deacon Cell shown in Figure 4.17. In global ocean general circulation
models, an observation of near-cancellation in the Southern Ocean Deacon Cell when the GM parameterization was
used was first reported in Danabasoglu et al. (1994) [DMG94].
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Figure 4.18: Meridional overturning circulation (shaded) from GM simulation including bolus advective transport,
averaged over simulation year 30. Contour interval is 0.5 Sv.

Now let’s use pkg/layers output to examine the residual meridional overturning circulation, shown in Figure 4.19. We
integrate the time- and zonal-mean transport in isopycnal layers (see Figure 4.12) to obtain a streamfunction in density
coordinates. See Abernathy et al. (2011) [AMF11] for a more detailed explanation of this calculation; this approach
is the tried-and-true method to diagnose the residual circulation in an eddy-permitting regime, as required when we
run this setup at higher resolution (Section 4.3.5.2). Note that pkg/layers automatically includes bolus transport from
pkg/gmredi in its calculations, assuming GM is used. With temperature as the ordinate in Figure 4.19, vertical flows
reflect diabatic processes. The green dashed lines represent the maximum and minimum SST for a given latitude band,
thus representing upper layer circulation within this band. On the left side, without GM, we again see a robust Deacon
cell, with a strong diabatic component, presumably due to horizontal diffusion occurring across sloping isopycnals
(i.e. the so-called “Veronis effect”, see Veronis (1975) [Ver75] as well as other numerous papers prior to the wide-
spread adoption of the GM parameterization in ocean models). [As an aside, it is for lack of a better name that we
label this left plot of Figure 4.19, lacking either eddies or GM, as the residual circulation, as indeed it is identical to
the Eulerian circulation in density coordinates]. On the right side, with GM, the Deacon cell is much weaker due to
partial cancellation from the bolus circulation, as noted earlier, but also note that interior contours of streamfunction
run roughly horizontal in the plot. We see some evidence of a deep cell in the lowest temperature classes, less obvious
in the Eulerian MOC Figure 4.17. One might ask: what happened to the deep recirculating cells seen in Figure 4.18?
Recall that our discretization of temperature layers is fairly crude, 0.25 K in the coldest temperatures, and presumably
much of this recirculation is “lost” as recirculation within a single density class. If this deep circulation were of
interest, one could simply re-run the model with finer resolution at depth (perhaps increasing the number of layers
used, which requires changing LAYERS_SIZE.h and recompiling).

Finally, let’s convert the residual circulatiom shown in Figure 4.19 back into depth coordinates, see Figure 4.20. Solid
lines now display contours of zonal mean temperature. On the left, consistent with previous analyses, we see a small,
upper ocean counter-clockwise circulation in the southern sector, where deep mixed layers occur (Figure 4.14), with
the dominant feature again being the (clockwise) Deacon cell. In contrast, using GM, we see a weak residual clockwise
cell aligned along temperature surfaces in the thermocline, with a weak deep counter-clockwise cell aligned with the
coldest temperature contour (i.e., the deep cell seen in Figure 4.19).
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Figure 4.19: Residual meridional overturning circulation (shaded) as computed in density (i.e., temperature) coor-
dinates, averaged over simulation year 30. Contour interval is 0.5 Sv. Green dashed curves show maximum and
minimum SST in each latitude band. Left plot is from non-GM run, right using GM.
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Figure 4.20: Residual meridional overturning circulation (shaded) as computed in density coordinates and converted
back into (zonal mean) depth coordinates, averaged over simulation year 30. Black lines show zonal mean temperature,
contour interval 1 °C. Left plot is from non-GM run, right using GM.
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4.3.5.2 Eddy Permitting Solution
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In this section we discuss a model solution with the horizontal grid space reduced from 50 km to 5 km, which is
sufficiently resolved to permit eddies to form (see above, which shows SST, surface relative vorticity, and surface
current speed, left to right, toward the end of the 30-year simulation). Vertical resolution is unchanged. While we
provide instructions on how to compile and run in this new configuration, it will require parallelizing (using MPI) on
at least a hundred processor cores or else a 30-year integration will take on the order of a month or longer — in other
words, this requires a large cluster or high-performance computing (HPC) facility to run efficiently.

Running with higher resolution requires re-compiling the code after changing the tile size and number of processors,
see code/SIZE.h_eddy (as configured here, for 100 processors; for faster results change the tile size and use 200 or
even 400 processors). Note we will NOT enable pkg/gmredi in our eddy run, so it can be eliminated from the list in
packages.conf! (make sure to set useGMRedi=.FALSE. in data.pkg).

In conjunction with the change in code/SIZE.h_eddy, uncomment these lines in PARM04 in data:

delX=200*5.E3,
delY=400%5.E3,

to specify 5 km resolution in 200 x 400 grid cells in x and y. New files for bathymetry, forcing fields, and initial tem-
perature can be generated using the MATLAB program verification/tutorial_reentrant_channel/input/gendata_Skm.m
(don’t forget to change the filenames in data.rbcs and PARMOS5 in data).

Running at higher resolution requires a smaller time step for stability. Revisiting Section 4.3.2.1, to maintain advective
stability (CFL condition, (4.24)) one could simply decrease the time step by the same factor of 10 decrease as Az —
stability of inertial oscillations is no longer a limiting factor, given a smaller At in (4.25) — but to speed things up
we’d like to keep At as large as possible. With a rich eddying solution, however, is it clear that horizontal velocity
will remain order ~1 ms'? As a compromise, we suggest setting parameter DeltaT=250. (seconds) in data, which
we found to be stable. For this choice, a 30-year integration requires setting nTimeSteps=3732480.

While it would be possible to decrease (spatially uniform) harmonic viscosity to a more appropriate value for this res-
olution, or perhaps use bi-harmonic viscosity (see Section 2.14.5), we will make use of one of the nonlinear viscosity
schemes described in Section 2.19, geared toward large eddy simulations, where viscosity is a function of the resolved
motion. Here, we employ the Leith viscosity (Leith 1968, Leith 1996 [Lei68] [Lei96]). Set the following parameters
in PARMO1 of data:

! Note it is not stricly necessary to remove pkg/gmredi from your high-resolution build — however, if kept in the list of packages included in
packages.conf, it then becomes necessary to deactivate in data.pkg for this run by setting useGMRedi=. FALSE . . If by chance you set a use«PKG»
flag to . TRUE. in data.pkg but have not included the package in the build, the model will terminate with error on startup. But you can alway set a
use«PKG» flag to . FALSE . whether or not the package is included in the build.
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viscC2Leith = 1.,
useFullLeith=.TRUE.,
viscAhGridMax = 0.5,

(and comment out the line viscAh =2000. ). viscC2Leith is a scaling coefficient which we set to 1.0, useFullLeith
=.TRUE. uses unapproximated gradients in the Leith formulation (see Section 2.19.1.4). Parameter viscAhGridMax
places a maximum limit on the Leith viscosity so that the CFL condition is obeyed (see Section 2.19.1.7 and (4.26)
in discussion of Numerical Stability Criteria). The values of viscAh that the Leith scheme generates in this solution
generally range from order 1 m? s™! in regions of weak flow to over 100 m? s~! in jets. Note that while it would have
been possible to use the Leith scheme in the 50 km resolution setup, the scheme was not really designed to be used at
such a large Az, and the A}, it generates about an order of magnitude below the constant A;, = 2000 m? s~ employed
in the coarse model runs, resulting in a very noisy solution.

Finally, we suggest adding the parameter useSingleCpulO =.TRUE. in PARMO1 of data. This will produce global
output files generated by the master MPI processor, rather than a copious amount of single-tile files (each processor
dumping output for its specific sub-domain).

To compare the eddying solution with the coarse-resolution simulations, we need to take a fairly long time average;
even in annual means there is noticeably variability in the solution. Figure 4.21 through Figure 4.23 plot similar figures
as Figure 4.14-Figure 4.20, showing a time mean over the last five years of the simulation.
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Figure 4.21: Left: Zonal-mean temperature (shaded) and zonal-mean mixed layer depth (black line) from eddying
simulation averaged over years 26-30. Right: Eulerian meridional overturning circulation (shaded) from eddying
simulation averaged over years 26-30. Contour interval is 0.5 Sv.

In general, our coarse resolution solutions are not a bad likeness of the (time mean) eddying solution, particularly
when we use pkg/gmredi to parameterize mesoscale eddies. More detailed comments comparing these solutions are
as follows:

 The superiority of the GM solution is clear in the plot of zonal mean temperature (Figure 4.21 left panel vs.
Figure 4.14) and the residual overturning circulation (Figure 4.23 vs. Figure 4.19 and Figure 4.20). Differences
among the Eulerian MOC plots (Figure 4.21 right panel vs. Figure 4.17) are less obvious, but note that in the
more stratified northern section of the domain, the eddying MOC looks more like the coarse “Eulerian + Bolus”
GM solution (Figure 4.18). However, these two fields are not expected to be equal, since the eddying MOC
calculated by layers also includes a stationary eddy component (Viebahn and Eden 2012 [VE12]; Dufour et al.
2012 [DSZ+12]).
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Figure 4.22: Barotropic streamfunction from eddying simulation averaged over years 26-30. Contour interval is 20
Sv.

4.3. Southern Ocean Reentrant Channel Example 209



MITgcm Documentation, Release checkpoint660-816-gb6703a8da

Temperature ( °C)

Residual MOC (Sv): Eddying Run Residual MOC converted to depth space (Sv): Eddying Run
10 r T T T = . 3
2
‘ g 1
r 0 £ -2000 0
[ [oX
. [0
; O 2500
L, K 4
of| < B 2
— -3500
LU TNy B 4000 ‘
0 500 1000 1500 0 500 1000 1500 2000
y-coordinate (km) y-coordinate (km)

Figure 4.23: Left: Residual meridional overturning circulation (shaded) as computed in density (i.e., temperature)
coordinates, from eddying simulation averaged over years 26-30. Contour interval is 0.5 Sv. Green dashed curve
shows maximum and minimum (instantaneous) SST in each latitude band. Right: Residual meridional overturning
circulation (shaded) as computed in density coordinates and converted back into depth coordinates, from eddying
simulation averaged over years 26-30. Black lines show zonal mean temperature, contour interval 1 °C.

* A large anticyclonic barotropic vortex is present away from the topographic ridge as shown in a plot of the
barotropic streamfunction (Figure 4.22; recall, our domain is located in the Southern Hemisphere, so anticy-
clonic is counter-clockwise). As such, the flow passing through the deep notch is somewhat less than obtained
in the coarse solution (Figure 4.16). Yet, similar constraints on barotropic potential vorticity conservation lead
to a similar overall pattern.

* Examining the residual circulation generated from pkg/layers diagnostics (see Figure 4.23 vs. Figure 4.19, Fig-
ure 4.20), the non-GM solution seems quite poor, which would certainly have implications on tracer transport
had any additional tracers been included in the simulation. In the GM solution, eddies seem to only partially
cancel the cell forced by northward Ekman transport (Deacon Cell). In the eddying solution, the residual cir-
culation is oriented in the opposite sense: eddy fluxes resulting from baroclinic instability due to the northern
sponge layer (stratification) overwhelms the Deacon Cell. This would seem to suggest than our parameterization
of eddies by GM, or more specifically, our choice for parameter GM_background_K of 1000 m? s™!, may be too
low, at least for this idealized setup! Parameterizing eddies in the Southern Ocean is a topical research question,
but some studies suggest this value of GM thickness diffusivity may indeed be low for values in the Southern
Ocean (e.g., Ferriera et al. 2005 [FMHO05]). A weak residual deep cell, oriented with rising flow along the
sponge layer, is also present. Note that the area enclosed by the dashed green lines in Figure 4.23 is quite large,
due to episodic large deviations in SST associated with eddies.

* As might be suggested by the orientation of the residual MOC, in the eddying solution temperature relaxation
in the sponge layer is associated with heat gain in the thermocline. In the coarse runs, however, the sponge layer
is effectively cooling, particularly in the non-GM run. Although at present there is no diagnostic available in
pkg/rbes which directly tabulates these fluxes, computing them is quite simple: the heat flux (in watts) into a grid
cell in the sponge layer is computed as pC,, Vg * %W * M. where C,, is HeatCapacity_Cp (3994.0
J kg'lK'1 by default), Vy is the grid cell volume (rA(i,j) * drF(k) * hFacC(i,j,k); see Section 4.3.3.2 for definition
of hFacC), 6(i, j, k) is gridpoint potential temperature (°C), 6(i, j, k). is gridpoint relaxation potential temper-
ature (°C, as prescribed in file input /temperature.5km.bin or input/temperature.50km.bin),
77 is the restoring timescale tauRelaxT (as set in data.rbes to 864,000 seconds or 10 days), and M, is a 3-D
restoring mask (values between 0.0 and 1.0 as discussed above) as specifiedin file T_relax_mask.5km.bin
orT_relax_mask.50km.bin.
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4.4 Ocean Gyre Advection Schemes

(in directory: verification/tutorial_advection_in_gyre/)

— 11—

This set of examples is based on the barotropic and baroclinic gyre MITgcm configurations, that are described in
Section 4.1 and Section 4.2. The examples in this section explain how to introduce a passive tracer into the flow field
of the barotropic and baroclinic gyre setups and looks at how the time evolution of the passive tracer depends on the
advection or transport scheme that is selected for the tracer.

Passive tracers are useful in many numerical experiments. In some cases tracers are used to track flow pathways, for
example in Dutay et al. (2002) [DBD+02] a passive tracer is used to track pathways of CFC-11 in 13 global ocean
models, using a numerical configuration similar to the example described in Section 4.13). In other cases tracers
are used as a way to infer bulk mixing coefficients for a turbulent flow field, for example in Marshall et al. (2006)
[MSJHO6] a tracer is used to infer eddy mixing coefficients in the Antarctic Circumpolar Current region. Typically, in
biogeochemical and ecological simulations large numbers of tracers are used that carry the concentrations of biological
nutrients and concentrations of biological species. When using tracers for these and other purposes it is useful to have
a feel for the role that the advection scheme employed plays in determining properties of the tracer distribution. In
particular, in a discrete numerical model, tracer advection only approximates the continuum behavior in space and
time and different advection schemes introduce different approximations so that the resulting tracer distributions vary.
In the following text we illustrate how to use the different advection schemes available in MITgcm, and discuss which
properties are well represented by each scheme. The advection schemes selections also apply to active tracers (e.g., T’
and S) and the character of the schemes also affects their distributions and behavior.

4.4.1 Advection and tracer transport

In general, the tracer problem we want to solve can be written

% — U.VC+S (4.29)

where C is the tracer concentration in a model cell, U = (u, v, w) is the model 3-D flow field. In (4.29), S represents
source, sink and tendency terms not associated with advective transport. Example of terms in S include (i) air-sea
fluxes for a dissolved gas, (ii) biological grazing and growth terms (for a biogeochemical problem) or (iii) convective
mixing and other sub-grid parameterizations of mixing. In this section we are primarily concerned with

1. how to introduce the tracer term, C, into an integration

2. the different discretized forms of the —U - V' term that are available

4.4.2 Introducing a tracer into the flow

The MITgcem ptracers package (see section Section 8.3.3 for a more complete discussion of the ptracers package and
section Section 8.1.1 for a general introduction to MITgcm packages) provides pre-coded support for a simple passive
tracer with an initial distribution at simulation time ¢ = 0 of Cy(z, y, ). The steps required to use this capability are

1. Activating the ptracers package. This simply requires adding the line ptracers to the file
code/packages.conf.

2. Setting an initial tracer distribution.

Once the two steps above are complete we can proceed to examine how the tracer we have created is carried by the
flow field and what properties of the tracer distribution are preserved under different advection schemes.
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4.4.3 Selecting an advection scheme

* flags in input/data and input/data.ptracers
* overlap width

e #define CPP option PTRACERS_ALLOW_DYN_STATE in code/PTRACERS_OPTIONS.h as required for
SOM case

4.4.4 Comparison of different advection schemes

1. Conservation
2. Dispersion
3. Diffusion

4. Positive definite
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Figure 4.24: Dye evolving in a double gyre with different advection schemes. The figure shows the dye concentration
one year after injection into a single grid cell near the left boundary.

4.5 Global Ocean Simulation

(in directory: verification/tutorial_global_oce_latlon/)

This example experiment demonstrates using the MITgcm to simulate the planetary ocean circulation. The simulation
is configured with realistic geography and bathymetry on a 4° x 4° spherical polar grid. Fifteen levels are used in the
vertical, ranging in thickness from 50 m at the surface to 690 m at depth, giving a maximum model depth of 5200 m.
Different time-steps are used to accelerate the convergence to equilibrium (see Bryan 1984 [Bry84]) so that, at this
resolution, the configuration can be integrated forward for thousands of years on a single processor desktop computer.
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Figure 4.25: Maxima, minima and standard deviation (from left) as a function of time (in months) for the gyre
circulation experiment from Figure 4.24.

4.5.1 Overview

The model is forced with climatological wind stress data from Trenberth (1990) [TOL90] and NCEP surface flux data
from Kalnay et al. (1996) [KKK+96]. Climatological data (Levitus and Boyer 1994a,b [LB94a][LB94b]) is used to
initialize the model hydrography. Levitus and Boyer seasonal climatology data is also used throughout the calculation
to provide additional air-sea fluxes. These fluxes are combined with the NCEP climatological estimates of surface heat
flux, resulting in a mixed boundary condition of the style described in Haney (1971) [Han71]. Altogether, this yields
the following forcing applied in the model surface layer.

Tx

Fu= o (4.30)
Fy = pOTAyZS (4.31)

Fo = —2o(0—07) — CppiAsz (4.32)
Fom oS- 8+ 2 —poR) 433)

Az,

where F,,, F,, Fy, Fs are the forcing terms in the zonal and meridional momentum and in the potential temperature
and salinity equations respectively. The term Az, represents the top ocean layer thickness in meters. It is used in
conjunction with a reference density, po (here set to 999.8 kg m™), a reference salinity, Sy (here set to 35 ppt), and a
specific heat capacity, C, (here set to 4000 J kg'! K™!), to convert input dataset values into time tendencies of potential
temperature (with units of °C s™!), salinity (with units ppt s™') and velocity (with units m s). The externally supplied
forcing fields used in this experiment are 7, 7, 6%, S*, Q and £ — P — R. The wind stress fields (7, 7,) have units of
N m. The temperature forcing fields (* and Q) have units of °C and W m™? respectively. The salinity forcing fields
(S* and £ — P — R) have units of ppt and m s™!' respectively. The source files and procedures for ingesting this data
into the simulation are described in the experiment configuration discussion in section Section 4.5.3.
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4.5.2 Discrete Numerical Configuration

The model is configured in hydrostatic form. The domain is discretized with a uniform grid spacing in latitude and
longitude on the sphere A¢p = A\ = 4°, so that there are 90 grid cells in the zonal and 40 in the meridional direction.
The internal model coordinate variables = and y are initialized according to

x =rcos(¢), Az =rcos(Ap)
y=rl, Ay =rAX

Arctic polar regions are not included in this experiment. Meridionally the model extends from 80°S to 80°N. Vertically
the model is configured with fifteen layers with the following thicknesses:

Az =50m
Azy =70 m
Az3 =100 m
AZ4 =140 m
Azs; =190 m
Azg=240m
Az; =290 m
Azg =340 m
Azg=390m
Az1g =440 m
Az1; =490 m
Az12 =540 m
Az13=590 m
Az14=640m
Az15 =690 m

(here the numeric subscript indicates the model level index number, k) to give a total depth, H, of -5200 m. The
implicit free surface form of the pressure equation described in Marshall et al. (1997) [MHPA97] is employed. A
Laplacian operator, V2, provides viscous dissipation. Thermal and haline diffusion is also represented by a Laplacian
operator.

Wind-stress forcing is added to the momentum equations in (4.34) for both the zonal flow v and the meridional flow
v, according to equations (4.30) and (4.31). Thermodynamic forcing inputs are added to the equations in (4.35) for
potential temperature, 6, and salinity, .S, according to equations (4.32) and (4.33). This produces a set of equations
solved in this configuration as follows:

Du 10p’ 0 , Ou Fu (surface)
— - —— =V ApVpu— — A, — =
Dt fot p Ox h ARV T G R, {0 (interior)
Doy a2 g gy - L4, 00 [T (urface) -
Dt p O ROV T 92702 T 0 (interior)
on L
E + V=
Do 0 o0 Fo (surface)
— =V, KV — —I'(K,)— =
Dt ho YR 0z (K:) 0z {0 (interior)
D ) 9 F, (surface) #3
s s s (surface
2V Ky Vs — —T(K,) = =
Dt Bt BRRV RS 0z (K:) 0z {0 (interior)

0
gpon + / pldz =p'

—Zz
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where u = % =r cos(q&)% and v = % = r% are the zonal and meridional components of the flow vector, @, on
the sphere. As described in Section 2, the time evolution of potential temperature 6 equation is solved prognostically.

The total pressure p is diagnosed by summing pressure due to surface elevation n and the hydrostatic pressure.

4.5.2.1 Numerical Stability Criteria
The Laplacian dissipation coefficient, Ay, is set to 5 x 10° m s, This value is chosen to yield a Munk layer width
(see Adcroft 1995 [Adc95]),

An
B

of ~600 km. This is greater than the model resolution in low-latitudes, Az = 400 km, ensuring that the frictional
boundary layer is adequately resolved.

M, = (225 (4.36)

The model is stepped forward with a time step Aty = 24 hours for thermodynamic variables and At,, = 30 minutes
for momentum terms. With this time step, the stability parameter to the horizontal Laplacian friction (Adcroft 1995
[Adc95])

ApAt,
Az?

S; =4 4.37)
evaluates to 0.6 at a latitude of ¢ = 80°, which is above the 0.3 upper limit for stability, but the zonal grid spacing
Az is smallest at ¢ = 80° where Az = r cos(¢)A¢ ~ 77 km and the stability criterion is already met one grid cell
equatorwards (at ¢ = 76°).

The vertical dissipation coefficient, A, is set to 1 x 1073 m? s'!. The associated stability limit

A AL,

S =4 A7

(4.38)

evaluates to 0.0029 for the smallest model level spacing (Az; = 50 m) which is well below the upper stability limit.
The numerical stability for inertial oscillations (Adcroft 1995 [Adc95])

S = f2At2 (4.39)
evaluates to 0.07 for f = 2wsin(80°) = 1.43 x 10~* s, which is below the S; < 1 upper limit for stability.

The advective CFL (Adcroft 1995 [Adc95]) for a extreme maximum horizontal flow speed of |#| =2 m 57!

_ Jalar,

= 4.40
Sa Ao (4.40)

evaluates to 5 x 1072, This is well below the stability limit of 0.5.

The stability parameter for internal gravity waves propagating with a maximum speed of ¢, = 10 m s (Adcroft 1995
[Adc95])

cg Aty

Se = Az

4.41)

evaluates to 2.3 x 10~!. This is close to the linear stability limit of 0.5.
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4.5.3 Experiment Configuration

The experiment files
* verification/tutorial_global_oce_latlon/input/data
* verification/tutorial_global_oce_latlon/input/data.pkg
* verification/tutorial_global_oce_latlon/input/eedata
e verification/tutorial_global_oce_latlon/input/trenberth_taux.bin
e verification/tutorial_global_oce_latlon/input/trenberth_tauy.bin
e verification/tutorial_global_oce_latlon/input/lev_s.bin
e verification/tutorial_global_oce_latlon/input/lev_t.bin
e verification/tutorial_global_oce_latlon/input/lev_sss.bin
e verification/tutorial_global_oce_latlon/input/lev_sst.bin
e verification/tutorial_global_oce_latlon/input/bathymetry.bin
* verification/tutorial_global_oce_latlon/code/SIZE.h

contain the code customizations and parameter settings for these experiments. Below we describe the customizations
to these files associated with this experiment.

4.5.3.1 Driving Datasets
Figure 4.26-Figure 4.31 show the relaxation temperature (6*) and salinity (S*) fields, the wind stress components (7,
and 7,), the heat flux (Q)) and the net fresh water flux (£ — P — R) used in equations (4.30)-(4.33). The figures also

indicate the lateral extent and coastline used in the experiment. Figure (— missing figure — ) shows the depth contours
of the model domain.

4.5.3.2 File input/data

Listing 4.23: verification/tutorial_global_oce_latlon/input/data

| Model parameters |

#
#
#
#
# Continuous equation parameters
&PARMO1

tRef = 15%20.,

sRef = 15x35.,

viscAr=1.E-3,

viscAh=5.E5,

diffKhT=0.,

diffKrT=3.E-5,

diffKhsS=0.,

diffKrS=3.E-5,

rhoConst=1035.,
rhoConstFresh=1000.,

eosType = 'JMD95Z',
ivdc_kappa=100.,

(continues on next page)
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Figure 4.27: Annual mean of relaxation salinity (psu)
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Figure 4.29: Annual mean of meridional wind stress component (N m2)
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Figure 4.30: Annual mean heat flux (W m2)
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Figure 4.31: Annual mean freshwater flux (Evaporation-Precipitation) (m s™')
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(continued from previous page)

implicitDiffusion=.TRUE.,
allowFreezing=.TRUE.,
exactConserv=.TRUE.,
useRealFreshWaterFlux=.TRUE.,
useCDscheme=.TRUE.,

# turn on looped cells
hFacMin=.05,

hFacMindr=50.,

# set precision of data files
readBinaryPrec=32,

&

# Elliptic solver parameters
&PARMO2
cg2dMaxIters=500,
cg2dTargetResidual=1.E-13,
&

# Time stepping parameters
&PARMO3
nlter0O= 0,
nTimeSteps = 20,
# 100 years of integration will yield a reasonable flow field

# startTime = 0.,
# endTime = 3110400000.,
deltaTmom = 1800.,

tauCDh = 321428.,

deltaTtracer= 86400.,
deltaTClock = 86400.,
deltaTfreesurf= 86400.,
abEps = 0.1,
pChkptFreg= 1728000.,
dumpFreg= 864000.,
taveFreqg= 864000.,
monitorFreg=1l.,

# 2 months restoring timescale for temperature
tauThetaClimRelax= 5184000.,

# 6 months restoring timescale for salinity
tauSaltClimRelax = 15552000.,
periodicExternalForcing=.TRUE.,
externForcingPeriod=2592000.,
externForcingCycle=31104000.,

&

# Gridding parameters

&PARMO4

usingSphericalPolarGrid=.TRUE.,

delR= 50., 70., 100., 140., 190.,
240., 290., 340., 390., 440.,
490., 540., 590., 640., 690.,

ygOrigin=-80.,

dySpacing=4.,

dxSpacing=4.,

&

# Input datasets
&PARMOS

(continues on next page)
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(continued from previous page)

bathyFile= 'bathymetry.bin',
hydrogThetaFile='lev_t.bin',
hydrogSaltFile= 'lev_s.bin',

zonalWindFile= 'trenberth_taux.bin',
meridWindFile= 'trenberth_tauy.bin',
thetaClimFile= 'lev_sst.bin',
saltClimFile= 'lev_sss.bin',
surfQnetFile= 'ncep_gnet.bin',
the_run_name= 'global_oce_latlon',

# fresh water flux is turned on, comment next line to it turn off
# (maybe better with surface salinity restoring)

EmPmRFile= 'ncep_emp.bin',

&

This file specifies the main parameters for the experiment. The parameters that are significant for this configuration
are

e Lines 7-8,

tRef= 15%20.,
sRef= 15%35.,

set reference values for potential temperature and salinity at each model level in units of °C and ppt. The entries
are ordered from surface to depth. Density is calculated from anomalies at each level evaluated with respect to
the reference values set here.

e Line 9,

viscAr=1.E-3,

this line sets the vertical Laplacian dissipation coefficient to 1 x 1073 m? s”'. Boundary conditions for this
operator are specified later.

e Line 10,

viscAh=5.E5,

this line sets the horizontal Laplacian frictional dissipation coefficient to 5 x 10°> m? s™!. Boundary conditions
for this operator are specified later.

e Lines 11, 13,

diffKhT=0.,
dif£fKhs=0.,

set the horizontal diffusion coefficient for temperature and salinity to 0, since pkg/gmredi is used.

e Lines 12, 14,

diffKrT=3.E-5,
diffKrS=3.E-5,

set the vertical diffusion coefficient for temperature and salinity to 3 x 10~° m? s!. The boundary condition on
this operator is 88 = 0 at both the upper and lower boundaries.

e Lines 15-17,
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rhoConst=1035.,
rhoConstFresh=1000.,
eosType = 'JMD95Z',

set the reference densities for sea water and fresh water, and selects the equation of state (Jackett and McDougall
1995 [JM95])

e Lines 18-19,

ivdc_kappa=100.,
implicitDiffusion=.TRUE.,

specify an “implicit diffusion” scheme with increased vertical diffusivity of 100 m?/s in case of instable stratifi-
cation.

e Line 28,

readBinaryPrec=32,

Sets format for reading binary input datasets containing model fields to use 32-bit representation for floating-
point numbers.

¢ Line 33,

cg2dMaxIters=500,

Sets maximum number of iterations the two-dimensional, conjugate gradient solver will use, irrespective of
convergence criteria being met.

e Line 34,

cg2dTargetResidual=1.E-13,

Sets the tolerance which the 2-D conjugate gradient solver will use to test for convergence in (2.15) to 1 x 10713,
Solver will iterate until tolerance falls below this value or until the maximum number of solver iterations is
reached.

¢ Line 39,

nIter0=0,

Sets the starting time for the model internal time counter. When set to non-zero this option implicitly requests a
checkpoint file be read for initial state. By default the checkpoint file is named according to the integer number
of time step value nlter(. The internal time counter works in seconds. Alternatively, startTime can be set.

¢ Line 40,

nTimeSteps=20,

Sets the time step number at which this simulation will terminate. At the end of a simulation a checkpoint file is
automatically written so that a numerical experiment can consist of multiple stages. Alternatively endTime can
be set.

e Line 44,

deltaTmom=1800.,

Sets the timestep At,, used in the momentum equations to 30 minutes. See Section 2.2.

e Line 45,
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tauCD=321428.,

Sets the D-grid to C-grid coupling time scale 7¢p used in the momentum equations.

e Lines 46-48,

deltaTtracer=86400.,
deltaTClock = 86400.,
deltaTfreesurf= 86400.,

Sets the default timestep, Aty, for tracer equations and implicit free surface equations to 24 hours. See Section
2.2.

¢ Line 76,

bathyFile="'bathymetry.bin'

This line specifies the name of the file from which the domain bathymetry is read. This file is a 2-D (z, y) map
of depths. This file is assumed to contain 32-bit binary numbers giving the depth of the model at each grid cell,
ordered with the x coordinate varying fastest. The points are ordered from low coordinate to high coordinate for
both axes. The units and orientation of the depths in this file are the same as used in the MITgcm code. In this
experiment, a depth of 0 m indicates a solid wall and a depth of <0 m indicates open ocean.

e Lines 79-80,

zonalWindFile="trenberth_taux.bin'
meridWindFile="'trenberth_tauy.bin'

These lines specify the names of the files from which the z- and y- direction surface wind stress is read. These
files are also 3-D (z,y, t¢me) maps and are enumerated and formatted in the same manner as the bathymetry
file.

Other lines in the file input/data are standard values that are described in the Section 3.8.

4.5.3.3 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

4.5.3.4 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.5.3.5 Files input/trenberth_taux.bin and input/trenberth_tauy.bin

The input/trenberth_taux.bin and input/trenberth_tauy.bin files specify 3-D (z, y, time) maps
of wind stress (7, Ty), based on values from Treberth et al. (1990) [TOL90]. The units are N m™.
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4.5.3.6 File input/bathymetry.bin

The input/bathymetry.bin file specifies a 2-D (z, y) map of depth values. For this experiment values range
between 0 and -5200 m, and have been derived from ETOPOS5. The file contains a raw binary stream of data that is
enumerated in the same way as standard MITgcm 2-D horizontal arrays.

4.5.3.7 File code/SIZE.h

Listing 4.24: verification/tutorial_global_oce_latlon/code/SIZE.h

Q
(o]
(@]
v]

OO0 00000000000000000000a0

IROUTINE: SIZE.h

| INTERFACE:
include SIZE.h
IDESCRIPTION: \bv

*

SIZE.h Declare size of underlying computational grid.

I

*

| The design here supports a three-dimensional model grid
| with indices I,J and K. The three-dimensional domain

| is comprised of nPxxnSx blocks (or tiles) of size sNx

| along the first (left-most index) axis, nPyxnSy blocks
| of size sNy along the second axis and one block of size
| Nr along the vertical (third) axis.

| Blocks/tiles have overlap regions of size OLx and OLy

| along the dimensions that are subdivided.

*

\ev

Voodoo numbers controlling data layout:

sNx :: Number of X points in tile.

sNy :: Number of Y points in tile.

OLx :: Tile overlap extent in X.

OLy :: Tile overlap extent in Y.

nsx Number of tiles per process in X.

nSy Number of tiles per process in Y.

nPx Number of processes to use in X.

nPy Number of processes to use in Y.

Nx Number of points in X for the full domain.

Ny Number of points in Y for the full domain.

Nr Number of points in vertical direction.
CEOP

INTEGER sNx

INTEGER sNy

INTEGER OLx

INTEGER OLy

INTEGER nSx

INTEGER nSy

INTEGER nPx

INTEGER nPy

INTEGER Nx

INTEGER Ny

INTEGER Nr

PARAMETER (

& sNx = 45,

& sNy = 40,

(continues on next page)
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(continued from previous page)

Q

& OLx = 2,

& OLy = 2,

& nsSx = 2,

& nsSy = 1,

& nPx = 1,

& nPy = 1,

& Nx = sNxx*nSx*nPx,

& Ny = sNyxnSyxnPy,

& Nr = 15)

MAX_OLX :: Set to the maximum overlap region size of any array
MAX_OLY that will be exchanged. Controls the sizing of exch

routine buffers.
INTEGER MAX_OLX
INTEGER MAX_OLY
PARAMETER ( MAX_OLX
& MAX_OLY

OLx,
OLy )

Four lines are customized in this file for the current experiment

e Line 45,

’sNx:45,

this line sets the number of grid points of each tile (or sub-domain) along the x-coordinate axis.

Line 46,

’sNy=40,

this line sets the number of grid points of each tile (or sub-domain) along the y-coordinate axis.

Lines 49,51,

nsx=2,
nPx=1,

these lines set, respectively, the number of tiles per process and the number of processes along the z-coordinate
axis. Therefore, the total number of grid points along the z-coordinate axis corresponding to the full domain
extentis Nx = sNx « nSx * nPx = 90.

Line 55,

Nr=15

this line sets the vertical domain extent in grid points.
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4.6 Global Ocean Simulation in Pressure Coordinates

(in directory: verification/tutorial_global_oce_in_p/)

This example experiment demonstrates using MITgem to simulate the planetary ocean circulation in pressure co-
ordinates, that is, without making the Boussinesq approximations. The simulation is configured as a near copy of
tutorial_global_oce_latlon (Section 4.5). with realistic geography and bathymetry on a 4° x 4° spherical polar grid.
Fifteen levels are used in the vertical, ranging in thickness from 50.4089 dbar ~ 50 m at the surface to 710.33 dbar ~
690 m at depth, giving a maximum model depth of 5302.3122 dbar ~ 5200 m. At this resolution, the configuration
can be integrated forward for thousands of years on a single processor desktop computer.

4.6.1 Overview

The model is forced with climatological wind stress data from Trenberth (1990) [TOL90] and surface flux data from
Jiang et al. (1999) [JSMR99]. Climatological data (Levitus and Boyer 1994a,b [LB94a][LB94b]) is used to initialize
the model hydrography. Levitus and Boyer seasonal climatology data is also used throughout the calculation to provide
additional air-sea fluxes. These fluxes are combined with the Jiang et al. climatological estimates of surface heat flux,
resulting in a mixed boundary condition of the style described in Haney (1971) [Han71]. Altogether, this yields the
following forcing applied in the model surface layer.

Fu=g Ap. (4.42)

_ Ty
Fo=g Ap. (4.43)

1
Fo=—grg(0 —0%) — Q 4.44
0 gAe( ) CoApe (4.44)
S
Fs = +gprw (E-P-R) (4.45)
PAps

where F,,, F,, Fo, Fs are the forcing terms in the zonal and meridional momentum and in the potential temperature
and salinity equations respectively. The term Ap, represents the top ocean layer thickness in Pa. It is used in conjunc-
tion with a reference density, pr1 (here set to 999.8 kg m™), the surface salinity, S, and a specific heat capacity, C,
(here set to 4000 J kg™! K1), to convert input dataset values into time tendencies of potential temperature (with units
of °C s7!), salinity (with units ppt s™') and velocity (with units m s2). The externally supplied forcing fields used in
this experiment are 7., 7, 0*, @ and £ — P — R. The wind stress fields (7, 7,) have units of N m?2. The temperature
forcing fields (6* and Q) have units of °C and W m? respectively. The salinity forcing fields (£ — P — R) has units
of m s™! respectively. The source files and procedures for ingesting these data into the simulation are described in the
experiment configuration discussion in section Section 4.5.3.

4.6.2 Discrete Numerical Configuration

Due to the pressure coordinate, the model can only be hydrostatic (de Szoeke and Samelson 2002 [dSS02]). The
domain is discretized with a uniform grid spacing in latitude and longitude on the sphere A¢p = AX = 4°, so that
there are 90 grid cells in the zonal and 40 in the meridional direction. The internal model coordinate variables x and y
are initialized according to

x=rcos(¢), Ax = rcos(Ad)
y=r\ Ay = rAX

Arctic polar regions are not included in this experiment. Meridionally the model extends from 80°S to 80°N. Vertically
the model is configured with fifteen layers with the following thicknesses

Ap; =7103300.720021 Pa
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Aps = 6570548.440790 Pa
Aps =6041670.010249 Pa
Apy =5516436.666057 Pa
Aps =4994602.034410 Pa
Apg =4475903.435290 Pa
Apr =3960063.245801 Pa
Apg =3446790.312651 Pa
Apg =2935781.405664 Pa
Apig =2426722.705046 Pa
Apq1 =1919291.315988 Pa
Apio =1413156.804970 Pa
Ap1z = 1008846.750166 Pa
Apq4 =705919.025481 Pa
Apis =504089.693499 Pa

(here the numeric subscript indicates the model level index number, k; note that the surface layer has the highest index
number 15) to give a total depth, H, of -5200 m. In pressure, this is p) = 53023122.566084 Pa. The implicit free
surface form of the pressure equation described in Marshall et al. (1997) [MHPA97] with the nonlinear extension by
Campin et al. (2004) [CAHMO04] is employed. A Laplacian operator, V2, provides viscous dissipation. Thermal and
haline diffusion is also represented by a Laplacian operator.

Wind-stress forcing is added to the momentum equations in (4.46) for both the zonal flow, u and the meridional flow
v, according to equations (4.42) and (4.43). Thermodynamic forcing inputs are added to the equations in (4.47) for
potential temperature, 0, and salinity, S, according to equations (4.44) and (4.45). This produces a set of equations
solved in this configuration as follows:

Du 109 0 , Ou F. (surface)
— —fo+-——— -V, -A,Vyu — 24— =
Dt Jv p Ox n s AnVau = (gpo) dp  Op {O (interior)
) (4.46)
Dv 109 o , Ov F. (surface)
—+ fut ——— = Vi AV — (9p0)* 5 Ar - =
Dt Ju p Oy n s AnVav = (9po) Op Op {O (interior)
Opy "
“Pb d=0
ot + V-4
D6 0 00 Fy (surface)
— — V5, KVl — 2K, — =
Dt bt YR (9p0) op ( )5'p {0 (interior)
(4.47)
Ds 0 oS Fs (surface)
— =V KpVps — 2T(K,) o =
Dt n EnVas = (gpo) Op (K7) dp {0 (interior)
1(0) P ’ /
Oy + aopy + a'dp=2>o
0
where u = % =r cos((j))%:} and v = % = r% are the zonal and meridional components of the flow vector, @, on

the sphere. As described in Section 2, the time evolution of potential temperature 6 equation is solved prognostically.
The full geopotential height ® is diagnosed by summing the geopotential height anomalies ®’ due to bottom pressure
pp and density variations. The integration of the hydrostatic equation is started at the bottom of the domain. The
condition of p = 0 at the sea surface requires a time-independent integration constant for the height anomaly due to

density variations @’7(2, which is provided as an input field.
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4.6.3 Experiment Configuration

The experiment files
* verification/tutorial_global_oce_in_p/input/data
* verification/tutorial_global_oce_in_p/input/data.pkg
* verification/tutorial_global_oce_in_p/input/eedata
e verification/tutorial_global_oce_in_p/input/topog.bin
e verification/tutorial_global_oce_in_p/input/deltageopotjmd95.bin
e verification/tutorial_global_oce_in_p/input/lev_s.bin
e verification/tutorial_global_oce_in_p/input/lev_t.bin
e verification/tutorial_global_oce_in_p/input/trenberth_taux.bin
e verification/tutorial_global_oce_in_p/input/trenberth_tauy.bin
e verification/tutorial_global_oce_in_p/input/lev_sst.bin
e verification/tutorial_global_oce_in_p/input/shi_gnet.bin
e verification/tutorial_global_oce_in_p/input/shi_empmr.bin
* verification/tutorial_global_oce_in_p/code/CPP_OPTIONS.h
* verification/tutorial_global_oce_in_p/code/SIZE.h

contain the code customizations and parameter settings for these experiments. Below we describe the customizations
to these files associated with this experiment.

4.6.3.1 Driving Datasets
Figure 4.32-Figure 4.37 show the relaxation temperature (8*) and salinity (5*) fields, the wind stress components (7,
and 7,), the heat flux (@)) and the net fresh water flux (£ — P — 'R) used in equations (4.42) - (4.45). The figures also

indicate the lateral extent and coastline used in the experiment. Figure 4.38 shows the depth contours of the model
domain.

4.6.3.2 File input/data

Listing 4.25: verification/tutorial_global_oce_oce_in_p/input/data

| Model parameters |

#
#
#
#
# Continuous equation parameters
&PARMO1

tRef = 15%20.,

sRef = 15%35.,

viscAh =3.E5,
no_slip_sides=.TRUE.,

viscAr =1.721611620915750e5,
#viscAz =1.67E-3,
no_slip_bottom=.FALSE.,

(continues on next page)
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Figure 4.32: Annual mean of relaxation temperature (°C)
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Figure 4.33: Annual mean of relaxation salinity (psu)
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Figure 4.35: Annual mean of meridional wind stress component (N m2)
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Figure 4.36: Annual mean heat flux (W m2)
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Figure 4.37: Annual mean freshwater flux (Evaporation-Precipitation) (m s™')
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Figure 4.38: Model bathymetry in pressure units (Pa)
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(continued from previous page)

diffKhT=1.E3,
diffKrT=5.154525811125000e3,
#diffKzT=0.5E-4,

diffKhS=1.E3,
diffKrS=5.154525811125000e3,
#diffKzS=0.5E-4,

cosPower=0.5,
implicitDiffusion=.TRUE.,
ivdc_kappa=1.030905162225000e9,
#ivdc_kappa=10.0,
gravity=9.81,

rhoConst=1035.,
rhoConstFresh=1000.,
buoyancyRelation="'OCEANICP',
integr_GeoPot=1,
eosType="'JMD95P"',
useNHMTerms=.TRUE.,
implicitFreeSurface=.TRUE.,
exactConserv=.TRUE.,
nonlinFreeSurf=4,
hFacInf=0.2,

hFacSup=2.0,

#- to check that it has no impact:
doResetHFactors=.TRUE.,
#useRealFreshWaterFlux=.TRUE.,
readBinaryPrec=64,
writeBinaryPrec=64,

(continues on next page)
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(continued from previous page)

# Elliptic solver parameters
&PARMO2
cg2dMaxIters=200,
cg2dTargetResidual=1.E-9,
&

# Time stepping parameters

# after 100 years of intergration, one gets a reasonable flow field

&PARMO3

startTime = 0.,
endTime = 3456000.,
#endTime = 3110400000.,
deltaTMom = 1200.0,
deltaTtracer = 172800.0,
deltaTFreeSurf = 172800.0,
deltaTClock = 172800.0,
abEps = 0.1,
pChkptFreq = 3110400000.,
dumpFreq = 3110400000.,
taveFreq = 3110400000.,
monitorFreq = 1.,

periodicExternalForcing=.TRUE.,
externForcingPeriod=2592000.,
externForcingCycle=31104000.,
tauThetaClimRelax=5184000.0,

&

# Gridding parameters

&PARMO04
usingSphericalPolarGrid=.TRUE.,
dxSpacing=4.,

dySpacing=4.,
#Ro_Sealevel=53023122.566084,
top_Pres=1.E-6,

delR=7103300.720021, 6570548.440790, 6041670.
5516436.666057, 4994602.034410, 4475903.
3960063.245801, 3446790.312651, 2935781.
2426722.705046, 1919291.315988, 1413156.
1008846.750166, 705919.025481, 504089.

ygOrigin=-80.,

&

# Input datasets

&PARMOS

bathyFile ='topog.bin',

pLloadFile ='deltageopot jmd95.bin’',

hydrogThetaFile='lev_t.bin',

hydrogSaltFile ='lev_s.bin',
zonalWindFile ='trenberth_taux.bin',
meridWindFile ='trenberth_tauy.bin',
thetaClimFile ='lev_sst.bin',
#saltClimFile ='lev_sss.bin’',
surfQnetFile ='shi_gnet.bin',
EmPmRFile ='shi_empmr.bin',

&

010249,
435290,
405664,
804970,
693499,
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This file specifies the main parameters for the experiment. The parameters that are significant for this configuration
are

e Line 9-10,

viscAh=3.E5,
no_slip_sides=.TRUE.

these lines set the horizontal Laplacian frictional dissipation coefficient to 3 x 10° m? s™! and specify a no-slip
boundary condition for this operator, i.e., v = 0 along boundaries in y and v = 0 along boundaries in x.

e Lines 11-13,

viscAr =1.721611620915750e5,
#viscAz =1.67E-3,
no_slip_bottom=.FALSE.,

These lines set the vertical Laplacian frictional dissipation coefficient to 1.721611620915750 x 10° Pa? s’!,

which corresponds to 1.67 x 1072 m? s”! in the commented line, and specify a free slip boundary condition for

this operator, i.e., %Z = g—; =0atp= pg, where pg is the local bottom pressure of the domain at rest. Note that

the factor (gp)? needs to be included in this value.

e Line 14,

diffKhT=1.E3,

this line sets the horizontal diffusion coefficient for temperature to 1000 m? s'. The boundary condition on this

operator is a% = 6@ = 0 on all boundaries.

=
e Line 15-16,

diffKrT=5.154525811125000e3,
#diffKzT=0.5E-4,

this line sets the vertical diffusion coefficient for temperature to 5.154525811125 X 103 Pa? s'!, which corre-
sponds to 5 x 10~% m? s’ in the commented line. Note that the factor (gp)? needs to be included in this value.
The boundary condition on this operator is 0% = 0 at both the upper and lower boundaries.

e Line 17-19,

diffKhS=1.E3,
diffKrS=5.154525811125000e3,
#diffKzS=0.5E-4,

These lines set the diffusion coefficients for salinity to the same value as for temperature.

e Line 21-23,

implicitDiffusion=.TRUE.,
ivdc_kappa=1.030905162225000E9,
#ivdc_kappa=10.0,

Select implicit diffusion as a convection scheme and set coefficient for implicit vertical diffusion to
1.030905162225 x 10° Pa? s, which corresponds to 10 m? s!.

e Line 24,

gravity=9.81,

This line sets the gravitational acceleration coefficient to 9.81 m s°!.
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e Line 25,

’rhoConst=1035.,

sets the reference density of sea water to 1035 kg m™.

e Line 29,

’eosType='JMD95P',

Selects the full equation of state according to Jackett and McDougall (1995) [JM95]. Note that the only other
sensible choice here could be the equation of state by McDougall et al. (2003) [MJWFO03], MDJFW. Other model
choices for equations of state do not make sense in this configuration.

¢ Line 28-29,

implicitFreeSurface=.TRUE.,

Selects the barotropic pressure equation to be the implicit free surface formulation.

e Line 32,

’exactConserv=.TRUE.,

Select a more accurate conservation of properties at the surface layer by including the horizontal velocity diver-
gence to update the free surface.

e Line 33-35

nonlinFreeSurf=3,
hFacInf=0.2,
hFacSup=2.0,

Select the nonlinear free surface formulation and set lower and upper limits for the free surface excursions.

¢ Line 39-40,

readBinaryPrec=64,
writeBinaryPrec=64,

Sets format for reading binary input datasets and writing binary output datasets containing model fields to use
64-bit representation for floating-point numbers.

e Line 45,

cg2dMaxIters=200,

Sets maximum number of iterations the 2-D conjugate gradient solver will use, irrespective of convergence
criteria being met.

e Line 46,

cg2dTargetResidual=1.E-13,

Sets the tolerance which the 2-D conjugate gradient solver will use to test for convergence in (2.15) to 1 x 107,
Solver will iterate until tolerance falls below this value or until the maximum number of solver iterations is
reached.

e Line 51,
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startTime=0,

Sets the starting time for the model internal time counter. When set to non-zero, this option implicitly requests a
checkpoint file be read for initial state. By default the checkpoint file is named according to the integer number
of time steps in the startTime value. The internal time counter works in seconds.

e Line 52-54,

endTime=8640000.,
# after 100 years of intergration, one gets a reasonable flow field
#endTime=3110400000.,

Sets the time (in seconds) at which this simulation will terminate. At the end of a simulation a checkpoint file is
automatically written so that a numerical experiment can consist of multiple stages. The commented out setting
for endTime is for a 100 year simulation.

e Line 55-57,
deltaTmom = 1200.0,
deltaTtracer = 172800.0,

deltaTfreesurf = 172800.0,

Sets the timestep dt,, used in the momentum equations to 20 minutes and the timesteps dtg in the tracer equations
and 0t,, in the implicit free surface equation to 48 hours. See Section 2.2.

¢ Line 60,

pChkptFreq =3110400000.,

write a pickup file every 100 years of integration.

e Line 61-63,
dumpFreqg = 3110400000.,
taveFreq = 3110400000.,
monitorFreq = 1.,

write model output and time-averaged model output every 100 years, and monitor statistics every model time
step (this is set for testing purposes; change to a larger number for long integrations).

¢ Line 6466,

periodicExternalForcing=.TRUE.,
externForcingPeriod=2592000.,
externForcingCycle=31104000.,

Allow periodic external forcing: set one month forcing period during which a single time slice of data is valid,
and the repeat cycle to one year. Thus, external forcing files will contain twelve periods of forcing data.

e Line 67,

’tauThetaClimRelax:5184000.0,

Set the restoring timescale to 2 months.

e Line 59,

’abEps:O.l,

Adams-Bashforth factor (see Section 2.5).
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e Line 72,

usingSphericalPolarGrid=.TRUE.,

Select spherical grid.
e Line 73-74,

dXspacing=4.,
dYspacing=4.,

Set the horizontal grid spacing in degrees spherical distance.

e Line 77-81,

delR=7103300.720021,

set the layer thickness in pressure units, starting with the bottom layer.

¢ Line 87-96,

bathyFile='topog.box'
ploadFile="'deltageopot jmd95.bin’
hydrogThetaFile='lev_t.bin',
hydrogSaltFile ='lev_s.bin',

zonalWindFile ='trenberth_taux.bin',
meridWindFile ='trenberth_tauy.bin',
thetaClimFile ='lev_sst.bin',
surfQFile ='shi_gnet.bin',
EmPmRFile ='shi_empmr.bin',

These lines specify the names of the files holding the bathymetry data set, the time-independent geopotential
height anomaly at the bottom, initial conditions of temperature and salinity, wind stress forcing fields, sea surface
temperature climatology, heat flux, and fresh water flux (evaporation minus precipitation minus runoff) at the
surface. See file descriptions in section Section 4.6.3.

Other lines in the file input/data are standard values that are described in the Section 3.8.
4.6.3.3 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

4.6.3.4 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.6.3.5 File input/topog.bin

This file is a 2-D (x, y) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth of the
model at each grid cell, ordered with the x coordinate varying fastest. The points are ordered from low coordinate to
high coordinate for both axes. The units and orientation of the depths in this file are the same as used in the MITgcm
code (Pa for this experiment). In this experiment, a depth of 0 Pa indicates a land point (wall) and a depth of >0 Pa
indicates open ocean.
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4.6.3.6 File input/deltageopotjmd95.box

The file contains twelve identical 2-D maps (z, y) of geopotential height anomaly at the bottom at rest. The values have
been obtained by vertically integrating the hydrostatic equation with the initial density field (using input/lev_t.
bin and input/lev_s.bin). This file has to be consistent with the temperature and salinity field at rest and the
choice of equation of state!

4.6.3.7 Files input/lev_t.bin and input/lev_s.bin

The files input/lev_t.bin and input/lev_s.bin specify the initial conditions for temperature and salinity
for every grid point in a 3-D array (z,y, z). The data are obtain by interpolating monthly mean values using Levitus
and Boyer (1994a,b) [LB94a][LB94b] for January onto the model grid. Keep in mind that the first index corresponds
to the bottom layer and highest index to the surface layer.

4.6.3.8 Files input/trenberth_taux.bin and input/trenberth_tauy.bin

The files input /trenberth_taux.binand input/trenberth_tauy.bin contain twelve 2-D (z, y) maps
of zonal and meridional wind stress values, 7, and 7, respectively, in 3-D arrays (z, y,t). These are monthly mean
values from Trenberth et al. (1990) [TOL90], units of N m2.

4.6.3.9 File input/lev_sst.bin

The file input /lev_sst .bin contains twelve monthly surface temperature climatologies from Levitus and Boyer
(1994b) [LBY94b] in a 3-D arrays (z, y, t).

4.6.3.10 Files input/shi_gnet .bin and input/shi_empmr.bin

The files input/shi_gnet.bin and input/shi_empmr.bin contain twelve monthly surface fluxes of heat
(gnet) and freshwater (empmr) from Jiang et al. (1999) [JSMR99] in 3-D arrays (z, y, t). Both fluxes are normalized
so that the total forcing over one year results in no net flux into the ocean (note, the freshwater flux is actually constant
in time).

4.6.3.11 File code/SIZE.h

The file code/SIZE.h is identical to that described in rutorial global ocean simulation, for more specifics see Section
4.5.3.7.

4.6.3.12 File code/CPP_OPTIONS.h

This file uses standard default values except for:
e #define ATMOSPHERIC_LOADING
enables pressure loading which is abused to include the initial geopotential height anomaly.
e #define EXACT_CONSERV
enables more accurate conservation properties to include the horizontal mass divergence in the free surface.
e #define NONLIN_FRSURF

enables the nonlinear free surface.
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4.7 Held-Suarez Atmosphere

(in directory: verification/tutorial_held_suarez_cs/)

This example illustrates the use of the MITgcm as an atmospheric GCM, using simple Held and Suarez (1994) [HS94]
forcing to simulate atmospheric dynamics on global scale. The set-up uses the rescaled pressure coordinate (p*) of
Adcroft and Campin (2004) [AC04] in the vertical direction, with 20 equally-spaced levels, and the conformal cube-
sphere grid (C32) described in Adcroft et al. (2004) [ACHMO04].

4.7.1 Overview

This example demonstrates using the MITgcm to simulate the planetary atmospheric circulation, with flat orography
and simplified forcing. In particular, only dry air processes are considered and radiation effects are represented by a
simple Newtonian cooling, Thus, this example does not rely on any particular atmospheric physics package. This kind
of simplified atmospheric simulation has been widely used in GFD-type experiments and in intercomparison projects
of AGCM dynamical cores (Held and Suarez 1994 [HS94]).

The horizontal grid is obtain from the projection of a uniform gridded cube to the sphere. Each of the 6 faces has the
same resolution, with 32 x 32 grid points. The equator coincides with a grid line and crosses through the middle in
4 of the 6 faces, leaving 2 faces for the northern and southern polar regions. This curvilinear grid requires the use of
the 2" generation exchange topology (pkg/exch2) to connect tile and face edges, but without any limitation on the
number of processors.

The use of the p* coordinate with 20 equally spaced levels (20 x 50 mb, from p* = 1000 mb to O at the top of the
atmosphere) follows the choice of Held and Suarez (1994) [HS94]. Note that without topography, the p* coordinate
and the normalized pressure coordinate (o) coincide exactly. Both viscosity and diffusivity are set to zero here, but an
8™ order Shapiro (1970) [Sha70] filter is applied to both momentum and potential temperature, to remove selectively
grid scale noise. Apart from the horizontal grid, this experiment is made very similar to the grid-point model case used
in the Held and Suarez (1994) [HS94] study.

At this resolution, the configuration can be integrated forward for many years on a single processor desktop computer.

4.7.2 Forcing

The model is forced by relaxation to a radiative equilibrium temperature from Held and Suarez (1994) [HS94]. A
linear frictional drag (Rayleigh damping) is applied in the lower part of the atmosphere and accounts for surface
friction and momentum dissipation in the boundary layer. Altogether, this yields the following forcing from Held and
Suarez (1994) [HS94] that is applied to the fluid:

Fyv = —ky(p)Vn (4.48)

Fo = —ko(p,p)[0) — Oeq(,p)] (4.49)

where ]?V, Fuy, are the forcing terms in the zonal and meridional momentum and in the potential temperature equations,
respectively. The term k., in (4.48) applies a Rayleigh damping that is active within the planetary boundary layer. It is
defined so as to decay as pressure decreases according to

ky = ky max[0, (p*/P? —ap)/(1 — 0)]
op = 0.7 and k; = 1/86400 s~

where p* is the pressure level of the cell center and P is the pressure at the base of the atmospheric column, which is
constant and uniform here (= 105Pa), in the absence of topography.

The equilibrium temperature 6., and relaxation time scale kg are set to:

Ocg(p,p") = max{200(P7/p*)", 315 — ATy sin’(p) — AG; cos? () log(p*/ )}
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ko(0,0%) = ka + (ks — ko) cos’(p) max{0, (p*/P)—0p)/(1—0p)}
with:
AT, = 60K, k, = 1/(40 - 86400) s~ *
A, = 10K, ks = 1/(4 - 86400) s *

Initial conditions correspond to a resting state with horizontally uniform stratified fluid. The initial temperature profile
is simply the horizontal average of the radiative equilibrium temperature.

4.7.3 Set-up description

The model is configured in hydrostatic form, using non-Boussinesq p* coordinate. The vertical resolution is uniform,
Ap* = 50 x 102 Pa, with 20 levels, from p* = 10° Pa to O at the top. The domain is discretized using the C32
cube-sphere grid (see Adcroft et al. 2004 [ACHMO04]) that covers the whole sphere with a relatively uniform grid
spacing. The resolution at the equator or along the Greenwich meridian is similar to a 128 x 64 equally spaced
longitude-latitude grid, but requires 25% less grid points. Grid spacing and grid-point location are not computed by
the model, but instead read from files.

The vector-invariant form of the momentum equation (see Section 2.15) is used so that no explicit metrics are neces-
sary.

Applying the vector-invariant discretization to the atmospheric equations (1.59), and adding the forcing terms (4.48),
(4.49) on the right-hand-side, leads to the set of equations that are solved in this configuration:

% + (f + Ok x ¥, + V,(KE) + w%‘“ F VP = —kyVy (4.50)

oo ol

Tl —o
Op + dp

. Oow

Vp - Vp + aip = 0

90 a6
+V, - (09) + ) _ kot — O]

ot dp

where vV, andw = % are the horizontal velocity vector and the vertical velocity in pressure coordinate, ( is the relative
vorticity and f the Coriolis parameter, k is the vertical unity vector, KE is the kinetic energy, ® is the geopotential,
and II the Exner function (Il = C,(p/p.)" with p. = 10° Pa). Primed variables correspond to anomaly from the

resting, uniformly stratified state.

As described in Section 2, the continuity equation is integrated vertically, to give a prognostic equation for the surface
pressure ps:

Ops
ot

pS
+Vh'/ Vpdp =0
0

The implicit free surface form of the pressure equation described in Marshall et al. (1997) [MHPA97] is employed to
solve for py; Vertically integrating the hydrostatic balance gives the geopotential ®’ and allows one to step forward the
momentum equation (4.50). The potential temperature, 6, is stepped forward using the new velocity field (see Section
2.8).
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4.7.3.1 Numerical Stability Criteria

The numerical stability for inertial oscillations (see Adcroft 1995 [Adc95]):
S; = f2AL (4.51)

evaluates to 4 x 1072 at the poles, for f = 2Qsin(n/2) = 1.45 x 10~* s~1, which is well below the S; < 1
upper limit for stability. The advective CFL (Adcroft 1995 [Adc95]) for a extreme maximum horizontal flow speed of
|if| = 90m/s and the smallest horizontal grid spacing Az = 1.1 x 10°m:

_ |alAt
Az

evaluates to 0.37, which is close to the stability limit of 0.5. The stability parameter for internal gravity waves propa-
gating with a maximum speed of ¢, = 100 m/s (Adcroft 1995 [Adc95])

S, (4.52)

_ it 4.53
S = s (4.53)

evaluates to 4 x 1071, This is close to the linear stability limit of 0.5.

4.7.4 Experiment Configuration
The model configuration for this experiment resides under the directory verification/tutorial_held_suarez_cs/. The
experiment files
* verification/tutorial_held_suarez_cs/input/data
* verification/tutorial_held_suarez_cs/input/data.pkg
* verification/tutorial_held_suarez_cs/input/data.shap
* verification/tutorial_held_suarez_cs/input/eedata
* verification/tutorial_held_suarez_cs/code/packages.conf
o verification/tutorial _held suarez_cs/code/CPP_OPTIONS.h
¢ verification/tutorial_held_suarez_cs/code/SIZE.h
* verification/tutorial_held_suarez_cs/code/DIAGNOSTICS_SIZE.h
* verification/tutorial_held_suarez_cs/code/apply_forcing.F,

contain the code customizations and parameter settings for these experiments. Below we describe the customizations
to these files associated with this experiment.

4.7.4.1 File input/data

Listing 4.26: verification/tutorial_held_suarez_cs/input/data

| Model parameters |

#
#
#
#
# Continuous equation parameters
&PARMO1

tRef=295.2, 295.5, 295.9, 296.3, 2%6.7, 297.1, 297.6, 298.1, 298.7, 299.3,
300.0, 300.7, 301.9, 304.1, 308.0, 315.1, 329.5, 362.3, 419.2, 573.8,

(continues on next page)
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(continued from previous page)

sRef=20%0.0,
no_slip_sides=.FALSE.,
no_slip_bottom=.FALSE.,
buoyancyRelation="'ATMOSPHERIC',
eosType="'IDEALG',
rotationPeriod=86400.,
implicitFreeSurface=.TRUE.,
exactConserv=.TRUE.,
nonlinFreeSurf=4,
select_rStar=2,
hFacInf=0.2,
hFacSup=2.0,
uniformLin_PhiSurf=.FALSE.,
#hFacMin=0.2,
saltStepping=.FALSE.,
momViscosity=.FALSE.,
vectorInvariantMomentum=.TRUE.,
staggerTimeStep=.TRUE.,
readBinaryPrec=64,
writeBinaryPrec=64,
&

# Elliptic solver parameters
&PARMO2
cg2dMaxIters=200,
#cg2dTargetResidual=1.E-12,
cg2dTargetResWunit=1.E-17,
&

# Time stepping parameters
&PARMO3
deltaT=450.,

#nIter0=276480),
startTime=124416000.,

#—- run for 1 year (192.iterations x 450.s = l.day, 360%x192=69120) :

#nTimeSteps=69120,

#forcing_In_AB=.FALSE.,
tracForcingOutAB=1,
abEps=0.1,
pChkptFreg=31104000.,
chkptFregq=2592000.,
dumpFreg=2592000.,

#monitorFreq=43200.,
taveFreg=0.,

#- to run a short test (2.h):
nTimeSteps=16,
monitorFreqg=1l.,

&

# Gridding parameters
&PARMO0O4
usingCurvilinearGrid=.TRUE.,
horizGridFile='grid_cs32"',
radius_fromHorizGrid=6370.E3,
delR=20%50.E2,
&

(continues on next page)
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(continued from previous page)

# Input datasets
&PARMOS

#topoFile='topo.cs.bin',
&

This file specifies the main parameters for the experiment. The parameters that are significant for this configuration
are:

e Lines 7-8,

tRef=295.2, 295.5, 295.9, 296.3, 296.7, 297.1, 297.6, 298.1, 298.7, 299.3,
300.0, 300.7, 301.9, 304.1, 308.0, 315.1, 329.5, 362.3, 419.2, 573.8,

set reference values for potential temperature (in kelvins) at each model level. The entries are ordered like model
level, from surface up to the top. Density is calculated from anomalies at each level evaluated with respect to
the reference values set here.

e Line 10,

no_slip_sides=.FALSE.,

this line selects a free-slip lateral boundary condition for the horizontal Laplacian friction operator, e.g., %Z:O
along boundaries in y and %=O along boundaries in x.

e Line 11,

no_slip_bottom=.FALSE.,

this line selects a free-slip boundary condition at the top, in the vertical Laplacian friction operator, e.g., % =

v __
eTZ = 0.
e Line 12,

buoyancyRelation='ATMOSPHERIC',

this line sets the type of fluid and the type of vertical coordinate to use, which, in this case, is air with a pressure-
like coordinate (p or p*).

e Line 13,

eosType="'IDEALG',

Selects the ideal gas equation of state.

e Line 15,

implicitFreeSurface=.TRUE.,

Selects the way the barotropic equation is solved, here using the implicit free-surface formulation.

e Line 16,

’exactConserv:.TRUE.,

Explicitly calculate (again) the surface pressure changes from the divergence of the vertically integrated hori-
zontal flow, after the implicit free surface solver and filters are applied.

e Lines 17-18,
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nonlinFreeSurf=4,
select_rStar=2,

Select the non-linear free surface formulation, using r* vertical coordinate (here p*). Note that, except for the
default (= 0), other values of those two parameters are only permitted for testing/debugging purpose.

e Line 21,

uniformLin_PhiSurf=.FALSE.,

Select the linear relation between surface geopotential anomaly and surface pressure anomaly to be evaluated

from %i: = 1/p(8rey) (see Section 2.10.2). Note that using the default (=. TRUE . ), the constant 1/py is used

instead, and is not necessarily consistent with other parts of the geopotential that rely on 0.

e Line 23-24,

saltStepping=.FALSE.,
momViscosity=.FALSE.,

Do not step forward water vapor and do not compute viscous terms. This saves computer time.

e Line 25,

’vectorInvariantMomentum:.TRUE.,

Select the vector-invariant form to solve the momentum equation.

¢ Line 26,

staggerTimeStep=.TRUE.,

Select the staggered time-stepping (rather than synchronous time stepping).

e Lines 27-28,

readBinaryPrec=64,
writeBinaryPrec=64,

Sets format for reading binary input datasets and writing output fields to use 64-bit representation for floating-
point numbers.

* Line 33,

cg2dMaxIters=200,

Sets maximum number of iterations the 2-D conjugate gradient solver will use, irrespective of convergence
criteria being met.

e Line 35,

cg2dTargetResWunit=1.E-17,

Sets the tolerance (in units of w) which the 2-D conjugate gradient solver will use to test for convergence in
equation (2.15) to 1 x 1017 Pa/s. Solver will iterate until tolerance falls below this value or until the maximum
number of solver iterations is reached.

¢ Line 40,

deltaT=450.,
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Sets the timestep At used in the model to 450 seconds (= 1/8 hour).
e Line 42,

startTime=124416000.,

Sets the starting time, in seconds, for the model time counter. A non-zero starting time requires the initial state
read from a pickup file. By default the pickup file is named according to the integer number (nlter0O) of time
steps in the startTime value (nlterQ = startTime / deltaT).

e Line 44,

#nTimeSteps=69120,

A commented out setting for the length of the simulation (in number of timesteps) that corresponds to 1-year
simulation.

e Lines 54-55,

nTimeSteps=16,
monitorFreg=1.,

Sets the length of the simulation (in number of timesteps) and the frequency (in seconds) for “monitor” output
to 16 iterations and 1 seconds respectively. This choice corresponds to a short simulation test.

e Line 48,

pChkptFreg=31104000.,

Sets the time interval, in seconds, between 2 consecutive “permanent” pickups (“permanent checkpoint fre-
quency”) that are used to restart the simulation, to 1 year.

¢ Line 48,

chkptFreg=2592000.,

Sets the time interval, in seconds, between two consecutive “temporary” pickups (‘“‘checkpoint frequency”) to
one month. The “temporary” pickup file name is alternatively “ckptA” and “ckptB”; these pickups (as opposed
to the permanent ones) are designed to be over-written by the model as the simulation progresses.

e Line 50,

’dumpFreq:2592000.,

Set the frequency (in seconds) for the snapshot output to 1 month.

e Line 51,

’#monitorFreq=43200.,

A commented out line setting the frequency (in seconds) for the “monitor” output to 12 h. This frequency fits
better with the longer simulation of one year.

e Line 60,

usingCurvilinearGrid=.TRUE.,

Set the horizontal type of grid to curvilinear grid.

e Line 61,

4.7. Held-Suarez Atmosphere 245


http://mitgcm.org/lxr/ident/MITgcm?_i=nIter0
http://mitgcm.org/lxr/ident/MITgcm?_i=startTime

[ T N T

MITgcm Documentation, Release checkpoint660-816-gb6703a8da

horizGridFile='grid_cs32"',

Set the root for the grid file name to grid_cs32. The grid-file names are derived from the root, adding a suffix
with the face number (e.g., . face001l.bin, .face002.bin---)

¢ Lines 63,

delR=20%50.E2,

This line sets the increments in pressure units to 20 equally thick levels of 50 x 10% Pa each. This defines the
origin (interface k = 1) of the vertical pressure axis, with decreasing pressure as the level index k increases.

e Line 68,

#topoFile="topo.cs.bin'

This commented out line would set the file name of a 2-D orography file, in units of meters, to topo.cs.bin.

Other lines in the file input/data are standard values that are described in Section 3..

4.7.4.2 File input/data.pkg

Listing 4.27: verification/tutorial_held_suarez_cs/input/data.pkg

# Packages
&PACKAGES
useSHAP_FILT=.TRUE.,
useDiagnostics=.TRUE.,
#useMNC=.TRUE.,
&

This file specifies the additional packages that the model uses for the experiment. Note that some packages are used
by default (e.g., pkg/generic_advdiff) and some others are selected according to parameter in input/data.pkg (e.g.,
pkg/mom_vecinv). The additional packages that are used for this configuration are

e Line 3,

’useSHAP_FILT:.TRUE.,

This line selects the Shapiro filter (Shapiro 1970 [Sha70]) (pkg/shap_filt) to be used in this experiment.
e Line 4,

’useDiagnostics=.TRUE.,

This line selects pkg/diagnostics to be used in this experiment.

e Line 5,

’#useMNC=.TRUE.,

This line would select pkg/mnc for I/O but is commented out.
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4.7.4.3 File input/data.shap

Listing 4.28: verification/tutorial_held_suarez_cs/input/data.shap

# Shapiro Filter parameters
&SHAP_PARMO1
shap_filt_uvStar=.FALSE.,
shap_filt_TrStagg=.TRUE.,
Shap_funct=2,
nShapT=0,
nShapUv=4,

#nShapTrPhys=0,
nShapUVPhys=4,

#Shap_TrLength=140000.,

#Shap_uvLength=110000.,

#Shap_Trtau=5400.,

#Shap_uvtau=1800.,

#Shap_diagFregq=2592000.,

&

This file specifies the parameters that the model uses for the Shapiro filter package (Shapiro 1970 [Sha70]), see Section
2.18. The parameters that are significant for this configuration are:

e Line 5,

Shap_funct=2,

This line selects which Shapiro filter function to use, here S2, for this experiment (see Section 2.18).

¢ Lines 6-7,

nShapT=0,
nShapUv=4,

These lines select the order of the Shapiro filter for active tracers (6 and ¢) and momentum (u, v) respectively.
In this case, no filter is applied to active tracers. Regarding the momentum, this sets the integer parameter n to
4, in the equations of Section 2.18, which corresponds to a 8th order filter.

e Line 9,

nShapUVPhys=4,

This line selects the order of the physical space filter (filter function S2g, see Section 2.18) that applies to u, v.
The difference nShapUV - nShapUVPhys corresponds to the order of the computational filter (filter function
S2c, see Section 2.18).

Lines 12-13,

#Shap_Trtau=5400.,
#Shap_uvtau=1800.,

These commented lines would have set the time scale of the filter (in seconds), for 0, g and for w, v respectively,
to 5400 s (90 min) and 1800 s (30 min). Without explicitly setting those timescales, the default is used, which
corresponds to the model timestep.
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4.7.4.4 File input/eedata

Listing 4.29: verification/tutorial_held_suarez_cs/input/eedata

Example "eedata" file

Lines beginning "#" are comments
nTx — No. threads per process in X
nTy - No. threads per process in Y
&EEPARMS
useCubedSphereExchange=.TRUE.,
# Activate one line below to support 2, 3 or 6 way multi-threading
#nTx=2,

#nTx=3,
#nTx=6,

&

# Note: Some systems use & as the

# namelist terminator. Other systems
# use a / character (as shown here).

EREE

This file uses standard default values except line 6:

useCubedSphereExchange=.TRUE.,

This line selects the cubed-sphere specific exchanges to to connect tiles and faces edges.

4.7.4.5 File code/SIZE.h

Listing 4.30: verification/tutorial_held_suarez_cs/code/SIZE.h

@]
(o]
[©]
v]

IROUTINE: SIZE.h

I INTERFACE:
include SIZE.h
IDESCRIPTION: \bv

* == ========================================== *

SIZE.h Declare size of underlying computational grid.

== == *

|

*

| The design here supports a three-dimensional model grid
| with indices I,J and K. The three-dimensional domain

| is comprised of nPxxnSx blocks (or tiles) of size sNx

| along the first (left-most index) axis, nPyxnSy blocks
| of size sNy along the second axis and one block of size
| Nr along the vertical (third) axis.

| Blocks/tiles have overlap regions of size OLx and OLy

| along the dimensions that are subdivided.

*

\ev

Voodoo numbers controlling data layout:

QOO0 00000000000000000000n

sNx :: Number of X points in tile.

sNy :: Number of Y points in tile.

OLx :: Tile overlap extent in X.

OLy :: Tile overlap extent in Y.

nSx :: Number of tiles per process in X.
nSy :: Number of tiles per process in Y.
nPx :: Number of processes to use in X.

(continues on next page)
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Q000

CEOP
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

sNx
sNy
OLx
OLy
nsSx
nsSy
nPx
nPy
Nx

Ny

Nr

PARAMETER (

R R R R R

C MAX_OLX
MAX_OLY

Q

nPy :: Number
Nx :: Number
Ny :: Number
Nr :: Number

sNx
sNy
OLx
OLy
nsSx
nsSy
nPx
nPy

Set to the maximum overlap region size of any array
that will be exchanged. Controls the sizing of exch

rou

of processes to use in Y.

of points in X for the full domain.
of points in Y for the full domain.

of points in vertical direction.

= 32,
= 32,
4
’

’

Il
= PN N

14
= 1,
= sNx*nSx*nPx,
= sNy*nSy=*nPy,
= 20)

tine buffers.

INTEGER MAX_OLX
INTEGER MAX_OLY
PARAMETER (

MAX_OLX

OLx,

MAX_OLY = OLy )

Four lines are customized in this file for the current experiment

e Line 45,

sNx=32,

sets the lateral domain extent in grid points along the x-direction, for one face.

e Line 46,

sNy=32,

sets the lateral domain extent in grid points along the y-direction, for one face.

e Line 49,

’nSx:6,

sets the number of tiles in the z-direction, for the model domain decomposition. In this simple case (single
processor, with one tile per face), this number corresponds to the total number of faces.

4.7. Held-Suarez Atmosphere

249




[ Y S O

MITgcm Documentation, Release checkpoint660-816-gb6703a8da

e Line 55,

Nr=20,

sets the vertical domain extent in grid points.

4.7.4.6 File code/packages.conf

Listing 4.31: verification/tutorial_held_suarez_cs/input/code/packages.conf

#-— list of packages (or group of packages) to compile for this experiment:
exch?2

gfd

shap_filt

diagnostics

mnc

This file specifies the packages that are compiled and made available for this experiment. The additional packages that
are used for this configuration are

e Line 1,

’gfd

This line selects the standard set of packages that are used by default.
e Line 2,

shap_filt

This line makes the Shapiro filter package available for this experiment.

e Line 3,

’exch2

This line selects pkg/exch? to be compiled and used in this experiment. Note that at present, no such parameter
useEXCH2 exists and therefore this package is always used when it is compiled.

e Line 4,

’diagnostics

This line selects pkg/diagnostics to be compiled, and makes it available for this experiment.

e Line 5,

’mnc

This line selects the pkg/mnc to be compiled, and makes it available for this experiment.
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4.7.4.7 File code/CPP_OPTIONS.h

This file uses the standard default except for:

#define NONLIN_FRSURF

This line enables the non-linear free-surface part of the code, which is required for the p* coordinate formulation.

4.7.4.8 Other Files

Other files relevant to this experiment are
* code/apply_forcing.F
e input/grid_cs32.facel00[n].bin,withn=1,2,3,4,5,6

contain the code customizations and binary input files for this experiment. The file apply_forcing.F contains four
subroutines that calculate the forcing terms (i.e., right-hand side terms) in the momentum equation (4.48), EX-
TERNAL_FORCING_U and EXTERNAL_FORCING_V and in the potential temperature equation (4.49), EXTER-
NAL_FORCING_T. The water-vapor forcing subroutine (EXTERNAL_FORCING_S) is left empty for this exper-
iment. The grid-files input/grid_cs32.face00([n] .bin, with n = 1,2,3,4,5,6, are binary files (direct-
access, big-endian 64 bit reals) that contains all the cubed-sphere grid lengths, areas and grid-point positions, with one
file per face. Each file contains 18 2-D arrays (dimension 33 x 33) that correspond to the model variables: XC YC
DXF DYF RA XG YG DXV DYU RAZ DXC DYC RAW RAS DXG DYG AngleCS AngleSN (see model/inc/GRID.h)

4.8 Deep Convection

(in directory: verification/tutorial_deep_convection/)

This experiment, Figure 4.39, showcasing MITgem’s non-hydrostatic capability, was designed to explore the temporal
and spatial characteristics of convection plumes as they might exist during a period of oceanic deep convection. It is

* non-hydrostatic

¢ doubly-periodic with cubic geometry

* discretized with 50 m resolution in z, y, 2
* Cartesian

e on an f-plane

* using a linear equation of state

4.8.1 Overview
The model domain consists of an approximately 3 km square by 1 km deep box of initially unstratified, resting fluid.
The domain is doubly periodic.

The experiment has 20 levels in the vertical, each of equal thickness Az = 50 m (the horizontal resolution is also 50
m). The fluid is initially unstratified with a uniform reference potential temperature § = 20 °C. The equation of state
used in this experiment is linear

p=po(l— 0499/) (4.54)
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Figure 4.39: Schematic of simulation domain for the surface driven convection experiment. The domain is doubly
periodic with an initially uniform temperature of 20 °C.

which is implemented in the model as a density anomaly equation

’

P— (4.55)

with po = 1000kgm > and oy = 2 x 10~ *degrees *. Integrated forward in this configuration, the model state
variable theta is equivalent to either in-situ temperature, 7', or potential temperature, 6. For consistency with other
examples, in which the equation of state is non-linear, we use 6 to represent temperature here. This is the quantity that
is carried in the model core equations.

As the fluid in the surface layer is cooled (at a mean rate of 800 Wm?), it becomes convectively unstable and overturns,
at first close to the grid-scale, but, as the flow matures, on larger scales (Figure 4.40 and Figure 4.41), under the
influence of rotation (f, = 10~* s~ ).

Model parameters are specified in file input/data. The grid dimensions are prescribed in code/SIZE.h. The forcing (file
input/Qsurf.bin) is specified in a binary data file generated using the Matlab script input/gendata.m.

4.8.2 Equations solved
The model is configured in non-hydrostatic form, that is, all terms in the Navier Stokes equations are retained and the
pressure field is found, subject to appropriate boundary conditions, through inversion of a 3-D elliptic equation.

The implicit free surface form of the pressure equation described in Marshall et. al (1997) [MHPA97] is employed. A
horizontal Laplacian operator V7 provides viscous dissipation. The thermodynamic forcing appears as a sink in the
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Figure 4.40: Vertical section
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equation for potential temperature 6. This produces a set of equations solved in this configuration as follows:

Du 10p 0 , Ou 0 (surface)
— - —— =V ApVpu — —A,— =
Dt fot p Ox B ARV Rt 0z ~0z {O (interior)
Dv 1 8p' 0  Ov 0 (surface)
= S VANV — — A, — =
Dt et p 0 N P {O (interior)
Dw p, 1 p/ g | Ow 0 (surface)
— 4+ g— 4+ —— -V - AAVpw— —A,— =
Dt Y p po bt SRV Rt 0z ~ 0z 0 (interior)

o oy Tt 0
Do 0 00 Fo (surface)
2V KVl — — K, =
Dt ho R YR dz "0z {0 (interior)

where u = %, v = % and w = % are the components of the flow vector in directions x, y and z. The pressure is

diagnosed through inversion (subject to appropriate boundary conditions) of a 3-D elliptic equation derived from the
divergence of the momentum equations and continuity (see Section 1.3.6).

4.8.3 Discrete numerical configuration

The domain is discretized with a uniform grid spacing in each direction. There are 64 grid cells in directions x and y
and 20 vertical levels thus the domain comprises a total of just over 80,000 gridpoints.

4.8.4 Numerical stability criteria and other considerations

For a heat flux of 800 Wm? and a rotation rate of 10~* s~! the plume-scale can be expected to be a few hundred
meters guiding our choice of grid resolution. This in turn restricts the timestep we can take. It is also desirable to
minimize the level of diffusion and viscosity we apply.

For this class of problem it is generally the advective time-scale which restricts the timestep.

For an extreme maximum flow speed of || = 1ms~!, at a resolution of 50 m, the implied maximum timestep for
stability, dt,, is

A
2T _ 505

—

0ty =
|l
The choice of 4t = 10 s is a safe 20 percent of this maximum.

Interpreted in terms of a mixing-length hypothesis, a magnitude of Laplacian diffusion coefficient x;(= k,) = 0.1
m?2s~! is consistent with an eddy velocity of 2 mm s~! correlated over 50 m.

4.8.5 Experiment configuration

The model configuration for this experiment resides under the directory verification/convection/. The experiment files
* code/CPP_OPTIONS.h
* code/SIZE.h
* input/data

* input/data.pkg
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* input/eedata

e input/Qsurf.bin,

contain the code customizations and parameter settings for this experiment. Below we describe these experiment-
specific customizations.

4.8.5.1 File code/CPP_OPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

4.8.5.2 File code/SIZE.h

Listing 4.32: verification/tutorial_deep_convection/code/SIZE.h

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQ
o
o

Q
=1
O
ae)

'ROUTINE: SIZE.h
| INTERFACE :
include SIZE.h
IDESCRIPTION: \bv

SIZE.h Declare size of underlying computational grid.

I

* *
| The design here supports a three-dimensional model grid

| with indices I,J and K. The three-dimensional domain

| is comprised of nPx*nSx blocks (or tiles) of size sNx

| along the first (left-most index) axis, nPyxnSy blocks

| of size sNy along the second axis and one block of size

| Nr along the vertical (third) axis.

| Blocks/tiles have overlap regions of size OLx and OLy

| along the dimensions that are subdivided.

* *
\ev

Voodoo numbers controlling data layout:

sNx :: Number of X points in tile.

sNy :: Number of Y points in tile.

OLx :: Tile overlap extent in X.

OLy :: Tile overlap extent in Y.

nSx :: Number of tiles per process in X.

nSy :: Number of tiles per process in Y.

nPx :: Number of processes to use in X.

nPy :: Number of processes to use in Y.

Nx Number of points in X for the full domain.
Ny Number of points in Y for the full domain.
Nr Number of points in vertical direction.

INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy
INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy
INTEGER Nx

(continues on next page)
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(continued from previous page)

INTEGER Ny
INTEGER Nr
PARAMETER (
& sNx = 50,
& sNy = 50,
& OLx = 2,
& OLy = 2,
& nsSx = 2,
& nsSy = 2,
& nPx = 1,
& nPy = 1,
& Nx = sNxx*nSx*nPx,
& Ny = sNyxnSy*nPy,
& Nr = 50)
C MAX_OLX :: Set to the maximum overlap region size of any array
C MAX_OLY that will be exchanged. Controls the sizing of exch
C routine buffers.

INTEGER MAX_OLX

INTEGER MAX_OLY

PARAMETER ( MAX_OLX OLx,
& MAX_OLY = OLy )

Three lines are customized in this file. These prescribe the domain grid dimensions.

e Line 45,

sNx=50,

this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.

e Line 46,

’sNy:50,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

e Line 55,

’Nr=50,

this line sets the vertical domain extent in grid points.

4.8.5.3 File input/data

Listing 4.33: verification/tutorial_deep_convection/input/data

#

# | Model parameters |
+ —
#
#

Continuous equation parameters
&PARMO1

tRef=20%20.,

sRef=20%35.,

(continues on next page)
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(continued from previous page)

viscAh=4.E-2,
viscAz=4.E-2,
no_slip_sides=.FALSE.,
no_slip_bottom=.FALSE.,
diffKhT=4.E-2,
diffKzT=4.E-2,
f0=1.E-4,

beta=0.E-11,
tAlpha=2.0E-4,

sBeta =0.,
gravity=10.,
rhoConst=1000.,
rhoNil=1000.,
heatCapacity_Cp=4000.,
#rigidLid=.TRUE.,
implicitFreeSurface=.TRUE.,
#exactConserv=.TRUE.,
eosType="'LINEAR',
nonHydrostatic=.TRUE.,
saltStepping=.FALSE.,
&

# Elliptic solver parameters
&PARMO2
cg2dMaxIters=1000,
cg2dTargetResidual=1.E-9,
cg3dMaxIters=100,
cg3dTargetResidual=1.E-9,
&

# Time stepping parameters
&PARMO3
nIter0=0,
#endTime=43200.,
nTimeSteps=3,
deltaT=20.,
abEps=0.1,
pChkptFreg=43200.,
chkptFreqg=7200.,
dumpFreg=1800.,
monitorFreg=600.,
monitorSelect=1,
monitorFreg=1.,
&

# Gridding parameters
&PARMO0O4
usingCartesianGrid=.TRUE.,
dXspacing=20.,
dYspacing=20.,
delz=50%x20.,

&

# Input datasets
&PARMOS

surfQnetFile= 'Qnet_p32.bin',
hydrogThetaFile='T.120mn.bin"',

(continues on next page)
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(continued from previous page)

pSurfInitFile='Eta.1l20mn.bin',

uVelInitFile = 'U.120mn.bin',
vVelInitFile = 'V.120mn.bin',
&

This file specifies the main parameters for the experiment. The parameters that are significant for this configuration
are

e Line 7,

tRef=20%20.0,

this line sets the initial and reference values of potential temperature at each model level in units of °C. Here the
value is arbitrary since, in this case, the flow evolves independently of the absolute magnitude of the reference
temperature. For each depth level the initial and reference profiles will be uniform in x and y.

e Line 8,

sRef=20x35.0,

this line sets the initial and reference values of salinity at each model level in units of ppt. In this case salinity
is set to an (arbitrary) uniform value of 35.0 ppt. However since, in this example, density is independent of
salinity, an appropriately defined initial salinity could provide a useful passive tracer. For each depth level the
initial and reference profiles will be uniform in x and y.

e Line 9,

viscAh=0.1,

this line sets the horizontal Laplacian dissipation coefficient to 0.1 m?s~!. Boundary conditions for this operator
are specified later.

e Line 10,

viscAz=0.1,

this line sets the vertical Laplacian frictional dissipation coefficient to 0.1 m?s~!. Boundary conditions for this
operator are specified later.

e Line 11,

no_slip_sides=.FALSE.

this line selects a free-slip lateral boundary condition for the horizontal Laplacian friction operator e.g. %’;:0

along boundaries in y and %:O along boundaries in x.
xr

e Lines 12,

no_slip_bottom=.TRUE.

this line selects a no-slip boundary condition for the bottom boundary condition in the vertical Laplacian friction
operator e.g., u = v = 0 at z = — H, where H is the local depth of the domain.

e Line 13,

diffKhT=0.1,

this line sets the horizontal diffusion coefficient for temperature to 0.1 m?s~'. The boundary condition on this

operator is 2 = -2 = 0 at all boundaries.
ox oy
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e Line 14,

diffKzT=0.1,

this line sets the vertical diffusion coefficient for temperature to 0.1 m?s~!. The boundary condition on this
operator is % = 0 on all boundaries.

e Line 15,

f0=1E-4,

this line sets the Coriolis parameter to 1 x 10~* s~!. Since 8 = 0.0 this value is then adopted throughout the
domain.

e Line 16,

’beta=O.E711,

this line sets the the variation of Coriolis parameter with latitude to 0.

e Line 17,

’tAlpha=2.E—4,

This line sets the thermal expansion coefficient for the fluid to 2 x 10~4 °C~1.

e Line 18,

’sBeta:O,

This line sets the saline expansion coefficient for the fluid to 0, consistent with salt’s passive role in this example.

e Line 23-24,

rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,

Selects the barotropic pressure equation to be the implicit free surface formulation.

¢ Line 26,

’eosType:'LINEAR',

Selects the linear form of the equation of state.

* Line 27,

’nonHydrostatic=.TRUE.,

Selects for non-hydrostatic code.

e Line 33,

’cg2dMaxIters=lOOO,

Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3-D elliptic equation.

e Line 34,

’chdTargetResidualzl.E—9,
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Inactive - the pressure field in a non-hydrostatic simulation is inverted through a 3-D elliptic equation.

e Line 35,

cg3dMaxIters=40,

This line sets the maximum number of iterations the 3-D conjugate gradient solver will use to 40, irrespective
of the convergence criteria being met.

¢ Line 36,

cg3dTargetResidual=1.E-9,

Sets the tolerance which the 3-D conjugate gradient solver will use to test for convergence in equation (2.61)
to 1 x 107%. The solver will iterate until the tolerance falls below this value or until the maximum number of
solver iterations is reached.

e Line43,

nTimeSteps=8640.,

Sets the number of timesteps at which this simulation will terminate (in this case 8640 timesteps or 1 day or
0t = 10 s). At the end of a simulation a checkpoint file is automatically written so that a numerical experiment
can consist of multiple stages.

e Line 44,

’deltaTle,

Sets the timestep 6t to 10 s.
e Line 57,

’dXspacing:50.0,

Sets horizontal (z-direction) grid interval to 50 m.

¢ Line 58,

’dYspacing=50.0,

Sets horizontal (y-direction) grid interval to 50 m.

e Line 59,

’delZZZO*SO.O, ‘

Sets vertical grid spacing to 50 m. Must be consistent with code/SIZE.h. Here, 20 corresponds to the number of
vertical levels.

e Line64,

surfQfile="'Qsurf.bin'

This line specifies the name of the file from which the surface heat flux is read. This file is a 2-D (x, ) map. Itis
assumed to contain 64-bit binary numbers giving the value of QQ (W m?) to be applied in each surface grid cell,
ordered with the x coordinate varying fastest. The points are ordered from low coordinate to high coordinate
for both axes. The matlab program input/gendata.m shows how to generate the surface heat flux file used in the
example.
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4.8.5.4 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

4.8.5.5 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.8.5.6 File input/Qsurf.bin

The file input/Qsurf.bin specifies a 2-D (z,y) map of heat flux values where Q@ = @, x (0.5 +
random number between 0 and 1).

In the example @, = 800 W m~? so that values of @ lie in the range 400 to 1200 W m~?2 with a mean of Q,,. Although
the flux models a loss, because it is directed upwards, according to the model’s sign convention, () is positive.

4.9 Gravity Plume On a Continental Slope

(in directory: verification/tutorial_plume_on_slope/)

-20

-40r -0.01

-60
= -1-0.02

-80

- -1-0.038
-100

Depth (m)

-120 F 1-0.04

-140

-160

-180

-200
0

Figure 4.42: Temperature after 23 hours of cooling. The cold dense water is mixed with ambient water as it accelerates
down the slope and hence is warmer than the unmixed plume.

An important test of any ocean model is the ability to represent the flow of dense fluid down a slope. One example of
such a flow is a non-rotating gravity plume on a continental slope, forced by a limited area of surface cooling above a
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continental shelf. Because the flow is non-rotating, a two dimensional model can be used in the across slope direction.
The experiment is non-hydrostatic and uses open-boundaries to radiate transients at the deep water end. (Dense flow
down a slope can also be forced by a dense inflow prescribed on the continental shelf; this configuration is being
implemented by the DOME (Dynamics of Overflow Mixing and Entrainment) collaboration to compare solutions in
different models).

The fluid is initially unstratified. The surface buoyancy loss By (dimensions of L2T~2) over a cross-shelf distance R
causes vertical convective mixing and modifies the density of the fluid by an amount
_ Bopot

gH

Ap

where H is the depth of the shelf, g is the acceleration due to gravity, ¢ is time since onset of cooling and pg is the
reference density. Dense fluid slumps under gravity, with a flow speed close to the gravity wave speed:

U~ \/g/HN,/gAppH ~ /Bot
0

A steady state is rapidly established in which the buoyancy flux out of the cooling region is balanced by the surface
buoyancy loss. Then

- 1/3 . . Po 2/3
U~ (BoR)"/"; Ap gH(BOR)

The Froude number of the flow on the shelf is close to unity (but in practice slightly less than unity, giving subcritical
flow). When the flow reaches the slope, it accelerates, so that it may become supercritical (provided the slope angle
« is steep enough). In this case, a hydraulic control is established at the shelf break. On the slope, where the Froude
number is greater than one, and gradient Richardson number (defined as Ri ~ ¢'h*/U? where h* is the thickness
of the interface between dense and ambient fluid) is reduced below 1/4, Kelvin-Helmholtz instability is possible, and
leads to entrainment of ambient fluid into the plume, modifying the density, and hence the acceleration down the slope.
Kelvin-Helmholtz instability is suppressed at low Reynolds and Peclet numbers given by

Uh  (BoR)'*h

v v

Re ; Pe = RePr

where h is the depth of the dense fluid on the slope. Hence this experiment is carried out in the high Re, Pe regime.
A further constraint is that the convective heat flux must be much greater than the diffusive heat flux (Nusselt number
>> 1). Then

Nu:Uh

>>1
K

Finally, since we have assumed that the convective mixing on the shelf occurs in a much shorter time than the horizontal
equilibration, this implies H/R << 1.

Hence to summarize the important non-dimensional parameters, and the limits we are considering:

H
E<<1;Re>>1;P€>>1;Nu>>1; s Ri<1/4

In addition we are assuming that the slope is steep enough to provide sufficient acceleration to the gravity plume, but
nonetheless much less that 1:1, since many Kelvin-Helmholtz billows appear on the slope, implying horizontal length
scale of the slope >> the depth of the dense fluid.
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4.9.1 Configuration

The topography, spatial grid, forcing and initial conditions are all specified in binary data files generated using matlab
script verification/tutorial_plume_on_slope/input/gendata.m and detailed in Section 4.9.2. Other model parameters
are specified in input/data and input/data.obcs and detailed in Section 4.9.4.

4.9.2 Binary input data

40 T T

20 ]

15| 1

10 | | I I | |
0

Figure 4.43: Horizontal grid spacing, Az, in the across-slope direction for the gravity plume experiment.

The domain is 200 m deep and 6.4 km across. Uniform resolution of 60 x 3! /3 m is used in the vertical and variable
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Figure 4.44: Topography, h(x), used for the gravity plume experiment.
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Figure 4.45: Upward surface heat flux, Q(z), used as forcing in the gravity plume experiment.
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resolution of the form shown in Figure 4.43 with 320 points is used in the horizontal. The formula for Ax is:

Ax(i) = Az + (Azy — Azq)(1 + tanh (Z :UZS))/Q

where
Nx = 320
Lx = 6400 (m)
2 Lx
Lz /2

A =
2 Nz — Lz /(2Axq) (m)
is = Lz/(2Ax)
w = 40

Here, Az is the resolution on the shelf, Az is the resolution in deep water and Nz is the number of points in the
horizontal.

The topography, shown in Figure 4.44, is given by:

H(z) = —H, + (H, — h)(1 + tanh (Z‘Lxs>)/2

S

where

H, = 200 (m)
hs = 40 (m)
zs = 1500 + La/2 (m)

H —
o= Wl g

2s
s = 0.15

Here, s is the maximum slope, H, is the maximum depth, hg is the shelf depth, x is the lateral position of the
shelf-break and L is the length-scale of the slope.

The forcing is through heat loss over the shelf, shown in Figure 4.45 and takes the form of a fixed flux with profile:

Q) = Qu(1 + e (7770 )) /2

q

where
Q. = 200 (Wm™2)
zg = 2500+ Lx/2 (m)
L, = 100 (m)

Here, @, is the maximum heat flux, z, is the position of the cut-off, and L, is the width of the cut-off.

The initial temperature field is unstratified but with random perturbations, to induce convection early on in the run.
The random perturbation are calculated in computational space and because of the variable resolution introduce some
spatial correlations, but this does not matter for this experiment. The perturbations have range 0 — 0.01 °K.
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4.9.3 Code configuration
The computational domain (number of gridpoints) is specified in code/SIZE.h and is configured as a single tile of
dimensions 320 x 1 x 60.

To compile the model code for this experiment, the non-hydrostatic algorithm needs to be enabled, and the open-
boundaries package (pkg/obcs) is required:

* Non-hydrostatic terms and algorithm are enabled with #define ALLOW_NONHYDROSTATIC in
code/CPP_OPTIONS.h and activated with nonHydrostatic =. TRUE, in namelist PARMO1 of input/data.

* Open boundaries are enabled by adding line obcs to package configuration file code/packages.conf and acti-
vated via useOBCS =. TRUE, in namelist PACKAGES of input/data.pkg.

4.9.4 Model parameters

Table 4.1: Model parameters used in the gravity plume experiment.

Parameter | Value Description

g 9.81 ms? acceleration due to gravity
Po 999.8 kg m™ reference density

a 2 x 107 KT expansion coefficient

Ay, 1 x 102 m?sT | horizontal viscosity

A, 1 x 10°m?s! vertical viscosity

Kh Om?sT (explicit) horizontal diffusion
Ko Om?sT (explicit) vertical diffusion
At 20s time step

Az 3.33333m vertical grid spacing

Az 13.3333 - 39.5 m | horizontal grid spacing

The model parameters (Table 4.1) are specified in input/data and if not assume the default values as defined in Section
3.8. A linear equation of state is used, eosType =/ LINEAR’, but only temperature is active, sBeta =0.E-11. For
the given heat flux, Q,, the buoyancy forcing is B, = 922 ~ 107 m? s3. Using R = 103 m, the shelf width, this

Pocp

gives a velocity scale of U ~ 5 x 10~2 m s™! for the initial front but will accelerate by an order of magnitude over the
slope. The temperature anomaly will be of order Af ~ 3 x 1072 K. The viscosity is constant and gives a Reynolds
number of 100, using h = 20 m for the initial front and will be an order magnitude bigger over the slope. There is no
explicit diffusion but a non-linear advection scheme is used for temperature which adds enough diffusion so as to keep
the model stable. The time-step is set to 20 s and gives Courant number order one when the flow reaches the bottom
of the slope.

4.10 Biogeochemistry Simulation

(in directory: verification/tutorial_global_oce_biogeo/)
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4.10.1 Overview

This model overlays the dissolved inorganic carbon biogeochemistry model (pkg/dic) over a 2.8° global physical
model. The physical model has 15 levels, and is forced with a climatological annual cycle of surface wind stresses
(Trenberth et al. 1989 [TOL89], surface heat and freshwater fluxes (Jiang et al. 1999 [JSMR99]) with additional
relaxation toward climatological sea surface temperature and salinity (Levitus and Boyer (1994a,b) [LB94a][LB94b]).
It uses the Gent and McWilliams (1990) [GM90] eddy parameterization scheme, has an implicit free-surface, implicit
vertical diffusion and uses the convective adjustment scheme.

The biogeochemical model considers the coupled cycles of carbon, oxygen, phosphorus and alkalinity. A simplified
parameterization of biological production is used, limited by the availability of light and phosphate. A fraction of this
productivity enters the dissolved organic pool pool, which has an e-folding timescale for remineralization of 6 months
(following Yamanaka and Tajika 1997 [YT97]). The remaining fraction of this productivity is instantaneously exported
as particulate to depth (Yamanaka and Tajika 1997 [YT97]) where it is remineralized according to the empirical power
law relationship determined by Martin et al. (1987]) [MKKB®&7]. The fate of carbon is linked to that of phosphorus by
the Redfield ratio. Carbonate chemistry is explicitly solved (see Follow et al. 2006) [FID06]) and the air-sea exchange
of CO, is parameterized with a uniform gas transfer coefficient following Wanninkhof (1992) [Wan92]. Oxygen is also
linked to phosphorus by the Redfield ratio, and oxygen air-sea exchange also follows Wanninkhof (1992) [Wan92].
For more details see Dutkiewicz et al. (2005) [DSSaPS05].

The example setup described here shows the physical model after 5900 years of spin-up and the biogeochemistry after
2900 years of spin-up. The biogeochemistry is at a pre-industrial steady-state (atmospheric ppmv is kept at 278).
Five tracers are resolved: dissolved inorganic carbon (DIC'), alkalinity (AL K), phosphate (PO4), dissolved organic
phosphorus (DO P) and dissolved oxygen (O2).
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Figure 4.46: Modeled annual mean air-sea CO» flux (mol C m™ y™!) for pre-industrial steady-state. Positive indicates
flux of CO, from ocean to the atmosphere (out-gassing), contour interval is 1 mol C m? y!.
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4.10.2 Equations Solved

The physical ocean model velocity and diffusivities are used to redistribute the 5 tracers within the ocean. Additional
redistribution comes from chemical and biological sources and sinks. For any tracer A:
0A -

where u* is the transformed Eulerian mean circulation (which includes Eulerian and eddy-induced advection), K is
the mixing tensor, and S4 are the sources and sinks due to biological and chemical processes.

The sources and sinks are:

Sprc = Feo, +Veo, +rc:pSpo, + Jca
SaLk = Vark —rn:pSpo, +2Jca
OF,

SPO4 = _fDOPJprod - TZP + Hrcmin[DOP]
SDOP = fDOPJprod — Rremin [DOP]
g, — —ro:pSpo, if Oz > Ozeriy

O2 0 if Oz < Ogcrit

where:
 Fco, is the flux of CO? from the ocean to the atmosphere
* Voo, is “virtual flux” due to changes in DIC due to the surface freshwater fluxes
* rc.p is Redfield ratio of carbon to phosphorus

¢ Je, includes carbon removed from surface due to calcium carbonate formation and subsequent cumulation of
the downward flux of CaCO3

* Vapk is “virtual flux” due to changes in alkalinity due to the surface freshwater fluxes
* rn.p Redfield ratio is nitrogen to phosphorus
* fpop is fraction of productivity that remains suspended in the water column as dissolved organic phosphorus

* Jprod 1s the net community productivity

OFp

5L is the accumulation of remineralized phosphorus with depth

* Kremin 18 rate with which DO P remineralizes back to POy

* Fp, is air-sea flux of oxygen

* ro.p is Redfield ratio of oxygen to phosphorus

¢ Oa.rit 18 a critical level below which oxygen consumption if halted

These terms (for the first four tracers) are described more in Dutkiewicz et al. (2005) [DSSaPS05] and by McKinley
et al. (2004) [MFMO04] for the terms relating to oxygen.
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4.10.3 Code configuration

The modifications to the code (in verification/tutorial_global_oce_biogeo/code) are:

code/SIZE.h: which dictates the size of the model domain (128x64x15).
code/PTRACERS_SIZE.h: which dictates how many tracers to assign how many tracers will be used (here, 5).
code/DIAGNOSTICS_SIZE.h: assigns size information for the diagnostics package.

code/packages.conf: which dictates which packages will be compiled in this version of the model - among the
many that are used for the physical part of the model, this also includes pkg/ptracers, pkg/gchem, and pkg/dic
which allow the biogeochemical part of this setup to function.

The input fields needed for this run (in verification/tutorial_global_oce_biogeo/input) are:

input/data: specifies the main parameters for the experiment. Some parameters that may be useful to know:
nTimeSteps number timesteps model will run, change to 720 to run for a year taveFreq frequency with which
time averages are done, change to 31104000 for annual averages.

input/data.diagnostics: specifies details of diagnostic pkg output
input/data.gchem: specifies details needed in the biogeochemistry model run
input/data.gmredi: specifies details for the GM parameterization
input/data.pkg: set true or false for various packages to be used

input/data.ptracers: details of the tracers to be used, including makes, diffusivity information and (if needed)
initial files. Of particular importance is the PTRACERS_numInUse which states how many tracers are used,
and PTRACERS_IterO which states at which timestep the biogeochemistry model tracers were initialized.

depth_g77.bin: bathymetry data file

input/eedata: This file uses standard default values and does not contain customizations for this experiment.
fice.bin: ice data file, needed for the biogeochemistry

lev_monthly_salt.bin: SSS values which model relaxes toward

lev_monthly_temp.bin: SST values which model relaxes toward

pickup.0005184000.data: variable and tendency values need to restart the physical part of the model
pickup_cd.0005184000.data: variable and tendency values need to restart the cd pkg

pickup_ptracers.0005184000.data: variable and tendency values need to restart the the biogeo-
chemistry part of the model

shi_empmr_year.bin: freshwater forcing data file

shi_gnet .bin: heat flux forcing data file

sillevl.bin: silica data file, need for the biogeochemistry
tren_speed.bin: wind speed data file, needed for the biogeochemistry
tren_taux.bin: meridional wind stress data file

tren_tauy.bin: zonal wind stress data file
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4.10.4 Running the example

As the model is set up to run in the verification experiment, it only runs for 4 timesteps (2 days) and outputs data at
the end of this short run. For a more informative run, you will need to run longer. As set up, this model starts from a
pre-spun up state and initializes physical fields and the biogeochemical tracers from the pickup files.

Physical data (e.g., S,T, velocities etc) will be output as for any regular ocean run. The biogeochemical output are:

* tracer snapshots: look in input/data.ptracers to see which number matches which type of tracer (e.g., ptracer01
is DIC).

* tracer time averages

* specific DIC diagnostics: these are averaged over taveFreq (set in input/data) and are specific to pkg/dic (cur-
rently are only available in binary format):

- DIC_Biotave: 3-D biological community productivity (mol P m™ s!)

- DIC_Cartave: 3-D tendencies due to calcium carbonate cycle (mol C m s!)
- DIC_fluxCO2ave: 2-D air-sea flux of CO; (mol C m? s™!)

— DIC_pCO2tave: 2-D partial pressure of CO, in surface layer

— DIC_pHtave: 2-D pH in surface layer

- DIC_SurOtave: 2-D tendency due to air-sea flux of O, (mol O m s!)

— DIC_Surtave: 2-D surface tendency of DIC due to air-sea flux and virtual flux (mol C m> s

4.11 Global Ocean State Estimation

(in directory: verification/tutorial_global_oce_optim/)

4.11.1 Overview

This experiment illustrates the optimization capacity of the MITgcm: here, a high level description.

In this tutorial, a very simple case is used to illustrate the optimization capacity of the MITgcm. Using an ocean
configuration with realistic geography and bathymetry on a 4 x 4° spherical polar grid, we estimate a time-independent
surface heat flux adjustment Qe that attempts to bring the model climatology into consistency with observations
(Levitus and Boyer (1994a,b) [LB94a][LLB94b]).

This adjustment Qpetm (2 2-D field only function of longitude and latitude) is the control variable of an optimization
problem. It is inferred by an iterative procedure using an ‘adjoint technique’ and a least-squares method (see, for
example, Stammer et al. (2002) [SWG+02] and Ferriera et a. (2005) [FMHOS5].

The ocean model is run forward in time and the quality of the solution is determined by a cost function, .J;, a measure
of the departure of the model climatology from observations:

Rl

— —lev 2
Ti— T (4.56)

where T'; and Tiev are, respectively, the model and observed potential temperature at each grid point 7. The differences
are weighted by an a priori uncertainty o} on observations (as provided by Levitus and Boyer (1994a) [LB94a]). The
error o} is only a function of depth and varies from 0.5 K at the surface to 0.05 K at the bottom of the ocean, mainly
reflecting the decreasing temperature variance with depth (see Figure 4.47a). A value of J; of order 1 means that the

model is, on average, within observational uncertainties.
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Figure 4.47: A priori errors on potential temperature (left, in °C) and surface heat flux (right, in W m) used to
compute the cost terms J; and .Jo, respectively.

The cost function also places constraints on the adjustment to insure it is “reasonable”, i.e., of order of the uncertainties
on the observed surface heat flux:
‘| 2
Q

where o,;° are the a priori errors on the observed heat flux as estimated by Stammer et al. (2002) [SWG+02] from
30% of local root-mean-square variability of the NCEP forcing field (see Figure 4.47b).

g

N
_ 1 Qnetm
|

The total cost function is defined as J = A;J; + Ao Jo where A\; and A, are weights controlling the relative contribution
of the two components. The adjoint model then yields the sensitivities 9.J/0Qnetm of J relative to the 2-D fields
Qnetm- Using a line-searching algorithm (Gilbert and Lemaréchal 1989 [GLemarechal89]), Qpetm is adjusted then in
the sense to reduce .J — the procedure is repeated until convergence.

Figure 4.48 shows the results of such an optimization. The model is started from rest and from January-mean tem-
perature and salinity initial conditions taken from the Levitus dataset. The experiment is run a year and the averaged
temperature over the whole run (i.e., annual mean) is used in the cost function (4.56) to evaluate the model'. Only the
top 2 levels are used. The first guess Qpetm 1S chosen to be zero. The weights A\; and A5 are set to 1 and 2, respectively.
The total cost function converges after 15 iterations, decreasing from 6.1 to 2.7 (the temperature contribution decreases
from 6.1 to 1.8 while the heat flux one increases from O to 0.42). The right panels of Figure 4.48 illustrate the evolution
of the temperature error at the surface from iteration O to iteration 15. Unsurprisingly, the largest errors at iteration
0 (up to 6 °C, top left panels) are found in the Western boundary currents. After optimization, the departure of the
model temperature from observations is reduced to 1 °C or less almost everywhere except in the Pacific equatorial
cold tongue. Comparison of the initial temperature error (top, right) and heat flux adjustment (bottom, left) shows

! Because of the daily automatic testing, the experiment as found in the repository is set-up with a very small number of time-steps. To reproduce
the results shown here, one needs to set nTimeSteps = 360 and lastinterval =31104000 (both corresponding to a year, see Section 4.11.3.2 for further
details).
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that the system basically increased the heat flux out of the ocean where temperatures were too warm and vice-versa.
Obviously, heat flux uncertainties are not solely responsible for temperature errors, and the heat flux adjustment partly
compensates the poor representation of narrow currents (Western boundary currents, equatorial currents) at 4 x 4°
resolution. This is allowed by the large a priori error on the heat flux Figure 4.47. The Pacific cold tongue is a counter
example: there, heat fluxes uncertainties are fairly small (about 20 W m), and a large temperature errors remains
after optimization.

Prescribed surface heat flux Qne

t Temp. error at iteration 0

B TT 1 [ T
-200 -100 0 100 200 -6 -4 -2 0 2 4 6

Adjustment to Qnet (iteration 15)

Temp. error at iteration 15

Figure 4.48: Initial annual mean surface heat flux (top right in W m2) and adjustment obtained at iteration 15 (bottom
right). Averaged difference between model and observed potential temperatures at the surface (in °C) before opti-
mization (iteration 0, top right) and after optimization (iteration 15, bottom right). Contour intervals for heat flux and
temperature are 25 W m and 1 °C, respectively. A positive flux is out of the ocean.
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4.11.2 Implementation of the control variable and the cost function

One of the goals of this tutorial is to illustrate how to implement a new control variable. Most of this is
fairly generic and is done in pkg/ctrl and pkg/cost. The modifications can be tracked by the CPP option AL-
LOW_HFLUXM_CONTROL or the comment cHFLUXM_CONTROL. The more specific modifications required for
the experiment are found in verification/tutorial_global_oce_optim/code_ad. Here follows a brief description of the
implementation.

4.11.2.1 The control variable

The adjustment (Quetm 1S activated by setting #define ALLOW_HFLUXM_CONTROL in
code_ad/CTRL_OPTIONS.h.

It is first implemented as a “normal” forcing variable. It is defined in model/inc/FFIELDS.h, initialized to zero in
model/src/ini_forcing.F, and then used in model/src/external_forcing_surf.F. Quetm is made a control variable in
pkg/ctrl by modifying the following subroutines:

e pkg/ctrl/ctrl_init.F where Qpetm is defined as the control variable number 24,

o pkg/ctrl/ctrl_pack.F which writes, at the end of each iteration, the sensitivity of the cost function 9.J/9Qpetm in
to a file to be used by the line-search algorithm,

¢ pkg/ctrl/ctrl_unpack.F which reads, at the start of each iteration, the updated adjustment as provided by the
line-search algorithm,

* pkg/ctrl/ctrl_map_forcing.F in which the updated adjustment is added to the first guess Qpnetm-

Note also some minor changes in pkg/ctrl/ctrl.h, pkg/ctrl/ctrl_readparms.F, and pkg/ctrl/ctr]l_dummy.h
(xx_hfluxm_file, fname_hfluxm, xx_hfluxm_dummy).

4.11.2.2 Cost functions

The cost functions are implemented using pkg/cost.

* The temperature cost function .J; which measures the drift of the mean model temperature from the Levitus
climatology is implemented in /verification/tutorial_global_oce_optim/code_ad/cost_temp.F. It is activated by
#define ALLOW_COST_TEMP in code_ad/COST_OPTIONS.h. It requires the mean temperature of the
model which is obtained by accumulating the temperature in pkg/cost/cost_tile.F (called at each time step). The
value of the cost function is stored in objf_temp and its weight A; in mult_temp.

e The heat flux cost function, penalizing the departure of the surface heat flux from observations is im-
plemented in /verification/tutorial_global_oce_optim/code_ad/cost_hflux.F, and activated by #define AL-
LOW_COST_HFLUXM in code_ad/COST_OPTIONS.h. The value of the cost function is stored in
objf_hfluxm and its weight Ao in mult_hflux.

* The subroutine pkg/cost/cost_final.F calls the cost function subroutines and makes the (weighted) sum of the
various contributions.

* The various weights used in the cost functions are read in /verifica-
tion/tutorial_global_oce_optim/code_ad/cost_weights.F. The weight of the cost functions are read in
pkg/cost/cost_readparms.F from the input file verification/tutorial_global_oce_optim/input_ad/data.cost.
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4.11.3 Code Configuration

The experiment files in verification/tutorial _global_oce_optim/code_ad/ and verifica-
tion/tutorial_global_oce_optim/input_ad/ contain the code customizations and parameter settings. Most of
them are identical to those used in the Global Ocean ( experiment verification/tutorial_global_oce_latlon/). Below,
we describe some of the customizations required for this experiment.

4.11.3.1 Compilation-time customizations in code_ad

In code_ad/CTRL_OPTIONS h:
¢ #define ALLOW_ECCO_OPTIMIZATION

4.11.3.2 Running-time customizations in input_ad

e input_ad/data: note the smaller cg2dTargetResidual than in the forward-only experiment,
e input_ad/data.optim specifies the iteration number,

e input_ad/data.ctrl is used, in particular, to specify the name of the sensitivity and adjustment files associated to
a control variable,

e input_ad/data.cost: parameters of the cost functions, in particular lastinterval specifies the length of time-
averaging for the model temperature to be used in the cost function (4.56),

* input_ad/data.pkg: note that the Gradient Check package is turned on by default (useGrdchk =. TRUE . ),

e Err_hflux.bin and Err_levitus_15layer.bin are the files containing the heat flux and potential
temperature uncertainties, respectively.

4.11.4 Compiling

The optimization experiment requires two executables: 1) the MITgecm and its adjoint (mitgcmuv_ad) and 2) the
line-search algorithm (optim. x).

4.11.4.1 Compilation of MITgcm and its adjoint: mitcgmuv_ad

Before compiling, first note that in the directory code_ad, two files must be updated:

e code_ad/code_ad_diff.list which lists new subroutines to be compiled by the TAF software
(code_ad/cost_temp.F and code_ad/cost_hflux.F),

¢ the file code_ad/ad_optfile.local provides a list of the control variables and the name of cost function to the TAF
software.

Then, in the directory build, type:

o\

../../../tools/genmake2 -mods=../code_ad -adof=../code_ad/ad_optfile.local
make depend
% make adall

o°

to generate the MITgcm executable mitgcmuv_ad.
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4.11.4.2 Compilation of the line-search algorithm: optim.x

This is done from the directories Isopt/ and optim/ (found in the top MITgcm directory). In Isopt/, unzip the blashl
library adapted to your platform (see Isopt/README), and change the Make file accordingly. Compile with:

o)

% make all

(more details in Isopt/Isopt_doc.txt)

In optim/, the path of the directory where mitgcm_ad was compiled must be specified in the Makefile in the
variable INCLUDEDIRS. The file name of the control variable (here, xx_hfluxm_file) must be added to the namelist
read by optim/optim_numbmod.F. Then use

)

% make depend

and

)

% make

to generate the line-search executable optim. x.

4.11.5 Running the estimation

Make a new subdirectory input_ad/OPTIM. Copy the mitgcmuv_ad executable to input_ad and optim.x to
this subdirectory. cd into input_ad/. The first iteration is somewhat particular and is best done “by hand” while
the following iterations can be run automatically (see below). Check that the iteration number is set to O in in-
put_ad/data.optim and run MITgcm:

o

% ./mitgcmuv_ad

The output files adxx_hfluxm.0000000000.+ and xx_hfluxm.0000000000. contain the sensitivity of
the cost function to Qetr, and the adjustment to Qe (zero at the first iteration), respectively. Two other files called
costhflux_tut_MITgcm.opt0000 and ctrlhflux_tut_MITgcm.opt0000 are also generated. They es-
sentially contain the same information as the adxx_ . hfluxm* and xx_hfluxmx files, but in a compressed format.
These two files are the only ones involved in the communication between the adjoint model mitgcmuv_ad and the
line-search algorithm opt im. x. Only at the first iteration, are they both generated by mit gcmuv_ad. Subsequently,
costhflux_tut_MITgcm.opt n is an output of the adjoint model at iteration n and an input of the line-search.
The latter returns an updated adjustment in ctrlhflux_tut_MITgcm.opt n + 1 to be used as an input of the
adjoint model at iteration n + 1.

At the first iteration, move costhflux_tut_MITgcm.opt0000 and ctrlhflux_tut_MITgcm.opt0000
to input_ad/OPTIM, move into this directory and link input_ad/data.optim and input_ad/data.ctrl locally:

% cd OPTIM/
In -s ../data.optim .
% ln -s ../data.ctrl

oe

The target cost function fmin needs to be specified in input_ad/data.optim: as a rule of thumb, it should be about
0.95-0.90 times the value of the cost function at the first iteration. This value is only used at the first iteration and does
not need to be updated afterward. However, it implicitly specifies the “pace” at which the cost function is going down
(if you are lucky and it does indeed diminish!).

Once this is done, run the line-search algorithm:

% ./optim.x
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which computes the updated adjustment for iteration 1, ctrlhflux_tut_MITgcm.opt0001.

The following iterations can be executed automatically using the shell script input_ad/cycsh. This script will take
care of changing the iteration numbers in input_ad/data.optim, launch the adjoint model, clean and store the outputs,
move the costhflux* and ctrlhflux~ files, and run the line-search algorithm. Edit input_ad/cycsh to specify
the prefix of the directories used to store the outputs and the maximum number of iteration.

4.12 Adjoint Sensitivity Analysis for Tracer Injection

(in directory: verification/tutorial_tracer_adjsens/)

MITgcm has been adapted to enable AD using TAMC or TAF. The present description is specific to the use of TAMC
or TAF as AD tool. The following sections describe the steps which are necessary to generate a tangent linear or adjoint
model of MITgcm. We take as an example the sensitivity of carbon sequestration in the ocean. The AD-relevant hooks
in the code are outlined in Section 7.2 and Section 7.2.4.4.

4.12.1 Overview of the experiment

We describe an adjoint sensitivity analysis of out-gassing from the ocean into the atmosphere of a carbon-like tracer
injected into the ocean interior (see Hill et al. 2004 [HBFMO04]).

4.12.1.1 Passive tracer equation

For this work, MITgcm was augmented with a thermodynamically inactive tracer, C'. Tracer residing in the ocean
model surface layer is out-gassed according to a relaxation time scale, p. Within the ocean interior, the tracer is
passively advected by the ocean model currents. The full equation for the time evolution

oC
also includes a source term S. This term represents interior sources of C' such as would arise due to direct injection.
The velocity term, U, is the sum of the model Eulerian circulation and an eddy-induced velocity, the latter parame-
terized according to Gent/McWilliams (Gent and McWilliams 1990 [GM90]; Gent et al. (1995) [GWMMO95]). The
convection function, I', mixes C' vertically wherever the fluid is locally statically unstable.

The out-gassing time scale, u, in (4.57) is set so that 1/ ~ 1 year for the surface ocean and u = 0 elsewhere.
With this value, (4.57) is valid as a prognostic equation for small perturbations in oceanic carbon concentrations. This
configuration provides a powerful tool for examining the impact of large-scale ocean circulation on CO, out-gassing
due to interior injections. As source we choose a constant in time injection of S = 1 mol s!.

4.12.1.2 Model configuration

The model configuration employed has a constant 4° x 4° resolution horizontal grid and realistic geography and
bathymetry. Twenty vertical layers are used with vertical spacing ranging from 50 m near the surface to 8§15 m at
depth. Driven to steady-state by climatological wind-stress, heat and fresh-water forcing, the model reproduces well
known large-scale features of the ocean general circulation.
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4.12.1.3 Out-gassing cost function

To quantify and understand out-gassing due to injections of C'in (4.57), we define a cost function J that measures the
total amount of tracer out-gassed at each timestep:

t=T
Jt=T)= / / uC dA dt (4.58)
t=0 A

(4.58) integrates the out-gassing term, uC, from (4.57) over the entire ocean surface area, A, and accumulates it up
to time 7. Physically, J can be thought of as representing the amount of CO, that our model predicts would be
out-gassed following an injection at rate .S. The sensitivity of 7 to the spatial location of S, g—‘g, can be used to
identify regions from which circulation would cause CO; to rapidly out-gas following injection and regions in which
CO; injections would remain effectively sequestered within the ocean.

4.12.2 Code configuration

The code customization routines are in verification/tutorial_tracer_adjsens/code_ad:
* verification/tutorial_tracer_adjsens/code_ad/COST_OPTIONS.h
* verification/tutorial_tracer_adjsens/code_ad/CTRL_OPTIONS.h
* verification/tutorial_tracer_adjsens/code_ad/CPP_OPTIONS.h
* verification/tutorial_tracer_adjsens/code_ad/AUTODIFF_OPTIONS.h
* verification/tutorial_tracer_adjsens/code_ad/CTRL_SIZE.h
* verification/tutorial_tracer_adjsens/code_ad/GAD_OPTIONS.h
e verification/tutorial_tracer_adjsens/code_ad/GMREDI_OPTIONS.h
e verification/tutorial_tracer_adjsens/code_ad/SIZE.h
* verification/tutorial_tracer_adjsens/code_ad/tamc.h
* verification/tutorial_tracer_adjsens/code_ad/ctrl_map_ini_genarr.F
* verification/tutorial_tracer_adjsens/code_ad/ptracers_forcing_surf.F
* verification/tutorial_tracer_adjsens/code_ad/packages.conf

The runtime flag and parameters settings are contained in verification/tutorial_tracer_adjsens/input/ and verifica-
tion/tutorial_tracer_adjsens/input_ad/, together with the forcing fields and and restart files:

* verification/tutorial_tracer_adjsens/input_ad/data

* verification/tutorial_tracer_adjsens/input_ad/data.cost

* verification/tutorial_tracer_adjsens/input_ad/data.ctrl

* verification/tutorial_tracer_adjsens/input_ad/data.gmredi
* verification/tutorial_tracer_adjsens/input_ad/data.grdchk
* verification/tutorial_tracer_adjsens/input_ad/data.optim

* verification/tutorial_tracer_adjsens/input_ad/data.pkg

* verification/tutorial_tracer_adjsens/input_ad/data.ptracers
* verification/tutorial_tracer_adjsens/input_ad/eedata

e verification/tutorial_tracer_adjsens/input/topog.bin
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e verification/tutorial_tracer_adjsens/input/windx.bin, verification/
tutorial_tracer_adjsens/inputwindy.bin

e verification/tutorial_tracer_adjsens/input/salt.bin, verification/
tutorial_tracer_adjsens/input/theta.bin

e verification/tutorial_tracer_adjsens/input/SSS.bin, verification/
tutorial_tracer_adjsens/input/SST.bin

Below we describe the customizations of this files which are specific to this experiment.

4.12.2.1 File code_ad/COST_OPTIONS.h /

This file contains package-specific CPP-options (see Section 7.2.4).

4.12.2.2 File code_ad/CTRL_OPTIONS.h/

This file contains package-specific CPP-options (see Section 10.3).

4.12.2.3 File code_ad/CPP_OPTIONS.h /

This file contains model-specific CPP options (see Section 3.7). Most options are related to the forward model setup.
They are identical to the global steady circulation setup of verification/global_ocean.90x40x15/. The three options
specific to this experiment are as follows. #define ALLOW_PASSIVE_TRACER enables the code to carry through
the advection/diffusion of a passive tracer along the model integration. #define ALLOW_MIT_ADJOINT_RUN
enables the inclusion of some AD-related fields concerning initialization, link between control variables and for-
ward model variables, and the call to the top-level forward/adjoint subroutine adthe_main_loop.F instead of
model/src/the_main_loop.F. #define ALLOW_GRADIENT_CHECK enables the gradient check package. After
computing the unperturbed cost function and its gradient, a series of computations are performed for which:

* an element of the control vector is perturbed
* the cost function w.r.t. the perturbed element is computed

* the difference between the perturbed and unperturbed cost function is computed to compute the finite difference
gradient

* the finite difference gradient is compared with the adjoint-generated gradient.

The gradient check package is further described in Section 7.3.

4.12.2.4 File ECCO_OPTIONS.h

The CPP options of several AD-related packages are grouped in this file:

¢ Overall ECCO-related execution modus:

These determine whether a pure forward run, a sensitivity run or an iteration of optimization is performed.
These options are not needed in the present context.

* Adjoint support package: pkg/autodiff/
This package contains hand-written adjoint code such as active file handling, flow directives for files which
must not be differentiated, and TAMC-specific header files. #define ALLOW_AUTODIFF_TAMC defines
TAMC-related features in the code. #define ALLOW_TAMC_CHECKPOINTING enables the
checkpointing feature of TAMC (see Section 7.1.3). In the present example a 3-level checkpointing is
implemented. The code contains the relevant store directives, common block and tape initializations, storing
key computation, and loop index handling. The checkpointing length at each level is defined in file
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code_ad/tamc.h, see below. The out and intermediate loop directives are contained in the files
pkg/autodiff/checkpoint_lev3_directives.h, pkg/autodiff/checkpoint_lev2_directives.h. #define
ALLOW_AUTODIFF_MONITOR enables the monitoring of intermediate adjoint variables (see Section
7.2.54). #define ALLOW_DIVIDED_ADJOINT enables adjoint dump and restart (see Section 7.4).

Cost function package: pkg/cost/

This package contains all relevant routines for initializing, accumulating and finalizing the cost function (see
Section 7.2.4). #define ALLOW_COST enables all general aspects of the cost function handling, in
particular the hooks in the forward code for initializing, accumulating and finalizing the cost function.
#define ALLOW_COST_TRACER includes the call to the cost function for this particular experiment, eqn.
(4.58).

Control variable package: pkg/ctrl/
This package contains all relevant routines for the handling of the control vector. Each control variable can be
enabled/disabled with its own flag:

#define ALLOW_THETAO_CONTROL | initial temperature

#define ALLOW_SALT0O _CONTROL initial salinity

#define ALLOW_TR10_CONTROL initial passive tracer concentration
#define ALLOW_TAUUO _CONTROL zonal wind stress

#define ALLOW_TAUV0O_CONTROL meridional wind stress

#define ALLOW_SFLUX0 CONTROL | freshwater flux

#define ALLOW_HFLUXO0_CONTROL | heat flux

#define ALLOW_DIFFKR_CONTROL | diapycnal diffusivity

#undef ALLOW_KAPGM_CONTROL isopycnal diffusivity

4.12.2.5 File SIZE.h

Listing 4.34: verification/tutorial_global_oce_latlon/code/SIZE.h

Q
log}
(@]
vl

QOO0 0000000000000000a00000

'ROUTINE: SIZE.h
| INTERFACE:
include SIZE.h
IDESCRIPTION: \bv

* *

SIZE.h Declare size of underlying computational grid.

|

* *
| The design here supports a three-dimensional model grid

| with indices I,J and K. The three-dimensional domain

| is comprised of nPx*nSx blocks (or tiles) of size sNx

| along the first (left-most index) axis, nPyxnSy blocks

| of size sNy along the second axis and one block of size

| Nr along the vertical (third) axis.

| Blocks/tiles have overlap regions of size OLx and OLy

| along the dimensions that are subdivided.

* *
\ev

Voodoo numbers controlling data layout:

sNx :: Number of X points in tile.
sNy :: Number of Y points in tile.
OLx :: Tile overlap extent in X.
OLy :: Tile overlap extent in Y.

(continues on next page)
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(continued from previous page)

C nsSx Number of tiles per process in X.
C nSy Number of tiles per process in Y.
C nPx Number of processes to use in X.
C nPy Number of processes to use in Y.
C Nx Number of points in X for the full domain.
C Ny Number of points in Y for the full domain.
C Nr Number of points in vertical direction.
CEOP
INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy
INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy
INTEGER Nx
INTEGER Ny
INTEGER Nr
PARAMETER (
& sNx = 45,
& sNy = 20,
& OLx = 3,
& OLy = 3,
& nsSx = 2,
& nsSy = 2,
& nPx = 1,
& nPy = 1,
& Nx = sNxx*nSx*nPx,
& Ny = sNyx*nSyxnPy,
& Nr = 20)
C MAX_OLX Set to the maximum overlap region size of any array
C MAX_OLY that will be exchanged. Controls the sizing of exch
C routine buffers.
INTEGER MAX_OLX
INTEGER MAX_OLY
PARAMETER ( MAX_OLX = OLx%,
& MAX_OLY = OLy )
C for pkg/ctrl:
INTEGER nobcs
PARAMETER ( nobcs = 4 )

The file contains the grid point dimensions of the forward model. It is identical to the verification/exp2/.
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4.12.2.6 File /pkg/autodifffadcommon.h

This file contains common blocks of some adjoint variables that are generated by TAMC. The common blocks are
used by the adjoint support routine /pkg/autodiff/addummy_in_stepping.F which needs to access those variables:

common /addynvars_r/ is related to model/inc/DYNVARS.h
common /addynvars_cd/ is related to model/inc/DYNVARS.h
common /addynvars_diffkr/ | is related to model/inc/DYNVARS.h
common /addynvars_kapgm/ | is related to model/inc/DYNVARS.h
common /adtr1_r/ is related to TR1.h

common /adffields/ is related to model/inc/FFIELDS.h

Note that if the structure of the common block changes in the above header files of the forward code, the structure of the
adjoint common blocks will change accordingly. Thus, one must make sure that the structure of the adjoint common
block in the hand-written file /pkg/autodiff/adcommon.h complies with the automatically generated adjoint common
blocks in adjoint_model.F. The header file is enabled via the CPP-option ALLOW_AUTODIFF_MONITOR.

4.12.2.7 File code_ad/tamc.h

This routine contains the dimensions for TAMC checkpointing and some indices relevant for storing ky computations.

#ifdef ALLOW_TAMC_CHECKPOINTING

3-level checkpointing is enabled, i.e., the timestepping is divided into three different levels (see Section 7.1.3).
The model state of the outermost (nchklev_3) and the intermediate (nchklev_2) timestepping loop are stored to
file (handled in model/src/the_main_loop.F). The innermost loop (nchklev_1) avoids I/O by storing all required
variables to common blocks. This storing may also be necessary if no checkpointing is chosen (nonlinear
functions, if-statements, iterative loops, .. .). In the present example the dimensions are chosen as follows:

nchklev_1 36
nchklev_2 30
nchklev_3 = 60

To guarantee that the checkpointing intervals span the entire integration period the following relation must be
satisfied:

nchklev_1 * nchklev_2 * nchklev_3 > nTimeSteps

where nTimeSteps is either specified in input_ad/data or computed via:

nTimeSteps = (endTime - startTime )/ deltaTClock.

#undef ALLOW_TAMC_CHECKPOINTING

No checkpointing is enabled. In this case the relevant counter is nchklev_0. Similar to above, the following
relation has to be satisfied:

nchklev_0 > nTimeSteps
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The following parameters may be worth describing: isbyte, maxpass.

4.12.2.8 File makefile

This file contains all relevant parameter flags and lists to run TAMC or TAF. It is assumed that TAMC is available to
you, either locally, being installed on your network, or remotely through the "TAMC Utility’. TAMC is called with the
command tamc followed by a number of options. They are described in detail in the TAMC manual (Giering 1999
[Gie99]). Here we briefly discuss the main flags used in the makefile. The standard output for TAF is written to
file taf.log.

TAMC:

TAF:

—-input «variable names» -output «variable name» -i4 -r4
—-toplevel «S/R name» -reverse «file names»

—input «variable names» -output «variable name» -i4 -r4
~-toplevel «S/R name» -reverse «file names»
—flow taf_flow.log —nonew_arg

-toplevel «S/R name»

Name of the toplevel routine, with respect to which the control flow analysis is performed.
input «variable names»

List of independent variables u with respect to which the dependent variable .J is differentiated.
—output «variable name»

Dependent variable J which is to be differentiated.

—-reverse «file names»

Adjoint code is generated to compute the sensitivity of an independent variable w.r.t. many dependent variables.
In the discussion of Section 7 the generated adjoint top-level routine computes the product of the transposed
Jacobian matrix M7 times the gradient vector V,J. «file names» refers to the list of files . £ which are to
be analyzed by TAMC. This list is generally smaller than the full list of code to be compiled. The files not
contained are either above the top-level routine (some initializations), or are deliberately hidden from TAMC,
either because hand-written adjoint routines exist, or the routines must not (or don’t have to) be differentiated.
For each routine which is part of the flow tree of the top-level routine, but deliberately hidden from TAMC (or
for each package which contains such routines), a corresponding file . £ 1ow exists containing flow directives
for TAMC.

-i4 -r4
—flow taf_flow.log

Will cause TAF to produce a flow listing file named taf_flow.log in which the set of active and passive
variables are identified for each subroutine.

—nonew_arg

The default in the order of the parameter list of adjoint routines has changed. Before TAF 1.3 the default was
compatible with the TAMC-generated list. As of TAF 1.3 the order of adjoint routine parameter lists is no longer
compatible with TAMC. To restore compatibility when using TAF 1.3 and higher, this argument is needed. It is
currently crucial to use since all hand-written adjoint routines refer to the TAMC default.

4.12.
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File input/topog.bin

Contains 2-D bathymetry information.

Files input/windx.bin, input/windy.bin, input/salt.bin, input/theta.bin, input/SSS.
bin, input/SST.bin

These contain the initial values of salnity and potential temperature (salt .bin, theta.bin), surface boundary
values (surface wind stresses windx .bin, windy.bin), and surface restoring fields (SSS.bin, SST.bin).

4.12.3 Compiling the model and its adjoint

The build process of the adjoint model is slightly more complex than that of compiling the forward code. The main
reason is that the adjoint code generation requires a specific list of routines that are to be differentiated (as opposed
to the automatic generation of a list of files to be compiled by genmake?2). This list excludes routines that don’t have
to be or must not be differentiated. For some of the latter routines flow directives may be necessary, a list of which
has to be given as well. For this reason, a separate makefile is currently maintained in the directory adjoint/. This
makefile is responsible for the adjoint code generation.

In the following we describe the build process step by step, assuming you are in the directory bin/. A summary of
steps to follow is given at the end.

4.12.3.1 Adjoint code generation and compilation — step by step

1. In -s ../verification/???/code/.genmakerc
In -s ../verification/???/code/*.[Fh]

Link your customized genmake options, header files, and modified code to the compile directory.

2. ../tools/genmake -makefile
Generate your Makefile (see Section 3.5.2).

3. make depend
Dependency analysis for the CPP pre-compiler (see Section 3.5.1).

4. cd ../adjoint
make adtaf ormake adtamc

Depending on whether you have TAF or TAMC at your disposal, you’ll choose adtaf or adtamc as your make
target for the makefile in the directory adjoint/. Several things happen at this stage.

* make adrestore
make ftlrestore

The initial template files adjoint_model.F and tangentlinear_model.F in pkg/autodiff which are
part of the compiling list created by genmake?2 are restored.

* make depend, make small_f

The bin/ directory is brought up to date, i.e., for recent changes in header or source code . [Fh],
corresponding . f routines are generated or re-generated. Note that here, only CPP pre-compiling is
performed; no object code . o is generated as yet. Pre-compiling is necessary for TAMC to see the full code.

* make allcode
All Fortran routines .f in bin/ are concatenated into a single file called tamc_code. f.

e make admodeltaf/admodeltamc
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Adjoint code is generated by TAMC or TAF. The adjoint code is written to the file tamc_code_ad. . It
contains all adjoint routines of the forward routines concatenated in tamc_code. £. For a given forward
routine subroutine routinename the adjoint routine is named adsubroutine routinename by default (that default
can be changed via the flag ~admark «markname»). Furthermore, it may contain modified code which
incorporates the translation of adjoint store directives into specific Fortran code. For a given forward routines
subroutine routinename the modified routine is named mdsubroutine routinename. TAMC or TAF info is
written to file tamc_code.prot or taf.log, respectively.

* make adchange
The multi-threading capability of MITgcm requires a slight change in the parameter list of some routines that
are related to to active file handling. This post-processing invokes the sed script tools/adjoint_sed to insert the
threading counter myThld into the parameter list of those subroutines. The resulting code is written to file
tamc_code_sed_ad. f and appended to the file adjoint_model .F. This concludes the adjoint code
generation.

5. cd ../bin
make
The file adjoint_model.F cnow contains the full adjoint code. All routines are now compiled.
N.B.: The targets make adtaf/adtamc now comprise a series of targets that in previous versions had to be invoked

separately. This was probably preferable at a more experimental stage, but has now been dropped in favor of a more
straightforward build process.

Adjoint code generation and compilation — summary

cd bin
In -s ../verification/my_experiment/code/.genmakerc
In -s ../verification/my_experiment/code/*.[Fh]

../tools/genmake -makefile
make depend
cd ../adjoint
make adtaf <OR: make adtamc>
contains the targets:
adrestore small_f allcode admodeltaf/admodeltamc adchange
cd ../bin
make

4.13 Offline Experiments

(in directory: verification/tutorial_cfc_offline/)

This document describes two experiments using the offline form of the MITgcm.
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4.13.1 Overview

The first experiment demonstrates use of the offline form of the MITgcm to study advection of a passive tracer.
Time-averaged flow-fields and mixing coefficients, deriving from a prior online run, are re-used leaving only
the tracer equation to be integrated. This first experiment’s run configuration is specified in directory verifica-
tion/tutorial_cfc_offline/input_tutorial.

Figure — missing figure — shows a movie of tracer being advected using the offline package of the MITgcm. In the
top panel the frames of the movie show the monthly surface evolution of an initially local source of passive tracer. In
the lower panel, the frames of the movie show the changing monthly surface evolution where the initial tracer field
had a global distribution.

The second experiment, a more complicated example exploring contamination of the global ocean through surface
exposure to CFCs during the last century, is described after this more simple first example. The run configuration for
this second experiment is specified in directory verification/tutorial_cfc_offline/input.

4.13.2 Time-stepping of tracers

See Section 2.16 and Section 2.17 for details of available tracer time-stepping schemes and their characteristics.

4.13.3 Code Configuration

The experiment files
* verification/tutorial_cfc_offline/input_tutorial/data
* verification/tutorial_cfc_offline/input_tutorial/data.off
* verification/tutorial_cfc_offline/input_tutorial/data.pkg
* verification/tutorial_cfc_offline/input_tutorial/data.ptracers
* verification/tutorial_cfc_offline/input_tutorial/eedata
* verification/tutorial_cfc_offline/code/packages.conf
e verification/tutorial_cfc_offline/code/PTRACERS_SIZE.h
e verification/tutorial_cfc_offline/code/GMREDI_OPTIONS.h
¢ verification/tutorial_cfc_offline/code/SIZE.h

contain the code customizations and parameter settings required to run the example. In addition the following binary
data files are required:

e input/depth_g77.bin
* pickup_ptracers.0004269600, pickup_ptracers.0004269600.meta

* binary files in verification/tutorial_cfc_offline/input/input_off
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4.13.3.1 File input_tutorial/data

Listing 4.35: verification/tutorial_cfc_offline/input_tutorial/data

#

# | Model parameters |
# —
#
#

Continuous equation parameters
&PARMO1
implicitDiffusion=.TRUE.,
&
#
# Elliptic solver parameters
&PARMO2
cg2dMaxIters=1000,
cg2dTargetResidual=1.E-13,
&
#
# Time stepping parameters
&PARMO3
nIter0 = 4269600,
nTimeSteps = 4,
deltaTtracer= 43200.0,
deltaTClock = 43200.0,
pChkptFreg=3110400000.,
chkptFreg= 3110400000.,
dumpFreg= 31104000.,
taveFregq= 31104000.,
monitorFreqg= 1.,
periodicExternalForcing=.TRUE.,
externForcingPeriod=2592000.,
externForcingCycle=31104000.,
&
#
# Gridding parameters
&PARMO0O4
usingSphericalPolarGrid=.TRUE.,
delR= 50., 70., 100., 140., 190.,
240., 290., 340., 390., 440.,
490., 540., 590., 640., 690.,

ygOrigin=-90.,

dxSpacing=2.8125,

dySpacing=2.8125,

&

#

# Input datasets

&PARMOS
bathyFile= 'depth_g77.bin"',
&

This file specifies the main parameters for the experiment.

e Lines 18-19,

nIter0 = 4269600,
nTimeSteps = 4,
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nlter0 and nTimesteps control the start time and the length of the run (in timesteps). Given at nlter0 is non-zero, the
model requires appropriate pickup files to be present in the run directory. For testing purposes, the model has been
prescribed to run for 4 timesteps; for a longer run, increase nTimesteps.

¢ Line 20,

deltaTtracer= 43200.0,

deltaTtracer is the tracer timestep in seconds, in this case, 12 hours (43200 seconds = 12 hours). Note that deltatTracer
must be specified in input_tutorial/data as well as specified in deltaToffline in input_tutorial/data.off.

e Line 21,

deltaTClock= 43200.0,

When using the MITgcm in offline mode, deltaTClock (an internal model counter) should be made equal to the value
assigned to deltatTtracer.

e Line 27,

periodicExternalForcing=.TRUE.,

periodicExternalForcing is a flag telling the model whether to cyclically re-use forcing data where there is external
forcing (see Section 4.13.5 below). Where there is no external forcing, as here, but where there is to be cyclic re-use
of the offline flow and mixing fields, periodicExternalForcing must be assigned the value . TRUE..

e Line 28,

externForcingPeriod=2592000.,

externForcingPeriod specifies the period of the external forcing data in seconds. In the absence of external forcing,
as in this example, it must be made equal to the value of externForcingPeriod in input_tutorial/data.off, in this case,
monthly (2592000 seconds = 1 month).

e Line 29,

externForcingCycle=31104000.,

externForcingCycle specifies the duration of the external forcing data cycle in seconds. In the absence of external
forcing, as in this example, it must be made equal to the value of externForcingCycle in input_tutorial/data.off, in this
case, the cycle is one year (31104000 seconds = 1 year).

¢ Line34,

usingSphericalPolarGrid=.TRUE.,

This line requests that the simulation be performed in a spherical polar coordinate system. It affects the interpretation
of grid input parameters and causes the grid generation routines to initialize an internal grid based on spherical polar
geometry.

e Lines 35-37,

delR= 50., 70., 100., 140., 190.,
240., 290., 340., 390., 440.,
490., 540., 590., 640., 690.,

This line sets the vertical grid spacing between each z-coordinate line in the discrete grid. Here the total model depth
is 5200 m.

e Line 38,
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ygOrigin=-90.,

This line sets the southern boundary of the modeled domain to -90° latitude N (= 90° S). This value affects both the
generation of the locally orthogonal grid that the model uses internally and affects the initialization of the Coriolis
force. Note: it is not required to set a longitude boundary, since the absolute longitude does not alter the kernel
equation discretization.

e Line 39,

’depacing=2.8125,

This line sets the horizontal grid spacing between each y-coordinate line in the discrete grid to 2.8125° in longitude.

e Line 40,

’dySpacing:2.8125,

This line sets the vertical grid spacing between each z-coordinate line in the discrete grid to 2.8125° in latitude.

¢ Line 45,

’bathyFile='depth_g77.bin',

This line specifies the name of the file from which the domain bathymetry is read. This file contains a 2-D (z, y) map
of (assumed 64-bit) binary numbers giving the depth of the model at each grid cell, ordered with the = coordinate
varying fastest. The points are ordered from low coordinate to high coordinate for both axes. The units and orientation
of the depths in this file are the same as used in the MITgcm code. In this experiment, a depth of O m indicates land.

4.13.3.2 File input_tutorial/data.off

Listing 4.36: verification/tutorial_cfc_offline/input_tutorial/data.off

&OFFLINE_PARMOL1

UvelFile= 'input_off/uvVeltave',
VvelFile= 'input_off/vVeltave',
WvelFile= 'input_off/wVeltave',
GMwxFile= 'input_off/GM_Kwx-T',
GMwyFile= 'input_off/GM_Kwy-T',
GMwzFile= 'input_off/GM_Kwz-T',
ConvFile= 'input_off/Convtave',

&OFFLINE_PARMO2
offlinelter0=4248000,
deltaToffline=43200.,
offlineForcingPeriod=2592000.,
offlineForcingCycle=31104000.,

&

input_tutorial/data.off provides the MITgcm offline package with package specific parameters. Specifically, it contains
the location (relative to the run directory) and prefix of files describing the flow field (UvelFile, VvelFile, WvelFile) and
the corresponding convective mixing coefficients (ConvFile) which together prescribe the 3-D, time varying dynamic
system within which the offline model will advect the tracer.

e Lines 2-4,8

4.13. Offline Experiments 289



https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_cfc_offline/input_tutorial/data.off
http://mitgcm.org/lxr/ident/MITgcm?_i=UvelFile
http://mitgcm.org/lxr/ident/MITgcm?_i=VvelFile
http://mitgcm.org/lxr/ident/MITgcm?_i=WvelFile
http://mitgcm.org/lxr/ident/MITgcm?_i=ConvFile

e T N o

MITgcm Documentation, Release checkpoint660-816-gb6703a8da

UvelFile= '../input/input_off/uvVeltave',
VvelFile= '../input/input_off/vVeltave',
WvelFile= '../input/input_off/wVeltave',
ConvFile= '../input/input_off/Convtave',

In the example the offline data is located in the sub-directory verification/tutorial_cfc_offline/input/input_off. In this
directory are fields describing the velocity and convective mixing histories of a prior forward integration of the MIT-
gem, required for the offline package. Based on the values of deltaToffline, offlineForcingPeriod and offlineForcing-
Cycle specified in verification/tutorial_cfc_offline/input/input_off, since offlineForcingCycle corresponds to twelve
forcing periods offlineForcingPeriod and since offlinelter0 is zero, there needs to be twelve uVeltave, twelve vVeltave,
twelve wVeltave and twelve Convtave files each having a 10 digit sequence identifier between 0000000001 to
0000000012, that is, a total of 48 files.

e Line 12,

offlinelter0=4248000,

offlinelter0, here specified to be 4248000 timesteps, corresponds to the timestep at which the tracer model is initialized.
Note that offlinelter0 and nlter( (set in input_tutorial/data) need not be the same.

e Line 13,

deltaToffline=43200.,

deltatToffline sets the timestep associated with the offline model data in seconds, here 12 hours (43200 seconds = 12
hours).

¢ Line 14,

’offlineForcingPeriod:43200.,

offlineForcingPeriod sets the forcing period associated with the offline model data in seconds.

e Line 15,

’offlineForcingCycle=518400.,

offlineForcingCycle sets the forcing cycle length associated with the offline model data in seconds. In this example the
offline forcing cycle is 6 days, or twelve offline forcing periods. Together deltatToffline, offlineForcingPeriod and of-
flineForcingCycle determine the value of the ten digit sequencing tag the model expects files in input_tutorial/data.off
to have.

4.13.3.3 File input_tutorial/data.pkg

Listing 4.37: verification/tutorial_cfc_offline/input_tutorial/data.pkg

# Packages
&PACKAGES
useGMRedi=.TRUE.,
usePTRACERS=.TRUE.,
useGCHEM=.TRUE.,

&

This file specifies which MITgem packages are to be used.
e Line 4,
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usePTRACERS=.TRUE.,

usePTRACERS is a flag invoking pkg/ptracers which is responsible for the advection of the tracer within the model.

4.13.3.4 File input_tutorial/data.ptracers

Listing 4.38: verification/tutorial_cfc_offline/input_tutorial/data.ptracers

&PTRACERS_PARMO1
PTRACERS_numInUse=2,
PTRACERS_IterO= 4248000,

#

# tracer 1 - CFCl1
PTRACERS_advScheme (1)=77,
PTRACERS_diffKh(1)=0.E3,
PTRACERS_diffKr (1)=5.E-5,
PTRACERS_useGMRedi (1)=.TRUE. ,
PTRACERS_useKPP (1)=.FALSE. ,
PTRACERS_initialFile(1)=" "',

# tracer 2 - CFC12
PTRACERS_advScheme (2)=77,
PTRACERS_diffKh(2)=0.E3,
PTRACERS_diffKr (2)=5.E-5,
PTRACERS_useGMRedi (2)=.TRUE. ,
PTRACERS_useKPP (2)=.FALSE. ,
PTRACERS_initialFile(2)=" ",

&

This file provides the MITgcem ptracers package with package specific parameters, prescribing the nature of the the
tracer/tracers as well as the variables associated with their advection.

e Line 2,

PTRACERS_numInUse=2,

PTRACERS_numlInUse tells the model how many separate tracers are to be advected, in this case 2. Note: The value
of PTRACERS_numInUse must agree with the value specified in code/PTRACERS_SIZE.h (see below).

e Line 3,

’PTRACERS_IterO= 4248000,

PTRACERS_Iter0 specifies the iteration at which the tracer is to be introduced.
e Lines 6 and 13,

’ PTRACERS_advScheme (1)=77,

PTRACERS_advScheme(n) identifies which advection scheme will be used for tracer n, where n is the number of
the tracer up to PTRACERS_numInUse. See Section 2.17 to identify the numerical codes used to specify different
advection schemes (e.g. centered 2nd order, 3rd order upwind) as well as details of each.

e Lines 7 and 14,

PTRACERS_diffKh(1)=1.E3,

PTRACERS_diffKh(n) is the horizontal diffusion coefficient for tracer n, where n is the number of the tracer up to
PTRACERS_ numlInUse.
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e Lines 8 and 15,

PTRACERS_diffKr(1l)=5.E-5,

PTRACERS_diffKr(n) is the vertical diffusion coefficient for tracer n, where n is the number of the tracer up to
PTRACERS_numInUse.

e Lines 11 and 18,

PTRACERS_initialFile(1)=" ",

PTRACERS _initialFile(n) identifies the initial tracer field to be associated with tracer n, where n is the number of the
tracer up to PTRACERS_numInUse. Note that no initial file is specified here.

Note input_tutorial/data.ptracers requires a set of entries for each tracer.

4.13.3.5 File input_tutorial/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.13.3.6 File code/packages.conf

Listing 4.39: verification/tutorial_cfc_offline/code/packages.conf

#-— list of packages (or group of packages) to compile for this experiment:
gfd
—mom_common
-mom_fluxform
-mom_vecinv
gmredi
offline
ptracers
gchem

cfc

timeave

This file is used to invoke the model components required for a particular implementation of the MITgcm.

4.13.3.7 File code/PTRACERS_SIZE.h

Listing 4.40: verification/tutorial_cfc_offline/code/PTRACERS_SIZE.h

#ifdef ALLOW_PTRACERS

CBOP
C !ROUTINE: PTRACERS_SIZE.h
C ! INTERFACE:

C #include PTRACERS_SIZE.h

C !DESCRIPTION:

C Contains passive tracer array size (number of tracers).

C PTRACERS_num defines how many passive tracers are allocated/exist.
C and 1is set here (default 1)

(continues on next page)
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(continued from previous page)

C
C Number of tracers
INTEGER PTRACERS_ num
PARAMETER (PTRACERS_num = 2 )
CEOQOP

#endif /+ ALLOW_PTRACERS «*/

e Line 16,

PARAMETER (PTRACERS_num = 2 )

This line sets the parameters PTRACERS_num (the number of tracers to be integrated) to 2 (in agreement with in-
put_tutorial/data.ptracers).

4.13.3.8 File code/SIZE.h

Listing 4.41: verification/tutorial_cfc_offline/code/SIZE.h

Q
los]
O
vl

'ROUTINE: SIZE.h
I INTERFACE:
include SIZE.h
IDESCRIPTION: \bv

* *

SIZE.h Declare size of underlying computational grid.

I

*

| The design here supports a three-dimensional model grid
| with indices I,J and K. The three-dimensional domain

| is comprised of nPxxnSx blocks (or tiles) of size sNx

| along the first (left-most index) axis, nPy*nSy blocks
| of size sNy along the second axis and one block of size
| Nr along the vertical (third) axis.

| Blocks/tiles have overlap regions of size OLx and OLy

| along the dimensions that are subdivided.

*

== == == == *

\ev

Voodoo numbers controlling data layout:

QOO0 0000000000000000000000000000a0n

sNx :: Number of X points in tile.

sNy :: Number of Y points in tile.

OLx :: Tile overlap extent in X.

OLy :: Tile overlap extent in Y.

nSx :: Number of tiles per process in X.

nSy :: Number of tiles per process in Y.

nPx :: Number of processes to use in X.

nPy :: Number of processes to use in Y.

Nx :: Number of points in X for the full domain.
Ny :: Number of points in Y for the full domain.
Nr :: Number of points in vertical direction.

Q
=
O
2]

INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy

(continues on next page)
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(continued from previous page)

Q

INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy

INTEGER Nx

INTEGER Ny

INTEGER Nr

PARAMETER (
& sNx = 64,
& sNy = 32,
& OLx = 4,
& OLy = 4,
& nsSx = 2,
& nsSy = 2,
& nPx = 1,
& nPy = 1,
& Nx = sNxx*nSx*nPx,
& Ny = sNyxnSyxnPy,
& Nr = 15)

MAX_OLX :: Set to the maximum overlap region size of any array
MAX_OLY that will be exchanged. Controls the sizing of exch

routine buffers.
INTEGER MAX_OLX
INTEGER MAX_OLY
PARAMETER ( MAX_OLX OLx,
& MAX_OLY = OLy )

for pkg/ctrl:
INTEGER nobcs
PARAMETER ( nobcs = 4 )

Several lines are customized in this file for the current experiment:

e Line 45,

sNx=64,

this line sets the lateral domain extent in grid points for the axis aligned with the z-coordinate.

e Line 46,

sNy=64,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

e Line 55,

’Nr:l5,

this line sets the vertical domain extent in grid points.

294

Chapter 4. MITgcm Tutorial Example Experiments



MITgcm Documentation, Release checkpoint660-816-gb6703a8da

4.13.4 Running the Experiment

In your run directory, as per usual, a copy of all files from the input directory (here, input_tutorial/) are required. In
addition, you will also need to copy .data and .meta files from directory input/input_off.

4.13.5 A more complicated example

The previous example demonstrated simple advection of a passive tracer using the offline form of the MITgecm. Now
we present a more complicated example in which the model is used to explore contamination of the global ocean
through surface exposure to CFCs during the last century. In invoking packages pkg/gchem, pkg/gmredi and pkg/cfc
it provides a starting point and template for more complicated offline modeling, involving as it does surface forcing
through wind and ice fields, more sophisticated mixing, and a time-varying forcing function.

The run configuration for this experiment resides under the directory verification/tutorial_cfc_offline/input/ (the code
configuration is the same as in the first example, so the same model executable can be used, i.e., no need to re-compile).
The files

* verification/tutorial_cfc_offline/input/data

* verification/tutorial_cfc_offline/input/data.off

* verification/tutorial_cfc_offline/input/data.pkg

* verification/tutorial_cfc_offline/input/data.ptracers
* verification/tutorial_cfc_offline/input/data.gmredi

* verification/tutorial_cfc_offline/input/data.gchem

* verification/tutorial_cfc_offline/input/data.cfc

* verification/tutorial_cfc_offline/input/eedata

contain all the parameter settings required.

4.13.5.1 File input/data

Listing 4.42: verification/tutorial_cfc_offline/input/data

| Model parameters |

#
#
#
#
# Continuous equation parameters
&PARMO1

tRef=15%20.,

sRef=15%35.,

viscA4=0.,

viscAh=5.E5,

diffKhT=0.E3,

diffKhS=0.E3,

viscAr=1.E-3,

diffKrT=5.E-5,

diffKrS=5.E-5,

gravity=9.81,

rhoConst=1035.,
rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,

(continues on next page)
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(continued from previous page)

eosType="'POLY3"',
implicitDiffusion=.TRUE.,
implicitViscosity=.TRUE.,
ivdc_kappa=100.,
multiDimAdvection = .FALSE.
#allowFreezing=.TRUE.,
useCDscheme=.FALSE.,

&

# Elliptic solver parameters
&PARMO2
cg2dMaxIters=1000,
cg2dTargetResidual=1.E-13,
&

# Time stepping parameters

&PARMO3
nIter0 = 4269600,
nTimeSteps = 4,

# 100 years starting from a spinup of 5900 years:
#startTime = 1.835136E+11,

#endTime = 1.866240E+11,
deltaTmom = 900.0,
#tauCh = 321428.,

deltaTtracer= 43200.0,
deltaTClock = 43200.0,

abEps = 0.1,
#cAdjFreq = -1,
pChkptFregq=3110400000.,
#chkptFreg= 3110400000.,
dumpFreg= 31104000.,
taveFreg= 31104000.,
#monitorFreg= 4853865600.,
monitorFreg= 2592000.,
#tauThetaClimRelax = 5184000.0,
ftauSaltClimRelax = 7776000.0,
periodicExternalForcing=.TRUE.,
externForcingPeriod=2592000.,
externForcingCycle=31104000.,
&

# Gridding parameters

&PARMO04

usingSphericalPolarGrid=.TRUE.,

delR= 50., 70., 100., 140., 190.,
240., 290., 340., 390., 440.,
490., 540., 590., 640., 690.,

ygOrigin=-90.,

dxSpacing=2.8125,

dySpacing=2.8125,

&

# Input datasets

&PARMOS

bathyFile= 'depth_g77.bin"',
#hydrogThetaFile="'lev_clim_temp.bin',
#hydrogSaltFile= 'lev_clim_salt.bin',

(continues on next page)

296 Chapter 4. MITgcm Tutorial Example Experiments




MITgcm Documentation, Release checkpoint660-816-gb6703a8da

(continued from previous page)

#zonalWindFile= 'tren_taux.bin',
#meridWindFile= 'tren_tauy.bin',
#thetaClimFile= 'lev_monthly_temp.bin',
#saltClimFile= 'lev_monthly_salt.bin',
#surfQnetFile= 'shi_gnet.bin',
#EmPmRFile= 'shi_empmr_year.bin',
the_run_name= 'Testing CFC and OFFLINE code',
&

A single line must be added (under PARMO1, line 21) from the previous example

&PARMO1
implicitDiffusion=.TRUE.,
&

When pkg/gmredi is used, the flag implicitDiffusion must be assigned the value . TRUE .

In this example the starting timestep nlter0 is set to 4269600 requiring model access to pickup files with the suffix
0004269600. The model will run for 4 timesteps (nTimeSteps = 4). In this case the frequencies with which permanent
and rolling checkpoints (pChkptFreq and chkptFreq) have been set is sufficiently long to ensure that only one from
the last timestep will be written. This is also true of the values that have been assigned to the frequency with which
dumps are written (dumpFreq) and time averaging (taveFreq) is performed. However, since the model always dumps
the state of the model when it stops without error, a dump will be written with suffix 0004269604 upon completion.

4.13.5.2 File input/data.off

Listing 4.43: verification/tutorial_cfc_offline/input/data.off

&OFFLINE_PARMO1

UvelFile= '../input/input_off/uveltave',
VvelFile= '../input/input_off/vVeltave',
WvelFile= '../input/input_off/wVeltave',
GMwxFile= '../input/input_off/GM_Kwx-T',
GMwyFile= '../input/input_off/GM_Kwy-T',
GMwzFile= '../input/input_off/GM_Kwz-T',
ConvFile= '../input/input_off/Convtave',
SaltFile= '../input/input_off/Stave',
ThetFile= '../input/input_off/Ttave',
# SFluxFile='../input/input_off/sFluxtave',
# HFluxFile=' "',
&

&OFFLINE_PARMO2
offlinelter0=4248000,
deltaToffline=43200.,
offlineForcingPeriod=2592000.,
offlineForcingCycle=31104000.,

&

This file specifies the prefixes and locations of additional input files required to run the offline model. Note that
directory input/input_off contains only as many offline files as are required to successfully run for 4 timesteps. Where
the GMREDI scheme was used in the forward run, as here, package GMREDI must again be invoked when running
offline. In this example, tracer is specified as having been introduced with a non-zero starttime, at timestep 4248000.
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4.13.5.3 File input/data.pkg

Listing 4.44: verification/tutorial_cfc_offline/input/data.pkg

# Packages
&PACKAGES
useGMRedi=.TRUE.,
usePTRACERS=.TRUE.,
useGCHEM=.TRUE.,
useOffLine=.TRUE.,

#useMNC=.TRUE.,

&

This file specifies which MITgem packages are to be used. It now invokes additional packages pkg/gmredi and
pkg/gchem.

4.13.5.4 File input/data.ptracers

Listing 4.45: verification/tutorial _cfc_offline/input/data.ptracers

&PTRACERS_PARMO1
PTRACERS_numInUse=2,
PTRACERS_Iter0O= 4248000,

# for verification:
PTRACERS_monitorFreqg=43200.,

#- for each tracers:

# tracer 1 - dic
PTRACERS_names (1)='cfcll',
PTRACERS_long_names (1)="'CFC11"',
PTRACERS_units(l)='mol/m"3"',
PTRACERS_advScheme (1)=77,
PTRACERS_diffKh(1)=0.E3,
PTRACERS_diffKr (1)=5.E-5,
PTRACERS_useGMRedi (1)=.TRUE. ,
PTRACERS_useKPP (1)=.FALSE. ,
PTRACERS_initialFile(1l)=" ",

# tracer 2 - alk
PTRACERS_names (2)="'cfcl2',
PTRACERS_units(2)='mol/m"3"',
PTRACERS_advScheme (2)=77,
PTRACERS_diffKh(2)=0.E3,
PTRACERS_diffKr (2)=5.E-5,
PTRACERS_useGMRedi (2)=.TRUE. ,
PTRACERS_useKPP (2) =.FALSE. ,
PTRACERS_initialFile(2)=" "',
&

This file specifies parameters associated with the CFC11 and CFC12 tracer fields advected in this example.
e Line 3,

PTRACERS_IterO= 4248000,

In this example the tracers were introduced at iteration 4248000.

e Lines 12 and 21,
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PTRACERS_diffKh(n)=0.E3,

Since package GMREDI is being used, regular horizontal diffusion is set to zero.

e Lines 14-15 and 23-24,

PTRACERS_useGMRedi (n)=.TRUE. ,
PTRACERS_useKPP (n)=.FALSE. ,

Setting flag PTRACERS_useGMRedi(n) to . TRUE. identifies that /pkg/gmredi is to be used. Setting flag PTRAC-
ERS_useKPP(n) to . FALSE. explicitly turns off KPP mixing.

e Lines 16 and 25,

PTRACERS_initialFile(n)=' "',

Since this is a ‘pickup’ run the initial tracer files PTRACERS _initialFile are not needed. The model will obtain the
tracer state from pickup_ptracers.0004269600.data

4.13.5.5 File input/data.gchem

Listing 4.46: verification/tutorial_cfc_offline/input/data.gchem

&GCHEM_PARMO1
useCFC=.TRUE.,
nsubtime=1,

&

This file specifies the parameters used in /pkg/gchem.

4.13.5.6 File input/data.gmredi

Listing 4.47: verification/tutorial _cfc_offline/input/data.gmredi

# from MOM
# GM_background_K: isopycnal diffusion coefficien
# GM_maxSlope: max slope of isopycnals
# GM_Scrit: transition for scaling diffusion coefficient
# GM_Sd: half width scaling for diffusion coefficient
# real background diff: horizontal diffusion
# ifdef GM_VISBECK_VARIABLE_K, include following in GM_PARMO1
# GM_Visbeck_alpha =0.,
# GM_Visbeck_length = 2.e+5,
# GM_Visbeck_depth = 1l.e+3,
# GM_Visbeck_maxval_K= 2.5e+3,
&GM_PARMO1
GM_background_K = 1.e+3,
GM_taper_scheme = 'gkw9l',
GM_maxSlope = 1l.e-2,
GM_Kmin_horiz = 100.,
GM_Scrit = 4.e-3,
GM_Sd = 1l.e-3,
&

(continues on next page)
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(continued from previous page)

This file specifies parameters required for /pkg/gmredi.

4.13.5.7 File input/cfc1112.atm

This is a ASCII data file containing the CFC source functions over the northern and southern hemispheres annually
from 1931 through 1998.

4.13.5.8 Running the Experiment

The model is run as before.

4.14 Rotating Tank

(in directory: verification/tutorial_rotating_tank/)

This example configuration demonstrates using the MITgem to simulate a laboratory demonstration using a differen-
tially heated rotating annulus of water. The simulation is configured for a laboratory scale on a 3° x 1 cm cylindrical
grid with 29 vertical levels of 0.5 cm each. This is a typical laboratory setup for illustrating principles of GFD, as well
as for a laboratory data assimilation project.

example illustration from GFD lab here

4.14.1 Equations Solved

4.14.2 Discrete Numerical Configuration

The domain is discretized with a uniform cylindrical grid spacing in the horizontal set to Aa = 1 cm and A¢ = 3°,
so that there are 120 grid cells in the azimuthal direction and 31 grid cells in the radial, representing a tank 62 cm in
diameter. The bathymetry file sets the depth=0 in the nine lowest radial rows to represent the central of the annulus.
Vertically the model is configured with 29 layers of uniform 0.5 cm thickness.

something about heat flux

4.14.3 Code Configuration

The model configuration for this experiment resides under the directory verification/tutorial_rotating_tank/. The ex-
periment files

* verification/tutorial_rotating_tank/input/data

* verification/tutorial_rotating_tank/input/data.pkg

* verification/tutorial_rotating_tank/input/eedata

e verification/tutorial_rotating_tank/input/bathyPolR.bin
e verification/tutorial_rotating_tank/input/thetaPolR.bin

* verification/tutorial_rotating_tank/code/CPP_OPTIONS.h
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* verification/tutorial_rotating_tank/code/SIZE.h

contain the code customizations and parameter settings for this experiments. Below we describe the customizations to
these files associated with this experiment.

4.14.3.1 File input/data

Listing 4.48: verification/tutorial_rotating_tank/input/data

| Model parameters |

#

#

#

#

# Continuous equation parameters
&PARMO1

tRef=29%x20.0,

sRef=29%35.0,

viscAh=5.0E-6,

viscAz=5.0E-6,

no_slip_sides=.FALSE.,

no_slip_bottom=.FALSE.,

diffKhT=2.5E-6,

diffKzT=2.5E-6,

diffKhS=1.0E-6,

diffKzS=1.0E-6,

£0=0.5,

eosType="'LINEAR',

sBeta =0.,

gravity=9.81,

rhoConst=1000.0,

rhoNil=1000.0,

#heatCapacity_Cp=3900.0,
rigidLid=.TRUE.,
implicitFreeSurface=.FALSE.,
nonHydrostatic=.TRUE.,
readBinaryPrec=32,
&

# Elliptic solver parameters
&PARMO2
cg2dMaxIters=1000,
cg2dTargetResidual=1.E-7,
cg3dMaxIters=10,
cg3dTargetResidual=1.E-9,
&

# Time stepping parameters
&PARMO3

nIter0=0,
nTimeSteps=20,
#nTimeSteps=36000000,
deltaT=0.1,
abEps=0.1,
pChkptFreg=2.0,
#chkptFreqg=2.0,
dumpFreg=2.0,
monitorSelect=2,

(continues on next page)
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monitorFreg=0.1,
&

# Gridding parameters
&PARMO4
usingCylindricalGrid=.TRUE.,
dXspacing=3.,
dYspacing=0.01,
delZz=29%0.005,
ygOrigin=0.07,
&

# Input datasets

&PARMOS
hydrogThetaFile='thetaPolR.bin',
bathyFile='bathyPolR.bin',

tCylIn = 0.,
tCylout = 20.,
&

This file specifies the main parameters for the experiment. The parameters that are significant for this configuration
are

¢ Lines 9-10,

viscAh=5.0E-6,
viscAz=5.0E-6,

These lines set the Laplacian friction coefficient in the horizontal and vertical, respectively. Note that they are
several orders of magnitude smaller than the other examples due to the small scale of this example.

¢ Lines 13-16,

diffKhT=2.5E-6,
diffKzT=2.5E-6,
diffKhs=1.0E-6,
diffKzS=1.0E-6,

These lines set horizontal and vertical diffusion coefficients for temperature and salinity. Similar to the friction
coefficients, the values are a couple of orders of magnitude less than most configurations.

e Line 17,

£0=0.5,

this line sets the Coriolis term, and represents a tank spinning at about 2.4 rpm.

e Lines 24 and 25,

rigidLid=.TRUE.,
implicitFreeSurface=.FALSE.,

These lines activate the rigid lid formulation of the surface pressure inverter and suppress the implicit free
surface form of the pressure inverter.

¢ Line 40,
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nlter=0,

This line indicates that the experiment should start from ¢ = 0 and implicitly suppresses searching for check-
point files associated with restarting an numerical integration from a previously saved state. Instead, the file
thetaPolR.bin will be loaded to initialized the temperature fields as indicated below, and other variables
will be initialized to their defaults.

e Line 43,

deltaT=0.1,

This line sets the integration timestep to 0.1 s. This is an unusually small value among the examples due to the
small physical scale of the experiment. Using the ensemble Kalman filter to produce input fields can necessitate
even shorter timesteps.

e Line 54,

’usingCylindricalGrid=.TRUE.,

This line requests that the simulation be performed in a cylindrical coordinate system.

e Line 55,

’dXspacing=3,

This line sets the azimuthal grid spacing between each z-coordinate line in the discrete grid. The syntax indicates
that the discrete grid should be comprised of 120 grid lines each separated by 3°.

¢ Line 56,

’dYspacing:0.0l,

This line sets the radial cylindrical grid spacing between each a-coordinate line in the discrete grid to 1 cm.

e Line 57,

’delZ=29*0.005,

This line sets the vertical grid spacing between each of 29 z-coordinate lines in the discrete grid to 0.005 m (=
5 mm).

e Line 64,

bathyFile='bathyPolR.bin',

This line specifies the name of the file from which the domain ‘bathymetry’ (i.e., tank depth) is read. This file is
a 2-D (a, ¢) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth of the model
at each grid cell, ordered with the ¢ coordinate varying fastest. The points are ordered from low coordinate to
high coordinate for both axes. The units and orientation of the depths in this file are the same as used in the
MITgem code. In this experiment, a depth of 0 m indicates an area outside of the tank and a depth of -0.145 m
indicates the tank itself.

¢ Line 63,

hydrogThetaFile="'thetaPol.bin',

This line specifies the name of the file from which the initial values of temperature are read. This file is a 3-D
(z,y, z) map and is enumerated and formatted in the same manner as the bathymetry file.
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e Lines 65 and 66

tCylIn = 0.,
tCylout = 20.,

These line specify the temperatures in degrees Celsius of the interior and exterior walls of the tank — typically
taken to be icewater on the inside and room temperature on the outside.

Other lines in the file verification/tutorial_rotating_tank/input/data are standard values that are described in Section
3.8.

4.14.3.2 File - input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

4.14.3.3 File - input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.14.3.4 File input/thetaPolR.bin

This file specifies a 3-D («,y, z) map of initial values of 6 in degrees Celsius. This particular experiment is set to
random values around 20 °C to provide initial perturbations.

4.14.3.5 File input/bathyPolR.bin

This file specifies a 2-D (z, y) map of depth values. For this experiment values are either 0 m or -delZ m, corresponding
respectively to outside or inside of the tank. The file contains a raw binary stream of data that is enumerated in the
same way as standard MITgcm 2-D, horizontal arrays.

4.14.3.6 File code/SIZE.h

Listing 4.49: verification/tutorial_rotating_tank/code/SIZE.h

CBOP

C 'ROUTINE: SIZE.h

¢} | INTERFACE:

C include SIZE.h

c IDESCRIPTION: \bv

¢} * *
C | SIZE.h Declare size of underlying computational grid.

¢} * *
C | The design here supports a three-dimensional model grid

C | with indices I,J and K. The three-dimensional domain

C | is comprised of nPx*nSx blocks (or tiles) of size sNx

C | along the first (left-most index) axis, nPyxnSy blocks

C | of size sNy along the second axis and one block of size

C | Nr along the vertical (third) axis.

C | Blocks/tiles have overlap regions of size OLx and OLy

C | along the dimensions that are subdivided.

C * *
C \ev

(continues on next page)
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sNx
sNy
OLx
OLy
nsx
nsSy
nPx
nPy
Nx

Ny

Nr

QOO0

Q
=
O
lae)

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
PARAMET

R R R 2R

C MAX_OLX
MAX_OLY

Q

PARAMET

Voodoo numbers controlling data layout:

Number of X points in tile.
Number of Y points in tile.
Tile overlap extent
Tile overlap extent

Number
Number
Number
Number
Number
Number
Number

sNx
sNy
OLx
OLy
nsSx
nsSy
nPx
nPy
Nx
Ny
Nr
ER (
sNx
sNy
OLx
OLy
nsx
nsSy
nPx
nPy

of
of
of
of
of
of
of

tiles per
tiles per
processes
processes
points in
points in
points in

30,
23,

3!
14
14

’

s W

14

1,

in X.

in Y.

process in X.

process in Y.

to use in X.

to use in Y.

X for the full domain.
Y for the full domain.
vertical direction.

sNx*nSx*nPx,
sNy*nSy*nPy,

29)

Set to the maximum overlap region size of any array
that will be exchanged. Controls the sizing of exch
routine buffers.

INTEGER MAX_OLX
INTEGER MAX_OLY

ER ( MAX_OLX

OoLx,

MAX_OLY = OLy

)

Two lines are customized in this file for the current experiment

e Line 45,

sNx=120,

this line sets the lateral domain extent in grid points for the axis aligned with the z-coordinate.

¢ Line 46,
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sNy=31,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

4.14.3.7 File code/CPP_OPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

4.15 Additional Example Experiments: Forward Model Setups

For many experiments, additional information is provided in a README file located in the respective experiment’s
subdirectory.

1.
2.

10.
11.
12.

13.

14.

15.

16.

1D_ocean_ice_column - Oceanic column with seaice on top.

adjustment.128x64x1 - Barotropic adjustment problem on latitude-longitude grid with 128x64 grid points (2.8°
resolution).

. adjustment.cs-32x32x1 - Barotropic adjustment problem on cube sphere grid with 32x32 points per face

(roughly 2.8° resolution). Also contains a non-linear free-surface adjustment version (input.nlfs).
advect_cs - 2-D passive advection test on cube sphere grid (32x32 grid points per face, roughly 2.8° resolution).

advect_xy - 2-D (horizontal plane) passive advection test on Cartesian grid. Also contains an additional setup
using Adams-Bashforth 3 (input.ab3_c4).

advect_xz - 2-D (vertical plane) passive advection test on Cartesian grid. Also contains an additional setup using
non-linear free-surface with divergent barotropic flow and implicit vertical advection (input.nlfs), and a setup
using piecewise quartic (“mono” and “weno” limiter) advection schemes (input.pqm).

aim.51_Equatorial_Channel - 5-level intermediate atmospheric physics, 3-D equatorial channel configuration.

aim.51_LatLon - 5-level intermediate atmospheric physics, global configuration, on latitude-longitude grid with
128x64x5 grid points (2.8° resolution).

aim.51_cs - 5-level intermediate atmospheric physics, global configuration on cube sphere grid (32x32 grid
points per face, roughly 2.8° resolution). Also contains an additional setup with a slab-ocean and thermodynamic
sea ice (input.thSI).

cfc_example - Global ocean with online computation and advection of CFC11 and CFC12.
cheapAML_box - Example using cheap atmospheric mixed layer (cheapaml) package.

cpl_aim+ocn - Coupled ocean-atmosphere realistic configuration on cubed-sphere cs32 horizontal grid, using
intermediate atmospheric physics (pkg/aim_v23) thermodynamic seaice (pkg/thsice) and land packages.

deep_anelastic - Convection simulation on a giant planet: relaxes both the Boussinesq approximation (anelastic)
and the thin atmosphere approximation (deep atmosphere).

dome - Idealized 3-D test of a density-driven bottom current (Denmark Overflow Mixing and Entrainment
experiment).

exp2 - Old version of the global ocean experiment (no GM, no partial-cells). Also contains an additional setup
with rigid lid (input.rigidLid).

exp4 - Flow over a Gaussian bump in open-water or channel with open boundaries. Also contains an additional
setup using non-linear free-surface (input.nlfs), and a setup using Stevens (1990) [Ste90] boundary conditions
(input.stevens).
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17. fizhi-cs-32x32x40 - Global atmospheric simulation with realistic topography, 40 vertical levels, a cubed sphere
grid and the full atmospheric physics package.

18. fizhi-cs-aqualev20 - Global atmospheric simulation on an aqua planet with full atmospheric physics. Run is
perpetual March with an analytical SST distribution. This is the configuration used for the APE (Aqua Planet
Experiment) participation experiment.

19. fizhi-gridalt-hs - Global atmospheric simulation Held-Suarez (1994) [HS94] forcing, with the physical forcing
and the dynamical forcing running on different vertical grids.

20. flt_example - Example using float package.

21. front_relax - Relaxation of an 2-D (y — 2) ocean thermal front (test of Gent and McWilliams scheme). Also
contains additional setups:

* using the boundary-value problem method (Ferrari et al. 2010 [FGNV 10]) (input.bvp).
* with mixed-layer eddy parameterization (Ferrari and McWilliams 2008 [FMCDO0S]) (input.mxl).

22. global_ocean.90x40x15 - Global ocean simulation at 4°x4° resolution. Similar to tutorial_global_oce_latlon,
but using z* coordinates with quasi-non-hydrostatic and non-hydrostatic metric terms. This experiment illus-
trates the use of sbo package. Also contains additional setups:

 using down-slope package (input.dwnslp)
* using package ggl90 scheme (Gaspar et al. 1990 [GGLI0]) with parameterized tidal and wind energy input
into vertical mixing (input.idemix).

23. global_ocean.cs32x15 - Global ocean experiment on the cubed sphere grid. Also contains additional setups:

* non-hydrostatic with biharmonic viscosity (input.viscA4)

¢ using thermodynamic sea ice and bulk force (input.thsice)

* using both thermodynamic (pkg/thsice) and dynamic (pkg/seaice) sea ice packages with exf package (in-
put.icedyn)

* using thermodynamic and dynamic (pkg/seaice) sea ice with exf package package (input.seaice).

24. global_ocean_ebm - Global ocean experiment on a lat-lon grid coupled to a zonally averaged atmospheric energy
balance model. Similar to global_ocean.90x40x15 experiment.

25. global_oce_biogeo_bling - Global ocean biogeochemistry simulation, based on Biogeochemistry Simulation but
using package bling instead of the DIC package.

26. global_with_exf - Global ocean experiment (at 4°x4°) on a lat-lon grid using the exf package with exf interpo-
lation. Similar to tutorial_global_oce_latlon experiment. Also contains a secondary setup with yearly exf fields
(input.yearly).

27. halfpipe_streamice - Example using package streamice.

28. hs94.128x64x5 - 3-D atmosphere dynamics on lat-lon grid, using Held and Suarez (1994) [HS94] forcing.

29. hs94.1x64x5 - Zonal averaged atmosphere dynamics using Held and Suarez (1994) [HS94] forcing.

30. hs94.cs-32x32x5 - 3-D atmosphere dynamics using Held and Suarez (1994) [HS94] forcing on the cubed sphere,
similar to tutorial_held_suarez_cs experiment but using linear free-surface and only 5 levels. Also contains an
additional setup with implicit internal gravity waves treatment and Adams-Bashforth 3 (input.impIGW).

31. ideal_2D_oce - Idealized 2-D global ocean simulation on an aqua planet.

32. internal_wave - Ocean internal wave forced by open boundary conditions. Also contains an additional setup
using pkg/kl10 (see Section 8.4.5, Klymak and Legg 2010 [KL10]) (input.k110).

33. inverted_barometer - Simple test of atmospheric pressure loading with radially symmetric Bessel-function ge-
ometry in a quadratic domain.
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34.

35.

36.
37.

38.

39.

40.

41.

isomip - ISOMIP-like setup (Ice Shelf Ocean Model Intercomparison Project experiment 0) including ice-shelf
cavities (pkg/shelfice). Also contains additional setups:

e with “htd” (Hellmer’s thermodynamics, Hellmer 1989 [HO89]) (input.htd).
* using package icefront (input.icefront)

* using package OBCS enabled to balance surface mass (freshwater and ice shelf mass flux) input through
open boundaries (input.obcs).

lab_sea - Regional (2°x2°) Labrador Sea simulation on a lat-lon grid using pkg/seaice. Also contains additional
setups:

¢ using the simple “free-drift” assumption for sea ice (input.fd)

e using EVP dynamics (instead of LSR solver) and Hibler and Bryan (1987) [HB87] sea ice ocean stress
(input.hb87)

* using package salt_plume (input.salt_plume).
matrix_example - Test of experimental method to accelerate convergence towards equilibrium.

MLAdjust - Simple tests of different viscosity formulations in a zonally reentrant, flat-bottom channel. Con-
tains additional setups; see verification/MLAdjust/README for a listing of different viscosity settings in these
experiments:

* input.A4FIxF

* input. AhFIxF

¢ input. AhVrDv

* input.AhStTn

* input.QGLeith

¢ input.QGLthGM.

natl_box - Eastern subtropical North Atlantic with KPP scheme. Contains additional setup with added tracers
(pkg/ptracers) using the package longstep to speed up integration time (input.longstep).

offline_exf_seaice - Sea ice on top of oceanic surface layer in an idealized channel. Forcing is computed by
bulk-formulae (pkg/exf) with temperature relaxation to prescribed SST (i.e., no momentum timestepping in
ocean, so ocean is “offline”, not to be confused with pkg/offline). Also contains additional setups:

* sea ice dynamics-only using JFNK solver and (pkg/seaice) advection (input.dyn_jfnk)
* sea ice dynamics-only using LSR solver and (pkg/seaice) advection (input.dyn_Isr)

* sea ice thermodynamics-only using (pkg/seaice) (input.thermo)

* sea ice thermodynamics-only using (pkg/thsice) (input.thsice).

seaice_itd - Seaice example using ice thickness distribution (ITD); otherwise very similar to offline_exf_seaice.
Also contains additional setups; see verification/seaice_itd/README for details of these setups:

* input.thermo
¢ input.lipscomb07.

seaice_obcs - Similar to lab_sea (input.salt_plume) experiment with only a fraction of the domain and open
boundary conditions derived from lab_sea experiment. Also contains additional setups:

* includes relaxation of seaice variables (input.seaiceSponge)

« includes tidal velocity forcing (input.tides).
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42.

43.
44.

45.
46.

47.

4.1

Unle

shelfice_2d_remesh - Simple experiment to test (pkg/shelfice) vertical remeshing code in 2-D idealized-
geometry setup.

short_surf_wave - Short surface wave adjustment (non-hydrostatic) in homogeneous 2-D vertical section (x — z).

so_box_biogeo - Open boundary Southern Ocean box around Drake Passage, using same model parameters
and forcing as experiment futorial_global_oce_biogeo from which initial conditions and open boundary condi-
tions have been extracted. Also contains additional setup using the SolveSAPHE algorithm (Munhoven 2013
[Mun13]) to determine oceanic pH (input.saphe).

solid-body.cs-32x32x1 - Solid body rotation test for cube sphere grid.

tutorial_deep_convection - Experiment as described in Section 4.8, also contains an additional setup using the
Smagorinisky (1963) [Sma63] viscosity scheme (input.smag3d).

vermix - Simple test in a small domain (3 columns) for ocean vertical mixing schemes. The standard setup
(input) uses the KPP scheme Large et al. (1994) [LMD94]. Also contains additional setups:

» with double diffusion scheme from KPP (input.dd)

» with package ggl90 scheme (Gaspar et al. 1990 [GGL90]) scheme (input.ggl90)

» with Mellor and Yamada (1982) [MY82] level 2 (pkg/my82) scheme (input.my82)
 with Paluszkiewicz and Romea (1997) [PR97] (pkg/opps) scheme (input.opps)

e with Pacanowski and Philander (1981) [PP81] (pkg/pp81) scheme (input.pp81).

6 Additional Example Experiments: Adjoint Model Setups

ss stated otherwise, the physical setup of the adjoint run is identical to the forward run, see description above. TAF

adjoint setups require building with directory code_ad with input directory input_ad, whereas OpenAD requires
directories coad_oad and input_oad respectively.

1.
2.
3.

© ® =2 W

1D_ocean_ice_column - Based on standard forward experiment, TAF adjoint setup, uses package ecco.
bottom_ctrl_5x5 - TAF adjoint test using the bottom topography as the control parameter, uses package ecco.

global_ocean.90x40x15 - Based on standard forward experiment, TAF and OpenAD adjoint setups. Also con-
tains additional TAF adjoint setups:

» with bottom drag as a control (input_ad.bottomdrag)
» with kKgas as a control (input_ad.kapgm)
e with KReq; as a control (input_ad.kapredi).

global_ocean.cs32x15 - Based on standard forward experiment, TAF adjoint setup. Also contains additional
TAF adjoint setups:

¢ using thermodynamic-dynamic sea ice (input_ad.seaice).

* same as above but without adjoint sea ice dynamics (input_ad.seaice_dynmix).

* using thermodynamic sea ice from pkg/thsice (input_ad.thsice).
global_ocean_ebm - Based on standard forward experiment, TAF adjoint setup.
global_oce_biogeo_bling - Based on standard forward experiment, TAF adjoint setup, uses package ecco.
global_with_exf - Based on standard forward experiment, TAF adjoint setup.
halfpipe_streamice - Based on standard forward experiment, TAF and OpenAD adjoint setups.

hs94.1x64x5 - Based on standard forward experiment, TAF and OpenAD adjoint setups.
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10.

isomip - Based on standard forward experiment, TAF and OpenAD adjoint setups. Also contains additional TAF
adjoint setup with “htd” (Hellmer’s thermodynamics, Hellmer 1989 [HO89]) (input_ad.htd).

11. lab_sea - Based on standard forward experiment, TAF adjoint setup, uses package ecco and divided adjoint
(DIVA). Also contains additional TAF adjoint setups:
» without seaice dynamics (input_ad.noseaicedyn).
* without seaice altogether (input_ad.noseaice).
12. obes_ctrl - Adjoint test using open boundary conditions as control parameters, uses package ecco.
13. offline_exf_seaice - Based on standard forward experiment, TAF adjoint setup. Also contains additional TAF
adjoint setup with sea ice thermodynamics-only using pkg/thsice (input_ad.thsice).
14. OpenAD - Simple adjoint experiment (used also to test OpenAD compiler), TAF and OpenAD adjoint setups.
Also contains additional OpenAD adjoint setups:
* using package ggl90 (input_oad.ggl90).
* using package kpp (input_oad.kpp).
15. tutorial_dic_adjoffline - TAF adjoint setup of offline form of passive tracers coupled to the dissolved inorganic
carbon biogeochemistry model (currently NOT documented as a tutorial experiment).
16. tutorial_global_oce_biogeo - Based on forward experiment described in Section 4.10, TAF and OpenAD adjoint
setups.
17. tutorial_tracer_adjsens - Based on adjoint experiment described in Section 4.12, contains an additional TAF
setup using Second Order Moment (SOM) advection scheme (input_ad.som81).
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CHAPTER
FIVE

CONTRIBUTING TO THE MITGCM

The MITgcm is an open source project that relies on the participation of its users, and we welcome contributions. This
chapter sets out how you can contribute to the MITgcm.

5.1 Bugs and feature requests

If you think you’ve found a bug, the first thing to check that you’re using the latest version of the model. If the bug
is still in the latest version, then think about how you might fix it and file a ticket in the GitHub issue tracker. Please
include as much detail as possible. At a minimum your ticket should include:

» what the bug does;
¢ the location of the bug: file name and line number(s); and
* any suggestions you have for how it might be fixed.
To request a new feature, or guidance on how to implement it yourself, please open a ticket with the following details:
¢ aclear explanation of what the feature will do; and

* a summary of the equations to be solved.

5.2 Using Git and Github

To contribute to the source code of the model you will need to fork the repository and place a pull request on GitHub.
The two following sections describe this process in different levels of detail. If you are unfamiliar with git, you may
wish to skip the quickstart guide and use the detailed instructions. All contributions to the source code are expected
to conform with the Coding style guide. Contributions to the manual should follow the same procedure and conform
with Section 5.6.

5.2.1 Quickstart Guide

[

. Fork the project on GitHub (using the fork button).

[\*}

. Create a local clone (we strongly suggest keeping a separate repository for development work):

o°

git clone https://github.com/«GITHUB_USERNAME»/MITgcm.git

w

. Move into your local clone directory (cd MITgem) and and set up a remote that points to the original:

o°

git remote add upstream https://github.com/MITgcm/MITgcm.git
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4. Make a new branch from upstream/master (name it something appropriate, such as ‘bugfix’ or ‘newfeature’
etc.) and make edits on this branch:

% git fetch upstream
% git checkout -b «YOUR_NEWBRANCH_NAME» upstream/master

5. When edits are done, do all git add’s and git commit’s. In the commit message, make a succinct (<70 char)
summary of your changes. If you need more space to describe your changes, you can leave a blank line and type a
longer description, or break your commit into multiple smaller commits. Reference any outstanding issues addressed
using the syntax #«ISSUE_NUMBER».

6. Push the edited branch to the origin remote (i.e. your fork) on GitHub:

% git push -u origin «YOUR_NEWBRANCH_NAME>»

7. On GitHub, go to your fork and hit the compare and pull request (PR) button, provide the requested information
about your PR (in particular, a non-trivial change to the model requires a suggested addition to doc/tag-index) and
wait for the MITgem head developers to review your proposed changes. In general the MITgecm code reviewers try
to respond to a new PR within a week. The reviewers may accept the PR as is, or may request edits and changes.
Occasionally the review team will reject changes that are not sufficiently aligned with and do not fit with the code
structure. The review team is always happy to discuss their decisions, but wants to avoid people investing extensive
effort in code that has a fundamental design flaw. The current review team is Jean-Michel Campin, Ed Doddridge,
Chris Hill, Oliver Jahn, and Jeff Scott.

If you want to update your code branch before submitting a PR (or any point in development), follow the recipe below.
It will ensure that your GitHub repo stays up to date with the main repository. Note again that your edits should always
be to your development branch, not the master branch.

o°

git checkout master

git pull upstream master

git push origin master

git checkout «YOUR_NEWBRANCH_NAME>»
git merge master

o0 o oP

oe

If you prefer, you can rebase rather than merge in the final step above; just be careful regarding your rebase syntax!

5.2.2 Detailed guide for those less familiar with Git and GitHub

What is Git? Git is a version control software tool used to help coordinate work among the many MITgcm model
contributors. Version control is a management system to track changes in code over time, not only facilitating ongoing
changes to code, but also as a means to check differences and/or obtain code from any past time in the project history.
Without such a tool, keeping track of bug fixes and new features submitted by the global network of MITgcm contrib-
utors would be virtually impossible. If you are familiar with the older form of version control used by the MITgcm
(CVS), there are many similarities, but we now take advantage of the modern capabilities offered by Git.

Git itself is open source linux software (typically included with any new linux installation, check with your sys-admin
if it seems to be missing) that is necessary for tracking changes in files, etc. through your local computer’s terminal
session. All Git-related terminal commands are of the form git «arguments». Important functions include
syncing or updating your code library, adding files to a collection of files with edits, and commands to “finalize” these
changes for sending back to the MITgcm maintainers. There are numerous other Git command-line tools to help along
the way (see man pages viaman git).

The most common git commands are:
* git clone download (clone) a repository to your local machine

* git status obtain information about the local git repository
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* git diff highlight differences between the current version of a file and the version from the most recent
commit

* git add stage a file, or changes to a file, so that they are ready for git commit

* git commit create a commit. A commit is a snapshot of the repository with an associated message that
describes the changes.

What is GitHub then? GitHub is a website that has three major purposes: 1) Code Viewer: through your browser, you
can view all source code and all changes to such over time; 2) “Pull Requests”: facilitates the process whereby code
developers submit changes to the primary MITgcm maintainers; 3) the “Cloud”: GitHub functions as a cloud server
to store different copies of the code. The utility of #1 is fairly obvious. For #2 and #3, without GitHub, one might
envision making a big tarball of edited files and emailing the maintainers for inclusion in the main repository. Instead,
GitHub effectively does something like this for you in a much more elegant way. Note unlike using (linux terminal
command) git, GitHub commands are NOT typed in a terminal, but are typically invoked by hitting a button on the
web interface, or clicking on a webpage link etc. To contribute edits to MITgcem, you need to obtain a github account.
It’s free; do this first if you don’t have one already.

Before you start working with git, make sure you identify yourself. From your terminal, type:

o\

git config --global user.email «your_emaillexample.edu»
git config --global user.name «‘John Doe’»

o°

(note the required quotes around your name). You should also personalize your profile associated with your GitHub
account.

There are many online tutorials to wusing Git and GitHub (see for example https://akrabat.com/
the-beginners-guide-to-contributing-to-a-github-project ); here, we are just communicating the basics neces-
sary to submit code changes to the MITgcm. Spending some time learning the more advanced features of Git will
likely pay off in the long run, and not just for MITgcm contributions, as you are likely to encounter it in all sorts of
different projects.

To better understand this process, Figure 5.1 shows a conceptual map of the Git setup. Note three copies of the code:
the main MITgcm repository sourcecode “upstream” (i.e., owned by the MITgcm maintainers) in the GitHub cloud,
a copy of the repository “origin” owned by you, also residing in the GitHub cloud, and a local copy on your personal
computer or compute cluster (where you intend to compile and run). The Git and GitHub commands to create this
setup are explained more fully below.

One other aspect of Git that requires some explanation to the uninitiated: your local linux copy of the code repository
can contain different “branches”, each branch being a different copy of the code repository (this can occur in all git-
aware directories). When you switch branches, basic unix commands such as 1s or cat will show a different set of
files specific to current branch. In other words, Git interacts with your local file system so that edits or newly created
files only appear in the current branch, i.e., such changes do not appear in any other branches. So if you swore you
made some changes to a particular file, and now it appears those changes have vanished, first check which branch
you are on (git status is a useful command here), all is probably not lost. NOTE: for a file to be “assigned” to
a specific Git branch, Git must first be “made aware” of the file, which occurs after a git add and git commit
(see below). Prior to this, the file will appear in the current folder independently, i.e., regardless of which git branch
you are on.

A detailed explanation of steps for contributing MITgcm repository edits:

1. On GitHub, create a local copy of the repository in your GitHub cloud user space: from the main repository
(https://github.com/MITgem/MITgem) hit the Fork button. As mentioned, your GitHub copy “origin” is necessary to
streamline the collaborative development process — you need to create a place for your edits in the GitHub cloud, for
developers to peruse.

2. Download the code onto your local computer using the git clone command. Even if you previously downloaded
the code through a “git-aware” method (i.e., a git clone command, see Section 3.2.1), we STRONGLY SUGGEST
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“‘upstream” “origin”
fork
MITgcm » | MITgcm
main repo < your repo
pull request
git clone it bush
gitpun | |9"P
git pull upstream
MITgcm
local copy

Figure 5.1: A conceptual map of the GitHub setup. Git terminal commands are shown in red, GitHub commands are
shown in green.
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you download a fresh repository, to a separate disk location, for your development work (keeping your research work
separate). Type:

% git clone https://github.com/«GITHUB_USERNAME»/MITgcm.git

from your terminal (technically, here you are copying the forked “origin” version from the cloud, not the “upstream”
version, but these will be identical at this point).

3. Move into the local clone directory on your computer:

% cd MITgcm

We need to set up a remote that points to the main repository:

’% git remote add upstream https://github.com/MITgcm/MITgcm.git

This means that we now have two “remotes” of the project. A remote is just a pointer to a repository not on your
computer, i.e., in the GitHub cloud, one pointing to your GitHub user space (“origin”), and this new remote pointing
to the original (“upstream”). You can read and write into your “origin” version (since it belongs to you, in the cloud),
but not into the “upstream” version. This command just sets up this remote, which is needed in step #4 — no actual file
manipulation is done at this point. If in doubt, the command git remote -v will list what remotes have been set

up.

4. Next make a new branch.

o\

git fetch upstream
% git checkout -b «YOUR_NEWBRANCH_NAME» upstream/master

You will make edits on this new branch, to keep these new edits completely separate from all files on the master branch.
The first command git fetch upstream makes sure your new branch is the latest code from the main repository;
as such, you can redo step 4 at any time to start additional, separate development projects (on a separate, new branch).
Note that this second command above not only creates this new branch, from the upst ream/master branch, it also
switches you onto this newly created branch. Naming the branch something descriptive like ‘newfeature’ or ‘bugfix’
(preferably, be even more descriptive) is helpful.

5. Doing stuff! This usually comes in one of three flavors:

1) cosmetic changes, formatting, documentation, etc.;
ii) fixing bug(s), or any change to the code which results in different numerical output; or
iii) adding a feature or new package.

To do this you should:

* edit the relevant file(s) and/or create new files. Refer to Coding style guide for details on expected documentation
standards and code style requirements. Of course, changes should be thoroughly tested to ensure they compile
and run successfully!

* typegit add «FILENAMEl» «FILENAME2» ... tostage the file(s) ready for a commit command (note
both existing and brand new files need to be added). “Stage” effectively means to notify Git of the the list of files
you plan to “commit” for changes into the version tracking system. Note you can change other files and NOT
have them sent to model developers; only staged files will be sent. You can repeat this git add command
as many times as you like and it will continue to augment the list of files. git diff and git status are
useful commands to see what you have done so far.

* use git commit to commit the files. This is the first step in bundling a collection of files together to be sent
off to the MITgcm maintainers. When you enter this command, an editor window will pop up. On the top line,
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type a succinct (<70 character) summary of what these changes accomplished. If your commit is non-trivial and
additional explanation is required, leave a blank line and then type a longer description of why the action in this
commit was appropriate etc. It is good practice to link with known issues using the syntax # ISSUE_NUMBER
in either the summary line or detailed comment. Note that all the changes do not have to be handled in a single
commit (i.e. you can git add some files, do a commit, than continue anew by adding different files, do another
commit etc.); the git commit command itself does not (yet) submit anything to maintainers.

* if you are fixing a more involved bug or adding a new feature, such that many changes are required, it is
preferable to break your contribution into multiple commits (each documented separately) rather than submitting
one massive commit; each commit should encompass a single conceptual change to the code base, regardless of
how many files it touches. This will allow the MITgcm maintainers to more easily understand your proposed
changes and will expedite the review process.

When your changes are tested and documented, continue on to step #6, but read all of step #6 and #7 before proceeding;
you might want to do an optional “bring my development branch up to date” sequence of steps before step #6.

6. Now we “push” our modified branch with committed changes onto the origin remote in the GitHub cloud. This
effectively updates your GitHub cloud copy of the MITgcm repo to reflect the wonderful changes you are contributing.

% git push -u origin «YOUR_NEWBRANCH_NAME>»

Some time might elapse during step #5, as you make and test your edits, during which continuing development occurs
in the main MITgcm repository. In contrast with some models that opt for static, major releases, the MITgem is in a
constant state of improvement and development. It is very possible that some of your edits occur to files that have also
been modified by others. Your local clone however will not know anything about any changes that may have occurred
to the MITgem repo in the cloud, which may cause an issue in step #7 below, when one of three things will occur:

¢ the files you have modified in your development have NOT been modified in the main repo during this elapsed
time, thus git will have no conflicts in trying to update (i.e. merge) your changes into the main repo.

* during the elapsed time, the files you have modified have also been edited/updated in the main repo, but you
edited different places in these files than those edits to the main repo, such that git is smart enough to be able to
merge these edits without conflict.

¢ during the elapsed time, the files you have modified have also been edited/updated in the main repo, but git is
not smart enough to know how to deal with this conflict (it will notify you of this problem during step #7).

One option is to NOT attempt to bring your development code branch up to date, instead simply proceed with steps
#6 and #7 and let the maintainers assess and resolve any conflict(s), should such occur (there is a checkbox ‘Allow
edits by maintainers’ that is checked by default when you do step #7). If very little time elapsed during step #5, such
conflict is less likely. However, if step #5 takes on the order of months, we do suggest you follow this recipe below
to update the code and merge yourself. And/or during the development process, you might have reasons to bring the
latest changes in the main repo into your development branch, and thus might opt to follow these same steps.

Development branch code update recipe:

oe

git checkout master

git pull upstream master

git push origin master

git checkout «YOUR_NEWBRANCH_NAME»
git merge master

o o oo

o\

This first command switches you from your development branch to the master branch. The second command above
will synchronize your local master branch with the main MITgcm repository master branch (i.e. “pull” any new
changes that might have occurred in the upstream repository into your local clone). Note you should not have made
any changes to your clone’s master branch; in other words, prior to the pull, master should be a stagnant copy of
the code from the day you performed step #1 above. The git push command does the opposite of pull, so in the
third step you are synchronizing your GitHub cloud copy (“origin”) master branch to your local clone’s master branch
(which you just updated). Then, switch back to your development branch via the second git checkout command.
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Finally, the last command will merge any changes into your development branch. If conflicts occur that git cannot
resolve, git will provide you a list of the problematic file names, and in these files, areas of conflict will be demarcated.
You will need to edit these files at these problem spots (while removing git’s demarcation text), then do a git add
«FILENAME» for each of these files, followed by a final git commit to finish off the merger.

Some additional git diff commands to help sort out file changes, in case you want to assess the scope of devel-
opment changes, are as follows. git diff master upstream/master will show you all differences between
your local master branch and the main MITgcm repo, i.e., so you can peruse what parallel MITgem changes have
occurred while you were doing your development (this assumes you have not yet updated your clone’s master branch).
You can check for differences on individual files via git diff master upstream/master «FILENAME».
If you want to see all differences in files you have modified during your development, the command is git diff
master. Similarly, to see a combined list of both your changes and those occurring to the main repo, git diff
upstream/master.

Aside comment: if you are familiar with git, you might realize there is an alternate way to merge, using the “rebase”
syntax. If you know what you are doing, feel free to use this command instead of our suggested merge command
above.

7. Finally create a “pull request” (a.k.a. “PR”; in other words, you are requesting that the maintainers pull
your changes into the main code repository). In GitHub, go to the fork of the project that you made (https:
//github.com/«GITHUB_USERNAMEx»/MITgcm.git). There is a button for “Compare and Pull” in your newly cre-
ated branch. Click the button! Now you can add a final succinct summary description of what you’ve done in your
commit(s), flag up any issues, and respond to the remaining questions on the PR template form. If you have made
non-trivial changes to the code or documentation, we will note this in the MITgcm change log, doc/tag-index. Please
suggest how to note your changes in doc/tag-index; we will not accept the PR if this field is left blank. The maintain-
ers will now be notified and be able to peruse your changes! In general, the maintainers will try to respond to a new
PR within a week. While the PR remains open, you can go back to step #5 and make additional edits, git adds, git
commits, and then redo step #6; such changes will be added to the PR (and maintainers re-notified), no need to redo
step #7.

Your pull request remains open until either the maintainers fully accept and merge your code changes into the main
repository, or decide to reject your changes. Occasionally, the review team will reject changes that are not sufficiently
aligned with and do not fit with the code structure; the review team is always happy to discuss their decisions, but
wants to avoid people investing extensive additional effort in code that has a fundamental design flaw. But much more
likely than outright rejection, you will instead be asked to respond to feedback, modify your code changes in some
way, and/or clean up your code to better satisfy our style requirements, etc., and the pull request will remain open. In
some cases, the maintainers might take initiative to make some changes to your pull request (such changes can then
be incorporated back into your local branch simply by typing git pull from your branch), but more typically you
will be asked to undertake the majority of the necessary changes.

It is possible for other users (besides the maintainers) to examine or even download your pull request; see Reviewing
pull requests.

The current review team is Jean-Michel Campin, Ed Doddridge, Chris Hill, Oliver Jahn, and Jeff Scott.
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5.3 Coding style guide

Detailed instructions or link to be added.

5.4 Creating MITgcm packages

Optional parts of code are separated from the MITgcm core driver code and organized into packages. The packaging
structure provides a mechanism for maintaining suites of code, specific to particular classes of problem, in a way that
is cleanly separated from the generic fluid dynamical engine. An overview of available MITgcm packages is presented
in Section 8, as illustrated in Figure 8.1. An overview of how to include and use MITgcm packages in your setup is
presented in Section 8.1.1, with specific details on using existing packages spread throughout Section 8, Section 9,
and Section 10. This sub-section includes information necessary to create your own package for use with MITgcm.

The MITgcm packaging structure is described below using generic package names $ {pkg}. A concrete examples of
a package is the code for implementing GM/Redi mixing: this code uses the package names ${PKG} = GMREDI,
${pkg} = gmredi,and ${Pkg} = gmRedi.

5.4.1 Package structure

* Compile-time state: Given that each package is allowed to be compiled or not (e.g., all ${pkg} listed in
packages.conf are compiled, see Section 8.1.1.1), genmake2 keeps track of each package’s compile-state
in PACKAGES_CONFIG.h with CPP option ALLOW_S$ {PKG} being defined (#define) or not (#undef).
Therefore, in the MITgem core code (or code from other included packages), calls to package-specific
subroutines and package-specific header file #include statements must be protected within #ifdef
ALLOW_S{PKG} ... ... #endif /+ ALLOW_S${PKG} =/ (see below) to ensure that the model compiles
when this ${pkg} is not compiled.

* Run-time state: The core driver part of the model can check for a run-time on/off switch of individual pack-
age(s) through the Fortran logical flag use$ {Pkg}. The information is loaded from a global package setup
file called data.pkg. Note a use$ {Pkg} flag is NOT used within the package-local subroutine code (i.e.,
${pkg}_«DO_SOMETHING» .F package source code).

» Each package gets its runtime configuration parameters from a file named data. ${pkg}. Package runtime
configuration options are imported into a common block held in a header file called ${PKG} .h. Note in
some packages, the header file $ {PKG} .h is split into ${PKG}_PARAMS.h, which contains the package
parameters, and $ {PKG}_VARS. h for the field arrays. The $ { PKG} . h header file(s) can be imported by other
packages to check dependencies and requirements from other packages (see Section 5.4.2).

In order for a package’s run-time state use $ {Pkg} to be set to true (i.e., “on”), the code build must have its compile-
time state ALLOW_S$ { PKG} defined (i.e., “included”), else mitgcmuv will terminate (cleanly) during initialization. A
package’s run-time state is not permitted to change during a model run.

Every call to a package routine from outside the package requires a check on BOTH compile-time and run-time states:

#include "PACKAGES_CONFIG.h"
#include "CPP_OPTIONS.h"

#ifdef ALLOW_S{PKG}
# include "${PKG}_PARAMS.h"
fendif

(continues on next page)
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(continued from previous page)

#ifdef ALLOW_S{PKG}
IF ( use${Pkg} ) THEN
CALL ${PKG}_DO_SOMETHING(...)

ENDIF
#endif

Within an individual package, the header file $ {PKG}_OPTIONS.h is used to set CPP flags specific to that package.
This header file should include PACKAGES_CONFIG.h and CPP_OPTIONS.h, as shown in this example:

#ifndef ${PKG}_OPTIONS_H
#define ${PKG}_OPTIONS_H
#include "PACKAGES_CONFIG.h"
#include "CPP_OPTIONS.h"

#ifdef ALLOW_S{PKG}

#define ${PKG}_SOME_PKG_SPECIFIC_CPP_OPTION

#endif /x ALLOW_S${PKG} =/
#endif /* ${PKG}_OPTIONS_H =x/

See for example GMREDI_OPTIONS.h.

5.4.2 Package boot sequence

All packages follow a required “boot” sequence outlined here:

S/R PACKAGES_BOOT ()

S/R PACKAGES_READPARMS ()
#ifdef ALLOW_S{PKG}
IF ( use${Pkg} ) CALL S${PKG}_READPARMS ( retCode )
#endif

S/R PACKAGES_INIT_FIXED()
#ifdef ALLOW_S{PKG}
IF ( use${Pkg} ) CALL ${PKG}_INIT_FIXED( retCode )
fendif

S/R PACKAGES_CHECK ()
#ifdef ALLOW_S{PKG}
IF ( use${Pkg} ) CALL ${PKG}_CHECK( retCode )
#else
IF ( use${Pkg} ) CALL PACKAGES_CHECK_ERROR('${PKG}")
#endif

(continues on next page)
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(continued from previous page)

S/R PACKAGES_INIT_VARIABLES ()
#ifdef ALLOW_${PKG}
IF ( use${Pkg} ) CALL ${PKG}_INIT_VARIA( )
#endif

* PACKAGES_BOOT() determines the logical state of all use$ {Pkg} variables, as defined in the file data.
pkg.

* ${PKG}_READPARMS() is responsible for reading in the package parameters file data.${pkg} and stor-
ing the package parameters in $ {PKG}.h (or in ${PKG}_PARAMS.h). ${PKG}_READPARMS is
called in S/R packages_readparms.F, which in turn is called from S/R initialise_fixed.F.

* ${PKG}_INIT_FIXED() is responsible for completing the internal setup of a package, including
adding any package-specific variables available for output in pkg/diagnostics (done in S/R
${PKG}_DIAGNOSTICS_INIT). ${PKG}_INIT_FIXED is called in S/R packages_init_fixed.F,
which in turn is called from S/R initialise_fixed.F. Note: some packages instead use CALL
${PKG}_INITIALISE (or the old form CALL ${PKG}_INIT).

* ${PKG}_CHECK() is responsible for validating basic package setup and inter-package dependencies.
${PKG}_CHECK can also import parameters from other packages that it may need to check; this is ac-
complished through header files $ {PKG} . h. (It is assumed that parameters owned by other packages will
not be reset during ${PKG}_CHECK !!!) ${PKG}_CHECK is called in S/R packages_check.F, which in
turn is called from S/R initialise_fixed.F.

* ${PKG}_INIT_VARIA() is responsible for initialization of all package variables, called after the core model
state has been completely initialized but before the core model timestepping starts. This routine calls
${PKG}_READ_PICKUP, where any package variables required to restart the model will be read from a
pickup file. ${PKG}_INIT_VARIA is called in packages_init_variables.F, which in turn is called from S/R
initialise_varia.F. Note: the name ${PKG}_INIT_VARIA is not yet standardized across all packages; one
can find other S/R names such as ${PKG}_INI_VARS or ${PKG}_INIT_VARIABLES or ${PKG}_INIT.

5.4.3 Package S/R calls

Calls to package subroutines within the core code timestepping loop can vary. Below we show an example of calls to
do calculations, generate output and dump the package state (for pickup):

S/R DO_OCEANIC_PHYS ()
#ifdef ALLOW_S{PKG}
IF ( use${Pkg} ) CALL ${PKG}_DO_SOMETHING ( )
fendif

S/R DO_THE_MODEL_TIO ()
#ifdef ALLOW_S{PKG}
IF ( use${Pkg} ) CALL ${PKG}_OUTPUT( )
#endif

S/R PACKAGES_WRITE_PICKUP ()
#ifdef ALLOW_S{PKG}
IF ( use${Pkg} ) CALL S${PKG}_WRITE_PICKUP( )
#endif

* ${PKG}_DO_SOMETHING() refers to any local package source code file, which may be called from any
model/src routine (or, from any subroutine in another package). An specific example would be the S/R call
gmredi_calc_tensor.F from within the core S/R model/src/do_oceanic_phys.F.
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* ${PKG}_OUTPUT() is responsible for writing time-average fields to output files (although the cumulat-
ing step is done within other package subroutines). May also call other output routines (e.g., CALL
${PKG}_MONITOR) and write snapshot fields that are held in common blocks. Other temporary fields
are directly dumped to file where they are available. Note that pkg/diagnostics output of ${PKG} variables
is generated in pkg/diagnostics subroutines. ${PKG}_OUTPUT() is called in S/R do_the_model_io.F
NOTE: 1) the S/R ${PKG}_DIAGS is used in some packages but is being replaced by ${PKG}_OUTPUT
to avoid confusion with pkg/diagnostics functionality. 2) the output part is not yet in a standard form.

* ${PKG}_WRITE_PICKUP() is responsible for writing a package pickup file, used in packages where such is
necessary for a restart. ${PKG}_WRITE_PICKUP is called in packages_write_pickup.F which in turn is
called from the _model main.F.

Note: In general, subroutines in one package (pkgA) that only contains code which is connected to a 2nd package
(pkgB) will be named pkgA_pkgB_something.F (e.g., gmredi_diagnostics_init.F).

5.4.4 Package “mypackage”

In order to simply creating the infrastructure required for a new package, we have created pkg/mypackage as essentially
an existing package (i.e., all package variables defined, proper boot sequence, output generated) that does not do
anything. Thus, we suggest you start with this “blank” package’s code infrastructure and add your new package
functionality to it, perusing the existing mypackage routines and editing as necessary, rather than creating a new
package from scratch.

5.5 MITgcm code testing protocols

verification directory includes many examples intended for regression testing (some of which are tutorial experiments
presented in detail in Section 4). Each one of these test-experiment directories contains “known-good” standard output
files (see Section 5.5.2.1) along with all the input (including both code and data files) required for their re-calculation.
Also included in verification is the shell script testreport to perform regression tests.

5.5.1 Test-experiment directory content

Each test-experiment directory («TESTDIR», see verification for the full list of choices) contains several standard
subdirectories and files which testreport recognizes and uses when running a regression test. The directories and files
that testreport uses are different for a forward test and an adjoint test (testreport -adm, see Section 5.5.2) and
some test-experiments are set-up for only one type of regression test whereas others allow both types of tests (forward
and adjoint). Also some test-experiments allow, using the same MITgcm executable, multiple tests using different
parameters and input files, with a primary input set-up (e.g., input/ or input_ad/) and corresponding results
(e.g., results/output.txt or results/output_adm.txt) and with one or several secondary inputs (e.g.,
input.«OTHER»/ or input_ad.«OTHER» /) and corresponding results (e.g., results/output . «OTHER».
txt or results/output_adm.«OTHER».txt).

directory «TESTDIR»/code/ Contains the test-experiment specific source code (i.e., files that have been modified
from the standard MITgcm repository version) used to build the MITgem executable (mitgcmuv) for forward-
test (using genmake2 -mods=../code).

It can also contain specific source files with the suffix _mpi to be used in place of the corresponding file
(without suffix) for an MPI test (see Section 5.5.2). The presence or absence of SIZE.h_mpi determines
whether or not an MPI test on this test-experiment is performed or skipped. Note that the original code/
SIZE.h_mpi is not directly used as SIZE.h to build an MPI-executable; instead, a local copy build/SIZE.
h.mpi is derived from code/SIZE.h_mpi by adjusting the number of processors (nPx, nPy) according
to «KNUMBER_OF_PROCS» (see Section 5.5.2, testreport —-MPI); then it is linked to SIZE.h (1n -s
SIZE.h.mpi SIZE.h) before building the MPI-executable.
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directory «TESTDIR»/code_ad/ Contains the test-experiment specific source code used to build the MITgcm ex-
ecutable (mitgcmuv_ad) for adjoint-test (using genmake2 -mods=../code_ad). It can also contain
specific source files with the suffix _mpi (see above).

directory «TESTDIR»/build/ Directory where testreport will build the MITgem executable for forward and adjoint
tests. It is initially empty except in some cases will contain an experiment specific genmake_local file (see
Section 3.5.2).

directory TESTDIR/input/ Contains the input and parameter files used to run the primary forward test of this test-
experiment.

It can also contain specific parameter files with the suffix .mpi to be used in place of the corresponding file
(without suffix) for MPI tests, or with suffix .mth to be used for multi-threaded tests (see Section 5.5.2). The
presence or absence of eedata.mth determines whether or not a multi-threaded test on this test-experiment
is performed or skipped, respectively.

To save disk space and reduce downloading time, multiple copies of the same input file are avoided by using a
shell script prepare_run. When such a script is found in TESTDIR/input/, testreport runs this script in
directory TESTDIR/run/ after linking all the input files from TESTDIR/input/.

directory «TESTDIR»/input_ad/ Contains the input and parameter files used to run the primary adjoint test of
this test-experiment. It can also contain specific parameter files with the suffix .mpi and shell script
prepare_run as described above.

directory «TESTDIR»/input.«<OTHER»/ Contains the input and parameter files used to run the secondary OTHER
forward test of this test-experiment. It can also contain specific parameter files with suffix .mpi or .mth and
shell script prepare_run (see above).

The presence or absence the file eedata.mth determines whether or not a secondary multi-threaded test on
this test-experiment is performed or skipped.

directory «TESTDIR»/input_ad.«<OTHER»/ Contains the input and parameter files used to run the secondary
OTHER adjoint test of this test-experiment. It can also contain specific parameter files with the suffix .mpi and
shell script prepare_run (see above).

directory «TESTDIR»/results/ Contains reference standard output used for test comparison. results/output.
txt and results/output_adm.txt, respectively, correspond to primary forward and adjoint test run
on the reference platform (currently villon.mit.edu) on one processor (no MPI, single thread) using the refer-
ence compiler (currently the GNU Fortran compiler gfortran). The presence of these output files determines
whether or not testreport is testing or skipping this test-experiment. Reference standard output for secondary
tests (results/output . «OTHER» . txt or results/output_adm.«OTHER» . txt) are also expected
here.

directory «TESTDIR»/run/ Initially empty directory where testreport will run the MITgcm executable for primary
forward and adjoint tests.

Symbolic links (using command 1n -s) are made for input and parameter files (from . ./input/ or from
../input_ad/) and for MITgcm executable (from . . /build/) before the run proceeds. The sequence of
links (function 1inkdata within shell script testreport) for a forward test is:

¢ link and rename or remove links to special files with suffix .mpi or .mth from . ./input/
* link files from ../input/
e execute . ./input/prepare_run (if it exists)

The sequence for an adjoint test is similar, with . . /input_ad/ replacing . ./input/.

directory «TESTDIR»/tr_run.«OTHER»/ Directory created by testreport to run the MITgcm executable for sec-
ondary “OTHER” forward or adjoint tests.

The sequence of links for a forward secondary test is:
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¢ link and rename or remove links to special files with suffix .mpi or .mth from . ./input .OTHER/
e link files from . ./input .OTHER/

e execute . . /input .OTHER/prepare_run (if it exists)

e link files from . . /input/

e execute . . /input/prepare_run (if it exists)

The sequence for an adjoint test is similar, with . ./input_ad.OTHER/ and ../input_ad/ replacing
../input.OTHER/ and . ./input/.

5.5.2 The testreport utility

The shell script testreport, which was written to work with genmake2, can be used to build different versions of
MITgcm code, run the various examples, and compare the output. On some systems, the testreport script can be run
with a command line as simple as:

oe

cd verification
% ./testreport -optfile ../tools/build_options/linux_amdé64_gfortran

The testreport script accepts a number of command-line options which can be listed using the ~help option. The
most important ones are:

—ieee (default) / —fast If allowed by the compiler (as defined in the specified optfile), use IEEE arithmetic
(genmake2 -ieee). Incontrast, -fast uses the optfile default for compiler flags.

—devel Use optfile development flags (assumes specified in optfile).

-optfile «/PATH/FILENAME» (or —optfile ’'«/PATH/Fl» «/PATH/F2» ...’) This specifies a list
of “options files” that will be passed to genmake?2. If multiple options files are used (for example, to test different
compilers or different sets of options for the same compiler), then each options file will be used with each of the
test directories.

—tdir «TESTDIR» (or —tdir ’'«TDIR1» «TDIR2» ...’) This option specifies the test directory or list of
test directories that should be used. Each of these entries should exactly match (note: they are case sensitive!)
the names of directories in verification. If this option is omitted, then all directories that are properly formatted
(that is, containing an input subdirectory and a results/output . txt file) will be used.

—-skipdir «TESTDIR» (or —skipdir ’'«TDIR1» «TDIR2» ...’) This option specifies a test directory or
list of test directories to skip. The default is to test ALL directories in verification.

-MPI «NUMBER_OF_PROCS» (or —-mpi) If the necessary file «TESTDIR»/code/SIZE.h_mpi exists, then
use it (and all TESTDIR/code/+_mpi files) for an MPI-enabled run. The option -MPI followed by the
maximum number of processors enables to build and run each test-experiment using different numbers of MPI
processors (specific number chosen by: multiple of nPx*nPy from «TESTDIR»/code/SIZE.h_mpi and
not larger than «<NUMBER_OF_PROCS»). The short option (-mpi) can only be used to build and run on 2
MPI processors (equivalent to -MPI 2).

Note that the use of MPI typically requires a special command option (see “-command” below) to invoke the
MPI executable.

—command=' «SOME COMMANDS TO RUN»’ For some tests, particularly MPI runs, a specific command might
be needed to run the executable. This option allows a more general command (or shell script) to be invoked.

The default here is for «<SSOME COMMANDS TO RUN» to be replaced by mpirun —-np TR_NPROC
mitgcmuv. If on your system you require something other than mpirun, you will need to use the option
and specify your computer’s syntax. Because the number of MPI processors varies according to each test-
experiment, the keyword TR_NPROC will be replaced by its effective value, the actual number of MPI proces-
sors needed to run the current test-experiment.
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-mth Compile with genmake2 -omp and run with multiple threads (using eedata.mth).

—adm Compile and test the adjoint suite of verification runs using TAF.

—clean Clean out all files/progress from any previously executed testreport runs.

-match «NUMBER» Set matching criteria to kNUMBER» of significant digits (default is 10 digits).

Additional testreport options are available to pass options to genmake? (called during testreport execution) as well as
additional options to skip specific steps of the testreport shell script. See testreport -help for a detailed list.

In the verification/ directory, the testreport script will create an output directory «tr_ NAME_DATE_N», with your
computer hostname substituted for NAME, the current date for DATE, followed by a suffix number N to distinguish
from previous testreport output directories. Unless you specify otherwise using the —tdir or —skipdir options de-
scribed above, all sub-directories (i.e., TESTDIR experiments) in verification will be tested. testreport writes progress
to the screen (stdout) and reports into the «tr_NAME_DATE_N/TESTDIR» sub-directories as it runs. In particular, one
can find, in each TESTDIR subdirectory, a summary . t xt file in addition to log and/or error file(s) (depending how
the run failed, if this occurred). summary .txt contains information about the run and a comparison of the current
output with “reference output” (see below for information on how this reference output is generated). The test com-
parison involves several output model variables. By default, for a forward test, these are the 2D solver initial residual
cg2d_init_res and 3D state variables (T, S, U, V) from pkg/monitor output; by default for an adjoint test, the cost-
function and gradient-check. However, some test-experiments use some package-specific variables from pkg/monitor
according to the file «TESTDIR»/input [_ad] [ .«OTHER»]/tr_checklist specification. Note that at this
time, the only variables that are compared by testreport are those dumped in standard output via pkg/monitor, not
output produced by pkg/diagnostics. Monitor output produced from ALL run time steps are compared to assess sig-
nificant digit match; the worst match is reported. At the end of the testing process, a composite summary .txt file
is generated in the top «tr_NAME_DATE_N» directory as a compact, combined version of the summary . txt files
located in all TESTDIR sub-directories (a slightly more condensed version of this information is also written to file
tr_out.txt in the top verification/ directory; note this file is overwritten upon subsequent testreport runs). Figure
5.2 shows an excerpt from the composite summary . txt, created by running the full testreport suite (in the example
here, on a linux cluster, using gfortran):

The four columns on the left are build/run results (successful=Y, unsuccessful=N). Explanation of these columns is as
follows:

¢ Gen2: did genmake?2 build the makefile for this experiment without error?

e Dpnd: did the make depend for this experiment complete without error?

* Make: did the make successfully generate a mit gcmuv executable for this experiment?
* Run: did execution of this experiment startup and complete successfully?

The next sets of columns shows the number of significant digits matched from the monitor output “cg2d”, “min”,
“max”, “mean”, and “s d” (standard deviation) for variables T, S, U, and V (see column headings), as compared with
the reference output. NOTE: these column heading labels are for the default list of variables, even if different variables
are specified in a tr_checklist file (for reference, the list of actual variables tested for a specific TESTDIR
experiment is output near the end of the file summary . t xt appearing in the specific TESTDIR experiment directory).
For some experiments, additional variables are tested, as shown in “PTR 01, “PTR 02” sets of columns; testreport
will detect if tracers are active in a given experiment and check digit match on their concentration values. A match to
near-full machine precision is 15-16 digits; this generally will occur when a similar type of computer, similar operating
system, and similar version of Fortran compiler are used for the test. Otherwise, different round-off can occur, and
due to the chaotic nature of ocean and climate models, fewer digits (typically, 10-13 digits) are matched. A match
of 22 digits generally is due to output being exactly 0.0. In some experiments, some variables may not be used or
meaningful, which causes the ‘0’ and ‘4’ match results in several of the adjustment experiments above.

While the significant digit match for many variables is tested and displayed in summary .txt, only one of these is
used to assess pass/fail (output to the right of the match test results) — the number bracketed by > and <. For example,
see above for experiment advect_cs the pass/fail test occurs on variable “T: s d” (i.e., standard deviation of potential
temperature), the first variable in the list specified in verification/advect_cs/input/tr_checklist. By default (i.e., if no
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run: ./testreport -of
on : Linux c@72 4.11.9-100.fc24.x86_64 #1 SMP Wed Jul 5 16:34:07 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux

OPTFILE=/home/jscott/MITgcm_fortesting/MITgcm/tools/build_options/linux_amd64_gfortran
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Figure 5.2: Example output from testreport summary .txt
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file tr_checklist is present), pass/fail is assessed on the cg2d monitor output. See the testreport script for a list of
permissible variables to test and a guide to their abbreviations. See tr_checklist files in the input subdirectories
of several TESTDIR experiments (e.g., verification/advect_xz/input/tr_checklist) for examples of syntax (note, a +
after a variable in a tr_checklist file is shorthand to compare the mean, minimum, maximum, and standard
deviation for the variable).

5.5.2.1 Reference Output

Reference output is currently generated using the linux server villon.mit .edu which employs an Intel Haswell
processor running Ubuntu 18.04.3 LTS. For each verification experiment in the MITgcm repository, this reference
output is stored in the file k< TESTDIR» /results/output . txt, which is the standard output generated by running
testreport (using a single process) on villon.mit . edu using the gfortran (GNU Fortran) compiler version 7.4.0.

Using a different gfortran version (or a different Fortran compiler entirely), and/or running with MPI, a different
operating system, or a different processor (cpu) type will generally result in output that differs to machine precision.
The greater the number of such differences between your platform and this reference platform, typically the fewer
digits of matching output precision.

5.5.3 The do_tst_2+2 utility

The shell script tools/do_tst_2+2 can be used to check the accuracy of the restart procedure. For each experiment that
has been run through testreport, do_tst_2+2 executes three additional short runs using the tools/tst2+2 script. The first
run makes use of the pickup files output from the run executed by testreport to restart and run for four time steps,
writing pickup files upon completion. The second run is similar except only two time steps are executed, writing
pickup files. The third run restarts from the end of the second run, executing two additional time steps, writing pickup
files upon completion. In order to successfully pass do_tst_2+2, not only must all three runs execute and complete
successfully, but the pickups generated at the end the first run must be identical to the pickup files from the end of the
third run. Note that a prerequisite to running do_tst_2+2 is running testreport, both to build the executables used by
do_tst_2+2, and to generate the pickup files from which do_tst_2+2 begins execution.

The tools/do_tst_2+2 script should be called from the verification/ directory, e.g.:

o\

cd verification
../tools/do_tst_2+2

o°

The do_tst_2+2 script accepts a number of command-line options which can be listed using the —help option. The
most important ones are:

-t «TESTDIR» Similar to testreport option —tdir, specifies the test directory or list of test directories that should
be used. If omitted, the test is attempted in all sub-directories.

-skd «TESTDIR» Similar to testreport option —skipdir, specifies a test directory or list of test directories to
skip.

-mpi Run the tests using MPI; requires the prerequisite testreport run to have been executed with the —mpi or -MP I
«NUMBER_OF_PROCS» flag. No argument is necessary, as the do_tst_2+2 script will determine the correct
number of processes to use for your executable.

—clean Clean up any output generated from the do_tst_2+2. This step is necessary if one wants to do additional
testreport runs from these directories.

Upon completion, do_tst_2+2 will generate a file tst_2+2_out.txt in the verification/ directory which sum-
marizes the results. The top half of the file includes information from the composite summary.txt file from the
prerequisite testreport run. In the bottom half, new results from each verification experiment are given: each line
starts with four Y/N indicators indicating if pickups from the testreport run were available, and whether runs 1, 2
and 3, completely successfully, respectively, followed by a pass or fail from the output pickup file comparison test,
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followed by the TESTDIR experiment name. In each «TESTDIR»/run subdirectory do_tst_2+2 also creates a log
file tst_2+2_out.log which contains additional information. During do_tst_2+2 execution a separate directory
of summary information, including log files for all failed tests, is created in an output directory «rs_ NAME_DATE_N»
similar to the syntax for the testreport output directory name. Note however this directory is deleted by default upon
do_tst_2+2 completion, but can be saved by adding the do_tst_2+2 command line option —a NONE.

5.5.4 Daily Testing of MITgcm

On a daily basis, MITgcm runs a full suite of testreport (i.e., forward and adjoint runs, single process, single-threaded
and mpi) on an array of different clusters, running using different operating systems, testing several different Fortran
compilers. The reference machine villon.mit .edu is one of such daily test machines. When changes in output
occur from previous runs, even if as minor as changes in numeric output to machine precision, MITgcm maintainers
are automatically notified.

Links to summary results from the daily testing are posted at http://mitgcm.org/public/testing.html.

5.5.5 Required Testing for MITgcm Code Contributors

5.5.5.1 Using testreport to check your new code

Before submitting your pull request for approval, if you have made any changes to MITgcm code, however trivial, you
MUST complete the following:

* Run testreport (on all experiments) on an unmodified master branch of MITgecm. We suggest using the —~devel
option and gfortran (typically installed in most linux environments) although neither is strictly necessary for this
test. Depending how different your platform is from our reference machine setup, typically most tests will pass
but some match tests may fail; it is possible one or more experiments might not even build or run successfully.
But even if there are multiple experiment fails or unsuccessful builds or runs, do not despair, the purpose at this
stage is simply to generate a reference report on your local platform using the master code. It may take one or
more hours for testreport to complete.

 Save a copy of this summary output from running testreport on the mastrer branch: from the verification direc-
tory, type cp tr_out.txt tr_out_master.txt. Thefiletr_out.txt issimply a condensed version
of the composite summary .txt file located in the «tr_ NAME_DATE_N» directory. Note we are not making
this file “git-aware”, as we have no desire to check this into the repo, so we are using an old-fashioned copy to
save the output here for later comparison.

» Switch to your pull request branch, and repeat the testreport sequence using the same options.

* From the verification directory, type diff tr_out_master.txt tr_out.txt which will report any
differences in testreport output from the above tests. If no differences occur (other than timestamp-related), see
below if you are required to do a do_tst_2+2 test; otherwise, you are clear for submitting your pull request.

Differences might occur due to one or more of the following reasons:

* Your modified code no longer builds properly in one or more experiments. This is likely due to a Fortran syntax
error; examine output and log files in the failed experiment TESTDIR to identify and fix the problem.

* The run in the modified code branch terminates due to a numerical exception error. This too requires further
investigation into the cause of the error, and a remedy, before the pull request should be submitted.

* You have made changes which require changes to input parameters (e.g., renaming a namelist parameter, chang-
ing the units or function of an input parameter, etc.) This by definition is a “breaking change”, which must be
noted when completing the PR template — but should not deter you from submitting your PR. Ultimately, you
and the maintainers will likely have to make changes to one or more verification experiments, but as a first step
we will want to review your PR.
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* You have made algorithmic changes which change model output in some or all setups; this too is a “breaking
change” that should be noted in the PR template. As usual recourse, if the PR is accepted, the maintainers
will re-generate reference output and push to the affected «TESTDIR»/results/ directories when the PR is
merged.

Most typically, running testreport using a single process is a sufficient test. However, any code changes which call
MITgem routines (such as eesupp/src/global_sum.F) employing low-level MPI-directives should run testreport with
the —mp1i option enabled.

5.5.5.2 Using do_tst_2+2 to check your new code

If you make any kind of algorithmic change to the code, or modify anything related to generating or reading pickup
files, you are also required to also complete a do_tst_2+2. Again, run the test on both the unmodified master branch
and your pull request branch (after you have run testreport on both branches). Verify that the output t st_2+2_out.
txt file is identical between branches, similar to the above procedure for the file tr_out . txt. If the files differ,
attempt to identify and fix what is causing the problem.

5.5.5.3 Automatic testing with Travis-ClI

Once your PR is submitted onto GitHub, the continuous integration service Travis-CI runs additional tests on your PR
submission. On the ‘Pull request’ tab in GitHub (https://github.com/MITgem/MITgcm/pulls), find your pull request;
initially you will see a yellow circle to the right of your PR title, indicating testing in progress. Eventually this will
change to a green checkmark (pass) or a red X (fail). If you get a red X, click the X and then click on ‘Details’ to list
specifics tests that failed; these can be clicked to produce a screenshot with error messages.

Note that Travis-CI builds documentation (both html and latex) in addition to code testing, so if you have introduced
syntax errors into the documentation files, these will be flagged at this stage. Follow the same procedure as above
to identify the error messages so the problem(s) can be fixed. Make any appropriate edits to your pull request, re-
git add and re-git commit any newly modified files, re-git push. Anytime changes are pushed to the PR,
Travis-CI will re-run its tests.

The maintainers will not review your PR until all Travis-CI tests pass.

5.6 Contributing to the manual

Whether you are simply correcting typos or describing undocumented packages, we welcome all contributions to the
manual. The following information will help you make sure that your contribution is consistent with the style of the
MITgcm documentation. (We know that not all of the current documentation follows these guidelines - we’re working
on it)

The manual is written in rst format, which is short for ReStructuredText directives. rst offers many wonderful features:
it automatically does much of the formatting for you, it is reasonably well documented on the web (e.g., primers
available here and here), it can accept raw latex syntax and track equation labelling for you, in addition to numerous
other useful features. On the down side however, it can be very fussy about formatting, requiring exact spacing and
indenting, and seemingly innocuous things such as blank spaces at ends of lines can wreak havoc. We suggest looking
at the existing rst files in the manual to see exactly how something is formatted, along with the syntax guidelines
specified in this section, prior to writing and formatting your own manual text.

The manual can be viewed either of two ways: interactively (i.e., web-based), as hosted by read-the-docs (https:
/Ireadthedocs.org/), requiring an html format build, or downloaded as a pdf file. When you have completed your
documentation edits, you should double check both versions are to your satisfaction, particularly noting that figure
sizing and placement may be rendered differently in the pdf build.
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5.6.1 Section headings

» Chapter headings - these are the main headings with integer numbers - underlined with % x %
* section headings - headings with number format X.Y - underlined with ====

* Subsection headings - headings with number format X.Y.Z - underlined with ———-

» Subsubsection headings - headings with number format X.Y.Z.A - underlined with ~~~~

* Paragraph headings - headings with no numbers - underlined with ~~~*

N.B. all underlinings should be the same length as the heading. If they are too short an error will be produced.

5.6.2 Internal document references

rst allows internal referencing of figures, tables, section headings, and equations, i.e. clickable links that bring the
reader to the respective figure etc. in the manual. To be referenced, a unique label is required. To reference figures,
tables, or section headings by number, the rst (inline) directive is :numref:* «LABELNAME» . For example, this
syntax would write out Figure XX on a line (assuming «<LABELNAMEp» referred to a figure), and when clicked,
would relocate your position in the manual to figure XX. Section headings can also be referenced so that the name is
written out instead of the section number, instead using this directive : ref : * «LABELNAME» .

Equation references have a slightly different inline syntax: :eq: * «LABELNAME» " will produce a clickable equation
number reference, surrounded by parentheses.

For instructions how to assign a label to tables and figures, see below. To label a section heading, labels go above the
section heading they refer to, with the format . . _«LABELNAME» :. Note the necessary leading underscore. You
can also place a clickable link to any spot in the text (e.g., mid-section), using this same syntax to make the label,
using the syntax : ref:  «SOME TEXT TO CLICK ON» <«LABELNAME»>" for the link.

5.6.3 Citations

In the text, references should be given using the standard “Author(s) (Year)” shorthand followed by a link to the full
reference in the manual bibliography. This link is accomplished using the syntax :cite: «BIB_REFERENCE»;
this will produce clickable text, usually some variation on the authors’ initials or names, surrounded by brackets.

Full references are specified in the file doc/manual_references.bib using standard BibTeX format. Even if unfamiliar
with BibTeX, it is relatively easy to add a new reference by simply examining other entries. Furthermore, most
publishers provide a means to download BibTex formatted references directly from their website. Note this file is in
approximate alphabetic order by author name. For all new references added to the manual, please include a DOI or a
URL in addition to journal name, volume and other standard reference infomation. An example JGR journal article
reference is reproduced below; note the «BIB_REFERENCE» here is “bryan:79” so the syntax in the rst file format
would be "Bryan and Lewis (1979) :cite: bryan:79", which will appear in the manual as Bryan and
Lewis (1979) [BL79].

@ Article{bryan:79,
author = {Bryan, K. and L.J. Lewis},
title = { A water mass model of the world ocean},
journal = jgr,
volume = 84,
number = {C5},
pages = {2503-2517},
doi = {10.1029/1C084iC05p02503},
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year = 1979,

5.6.4 Other embedded links

Hyperlinks: to reference a (clickable) URL, simply enter the full URL. If you want to have a different, clickable
text link instead of displaying the full URL, the syntax is * «CLICKABLE TEXT» <«URL»>"_ (the ‘<’ and >’ are
literal characters, and note the trailing underscore). For this kind of link, the clickable text has to be unique for each
URL. If you would like to use non-unique text (like ‘click here’), you should use an ‘anonymous reference’ with a
double trailing underscore: * «CLICKABLE TEXT» <«URL»>"__.

File references: to create a link to pull up MITgem code (or any file in the repo) in a code browser window, the
syntax is : filelink: «PATH/FILENAME» . If you want to have a different text link to click on (e.g., say you
didn’t want to display the full path), the syntaxis : filelink: «CLICKABLE TEXT» <«PATH/FILENAME»>"
(again, the ‘<‘ and “>’ are literal characters). The top directory here is https://github.com/MITgcm/MITgem , so if
for example you wanted to pop open the file dynamics.F from the main model source directory, you would specify
model/src/dynamics.F in place of «<PATH/FILENAMEx».

Variable references: to create a link to bring up a webpage displaying all MITgcm repo references
to a particular variable name (for this purpose we are using the LXR Cross Referencer), the syntax is
:varlink:  «NAME_OF_VARIABLE» . This will work on CPP options as well as FORTRAN identifiers (e.g.,
common block names, subroutine names).

5.6.5 Symbolic Notation

Inline math is done with :math:  «LATEX_HERE»"

Separate equations, which will be typeset on their own lines, are produced with:

. math::
«LATEX_HERE»
:label: «EQN_LABEL_HERE»

Labelled separate equations are assigned an equation number, which may be referenced elsewhere in the document
(see Section 5.6.2). Omitting the : 1abel: above will still produce an equation on its own line, except without an
equation label. Note that using latex formatting \begin{aligned} ... \end{aligned} across multiple lines of
equations will not work in conjunction with unique equation labels for each separate line (any embedded formatting &
characters will cause errors too). Latex alignment will work however if you assign a single label for the multiple lines
of equations.

There is a software tool ‘universal document converter’ named pandoc that we have found helpful in converting raw
latex documents into rst format. To convert a . tex file into . rst, from a terminal window type:

% pandoc —-f latex -t rst —-o «OUTPUT_FILENAME».rst «INPUT_FILENAME».tex

°

Additional conversion options are available, for example if you have your equations or text in another format; see the
pandoc documentation.

Note however we have found that a fair amount of clean-up is still required after conversion, particularly regarding
latex equations/labels (pandoc has the unfortunate tendency to add extra spaces, sometimes confusing the rst :math:
directive, other times creating issues with indentation).
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5.6.6 Figures

The syntax to insert a figure is as follows:

figure:: «PATHNAME/FILENAME» . *

:width: 80%

:align: center

ralt: «TEXT DESCRIPTION OF FIGURE HERE»
:name: «MY_FIGURE_NAME»

The figure caption goes here as a single line of text.

figure: :: The figure file is located in subdirectory pathname above; in practice, we have located figure files in
subdirectories £igs off each manual chapter subdirectory. The wild-card * is used here so that different file formats
can be used in the build process. For vector graphic images, save a pdf for the pdf build plus a svg file for the html
build. For bitmapped images, gif, png, or jpeg formats can be used for both builds, no wild-card necessary, just
substitute the actual extension (see here for more info on compatible formats). [Note: A repository for figure source
.eps needs to be created]

:width:: used to scale the size of the figure, here specified as 80% scaling factor (check sizing in both the pdf and
html builds, as you may need to adjust the figure size within the pdf file independently).

:align:: can be right, center, or left.
:name : use this name when you refer to the figure in the text, i.e. :numref:  «MY_FIGURE_NAME» .

Note the indentation and line spacing employed above.

5.6.7 Tables

There are two syntaxes for tables in reStructuredText. Grid tables are more flexible but cumbersome to create. Simple
tables are easy to create but limited (no row spans, etc.). The raw rst syntax is shown first, then the output.

Grid Table Example:

Fom o fm——————— +

| Header 1 | Header 2 | Header 3 |

+ + + +

| body row 1 | column 2 | column 3 |

Fom Fom Fom +

| body row 2 | Cells may span columns. |

Fom o fo——————— +

| body row 3 | Cells may | - Cells |

- + span rows. | - contain |

| body row 4 | | — blocks. |

fmm o fmm e +
Header 1 Header 2 Header 3
body row 1 column 2 column 3
body row 2 Cells may span columns.
body row 3 Cells may span rows. * Cells

* contain

body row 4 * blocks.

Simple Table Example:
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False False False

True False True
False True True
True True True

Inputs Output
A B AorB
False | False | False
True | False | True
False | True | True
True | True | True

Note that the spacing of your tables in your . rst file(s) will not match the generated output; rather, when you build
the final output, the rst builder (Sphinx) will determine how wide the columns need to be and space them appropriately.

5.6.8 Other text blocks

Conventionally, we have used the rst ‘inline literal’ syntax around any literal computer text (commands, labels, literal
computer syntax etc.) Surrounding text with double back-quotes * * results in output html 1ike this.

To set several lines apart in an whitespace box, e.g. useful for showing lines in from a terminal session, rst uses : : to
set off a ‘literal block’. For example:

o\°

unix_command_foo
unix_command_fum

o°

(note the : : would not appear in the output html or pdf) A splashier way to outline a block, including a box label, is
to employ what is termed in rst as an ‘admonition block’. In the manual these are used to show calling trees and for
describing subroutine inputs and outputs. An example of a subroutine input/output block is as follows:

This is an admonition block showing subroutine in/out syntax

.. admonition:: SUBROUTINE_NAME
:class: note

lvarl: VAR1 ( WHERE_VAR1_DEFINED.h)
lvar2 : VAR1 ( WHERE_VAR2 _DEFINED.h)
lvar3 : VAR1 ( WHERE_VAR3_DEFINED.h)

An example of a subroutine in/out admonition box in the documentation is here.

An example of a calling tree in the documentation is sere.
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To show text from a separate file (e.g., to show lines of code, show comments from a Fortran file, show a parameter
file etc.), use the 1iteralinclude directive. Example usage is shown here:

literalinclude:: «FILE_TO_SHOW»
:start-at: String indicating where to start grabbing text
rend-at: String indicating where to stop grabbing text

Unlike the : filelink: and :varlink: directives, which assume a file path starting at the top of the MITgcm
repository, one must specify the path relative to the current directory of the file (for example, from the doc directory, it
would require . . /. ./ at the start of the file path to specify the base directory of the MITgcm repository). Note one
caninstead use : start—-after: and :end-before: to get text from the file between (not including) those lines.
If one omits the start—-at or start—-after, etc. options the whole file is shown. More details for this directive
can be found here. Example usage in this documentation is ere, where the lines to generate this are:

literalinclude:: ../../model/src/the_model main.F
:start-at: C Invocation from WRAPPER level...
rend-at: C | :: events.

5.6.9 Other style conventions

Units should be typeset in normal text, with a space between a numeric value and the unit, and exponents added with
the : sup: command.

9.8 m/s\ :sup: 2"

will produce 9.8 m/s?. If the exponent is negative use two dashes —— to make the minus sign sufficiently long. The
backslash removes the space between the unit and the exponent. Similarly, for subscripts the command is : sub:.

Alternatively, latex :math: directives (see above) may also be used to display units, using the \text { } syntax to
display non-italic characters.

* Todo: determine how to break up sections into smaller files

e discuss | lines

5.6.10 Building the manual
Once you’ve made your changes to the manual, you should build it locally to verify that it works as expected. To do
this you will need a working python installation with the following packages installed:

* sphinx

¢ sphinxcontrib-bibtex

* sphinxcontrib-programoutput

* sphinx_rtd_theme

* numpy

There are many tools available to create a python environment with these packages on your local machine (e.g., using
pip install) and if you are comfortable doing so on your own, go ahead. Note that as of this writing (December
2020), sphinxcontrib-bibtex versions 2.0.0 and higher are not supported (we suggest using version 1.0.0).

However, if you are new to python, or less experienced, we suggest the following steps:

1. Get miniforge from https://github.com/conda-forge/miniforge/#download (for linux, win, or mac). Follow the
instructions to run the installer from a terminal window. Make sure to say “yes” when it asks to initialize
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Miniforge3 — that way you can use it right away. This is a minimal anaconda with conda-forge already set as
default.

2. Install MITgem doc requirements:

cd MITgcm
conda install --file doc/requirements.txt

Once these modules are installed you can build the html version of the manual by running make html in the doc
directory.

To build the pdf version of the manual you will also need a working version of LaTeX that includes several packages
that are not always found in minimal LaTeX installations. The command to build the pdf versionismake latexpdf,
which should also be run in the doc directory.

5.7 Reviewing pull requests

The only people with write access to the main repository are a small number of core MITgecm developers. They are
the people that will eventually merge your pull requests. However, before your PR gets merged, it will undergo the
automated testing on Travis-CI, and it will be assessed by the MITgcm community.

Everyone can review and comment on pull requests. Even if you are not one of the core developers you can still
comment on a pull request.

The simplest way to examine a pull request is to use GitHub. You can look at changes made to files (GitHub will show
you a standard linux diff for each file changed), read though commit messages, and/or peruse any comments the
MITgem community has made regarding this pull request.

If you are reviewing changes to the documentation, most likely you will also want to review the rendered manual in
html format. While this is not available at GitHub, you can view html builds based on the pull request documentation
using this link at readthedocs.org. Here you will need to click on the appropriate pull request (as labeled by the pull
request number), then click on “View docs” (not the green button near the top of the page, but the text in the middle
of the page on the right side).

Finally, if you want to test pull requests locally (i.e., to compile or run the code), you should download the pull request
branch. You can do this either by cloning the branch from the pull request:

git clone -b «THEIR_DEVELOPMENT_BRANCHNAME» https://github.com/«THEIR_GITHUB_
—USERNAME»/MITgcm.git

where «THEIR_GITHUB_USERNAME> is replaced by the username of the person proposing the pull request, and
«THEIR_DEVELOPMENT_BRANCHNAME» is the branch from the pull request.

Alternatively, you can add the repository of the user proposing the pull request as a remote to your existing local
repository. Navigate to your local repository and type

git remote add «THEIR_GITHUB_USERNAME» https://github.com/«THEIR_GITHUB_USERNAME»/
—MITgcm.git

where «THEIR_GITHUB_USERNAMEY» is replaced by the user name of the person who has made the pull request.
Then download their pull request changes

git fetch «THEIR_GITHUB_USERNAME»

and switch to the desired branch
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git checkout —--track «THEIR_GITHUB_USERNAME»/«THEIR_DEVELOPMENT_BRANCHNAME»

You now have a local copy of the code from the pull request and can run tests locally. If you have write access to the
main repository you can push fixes or changes directly to the pull request.

None of these steps, apart from pushing fixes back to the pull request, require write access to either the main repository
or the repository of the person proposing the pull request. This means that anyone can review pull requests. However,
unless you are one of the core developers you won’t be able to directly push changes. You will instead have to make a
comment describing any problems you find.
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CHAPTER
SIX

SOFTWARE ARCHITECTURE

This chapter focuses on describing the WRAPPER environment within which both the core numerics and the plug-
gable packages operate. The description presented here is intended to be a detailed exposition and contains significant
background material, as well as advanced details on working with the WRAPPER. The tutorial examples in this man-
ual (see Section 4) contain more succinct, step-by-step instructions on running basic numerical experiments, of various
types, both sequentially and in parallel. For many projects, simply starting from an example code and adapting it to
suit a particular situation will be all that is required. The first part of this chapter discusses the MITgcm architecture at
an abstract level. In the second part of the chapter we described practical details of the MITgecm implementation and
the current tools and operating system features that are employed.

6.1 Overall architectural goals

Broadly, the goals of the software architecture employed in MITgcm are three-fold:
* To be able to study a very broad range of interesting and challenging rotating fluids problems;
* The model code should be readily targeted to a wide range of platforms; and

* On any given platform, performance should be comparable to an implementation developed and specialized
specifically for that platform.

These points are summarized in Figure 6.1, which conveys the goals of the MITgcm design. The goals lead to a
software architecture which at the broadest level can be viewed as consisting of:

1. A core set of numerical and support code. This is discussed in detail in Section 2.

2. A scheme for supporting optional “pluggable” packages (containing for example mixed-layer schemes, biogeo-
chemical schemes, atmospheric physics). These packages are used both to overlay alternate dynamics and to
introduce specialized physical content onto the core numerical code. An overview of the package scheme is
given at the start of Section 8.

3. A support framework called WRAPPER (Wrappable Application Parallel Programming Environment Re-
source), within which the core numerics and pluggable packages operate.

This chapter focuses on describing the WRAPPER environment under which both the core numerics and the pluggable
packages function. The description presented here is intended to be a detailed exposition and contains significant
background material, as well as advanced details on working with the WRAPPER. The “Getting Started” chapter of
this manual (Section 3) contains more succinct, step-by-step instructions on running basic numerical experiments both
sequentially and in parallel. For many projects simply starting from an example code and adapting it to suit a particular
situation will be all that is required.
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Wide range of target hardware

Deskside clusters < » Terascale MPP
PVP clusters

Wide span of applications

Process studies < » Coupled climate
experiments

Figure 6.1: The MITgcm architecture is designed to allow simulation of a wide range of physical problems on a wide
range of hardware. The computational resource requirements of the applications targeted range from around 107 bytes
( ~ 10 megabytes) of memory to 10'! bytes ( ~ 100 gigabytes). Arithmetic operation counts for the applications of
interest range from 10° floating point operations to more than 10'7 floating point operations.

6.2 WRAPPER

A significant element of the software architecture utilized in MITgem is a software superstructure and substructure
collectively called the WRAPPER (Wrappable Application Parallel Programming Environment Resource). All numer-
ical and support code in MITgcm is written to “fit” within the WRAPPER infrastructure. Writing code to fit within
the WRAPPER means that coding has to follow certain, relatively straightforward, rules and conventions (these are
discussed further in Section 6.3.1).

The approach taken by the WRAPPER is illustrated in Figure 6.2, which shows how the WRAPPER serves to insulate
code that fits within it from architectural differences between hardware platforms and operating systems. This allows
numerical code to be easily retargeted.

6.2.1 Target hardware

The WRAPPER is designed to target as broad as possible a range of computer systems. The original development of
the WRAPPER took place on a multi-processor, CRAY Y-MP system. On that system, numerical code performance
and scaling under the WRAPPER was in excess of that of an implementation that was tightly bound to the CRAY
system’s proprietary multi-tasking and micro-tasking approach. Later developments have been carried out on unipro-
cessor and multiprocessor Sun systems with both uniform memory access (UMA) and non-uniform memory access
(NUMA) designs. Significant work has also been undertaken on x86 cluster systems, Alpha processor based clustered
SMP systems, and on cache-coherent NUMA (CC-NUMA) systems such as Silicon Graphics Altix systems. The
MITgcm code, operating within the WRAPPER, is also routinely used on large scale MPP systems (for example, Cray
T3E and IBM SP systems). In all cases, numerical code, operating within the WRAPPER, performs and scales very
competitively with equivalent numerical code that has been modified to contain native optimizations for a particular
system (see Hoe et al. 1999) [HHA99] .
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Wrapper

Customizable communication
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Cluster
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User sges the \\ Ultra
numerical model Cluster

Figure 6.2: Numerical code is written to fit within a software support infrastructure called WRAPPER. The WRAPPER
is portable and can be specialized for a wide range of specific target hardware and programming environments, without
impacting numerical code that fits within the WRAPPER. Codes that fit within the WRAPPER can generally be made
to run as fast on a particular platform as codes specially optimized for that platform.
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6.2.2 Supporting hardware neutrality

The different systems mentioned in Section 6.2.1 can be categorized in many different ways. For example, one
common distinction is between shared-memory parallel systems (SMP and PVP) and distributed memory parallel
systems (for example x86 clusters and large MPP systems). This is one example of a difference between compute
platforms that can impact an application. Another common distinction is between vector processing systems with
highly specialized CPUs and memory subsystems and commodity microprocessor based systems. There are numerous
other differences, especially in relation to how parallel execution is supported. To capture the essential differences
between different platforms the WRAPPER uses a machine model.

6.2.3 WRAPPER machine model

Applications using the WRAPPER are not written to target just one particular machine (for example an IBM SP2) or
just one particular family or class of machines (for example Parallel Vector Processor Systems). Instead the WRAP-
PER provides applications with an abstract machine model. The machine model is very general; however, it can
easily be specialized to fit, in a computationally efficient manner, any computer architecture currently available to the
scientific computing community.

6.2.4 Machine model parallelism

Codes operating under the WRAPPER target an abstract machine that is assumed to consist of one or more logical
processors that can compute concurrently. Computational work is divided among the logical processors by allocating
“ownership” to each processor of a certain set (or sets) of calculations. Each set of calculations owned by a particular
processor is associated with a specific region of the physical space that is being simulated, and only one processor will
be associated with each such region (domain decomposition).

In a strict sense the logical processors over which work is divided do not need to correspond to physical processors.
It is perfectly possible to execute a configuration decomposed for multiple logical processors on a single physical
processor. This helps ensure that numerical code that is written to fit within the WRAPPER will parallelize with
no additional effort. It is also useful for debugging purposes. Generally, however, the computational domain will
be subdivided over multiple logical processors in order to then bind those logical processors to physical processor
resources that can compute in parallel.

6.2.4.1 Tiles

Computationally, the data structures (e.g., arrays, scalar variables, etc.) that hold the simulated state are associated with
each region of physical space and are allocated to a particular logical processor. We refer to these data structures as
being owned by the processor to which their associated region of physical space has been allocated. Individual regions
that are allocated to processors are called tiles. A processor can own more than one tile. Figure 6.3 shows a physical
domain being mapped to a set of logical processors, with each processor owning a single region of the domain (a
single tile). Except for periods of communication and coordination, each processor computes autonomously, working
only with data from the tile that the processor owns. If instead multiple tiles were allotted to a single processor, each
of these tiles would be computed on independently of the other allotted tiles, in a sequential fashion.
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Figure 6.3: The WRAPPER provides support for one and two dimensional decompositions of grid-point domains. The
figure shows a hypothetical domain of total size N, N, N, . This hypothetical domain is decomposed in two-dimensions
along the NV, and IV, directions. The resulting tiles are owned by different processors. The owning processors perform
the arithmetic operations associated with a tile. Although not illustrated here, a single processor can own several tiles.
Whenever a processor wishes to transfer data between tiles or communicate with other processors it calls a WRAPPER
supplied function.

6.2.4.2 Tile layout

Tiles consist of an interior region and an overlap region. The overlap region of a tile corresponds to the interior
region of an adjacent tile. In Figure 6.4 each tile would own the region within the black square and hold duplicate
information for overlap regions extending into the tiles to the north, south, east and west. During computational phases
a processor will reference data in an overlap region whenever it requires values that lie outside the domain it owns.
Periodically processors will make calls to WRAPPER functions to communicate data between tiles, in order to keep
the overlap regions up to date (see Section 6.2.6). The WRAPPER functions can use a variety of different mechanisms
to communicate data between tiles.

IIIIILII

Figure 6.4: A global grid subdivided into tiles. Tiles contain a interior region and an overlap region. Overlap regions
are periodically updated from neighboring tiles.
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6.2.5 Communication mechanisms

Logical processors are assumed to be able to exchange information between tiles (and between each other) using
at least one of two possible mechanisms, shared memory or distributed memory communication. The WRAPPER
assumes that communication will use one of these two styles. The underlying hardware and operating system support
for the style used is not specified and can vary from system to system.

6.2.5.1 Shared memory communication

Under this mode of communication, data transfers are assumed to be possible using direct addressing of regions of
memory. In the WRAPPER shared memory communication model, simple writes to an array can be made to be visible
to other CPUs at the application code level. So, as shown below, if one CPU (CPU1) writes the value 8 to element
3 of array a, then other CPUs (here, CPU2) will be able to see the value 8 when they read from a(3). This provides
a very low latency and high bandwidth communication mechanism. Thus, in this way one CPU can communicate
information to another CPU by assigning a particular value to a particular memory location.

CPU1 | CPU2
==== | ====
|
a(3) =8 | WHILE ( a(3) .NE. 8 )
| WAIT
| END WHILE
|

Under shared communication independent CPUs are operating on the exact same global address space at the applica-
tion level. This is the model of memory access that is supported at the basic system design level in “shared-memory”
systems such as PVP systems, SMP systems, and on distributed shared memory systems (e.g., SGI Origin, SGI Al-
tix, and some AMD Opteron systems). On such systems the WRAPPER will generally use simple read and write
statements to access directly application data structures when communicating between CPUs.

In a system where assignments statements map directly to hardware instructions that transport data between CPU
and memory banks, this can be a very efficient mechanism for communication. In such case multiple CPUs can
communicate simply be reading and writing to agreed locations and following a few basic rules. The latency of this
sort of communication is generally not that much higher than the hardware latency of other memory accesses on the
system. The bandwidth available between CPUs communicating in this way can be close to the bandwidth of the
systems main-memory interconnect. This can make this method of communication very efficient provided it is used
appropriately.

Memory consistency

When using shared memory communication between multiple processors, the WRAPPER level shields user applica-
tions from certain counter-intuitive system behaviors. In particular, one issue the WRAPPER layer must deal with is
a systems memory model. In general the order of reads and writes expressed by the textual order of an application
code may not be the ordering of instructions executed by the processor performing the application. The processor
performing the application instructions will always operate so that, for the application instructions the processor is
executing, any reordering is not apparent. However, machines are often designed so that reordering of instructions is
not hidden from other second processors. This means that, in general, even on a shared memory system two processors
can observe inconsistent memory values.

The issue of memory consistency between multiple processors is discussed at length in many computer science papers.
From a practical point of view, in order to deal with this issue, shared memory machines all provide some mechanism
to enforce memory consistency when it is needed. The exact mechanism employed will vary between systems. For
communication using shared memory, the WRAPPER provides a place to invoke the appropriate mechanism to ensure
memory consistency for a particular platform.
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Cache effects and false sharing

Shared-memory machines often have local-to-processor memory caches which contain mirrored copies of main mem-
ory. Automatic cache-coherence protocols are used to maintain consistency between caches on different processors.
These cache-coherence protocols typically enforce consistency between regions of memory with large granularity
(typically 128 or 256 byte chunks). The coherency protocols employed can be expensive relative to other memory
accesses and so care is taken in the WRAPPER (by padding synchronization structures appropriately) to avoid unnec-
essary coherence traffic.

Operating system support for shared memory

Applications running under multiple threads within a single process can use shared memory communication. In this
case all the memory locations in an application are potentially visible to all the compute threads. Multiple threads
operating within a single process is the standard mechanism for supporting shared memory that the WRAPPER uti-
lizes. Configuring and launching code to run in multi-threaded mode on specific platforms is discussed in Section
6.3.2.1. However, on many systems, potentially very efficient mechanisms for using shared memory communication
between multiple processes (in contrast to multiple threads within a single process) also exist. In most cases this works
by making a limited region of memory shared between processes. The MMAP and IPC facilities in UNIX systems
provide this capability as do vendor specific tools like LAPI and IMC. Extensions exist for the WRAPPER that allow
these mechanisms to be used for shared memory communication. However, these mechanisms are not distributed with
the default WRAPPER sources, because of their proprietary nature.

6.2.5.2 Distributed memory communication

Under this mode of communication there is no mechanism, at the application code level, for directly addressing regions
of memory owned and visible to another CPU. Instead a communication library must be used, as illustrated below. If
one CPU (here, CPU1) writes the value 8 to element 3 of array a, then at least one of CPU1 and/or CPU2 will need to
call a function in the API of the communication library to communicate data from a tile that it owns to a tile that another
CPU owns. By default the WRAPPER binds to the MPI communication library for this style of communication (see
https://computing.linl.gov/tutorials/mpi/ for more information about the MPI Standard).

CpPU1 | CPU2
—=== | ===
|
a(3) =8 | WHILE ( a(3) .NE. 8 )
CALL SEND( CPU2,a(3) ) | CALL RECV( CPU1l, a(3) )
| END WHILE
|

Many parallel systems are not constructed in a way where it is possible or practical for an application to use shared
memory for communication. For cluster systems consisting of individual computers connected by a fast network,
there is no notion of shared memory at the system level. For this sort of system the WRAPPER provides support
for communication based on a bespoke communication library. The default communication library used is MPI. It is
relatively straightforward to implement bindings to optimized platform specific communication libraries. For example
the work described in Hoe et al. (1999) [HHA99] substituted standard MPI communication for a highly optimized
library.
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6.2.6 Communication primitives

Optimized communication support is assumed to be potentially available for a small number of communication op-
erations. It is also assumed that communication performance optimizations can be achieved by optimizing a small
number of communication primitives. Three optimizable primitives are provided by the WRAPPER.
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Figure 6.5: Three performance critical parallel primitives are provided by the WRAPPER. These primitives are always
used to communicate data between tiles. The figure shows four tiles. The curved arrows indicate exchange primitives
which transfer data between the overlap regions at tile edges and interior regions for nearest-neighbor tiles. The
straight arrows symbolize global sum operations which connect all tiles. The global sum operation provides both a
key arithmetic primitive and can serve as a synchronization primitive. A third barrier primitive is also provided, which
behaves much like the global sum primitive.

* EXCHANGE This operation is used to transfer data between interior and overlap regions of neighboring tiles.
A number of different forms of this operation are supported. These different forms handle:

— Data type differences. Sixty-four bit and thirty-two bit fields may be handled separately.

— Bindings to different communication methods. Exchange primitives select between using shared memory
or distributed memory communication.

— Transformation operations required when transporting data between different grid regions. Transferring
data between faces of a cube-sphere grid, for example, involves a rotation of vector components.

— Forward and reverse mode computations. Derivative calculations require tangent linear and adjoint forms
of the exchange primitives.

* GLOBAL SUM The global sum operation is a central arithmetic operation for the pressure inversion phase
of the MITgcm algorithm. For certain configurations, scaling can be highly sensitive to the performance of
the global sum primitive. This operation is a collective operation involving all tiles of the simulated domain.
Different forms of the global sum primitive exist for handling:

— Data type differences. Sixty-four bit and thirty-two bit fields may be handled separately.

— Bindings to different communication methods. Exchange primitives select between using shared memory
or distributed memory communication.

— Forward and reverse mode computations. Derivative calculations require tangent linear and adjoint forms
of the exchange primitives.
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* BARRIER The WRAPPER provides a global synchronization function called barrier. This is used to synchro-
nize computations over all tiles. The BARRIER and GLOBAL SUM primitives have much in common and in
some cases use the same underlying code.

6.2.7 Memory architecture

The WRAPPER machine model is aimed to target efficient systems with highly pipelined memory architectures and
systems with deep memory hierarchies that favor memory reuse. This is achieved by supporting a flexible tiling strat-
egy as shown in Figure 6.6. Within a CPU, computations are carried out sequentially on each tile in turn. By reshaping
tiles according to the target platform it is possible to automatically tune code to improve memory performance. On a
vector machine a given domain might be subdivided into a few long, thin regions. On a commodity microprocessor
based system, however, the same region could be simulated use many more smaller sub-domains.
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Figure 6.6: The tiling strategy that the WRAPPER supports allows tiles to be shaped to suit the underlying system
memory architecture. Compact tiles that lead to greater memory reuse can be used on cache based systems (upper
half of figure) with deep memory hierarchies, whereas long tiles with large inner loops can be used to exploit vector
systems having highly pipelined memory systems.
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6.2.8 Summary
Following the discussion above, the machine model that the WRAPPER presents to an application has the following
characteristics:
* The machine consists of one or more logical processors.
» Each processor operates on tiles that it owns.
* A processor may own more than one tile.
* Processors may compute concurrently.
» Exchange of information between tiles is handled by the machine (WRAPPER) not by the application.
Behind the scenes this allows the WRAPPER to adapt the machine model functions to exploit hardware on which:
* Processors may be able to communicate very efficiently with each other using shared memory.

* An alternative communication mechanism based on a relatively simple interprocess communication API may
be required.

» Shared memory may not necessarily obey sequential consistency, however some mechanism will exist for en-
forcing memory consistency.

* Memory consistency that is enforced at the hardware level may be expensive. Unnecessary triggering of consis-
tency protocols should be avoided.

* Memory access patterns may need to be either repetitive or highly pipelined for optimum hardware performance.

This generic model, summarized in Figure 6.7, captures the essential hardware ingredients of almost all successful
scientific computer systems designed in the last 50 years.
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Figure 6.7: Summary of the WRAPPER machine model.
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6.3 Using the WRAPPER

In order to support maximum portability the WRAPPER is implemented primarily in sequential Fortran 77. At a
practical level the key steps provided by the WRAPPER are:

1. specifying how a domain will be decomposed
2. starting a code in either sequential or parallel modes of operations
3. controlling communication between tiles and between concurrently computing CPUs.

This section describes the details of each of these operations. Section 6.3.1 explains the way a domain is decomposed
(or composed) is expressed. Section 6.3.2 describes practical details of running codes in various different parallel
modes on contemporary computer systems. Section 6.3.3 explains the internal information that the WRAPPER uses
to control how information is communicated between tiles.

6.3.1 Specifying a domain decomposition

At its heart, much of the WRAPPER works only in terms of a collection of tiles which are interconnected to each
other. This is also true of application code operating within the WRAPPER. Application code is written as a series of
compute operations, each of which operates on a single tile. If application code needs to perform operations involving
data associated with another tile, it uses a WRAPPER function to obtain that data. The specification of how a global
domain is constructed from tiles or alternatively how a global domain is decomposed into tiles is made in the file
SIZE.h. This file defines the following parameters:

File: model/inc/SIZE.h

Parameter: sNx, sNx
Parameter: OLx, OLy
Parameter: nSx, nSy
Parameter: nPx, nPy

Together these parameters define a tiling decomposition of the style shown in Figure 6.8. The parameters sNx and
sNx define the size of an individual tile. The parameters OLx and OLy define the maximum size of the overlap extent.
This must be set to the maximum width of the computation stencil that the numerical code finite-difference operations
require between overlap region updates. The maximum overlap required by any of the operations in the MITgcm code
distributed at this time is four grid points (some of the higher-order advection schemes require a large overlap region).
Code modifications and enhancements that involve adding wide finite-difference stencils may require increasing OLx
and OLy. Setting OLx and OLy to a too large value will decrease code performance (because redundant computations
will be performed), however it will not cause any other problems.

The parameters nSx and nSy specify the number of tiles that will be created within a single process. Each of these
tiles will have internal dimensions of sNx and sNy. If, when the code is executed, these tiles are allocated to different
threads of a process that are then bound to different physical processors (see the multi-threaded execution discussion
in Section 6.3.2), then computation will be performed concurrently on each tile. However, it is also possible to run
the same decomposition within a process running a single thread on a single processor. In this case the tiles will be
computed over sequentially. If the decomposition is run in a single process running multiple threads but attached to
a single physical processor, then, in general, the computation for different tiles will be interleaved by system level
software. This too is a valid mode of operation.

The parameters sNx, sNy, OLx, OLy, nSx and nSy are used extensively by numerical code. The settings of sNx,
sNy, OLx, and OLy are used to form the loop ranges for many numerical calculations and to provide dimensions for
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Figure 6.8: The three level domain decomposition hierarchy employed by the WRAPPER. A domain is composed of
tiles. Multiple tiles can be allocated to a single process. Multiple processes can exist, each with multiple tiles. Tiles
within a process can be spread over multiple compute threads.
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arrays holding numerical state. The nSx and nSy are used in conjunction with the thread number parameter myThid.
Much of the numerical code operating within the WRAPPER takes the form:

DO bj=myByLo (myThid) ,myByHi (myThid)
DO bi=myBxLo (myThid),myBxHi (myThid)

a block of computations ranging
over 1,sNx +/- OLx and 1,sNy +/- OLy grid points

ENDDO
ENDDO

communication code to sum a number or maybe update
tile overlap regions

DO bj=myByLo (myThid),myByHi (myThid)
DO bi=myBxLo (myThid),myBxHi (myThid)

another block of computations ranging
over 1,sNx +/- OLx and 1,sNy +/- OLy grid points

ENDDO
ENDDO

The variables myBxLo (myThid), myBxHi (myThid), myByLo (myThid) and myByHi (myThid) set the
bounds of the loops in bi and b7 in this schematic. These variables specify the subset of the tiles in the range
1, nSxand 1, nSyl that the logical processor bound to thread number myThid owns. The thread number vari-
able myThid ranges from 1 to the total number of threads requested at execution time. For each value of myThid
the loop scheme above will step sequentially through the tiles owned by that thread. However, different threads will
have different ranges of tiles assigned to them, so that separate threads can compute iterations of the bi, b3j loop
concurrently. Within a bi, bJj loop, computation is performed concurrently over as many processes and threads as
there are physical processors available to compute.

An exception to the the use of bi and b j in loops arises in the exchange routines used when the exch2 package is used
with the cubed sphere. In this case bj is generally set to 1 and the loop runs from 1, bi. Within the loop bi is used
to retrieve the tile number, which is then used to reference exchange parameters.

The amount of computation that can be embedded in a single loop over bi and bj varies for different parts of the
MITgcm algorithm. Consider a code extract from the 2-D implicit elliptic solver:

REAL*8 cg2d_r (1-OLx:sNx+OLx, 1-OLy:sNy+OLy,nSx,nSy)
REAL*8 err

other computations

err = 0.
DO bj=myByLo (myThid),myByHi (myThid)
DO bi=myBxLo (myThid),myBxHi (myThid)
DO J=1, sNy
DO I=1,sNx
err = err + cg2d_r(I,J,bi,b]j)*cg2d_r(I,J,bi,b7j)
ENDDO
ENDDO
ENDDO
ENDDO

(continues on next page)
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(continued from previous page)

CALL GLOBAL_SUM_R8( err , myThid )
err = SQRT (err)

This portion of the code computes the L,-Norm of a vector whose elements are held in the array cg2d_r, writing
the final result to scalar variable err. Notice that under the WRAPPER, arrays such as cg2d_r have two extra trailing
dimensions. These right most indices are tile indexes. Different threads with a single process operate on different
ranges of tile index, as controlled by the settings of myByLo (myThid), myByHi (myThid), myBxLo (myThid)
and myBxHi (myThid). Because the Ly-Norm requires a global reduction, the bi, bj loop above only contains
one statement. This computation phase is then followed by a communication phase in which all threads and processes
must participate. However, in other areas of the MITgcm, code entries subsections of code are within a single bi, bj
loop. For example the evaluation of all the momentum equation prognostic terms (see dynamics.F) is within a single
bi, b3 loop.

The final decomposition parameters are nPx and nPy. These parameters are used to indicate to the WRAPPER level
how many processes (each with nSxxnSy tiles) will be used for this simulation. This information is needed during
initialization and during I/O phases. However, unlike the variables sNx, sNy, OLx, OLy, nSx and nSy the values of
nPx and nPy are absent from the core numerical and support code.

6.3.1.1 Examples of SIZE.h specifications

The following different SIZE.h parameter setting illustrate how to interpret the values of sNx, sNy, OLx, OLy, nSx,
nSy, nPx and nPy.

1.| PARAMETER (
& sNx = 90,
& sNy = 40,
& OLx = 3,
& OLy = 3,
& nsSx = 1,
& nsSy = 1,
& nPx = 1,
& nPy = 1)

This sets up a single tile with x-dimension of ninety grid points, y-dimension of forty grid points, and x and y
overlaps of three grid points each.

2.| PARAMETER (
& sNx = 45,
& sNy = 20,
& OLx = 3,
& OLy = 3,
& nsSx = 1,
& nsSy = 1,
& nPx = 2,
& nPy = 2)

This sets up tiles with x-dimension of forty-five grid points, y-dimension of twenty grid points, and x and y
overlaps of three grid points each. There are four tiles allocated to four separate processes (nPx=2, nPy=2)
and arranged so that the global domain size is again ninety grid points in x and forty grid points in y. In general
the formula for global grid size (held in model variables Nx and Ny) is

Nx sNx*nSx*nPx

Ny = sNyxnSy*nPy
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PARAMETER (

& sNx = 90,
& sNy = 10,
& OLx = 3,
& OLy = 3,
& nsSx = 1,
& nsSy = 2,
& nPx = 1,
& nPy = 2)

This sets up tiles with x-dimension of ninety grid points, y-dimension of ten grid points, and x and y overlaps of
three grid points each. There are four tiles allocated to two separate processes (nPy=2) each of which has two
separate sub-domains nSy=2. The global domain size is again ninety grid points in x and forty grid points in y.
The two sub-domains in each process will be computed sequentially if they are given to a single thread within a
single process. Alternatively if the code is invoked with multiple threads per process the two domains in y may
be computed concurrently.

.| PARAMETER (
& sNx = 32,
& sNy = 32,
& OLx = 3,
& OLy = 3,
& nsx = 6,
& nsSy = 1,
& nPx = 1,
& nPy = 1)

This sets up tiles with x-dimension of thirty-two grid points, y-dimension of thirty-two grid points, and x and
y overlaps of three grid points each. There are six tiles allocated to six separate logical processors (nSx==6).
This set of values can be used for a cube sphere calculation. Each tile of size 32 x 32 represents a face of the
cube. Initializing the tile connectivity correctly (see Section 6.3.3.3. allows the rotations associated with moving
between the six cube faces to be embedded within the tile-tile communication code.

6.3.2 Starting the code

When code is started under the WRAPPER, execution begins in a main routine eesupp/src/main.F that is owned
by the WRAPPER. Control is transferred to the application through a routine called model/src/the_model_main.F
once the WRAPPER has initialized correctly and has created the necessary variables to support subsequent calls to
communication routines by the application code. The main stages of the WRAPPER startup calling sequence are as

follows:

MAIN

|

| ——EEBOOT :: WRAPPER initialization

| \

| | -—— EEBOOT_MINMAL :: Minimal startup. Just enough to
| \ allow basic I/0.

| | -— EEINTRO_MSG :: Write startup greeting.

| \

| | -— EESET_PARMS :: Set WRAPPER parameters

| \

| | -—— EEWRITE_EEENV :: Print WRAPPER parameter settings
| \

| |-— INI_PROCS :: Associlate processes with grid regions.
|

(continues on next page)
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(continued from previous page)

| | —— INI_THREADING_ENVIRONMENT :: Associate threads with grid regions.
| \

| | -—INI_COMMUNICATION_PATTERNS :: Initialize between tile

| communication data structures

|

|

| ——CHECK_THREADS :: Validate multiple thread start up.

|
| -——THE_MODEL_MAIN :: Numerical code top-level driver routine

The steps above preceeds transfer of control to application code, which occurs in the procedure the_main_model.F

6.3.2.1 Multi-threaded execution

Prior to transferring control to the procedure the_main_model.F the WRAPPER may cause several coarse grain threads
to be initialized. The routine the_main_model.F is called once for each thread and is passed a single stack argument
which is the thread number, stored in the myThid. In addition to specifying a decomposition with multiple tiles per
process (see Section 6.3.1) configuring and starting a code to run using multiple threads requires the following steps.

Compilation

First the code must be compiled with appropriate multi-threading directives active in the file
eesupp/src/main.F and with appropriate compiler flags to request multi-threading support. The header files
eesupp/inc/MAIN_PDIRECTIVESI.h and eesupp/inc/MAIN_PDIRECTIVES2.h contain directives compatible with
compilers for Sun, Compaq, SGI, Hewlett-Packard SMP systems and CRAY PVP systems. These directives can be
activated by using compile time directives —-DTARGET_SUN, —-DTARGET_DEC, -DTARGET_SGI, -DTARGET_HP
or -DTARGET_CRAY_VECTOR respectively. Compiler options for invoking multi-threaded compilation vary from
system to system and from compiler to compiler. The options will be described in the individual compiler docu-
mentation. For the Fortran compiler from Sun the following options are needed to correctly compile multi-threaded
code

—-stackvar -explicitpar -vpara —noautopar

These options are specific to the Sun compiler. Other compilers will use different syntax that will be described in their
documentation. The effect of these options is as follows:

1. -stackvar Causes all local variables to be allocated in stack storage. This is necessary for local variables to
ensure that they are private to their thread. Note, when using this option it may be necessary to override the
default limit on stack-size that the operating system assigns to a process. This can normally be done by changing
the settings of the command shell’s stack—size. However, on some systems changing this limit will require
privileged administrator access to modify system parameters.

2. -explicitpar Requests that multiple threads be spawned in response to explicit directives in the application code.
These directives are inserted with syntax appropriate to the particular target platform when, for example, the
-DTARGET_SUN flag is selected.

3. -vpara This causes the compiler to describe the multi-threaded configuration it is creating. This is not required
but it can be useful when troubleshooting.

4. -noautopar This inhibits any automatic multi-threaded parallelization the compiler may otherwise generate.

An example of valid settings for the eedat a file for a domain with two subdomains in y and running with two threads
is shown below
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nTx=1,nTy=2

This set of values will cause computations to stay within a single thread when moving across the nSx sub-domains.
In the y-direction, however, sub-domains will be split equally between two threads.

Despite its appealing programming model, multi-threaded execution remains less common than multi-process execu-
tion (described in Section 6.3.2.2). One major reason for this is that many system libraries are still not “thread-safe”.
This means that, for example, on some systems it is not safe to call system routines to perform I/O when running in
multi-threaded mode (except, perhaps, in a limited set of circumstances). Another reason is that support for multi-
threaded programming models varies between systems.

6.3.2.2 Multi-process execution

Multi-process execution is more ubiquitous than multi-threaded execution. In order to run code in a multi-pr