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1. Overview

This document provides the reader with the information necessary to
carry out numerical experiments using MITgcm. It gives a comprehensive
description of the continuous equations on which the model is based, the
numerical algorithms the model employs and a description of the associated
program code. Along with the hydrodynamical kernel, physical and
biogeochemical parameterizations of key atmospheric and oceanic processes
are available. A number of examples illustrating the use of the model in
both process and general circulation studies of the atmosphere and ocean are
also presented.


1.1. Introduction

MITgcm has a number of novel aspects:



	it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is used to drive forward both atmospheric and oceanic models - see Figure 1.1






[image: One model for atmospheric and oceanic simulations]Figure 1.1 MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric simulations.







	it has a non-hydrostatic capability and so can be used to study both small-scale and large scale processes - see Figure 1.2






[image: MITgcm can simulate a wide range of scales]
Figure 1.2 MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of phenomenon - from convection on the left, all the way through to global circulation patterns on the right.







	finite volume techniques are employed yielding an intuitive discretization and support for the treatment of irregular geometries using orthogonal curvilinear grids and shaved cells - see Figure 1.3






[image: Finit volume techniques]Figure 1.3 Finite volume techniques (bottom panel) are used, permitting a treatment of topography that rivals \(\sigma\) (terrain following) coordinates.







	tangent linear and adjoint counterparts are automatically maintained along with the forward model, permitting sensitivity and optimization studies.


	the model is developed to perform efficiently on a wide variety of computational platforms.







Key publications reporting on and charting the development of the model are Hill and Marshall (1995), Marshall et al. (1997a),
Marshall et al. (1997b), Adcroft and Marshall (1997), Marshall et al. (1998), Adcroft and Marshall (1999), Hill et al. (1999),
Marotzke et al. (1999), Adcroft and Campin (2004), Adcroft et al. (2004b), Marshall et al. (2004) (an overview on the model formulation can also be found in Adcroft et al. (2004c)):

Hill, C. and J. Marshall, (1995)
Application of a Parallel Navier-Stokes Model to Ocean Circulation in
Parallel Computational Fluid Dynamics,
In Proceedings of Parallel Computational Fluid Dynamics: Implementations
and Results Using Parallel Computers, 545-552.
Elsevier Science B.V.: New York [HM95]

Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997a)
Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,
J. Geophysical Res., 102(C3), 5733-5752 [MHPA97]

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997b)
A finite-volume, incompressible Navier Stokes model for studies of the ocean
on parallel computers, J. Geophysical Res., 102(C3), 5753-5766 [MAH+97]

Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
Representation of topography by shaved cells in a height coordinate ocean
model, Mon Wea Rev, 125, 2293-2315 [AHM97]

Marshall, J., Jones, H. and C. Hill, (1998)
Efficient ocean modeling using non-hydrostatic algorithms,
Journal of Marine Systems, 18, 115-134 [MJH98]

Adcroft, A., Hill C. and J. Marshall: (1999)
A new treatment of the Coriolis terms in C-grid models at both high and low
resolutions,
Mon. Wea. Rev., 127, 1928-1936 [AHM99]

Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
A Strategy for Terascale Climate Modeling,
In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
in Meteorology, 406-425
World Scientific Publishing Co: UK [HAJM99]

Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
Construction of the adjoint MIT ocean general circulation model and
application to Atlantic heat transport variability,
J. Geophysical Res., 104(C12), 29,529-29,547 [MGZ+99]

A. Adcroft and J.-M. Campin, (2004a)
Re-scaled height coordinates for accurate representation of free-surface flows in ocean circulation models,
Ocean Modelling, 7, 269–284 [AC04]

A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall, (2004b)
Implementation of an atmosphere-ocean general circulation model on the expanded
spherical cube,
Mon Wea Rev , 132, 2845–2863 [ACHM04]

J. Marshall, A. Adcroft, J.-M. Campin, C. Hill, and A. White, (2004)
Atmosphere-ocean modeling exploiting fluid isomorphisms, Mon. Wea. Rev., 132, 2882–2894 [MAC+04]

A. Adcroft, C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, (2004c)
Overview of the formulation and numerics of the MITgcm, In Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numerical methods for atmosphere and ocean modelling, 139–149. URL: http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf [AHCampin+04]

We begin by briefly showing some of the results of the model in action to
give a feel for the wide range of problems that can be addressed using it.




1.2. Illustrations of the model in action

MITgcm has been designed and used to model a wide range of phenomena,
from convection on the scale of meters in the ocean to the global pattern of
atmospheric winds - see Figure 1.2. To give a flavor of the
kinds of problems the model has been used to study, we briefly describe some
of them here. A more detailed description of the underlying formulation,
numerical algorithm and implementation that lie behind these calculations is
given later. Indeed many of the illustrative examples shown below can be
easily reproduced: simply download the model (the minimum you need is a PC
running Linux, together with a FORTRAN77 compiler) and follow the examples
described in detail in the documentation.
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1.3. Continuous equations in ‘r’ coordinates

To render atmosphere and ocean models from one dynamical core we exploit
‘isomorphisms’ between equation sets that govern the evolution of the
respective fluids - see Figure 1.17. One system of
hydrodynamical equations is written down and encoded. The model
variables have different interpretations depending on whether the
atmosphere or ocean is being studied. Thus, for example, the vertical
coordinate ‘\(r\)’ is interpreted as pressure, \(p\), if we are
modeling the atmosphere (right hand side of Figure 1.17) and height, \(z\), if we are modeling
the ocean (left hand side of Figure 1.17).



[image: isomorphic-equations]
Figure 1.17 Isomorphic equation sets used for atmosphere (right) and ocean (left).






The state of the fluid at any time is characterized by the distribution
of velocity \(\vec{\mathbf{v}}\), active tracers \(\theta\) and
\(S\), a ‘geopotential’ \(\phi\) and density
\(\rho =\rho (\theta ,S,p)\) which may depend on \(\theta\),
\(S\), and \(p\). The equations that govern the evolution of
these fields, obtained by applying the laws of classical mechanics and
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in
terms of a generic vertical coordinate, \(r\), so that the
appropriate kinematic boundary conditions can be applied isomorphically
see Figure 1.18.



[image: zandp-vert-coord]Figure 1.18 Vertical coordinates and kinematic boundary conditions for atmosphere (top) and ocean (bottom).







(1.1)\[\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}\text{  horizontal momentum}\]


(1.2)\[\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  vertical momentum}\]


(1.3)\[\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
\partial r}=0\text{  continuity}\]


(1.4)\[b=b(\theta ,S,r)\text{  equation of state}\]


(1.5)\[\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{  potential temperature}\]


(1.6)\[\frac{DS}{Dt}=\mathcal{Q}_{S}\text{  humidity/salinity}\]

Here:


\[r\text{ is the vertical coordinate}\]


\[\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ is the total derivative}\]


\[\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
\text{  is the ‘grad’ operator}\]

with \(\mathbf{\nabla }_{h}\) operating in the horizontal and
\(\widehat{k}
\frac{\partial }{\partial r}\) operating in the vertical, where
\(\widehat{k}\) is a unit vector in the vertical


\[t\text{ is time}\]


\[\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the velocity}\]


\[\phi \text{ is the ‘pressure’/‘geopotential’}\]


\[\vec{\Omega}\text{ is the Earth's rotation}\]


\[b\text{ is the ‘buoyancy’}\]


\[\theta \text{ is potential temperature}\]


\[S\text{ is specific humidity in the atmosphere; salinity in the ocean}\]


\[\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
\mathbf{v}}\]


\[\mathcal{Q}_{\theta }\mathcal{\ }\text{ are forcing and dissipation of }\theta\]


\[\mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S\]

The \(\mathcal{F}^{\prime }s\) and \(\mathcal{Q}^{\prime }s\)
are provided by ‘physics’ and forcing packages for atmosphere and ocean.
These are described in later chapters.



	1.3.1. Kinematic Boundary conditions
	1.3.1.1. Vertical

	1.3.1.2. Horizontal





	1.3.2. Atmosphere

	1.3.3. Ocean

	1.3.4. Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms
	1.3.4.1. Shallow atmosphere approximation

	1.3.4.2. Hydrostatic and quasi-hydrostatic forms

	1.3.4.3. Non-hydrostatic and quasi-nonhydrostatic forms
	Non-hydrostatic Ocean

	Quasi-nonhydrostatic Atmosphere





	1.3.4.4. Summary of equation sets supported by model
	Atmosphere

	Ocean









	1.3.5. Solution strategy

	1.3.6. Finding the pressure field
	1.3.6.1. Hydrostatic pressure

	1.3.6.2. Surface pressure

	1.3.6.3. Non-hydrostatic pressure
	Boundary Conditions









	1.3.7. Forcing/dissipation
	1.3.7.1. Forcing

	1.3.7.2. Dissipation
	Momentum

	Tracers









	1.3.8. Vector invariant form

	1.3.9. Adjoint








1.4. Appendix ATMOSPHERE



	1.4.1. Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates
	1.4.1.1. Boundary conditions

	1.4.1.2. Splitting the geopotential












1.5. Appendix OCEAN



	1.5.1. Equations of Motion for the Ocean
	1.5.1.1. Compressible z-coordinate equations

	1.5.1.2. ‘Anelastic’ z-coordinate equations

	1.5.1.3. Incompressible z-coordinate equations

	1.5.1.4. Compressible non-divergent equations












1.6. Appendix OPERATORS



	1.6.1. Coordinate systems
	1.6.1.1. Spherical coordinates















          

      

      

    

  

    
      
          
            
  
1.2.1. Global atmosphere: ‘Held-Suarez’ benchmark

A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
both atmospheric and oceanographic flows at both small and large scales.

Figure 1.4 shows an instantaneous plot of the 500 mb
temperature field obtained using the atmospheric isomorph of MITgcm run at
2.8° resolution on the cubed sphere. We see cold air over the pole
(blue) and warm air along an equatorial band (red). Fully developed
baroclinic eddies spawned in the northern hemisphere storm track are
evident. There are no mountains or land-sea contrast in this calculation,
but you can easily put them in. The model is driven by relaxation to a
radiative-convective equilibrium profile, following the description set out
in Held and Suarez (1994) [HS94] designed to test atmospheric hydrodynamical cores -
there are no mountains or land-sea contrast.



[image: cubic eddies figure]Figure 1.4 Instantaneous plot of the temperature field at 500 mb obtained using the atmospheric isomorph of MITgcm






As described in Adcroft et al. (2004) [ACHM04], a ‘cubed sphere’ is used to discretize the
globe permitting a uniform griding and obviated the need to Fourier filter.
The ‘vector-invariant’ form of MITgcm supports any orthogonal curvilinear
grid, of which the cubed sphere is just one of many choices.

Figure 1.5 shows the 5-year mean, zonally averaged zonal
wind from a 20-level configuration of
the model. It compares favorable with more conventional spatial
discretization approaches. The two plots show the field calculated using the
cube-sphere grid and the flow calculated using a regular, spherical polar
latitude-longitude grid. Both grids are supported within the model.



[image: hs_zave_u_figure]Figure 1.5 Five year mean, zonally averaged zonal flow for cube-sphere simulation (top) and latitude-longitude simulation (bottom) and using Held-Suarez forcing. Note the difference in the solutions over the pole — the cubed sphere is superior.










          

      

      

    

  

    
      
          
            
  
1.2.2. Ocean gyres

Baroclinic instability is a ubiquitous process in the ocean, as well as the
atmosphere. Ocean eddies play an important role in modifying the
hydrographic structure and current systems of the oceans. Coarse resolution
models of the oceans cannot resolve the eddy field and yield rather broad,
diffusive patterns of ocean currents. But if the resolution of our models is
increased until the baroclinic instability process is resolved, numerical
solutions of a different and much more realistic kind, can be obtained.

Figure 1.6 shows the surface temperature and
velocity field obtained from MITgcm run at \(\frac{1}{6}^{\circ}\)
horizontal resolution on a lat-lon grid in which the pole has
been rotated by 90° on to the equator (to avoid the
converging of meridian in northern latitudes). 21 vertical levels are
used in the vertical with a ‘lopped cell’ representation of
topography. The development and propagation of anomalously warm and
cold eddies can be clearly seen in the Gulf Stream region. The
transport of warm water northward by the mean flow of the Gulf Stream
is also clearly visible.



[image: ocean-gyres]
Figure 1.6 Instantaneous temperature map from a \(\frac{1}{6}^{\circ}\) simulation of the North Atlantic. The figure shows the temperature in the second layer (37.5 m deep).










          

      

      

    

  

    
      
          
            
  
1.2.3. Global ocean circulation

Figure 1.7 shows the pattern of ocean
currents at the surface of a 4° global ocean model run with
15 vertical levels. Lopped cells are used to represent topography on a
regular lat-lon grid extending from 70°N to
70°S. The model is driven using monthly-mean winds with
mixed boundary conditions on temperature and salinity at the surface.
The transfer properties of ocean eddies, convection and mixing is
parameterized in this model.



[image: large-scale-circ]
Figure 1.7 Pattern of surface ocean currents from a global integration of the model at 4° horizontal resolution and with 15 vertical levels.






Figure 1.8 shows the meridional overturning
circulation of the global ocean in Sverdrups.



[image: large-scale-circ2]Figure 1.8 Meridional overturning stream function (in Sverdrups) from a global integration of the model at 4° horizontal resolution and with 15 vertical levels.










          

      

      

    

  

    
      
          
            
  
1.2.4. Convection and mixing over topography

Dense plumes generated by localized cooling on the continental shelf of the
ocean may be influenced by rotation when the deformation radius is smaller
than the width of the cooling region. Rather than gravity plumes, the
mechanism for moving dense fluid down the shelf is then through geostrophic
eddies. The simulation shown in Figure 1.9
(blue is cold dense fluid, red is
warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
trigger convection by surface cooling. The cold, dense water falls down the
slope but is deflected along the slope by rotation. It is found that
entrainment in the vertical plane is reduced when rotational control is
strong, and replaced by lateral entrainment due to the baroclinic
instability of the along-slope current.



[image: Non-hydrostatic plume over a shelf]
Figure 1.9 MITgcm run in a non-hydrostatic configuration to study convection over a slope.










          

      

      

    

  

    
      
          
            
  
1.2.5. Boundary forced internal waves

The unique ability of MITgcm to treat non-hydrostatic dynamics in the
presence of complex geometry makes it an ideal tool to study internal wave
dynamics and mixing in oceanic canyons and ridges driven by large amplitude
barotropic tidal currents imposed through open boundary conditions.

Figure 1.10 shows the influence of cross-slope topographic variations on internal wave breaking - the cross-slope velocity is in color, the density contoured. The internal waves are excited by application of open boundary conditions on the left. They propagate to the sloping boundary (represented using MITgcm’s finite volume spatial discretization) where they break under non-hydrostatic dynamics.



[image: slope_TU]
Figure 1.10 Simulation of internal waves forced at an open boundary (on the left) impacting a sloping shelf. The along slope velocity is shown colored, contour lines show density surfaces. The slope is represented with high-fidelity using lopped cells.










          

      

      

    

  

    
      
          
            
  
1.2.6. Parameter sensitivity using the adjoint of MITgcm

Forward and tangent linear counterparts of MITgcm are supported using an
‘automatic adjoint compiler’. These can be used in parameter sensitivity and
data assimilation studies.

As one example of application of the MITgcm adjoint, Figure 1.11
maps the gradient \(\frac{\partial J}{\partial\mathcal{H}}\) where \(J\) is the magnitude of the overturning
stream-function shown in Figure 1.8 at
60°N and \(\mathcal{H}(\lambda,\varphi)\) is the mean, local
air-sea heat flux over a 100 year period. We see that \(J\) is sensitive
to heat fluxes over the Labrador Sea, one of the important sources of
deep water for the thermohaline circulations. This calculation also
yields sensitivities to all other model parameters.



[image: adj_hf_ocean_figure]
Figure 1.11 Sensitivity of meridional overturning strength to surface heat flux changes. Contours show the magnitude of the response (in Sv x 10-4 ) that a persistent +1 Wm-2 heat flux anomaly at a given grid point would produce.










          

      

      

    

  

    
      
          
            
  
1.2.7. Global state estimation of the ocean

An important application of MITgcm is in state estimation of the global
ocean circulation. An appropriately defined ‘cost function’, which measures
the departure of the model from observations (both remotely sensed and
in-situ) over an interval of time, is minimized by adjusting ‘control
parameters’ such as air-sea fluxes, the wind field, the initial conditions
etc. Figure 1.12 and Figure 1.13 show the large scale planetary
circulation and a Hopf-Muller plot of Equatorial sea-surface height.
Both are obtained from assimilation bringing the model in to
consistency with altimetric and in-situ observations over the period
1992-1997.



[image: assim_figure]
Figure 1.12 Circulation patterns from a multi-year, global circulation simulation constrained by Topex altimeter data and WOCE cruise observations. This output is from a higher resolution, shorter duration experiment with equatorially enhanced grid spacing.




[image: assim_figure2]
Figure 1.13 Equatorial sea-surface height in unconstrained (left), constrained (middle) simulations and in observations (right).










          

      

      

    

  

    
      
          
            
  
1.2.8. Ocean biogeochemical cycles

MITgcm is being used to study global biogeochemical cycles in the
ocean. For example one can study the effects of interannual changes in
meteorological forcing and upper ocean circulation on the fluxes of
carbon dioxide and oxygen between the ocean and atmosphere. Figure 1.14
shows the annual air-sea flux of oxygen and its
relation to density outcrops in the southern oceans from a single year
of a global, interannually varying simulation. The simulation is run
at 1°x1° resolution telescoping to \(\frac{1}{3}^{\circ}\) x \(\frac{1}{3}^{\circ}\) in the tropics (not shown).



[image: biogeo_figure]Figure 1.14 Annual air-sea flux of oxygen (shaded) plotted along with potential density outcrops of the surface of the southern ocean from a global 1°x1° integration with a telescoping grid (to \(\frac{1}{3}^{\circ}\) ) at the equator.










          

      

      

    

  

    
      
          
            
  
1.2.9. Simulations of laboratory experiments

Figure 1.16 shows MITgcm being used to simulate a
laboratory experiment (Figure 1.15) inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
initially homogeneous tank of water (1 m in diameter) is driven from its
free surface by a rotating heated disk. The combined action of mechanical
and thermal forcing creates a lens of fluid which becomes baroclinically
unstable. The stratification and depth of penetration of the lens is
arrested by its instability in a process analogous to that which sets the
stratification of the ACC.



[image: lab_photo]
Figure 1.15 A 1 m diameter laboratory experiment simulating the dynamics of the Antarctic Circumpolar Current.




[image: lab-simulation]
Figure 1.16 A numerical simulation of the laboratory experiment using MITgcm.










          

      

      

    

  

    
      
          
            
  
1.3.1. Kinematic Boundary conditions


1.3.1.1. Vertical

at fixed and moving \(r\) surfaces we set (see Figure 1.18):


(1.7)\[\dot{r}=0 \text{ at } r=R_{fixed}(x,y)\text{  (ocean bottom, top of the atmosphere)}\]


(1.8)\[\dot{r}=\frac{Dr}{Dt} \text{ at } r=R_{moving}(x,y)\text{  (ocean surface, bottom of the atmosphere)}\]

Here


\[R_{moving}=R_{o}+\eta\]

where \(R_{o}(x,y)\) is the ‘\(r-\)value’ (height or pressure,
depending on whether we are in the atmosphere or ocean) of the ‘moving
surface’ in the resting fluid and \(\eta\) is the departure from
\(R_{o}(x,y)\) in the presence of motion.




1.3.1.2. Horizontal


(1.9)\[\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0\]

where \(\vec{\mathbf{n}}\) is the normal to a solid boundary.







          

      

      

    

  

    
      
          
            
  
1.3.2. Atmosphere

In the atmosphere, (see Figure 1.18), we interpret:


(1.10)\[r=p\text{  is the pressure}\]


(1.11)\[\dot{r}=\frac{Dp}{Dt}=\omega \text{  is the vertical velocity in p coordinates}\]


(1.12)\[\phi =g\,z\text{  is the geopotential height}\]


(1.13)\[b=\frac{\partial \Pi }{\partial p}\theta \text{  is the buoyancy}\]


(1.14)\[\theta =T(\frac{p_{c}}{p})^{\kappa }\text{  is potential temperature}\]


(1.15)\[S=q \text{  is the specific humidity}\]

where


\[T\text{ is absolute temperature}\]


\[p\text{ is the pressure}\]


\[\begin{split}\begin{aligned}
&&z\text{ is the height of the pressure surface} \\
&&g\text{ is the acceleration due to gravity}\end{aligned}\end{split}\]

In the above the ideal gas law, \(p=\rho RT\), has been expressed in
terms of the Exner function \(\Pi (p)\) given by (1.16)
(see also Section 1.4.1)


(1.16)\[\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }\]

where \(p_{c}\) is a reference pressure and \(\kappa =R/c_{p}\)
with \(R\) the gas constant and \(c_{p}\) the specific heat of
air at constant pressure.

At the top of the atmosphere (which is ‘fixed’ in our \(r\)
coordinate):


\[R_{fixed}=p_{top}=0\]

In a resting atmosphere the elevation of the mountains at the bottom is
given by


\[R_{moving}=R_{o}(x,y)=p_{o}(x,y)\]

i.e. the (hydrostatic) pressure at the top of the mountains in a
resting atmosphere.

The boundary conditions at top and bottom are given by:


(1.17)\[\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}\]


(1.18)\[\omega =~\frac{Dp_{s}}{Dt}\text{ at }r=R_{moving}\text{ (bottom of the atmosphere)}\]

Then the (hydrostatic form of) equations
(1.1)-(1.6) yields a consistent set of
atmospheric equations which, for convenience, are written out in
\(p-\)coordinates in Section 1.4.1 - see
eqs. (1.59)-(1.63).





          

      

      

    

  

    
      
          
            
  
1.3.3. Ocean

In the ocean we interpret:


(1.19)\[r=z\text{  is the height}\]


(1.20)\[\dot{r}=\frac{Dz}{Dt}=w\text{  is the vertical velocity}\]


(1.21)\[\phi=\frac{p}{\rho _{c}}\text{  is the pressure}\]


(1.22)\[b(\theta ,S,r)=\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
_{c}\right) \text{  is the buoyancy}\]

where \(\rho _{c}\) is a fixed reference density of water and
\(g\) is the acceleration due to gravity.

In the above:

At the bottom of the ocean: \(R_{fixed}(x,y)=-H(x,y)\).

The surface of the ocean is given by: \(R_{moving}=\eta\)

The position of the resting free surface of the ocean is given by
\(R_{o}=Z_{o}=0\).

Boundary conditions are:


(1.23)\[w=0~\text{at }r=R_{fixed}\text{  (ocean bottom)}\]


(1.24)\[w=\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{  (ocean surface)}\]

where \(\eta\) is the elevation of the free surface.

Then equations (1.1)- (1.6) yield a
consistent set of oceanic equations which, for convenience, are written
out in \(z-\)coordinates in Section 1.5.1 - see eqs. (1.98)
to (1.103).





          

      

      

    

  

    
      
          
            
  
1.3.4. Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms

Let us separate \(\phi\) in to surface, hydrostatic and
non-hydrostatic terms:


(1.25)\[\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)\]

and write (1.1) in the form:


(1.26)\[\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}\]


(1.27)\[\frac{\partial \phi _{hyd}}{\partial r}=-b\]


(1.28)\[\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
\partial r}=G_{\dot{r}}\]

Here \(\epsilon _{nh}\) is a non-hydrostatic parameter.

The \(\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right)\) in
(1.26) and (1.28) represent advective, metric and Coriolis
terms in the momentum equations. In spherical coordinates they take the
form  1 - see Marshall et al. (1997a) [MHPA97] for a full discussion:


(1.29)\[ \begin{align}\begin{aligned}G_{u} = & -\vec{\mathbf{v}}.\nabla u && \qquad \text{advection}\\& -\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} && \qquad \text{metric}\\& -\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} && \qquad \text{Coriolis}\\& +\mathcal{F}_{u} && \qquad \text{forcing/dissipation}\end{aligned}\end{align} \]


(1.30)\[ \begin{align}\begin{aligned}G_{v} = & -\vec{\mathbf{v}}.\nabla v && \qquad \text{advection}\\& -\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\} && \qquad \text{metric}\\& -\left\{ -2\Omega u\sin \varphi\right\} && \qquad \text{Coriolis}\\& +\mathcal{F}_{v} && \qquad \text{forcing/dissipation}\end{aligned}\end{align} \]


(1.31)\[ \begin{align}\begin{aligned}G_{\dot{r}} = & -\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}} && \qquad \text{advection}\\& -\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} && \qquad \text{metric}\\& +\underline{2\Omega u\cos \varphi} && \qquad \text{Coriolis}\\& +\underline{\underline{\mathcal{F}_{\dot{r}}}} && \qquad \text{forcing/dissipation}\end{aligned}\end{align} \]

In the above ‘\({r}\)’ is the distance from the center of the earth
and ‘\(\varphi\) ’ is latitude (see Figure 1.20).

Grad and div operators in spherical coordinates are defined in Coordinate systems.


1.3.4.1. Shallow atmosphere approximation

Most models are based on the ‘hydrostatic primitive equations’ (HPE’s)
in which the vertical momentum equation is reduced to a statement of
hydrostatic balance and the ‘traditional approximation’ is made in which
the Coriolis force is treated approximately and the shallow atmosphere
approximation is made. MITgcm need not make the ‘traditional
approximation’. To be able to support consistent non-hydrostatic forms
the shallow atmosphere approximation can be relaxed - when dividing
through by \(r\) in, for example, (1.29), we do not
replace \(r\) by \(a\), the radius of the earth.




1.3.4.2. Hydrostatic and quasi-hydrostatic forms

These are discussed at length in Marshall et al. (1997a) [MHPA97].

In the ‘hydrostatic primitive equations’ (HPE) all the underlined
terms in Eqs. (1.29)
\(\rightarrow\) (1.31) are neglected and ‘\({r}\)’
is replaced by ‘\(a\)’, the mean radius of the earth. Once the
pressure is found at one level - e.g. by inverting a 2-d Elliptic
equation for \(\phi _{s}\) at \(r=R_{moving}\) - the pressure
can be computed at all other levels by integration of the hydrostatic
relation, eq (1.27).

In the ‘quasi-hydrostatic’ equations (QH) strict balance between
gravity and vertical pressure gradients is not imposed. The
\(2\Omega u\cos\varphi\) Coriolis term are not neglected and are balanced by a
non-hydrostatic contribution to the pressure field: only the terms
underlined twice in Eqs. (1.29) \(\rightarrow\) (1.31) are set to
zero and, simultaneously, the shallow atmosphere approximation is
relaxed. In QH all the metric terms are retained and the full
variation of the radial position of a particle monitored. The QH
vertical momentum equation (1.28) becomes:


\[\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi\]

making a small correction to the hydrostatic pressure.

QH has good energetic credentials - they are the same as for
HPE. Importantly, however, it has the same angular momentum
principle as the full non-hydrostatic model (NH) - see Marshall
et.al. (1997a) [MHPA97]. As in HPE only a 2-d elliptic problem need be solved.




1.3.4.3. Non-hydrostatic and quasi-nonhydrostatic forms

MITgcm presently supports a full non-hydrostatic ocean isomorph, but
only a quasi-non-hydrostatic atmospheric isomorph.


Non-hydrostatic Ocean

In the non-hydrostatic ocean model all terms in equations
Eqs. (1.29) \(\rightarrow\) (1.31) are
retained. A three dimensional elliptic equation must be solved subject
to Neumann boundary conditions (see below). It is important to note that
use of the full NH does not admit any new ‘fast’ waves in to the
system - the incompressible condition (1.3) has already
filtered out acoustic modes. It does, however, ensure that the gravity
waves are treated accurately with an exact dispersion relation. The
NH set has a complete angular momentum principle and consistent
energetics - see White and Bromley (1995) [WB95]; Marshall et al. (1997a) [MHPA97].




Quasi-nonhydrostatic Atmosphere

In the non-hydrostatic version of our atmospheric model we approximate
\(\dot{r}\) in the vertical momentum eqs. (1.28) and (1.30) (but only here) by:


(1.32)\[\dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt}\]

where \(p_{hy}\) is the hydrostatic pressure.






1.3.4.4. Summary of equation sets supported by model


Atmosphere

Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of
the compressible non-Boussinesq equations in \(p-\)coordinates are
supported.


Hydrostatic and quasi-hydrostatic

The hydrostatic set is written out in \(p-\)coordinates in
Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates - see eqs. (1.59) to (1.63).




Quasi-nonhydrostatic

A quasi-nonhydrostatic form is also supported.






Ocean


Hydrostatic and quasi-hydrostatic

Hydrostatic, and quasi-hydrostatic forms of the incompressible
Boussinesq equations in \(z-\)coordinates are supported.




Non-hydrostatic

Non-hydrostatic forms of the incompressible Boussinesq equations in
\(z-\) coordinates are supported - see eqs. (1.98) to (1.103).


	1

	In the hydrostatic primitive equations (HPE) all underlined terms in (1.29), (1.30) and (1.31) are omitted; the singly-underlined terms are included in the quasi-hydrostatic model (QH). The fully non-hydrostatic model (NH) includes all terms.















          

      

      

    

  

    
      
          
            
  
1.3.5. Solution strategy

The method of solution employed in the HPE, QH and NH models
is summarized in Figure 1.19. Under all dynamics, a
2-d elliptic equation is first solved to find the surface pressure and
the hydrostatic pressure at any level computed from the weight of fluid
above. Under HPE and QH dynamics, the horizontal momentum
equations are then stepped forward and \(\dot{r}\) found from
continuity. Under NH dynamics a 3-d elliptic equation must be solved
for the non-hydrostatic pressure before stepping forward the horizontal
momentum equations; \(\dot{r}\) is found by stepping forward the
vertical momentum equation.

There is no penalty in implementing QH over HPE except, of
course, some complication that goes with the inclusion of
\(\cos \varphi \ \) Coriolis terms and the relaxation of the shallow
atmosphere approximation. But this leads to negligible increase in
computation. In NH, in contrast, one additional elliptic equation -
a three-dimensional one - must be inverted for \(p_{nh}\). However
the ‘overhead’ of the NH model is essentially negligible in the
hydrostatic limit (see detailed discussion in Marshall et al. (1997) [MHPA97]
resulting in a non-hydrostatic algorithm that, in the hydrostatic limit,
is as computationally economic as the HPEs.



[image: diagram of basic solution strategy in MITgcm]Figure 1.19 Basic solution strategy in MITgcm. HPE and QH forms diagnose the vertical velocity, in NH a prognostic equation for the vertical velocity is integrated.










          

      

      

    

  

    
      
          
            
  
1.3.6. Finding the pressure field

Unlike the prognostic variables \(u\), \(v\), \(w\),
\(\theta\) and \(S\), the pressure field must be obtained
diagnostically. We proceed, as before, by dividing the total
(pressure/geo) potential in to three parts, a surface part,
\(\phi _{s}(x,y)\), a hydrostatic part \(\phi _{hyd}(x,y,r)\)
and a non-hydrostatic part \(\phi _{nh}(x,y,r)\), as in
(1.25), and writing the momentum equation as in (1.26).


1.3.6.1. Hydrostatic pressure

Hydrostatic pressure is obtained by integrating (1.27) vertically from \(r=R_{o}\)
where \(\phi _{hyd}(r=R_{o})=0\), to yield:


\[\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr\]

and so


(1.33)\[\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr\]

The model can be easily modified to accommodate a loading term (e.g
atmospheric pressure pushing down on the ocean’s surface) by setting:


(1.34)\[\phi _{hyd}(r=R_{o})=loading\]




1.3.6.2. Surface pressure

The surface pressure equation can be obtained by integrating continuity,
(1.3), vertically from \(r=R_{fixed}\) to \(r=R_{moving}\)


\[\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
}_{h}+\partial _{r}\dot{r}\right) dr=0\]

Thus:


\[\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
_{h}dr=0\]

where \(\eta =R_{moving}-R_{o}\) is the free-surface
\(r\)-anomaly in units of \(r\). The above can be rearranged to yield, using Leibnitz’s theorem:


(1.35)\[\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}\]

where we have incorporated a source term.

Whether \(\phi\) is pressure (ocean model, \(p/\rho _{c}\)) or
geopotential (atmospheric model), in (1.26), the horizontal gradient term can be written


(1.36)\[\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)\]

where \(b_{s}\) is the buoyancy at the surface.

In the hydrostatic limit (\(\epsilon _{nh}=0\)), equations
(1.26), (1.35) and (1.36) can be solved by
inverting a 2-d elliptic equation for \(\phi _{s}\) as described in
Chapter 2. Both ‘free surface’ and ‘rigid lid’ approaches are available.




1.3.6.3. Non-hydrostatic pressure

Taking the horizontal divergence of (1.26) and adding
\(\frac{\partial }{\partial r}\) of (1.28), invoking the
continuity equation (1.3), we deduce that:


(1.37)\[\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
\vec{\mathbf{F}}\]

For a given rhs this 3-d elliptic equation must be inverted for
\(\phi _{nh}\) subject to appropriate choice of boundary conditions.
This method is usually called The Pressure Method [Harlow and Welch
(1965) [HW65]; Williams (1969) [Wil69]; Potter (1973) [Pot73]. In the hydrostatic primitive
equations case (HPE), the 3-d problem does not need to be solved.


Boundary Conditions

We apply the condition of no normal flow through all solid boundaries -
the coasts (in the ocean) and the bottom:


(1.38)\[\vec{\mathbf{v}}.\widehat{n}=0\]

where \(\widehat{n}\) is a vector of unit length normal to the
boundary. The kinematic condition (1.38) is also applied to
the vertical velocity at \(r=R_{moving}\). No-slip
\(\left( v_{T}=0\right) \ \)or slip \(\left( \partial v_{T}/\partial n=0\right) \ \)conditions are employed
on the tangential component of velocity, \(v_{T}\), at all solid
boundaries, depending on the form chosen for the dissipative terms in
the momentum equations - see below.

Eq. (1.38) implies, making use of (1.26), that:


(1.39)\[\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}\]

where


\[\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi_{s}+\mathbf{\nabla }\phi _{hyd}\right)\]

presenting inhomogeneous Neumann boundary conditions to the Elliptic
problem (1.37). As shown, for example, by Williams (1969) [Wil69], one
can exploit classical 3D potential theory and, by introducing an
appropriately chosen \(\delta\)-function sheet of ‘source-charge’,
replace the inhomogeneous boundary condition on pressure by a
homogeneous one. The source term \(rhs\) in (1.37) is the
divergence of the vector \(\vec{\mathbf{F}}.\) By simultaneously setting \(\widehat{n}.\vec{\mathbf{F}}=0\)
and \(\widehat{n}.\nabla \phi _{nh}=0\ \)on the boundary the
following self-consistent but simpler homogenized Elliptic problem is obtained:


\[\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad\]

where \(\widetilde{\vec{\mathbf{F}}}\) is a modified \(\vec{\mathbf{F}}\)
such that \(\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0\). As is implied by
(1.39) the modified boundary condition becomes:


(1.40)\[\widehat{n}.\nabla \phi _{nh}=0\]

If the flow is ‘close’ to hydrostatic balance then the 3-d inversion
converges rapidly because \(\phi _{nh}\ \)is then only a small
correction to the hydrostatic pressure field (see the discussion in
Marshall et al. (1997a,b) [MHPA97] [MAH+97].

The solution \(\phi _{nh}\ \)to (1.37) and
(1.39) does not vanish at \(r=R_{moving}\), and so
refines the pressure there.









          

      

      

    

  

    
      
          
            
  
1.3.7. Forcing/dissipation


1.3.7.1. Forcing

The forcing terms \(\mathcal{F}\) on the rhs of the equations are
provided by ‘physics packages’ and forcing packages. These are described
later on.




1.3.7.2. Dissipation


Momentum

Many forms of momentum dissipation are available in the model. Laplacian
and biharmonic frictions are commonly used:


(1.41)\[D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
+A_{4}\nabla _{h}^{4}v\]

where \(A_{h}\) and \(A_{v}\ \)are (constant) horizontal and
vertical viscosity coefficients and \(A_{4}\ \)is the horizontal
coefficient for biharmonic friction. These coefficients are the same for
all velocity components.




Tracers

The mixing terms for the temperature and salinity equations have a
similar form to that of momentum except that the diffusion tensor can be
non-diagonal and have varying coefficients.


(1.42)\[D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
_{h}^{4}(T,S)\]

where \(\underline{\underline{K}}\ \)is the diffusion tensor and
the \(K_{4}\ \) horizontal coefficient for biharmonic diffusion. In
the simplest case where the subgrid-scale fluxes of heat and salt are
parameterized with constant horizontal and vertical diffusion
coefficients, \(\underline{\underline{K}}\), reduces to a diagonal
matrix with constant coefficients:


(1.43)\[\begin{split}\qquad \qquad \qquad \qquad K=\left(
\begin{array}{ccc}
K_{h} & 0 & 0 \\
0 & K_{h} & 0 \\
0 & 0 & K_{v}
\end{array}
\right) \qquad \qquad \qquad\end{split}\]

where \(K_{h}\ \)and \(K_{v}\ \)are the horizontal and
vertical diffusion coefficients. These coefficients are the same for all
tracers (temperature, salinity … ).









          

      

      

    

  

    
      
          
            
  
1.3.8. Vector invariant form

For some purposes it is advantageous to write momentum advection in
eq (1.1) and (1.2) in the (so-called) ‘vector invariant’ form:


(1.44)\[\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]\]

This permits alternative numerical treatments of the non-linear terms
based on their representation as a vorticity flux. Because gradients of
coordinate vectors no longer appear on the rhs of (1.44),
explicit representation of the metric terms in (1.29),
(1.30) and (1.31), can be avoided: information
about the geometry is contained in the areas and lengths of the volumes
used to discretize the model.





          

      

      

    

  

    
      
          
            
  
1.3.9. Adjoint

Tangent linear and adjoint counterparts of the forward model are
described in Section 7.





          

      

      

    

  

    
      
          
            
  
1.4.1. Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates

The hydrostatic primitive equations (HPE’s) in \(p-\)coordinates are:


(1.45)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}_{h}+\mathbf{\nabla }_{p}\phi = \vec{\mathbf{\mathcal{F}}}\]


(1.46)\[\frac{\partial \phi }{\partial p}+\alpha = 0\]


(1.47)\[\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{\partial p} = 0\]


(1.48)\[p\alpha = RT\]


(1.49)\[c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} = \mathcal{Q}\]

where \(\vec{\mathbf{v}}_{h}=(u,v,0)\) is the ‘horizontal’ (on pressure surfaces) component of velocity,
\(\frac{D}{Dt}=\frac{\partial}{\partial t}+\vec{\mathbf{v}}_{h}\cdot \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}\)
is the total derivative, \(f=2\Omega \sin \varphi\) is the Coriolis
parameter, \(\phi =gz\) is the geopotential, \(\alpha =1/\rho\)
is the specific volume, \(\omega =\frac{Dp }{Dt}\) is the vertical
velocity in the \(p-\)coordinate. Equation (1.49) is the
first law of thermodynamics where internal energy \(e=c_{v}T\),
\(T\) is temperature, \(Q\) is the rate of heating per unit mass
and \(p\frac{D\alpha }{Dt}\) is the work done by the fluid in
compressing.

It is convenient to cast the heat equation in terms of potential
temperature \(\theta\) so that it looks more like a generic
conservation law. Differentiating (1.48) we get:


\[p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}\]

which, when added to the heat equation (1.49) and using
\(c_{p}=c_{v}+R\), gives:


(1.50)\[c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}\]

Potential temperature is defined:


(1.51)\[\theta =T(\frac{p_{c}}{p})^{\kappa }\]

where \(p_{c}\) is a reference pressure and
\(\kappa =R/c_{p}\). For convenience we will make use of the Exner
function \(\Pi (p)\) which is defined by:


(1.52)\[\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }\]

The following relations will be useful and are easily expressed in
terms of the Exner function:


\[c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
\frac{Dp}{Dt}\]

where \(b=\frac{\partial \ \Pi }{\partial p}\theta\) is the buoyancy.

The heat equation is obtained by noting that


\[c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}\]

and on substituting into (1.50) gives:


(1.53)\[\Pi \frac{D\theta }{Dt}=\mathcal{Q}\]

which is in conservative form.

For convenience in the model we prefer to step forward
(1.53) rather than (1.49).


1.4.1.1. Boundary conditions

The upper and lower boundary conditions are:


(1.54)\[\begin{aligned}\mbox{at the top:}\;\;p=0 &\text{,  }\omega =\frac{Dp}{Dt}=0\end{aligned}\]


(1.55)\[\begin{aligned}\mbox{at the surface:}\;\;p=p_{s} &\text{,  }\phi =\phi _{topo}=g~Z_{topo}\end{aligned}\]

In \(p-\)coordinates, the upper boundary acts like a solid boundary
(\(\omega=0\) ); in \(z-\)coordinates the lower boundary is analogous to a
free surface (\(\phi\) is imposed and \(\omega \neq 0\)).




1.4.1.2. Splitting the geopotential

For the purposes of initialization and reducing round-off errors, the
model deals with perturbations from reference (or ‘standard’) profiles.
For example, the hydrostatic geopotential associated with the resting
atmosphere is not dynamically relevant and can therefore be subtracted
from the equations. The equations written in terms of perturbations are
obtained by substituting the following definitions into the previous
model equations:


(1.56)\[\theta = \theta _{o}+\theta ^{\prime }\]


(1.57)\[\alpha = \alpha _{o}+\alpha ^{\prime }\]


(1.58)\[\phi  = \phi _{o}+\phi ^{\prime }\]

The reference state (indicated by subscript ‘o’) corresponds to
horizontally homogeneous atmosphere at rest
(\(\theta _{o},\alpha _{o},\phi_{o}\)) with surface pressure \(p_{o}(x,y)\) that satisfies
\(\phi_{o}(p_{o})=g~Z_{topo}\), defined:


\[\begin{split}\theta _{o}(p) = f^{n}(p) \\\end{split}\]


\[\begin{split}\alpha _{o}(p)  = \Pi _{p}\theta _{o} \\\end{split}\]


\[\phi _{o}(p)  = \phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp\]

The final form of the HPE’s in \(p-\)coordinates is then:


(1.59)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } = \vec{\mathbf{\mathcal{F}}}\]


(1.60)\[\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime }  = 0\]


(1.61)\[\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
\partial p} = 0\]


(1.62)\[\frac{\partial \Pi }{\partial p}\theta ^{\prime } = \alpha ^{\prime }\]


(1.63)\[\frac{D\theta }{Dt} = \frac{\mathcal{Q}}{\Pi }\]







          

      

      

    

  

    
      
          
            
  
1.5.1. Equations of Motion for the Ocean

We review here the method by which the standard (Boussinesq,
incompressible) HPE’s for the ocean written in \(z-\)coordinates are
obtained. The non-Boussinesq equations for oceanic motion are:


(1.64)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p  = \vec{\mathbf{\mathcal{F}}}\]


(1.65)\[\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} = \epsilon _{nh}\mathcal{F}_{w}\]


(1.66)\[\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
_{h}+\frac{\partial w}{\partial z}  = 0\]


(1.67)\[\rho  = \rho (\theta ,S,p)\]


(1.68)\[\frac{D\theta }{Dt}  = \mathcal{Q}_{\theta }\]


(1.69)\[\frac{DS}{Dt} = \mathcal{Q}_{s}\]

These equations permit acoustics modes, inertia-gravity waves,
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
mode. As written, they cannot be integrated forward consistently - if we
step \(\rho\) forward in (1.66), the answer will not be
consistent with that obtained by stepping (1.68) and
(1.69) and then using (1.67) to yield \(\rho\). It
is therefore necessary to manipulate the system as follows.
Differentiating the EOS (equation of state) gives:


(1.70)\[\frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
_{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
_{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
_{\theta ,S}\frac{Dp}{Dt}\]

Note that \(\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}\)
is the reciprocal of the sound speed (\(c_{s}\)) squared.
Substituting into (1.66) gives:


(1.71)\[\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
v}}+\partial _{z}w\approx 0\]

where we have used an approximation sign to indicate that we have
assumed adiabatic motion, dropping the \(\frac{D\theta }{Dt}\) and
\(\frac{DS}{Dt}\). Replacing (1.66) with (1.71)
yields a system that can be explicitly integrated forward:


(1.72)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p = \vec{\mathbf{\mathcal{F}}}\]


(1.73)\[\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} = \epsilon _{nh}\mathcal{F}_{w}\]


(1.74)\[\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} = 0\]


(1.75)\[\rho  = \rho (\theta ,S,p)\]


(1.76)\[\frac{D\theta }{Dt}  = \mathcal{Q}_{\theta }\]


(1.77)\[\frac{DS}{Dt}  = \mathcal{Q}_{s}\]


1.5.1.1. Compressible z-coordinate equations

Here we linearize the acoustic modes by replacing \(\rho\) with
\(\rho _{o}(z)\) wherever it appears in a product (ie. non-linear
term) - this is the ‘Boussinesq assumption’. The only term that then
retains the full variation in \(\rho\) is the gravitational
acceleration:


(1.78)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p = \vec{\mathbf{\mathcal{F}}}\]


(1.79)\[\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
\frac{\partial p}{\partial z}  = \epsilon _{nh}\mathcal{F}_{w}\]


(1.80)\[\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
\mathbf{v}}_{h}+\frac{\partial w}{\partial z}  = 0\]


(1.81)\[\rho = \rho (\theta ,S,p)\]


(1.82)\[\frac{D\theta }{Dt} = \mathcal{Q}_{\theta }\]


(1.83)\[\frac{DS}{Dt} = \mathcal{Q}_{s}\]

These equations still retain acoustic modes. But, because the
“compressible” terms are linearized, the pressure equation (1.80)
can be integrated implicitly with ease (the time-dependent term appears
as a Helmholtz term in the non-hydrostatic pressure equation). These are
the truly compressible Boussinesq equations. Note that the EOS must
have the same pressure dependency as the linearized pressure term, ie.
\(\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{c_{s}^{2}}\), for consistency.




1.5.1.2. ‘Anelastic’ z-coordinate equations

The anelastic approximation filters the acoustic mode by removing the
time-dependency in the continuity (now pressure-) equation
(1.80). This could be done simply by noting that
\(\frac{Dp}{Dt}\approx -g\rho _{o} \frac{Dz}{Dt}=-g\rho _{o}w\),
but this leads to an inconsistency between
continuity and EOS. A better solution is to change the dependency on
pressure in the EOS by splitting the pressure into a reference function
of height and a perturbation:


\[\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })\]

Remembering that the term \(\frac{Dp}{Dt}\) in continuity comes
from differentiating the EOS, the continuity equation then becomes:


\[\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
\frac{\partial w}{\partial z}=0\]

If the time- and space-scales of the motions of interest are longer
than those of acoustic modes, then
\(\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt}, \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})\)
in the continuity equations and \(\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
,S}\frac{Dp_{o}}{Dt}\) in the EOS (1.70). Thus we set \(\epsilon_{s}=0\), removing the
dependency on \(p^{\prime }\) in the continuity equation and EOS. Expanding
\(\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w\) then leads to the anelastic continuity equation:


(1.84)\[\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
\frac{g}{c_{s}^{2}}w = 0\]

A slightly different route leads to the quasi-Boussinesq continuity
equation where we use the scaling
\(\frac{\partial \rho ^{\prime }}{\partial t}+
\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
_{3}\cdot \rho _{o}\vec{\mathbf{v}}\) yielding:


(1.85)\[\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
\partial \left( \rho _{o}w\right) }{\partial z} = 0\]

Equations (1.84) and (1.85) are in fact the same equation
if:


\[\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}\]

Again, note that if \(\rho _{o}\) is evaluated from prescribed
\(\theta _{o}\) and \(S_{o}\) profiles, then the EOS dependency
on \(p_{o}\) and the term \(\frac{g}{c_{s}^{2}}\) in continuity should
be referred to those same profiles. The full set of ‘quasi-Boussinesq’ or ‘anelastic’
equations for the ocean are then:


(1.86)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p = \vec{\mathbf{\mathcal{F}}}\]


(1.87)\[\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
\frac{\partial p}{\partial z} = \epsilon _{nh}\mathcal{F}_{w}\]


(1.88)\[\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
\partial \left( \rho _{o}w\right) }{\partial z} = 0\]


(1.89)\[\rho = \rho (\theta ,S,p_{o}(z))\]


(1.90)\[\frac{D\theta }{Dt} = \mathcal{Q}_{\theta }\]


(1.91)\[\frac{DS}{Dt} = \mathcal{Q}_{s}\]




1.5.1.3. Incompressible z-coordinate equations

Here, the objective is to drop the depth dependence of \(\rho _{o}\)
and so, technically, to also remove the dependence of \(\rho\) on
\(p_{o}\). This would yield the “truly” incompressible Boussinesq
equations:


(1.92)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p = \vec{\mathbf{\mathcal{F}}}\]


(1.93)\[\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
\frac{\partial p}{\partial z} = \epsilon _{nh}\mathcal{F}_{w}\]


(1.94)\[\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} = 0\]


(1.95)\[\rho = \rho (\theta ,S)\]


(1.96)\[\frac{D\theta }{Dt} = \mathcal{Q}_{\theta }\]


(1.97)\[\frac{DS}{Dt} = \mathcal{Q}_{s}\]

where \(\rho _{c}\) is a constant reference density of water.




1.5.1.4. Compressible non-divergent equations

The above “incompressible” equations are incompressible in both the flow
and the density. In many oceanic applications, however, it is important
to retain compressibility effects in the density. To do this we must
split the density thus:


\[\rho =\rho _{o}+\rho ^{\prime }\]

We then assert that variations with depth of \(\rho _{o}\) are
unimportant while the compressible effects in \(\rho ^{\prime }\)
are:


\[\rho _{o}=\rho _{c}\]


\[\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}\]

This then yields what we can call the semi-compressible Boussinesq
equations:


(1.98)\[\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } = \vec{\mathbf{
\mathcal{F}}}\]


(1.99)\[\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
_{c}}\frac{\partial p^{\prime }}{\partial z} = \epsilon _{nh}\mathcal{F}_{w}\]


(1.100)\[\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} = 0\]


(1.101)\[\rho ^{\prime } = \rho (\theta ,S,p_{o}(z))-\rho _{c}\]


(1.102)\[\frac{D\theta }{Dt} = \mathcal{Q}_{\theta }\]


(1.103)\[\frac{DS}{Dt} = \mathcal{Q}_{s}\]

Note that the hydrostatic pressure of the resting fluid, including that
associated with \(\rho _{c}\), is subtracted out since it has no
effect on the dynamics.

Though necessary, the assumptions that go into these equations are messy
since we essentially assume a different EOS for the reference density
and the perturbation density. Nevertheless, it is the hydrostatic
(\(\epsilon_{nh}=0\)) form of these equations that are used throughout the ocean
modeling community and referred to as the primitive equations (HPE’s).







          

      

      

    

  

    
      
          
            
  
1.6.1. Coordinate systems


1.6.1.1. Spherical coordinates

In spherical coordinates, the velocity components in the zonal,
meridional and vertical direction respectively, are given by:


\[u=r\cos \varphi \frac{D\lambda }{Dt}\]


\[v=r\frac{D\varphi }{Dt}\]


\[\dot{r}=\frac{Dr}{Dt}\]

(see Figure 1.20) Here \(\varphi\) is the latitude, \(\lambda\) the longitude,
\(r\) the radial distance of the particle from the center of the
earth, \(\Omega\) is the angular speed of rotation of the Earth and
\(D/Dt\) is the total derivative.

The ‘grad’ (\(\nabla\)) and ‘div’ (\(\nabla\cdot\)) operators
are defined by, in spherical coordinates:


\[\nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
\right)\]


\[\nabla\cdot v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
\lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}\]









[image: diagram of spherical polar coordinates]
Figure 1.20 Spherical polar coordinates: longitude \(\lambda\), latitude \(\phi\) and \(r\) the distance from the center.












          

      

      

    

  

    
      
          
            
  
2. Discretization and Algorithm

This chapter lays out the numerical schemes that are employed in the
core MITgcm algorithm. Whenever possible links are made to actual
program code in the MITgcm implementation. The chapter begins with a
discussion of the temporal discretization used in MITgcm. This
discussion is followed by sections that describe the spatial
discretization. The schemes employed for momentum terms are described
first, afterwards the schemes that apply to passive and dynamically
active tracers are described.


2.1. Notation

Because of the particularity of the vertical direction in stratified
fluid context, in this chapter, the vector notations are mostly used for
the horizontal component: the horizontal part of a vector is simply
written \(\vec{\bf v}\) (instead of \({\bf v_h}\) or
\(\vec{\mathbf{v}}_{h}\) in chapter 1) and a 3D vector is simply
written \(\vec{v}\) (instead of \(\vec{\mathbf{v}}\) in chapter
1).

The notations we use to describe the discrete formulation of the model
are summarized as follows.

General notation:


\(\Delta x, \Delta y, \Delta r\) grid spacing in X, Y, R directions




\(A_c,A_w,A_s,A_{\zeta}\) : horizontal area of a grid cell surrounding \(\theta,u,v,\zeta\) point




\({\cal V}_u , {\cal V}_v , {\cal V}_w , {\cal V}_\theta\) : Volume of the grid box surrounding \(u,v,w,\theta\) point




\(i,j,k\) : current index relative to X, Y, R directions






Basic operators:


\(\delta_i\) :
\(\delta_i \Phi = \Phi_{i+1/2} - \Phi_{i-1/2}\)




\(~^{-i}\) :
\(\overline{\Phi}^i = ( \Phi_{i+1/2} + \Phi_{i-1/2} ) / 2\)




\(\delta_x\) :
\(\delta_x \Phi = \frac{1}{\Delta x} \delta_i \Phi\)




\(\overline{\nabla}\) = horizontal gradient operator :
\(\overline{\nabla} \Phi = \{ \delta_x \Phi , \delta_y \Phi \}\)




\(\overline{\nabla} \cdot\) = horizontal divergence operator :
\(\overline{\nabla}\cdot \vec{\mathrm{f}}  =
\frac{1}{\cal A} \{ \delta_i \Delta y \, \mathrm{f}_x
                  + \delta_j \Delta x \, \mathrm{f}_y \}\)




\(\overline{\nabla}^2\) = horizontal Laplacian operator :
\(\overline{\nabla}^2 \Phi =
   \overline{\nabla}\cdot \overline{\nabla}\Phi\)









2.2. Time-stepping

The equations of motion integrated by the model involve four prognostic
equations for flow, \(u\) and \(v\), temperature,
\(\theta\), and salt/moisture, \(S\), and three diagnostic
equations for vertical flow, \(w\), density/buoyancy,
\(\rho\)/\(b\), and pressure/geo-potential, \(\phi_{hyd}\).
In addition, the surface pressure or height may by described by either a
prognostic or diagnostic equation and if non-hydrostatics terms are
included then a diagnostic equation for non-hydrostatic pressure is also
solved. The combination of prognostic and diagnostic equations requires
a model algorithm that can march forward prognostic variables while
satisfying constraints imposed by diagnostic equations.

Since the model comes in several flavors and formulation, it would be
confusing to present the model algorithm exactly as written into code
along with all the switches and optional terms. Instead, we present the
algorithm for each of the basic formulations which are:


	the semi-implicit pressure method for hydrostatic equations with a
rigid-lid, variables co-located in time and with Adams-Bashforth
time-stepping;


	as 1 but with an implicit linear free-surface;


	as 1 or 2 but with variables staggered in time;


	as 1 or 2 but with non-hydrostatic terms included;


	as 2 or 3 but with non-linear free-surface.




In all the above configurations it is also possible to substitute the
Adams-Bashforth with an alternative time-stepping scheme for terms
evaluated explicitly in time. Since the over-arching algorithm is
independent of the particular time-stepping scheme chosen we will
describe first the over-arching algorithm, known as the pressure method,
with a rigid-lid model in Section 2.3. This
algorithm is essentially unchanged, apart for some coefficients, when
the rigid lid assumption is replaced with a linearized implicit
free-surface, described in Section 2.4. These two flavors of the
pressure-method encompass all formulations of the model as it exists
today. The integration of explicit in time terms is out-lined in
Section 2.5 and put into the context of the overall algorithm
in Section 2.7 and Section 2.8.
Inclusion of non-hydrostatic terms
requires applying the pressure method in three dimensions instead of two
and this algorithm modification is described in
Section 2.9. Finally, the free-surface equation may be treated
more exactly, including non-linear terms, and this is described in
Section 2.10.2.




2.3. Pressure method with rigid-lid

The horizontal momentum and continuity equations for the ocean
((1.98) and (1.100)), or for the atmosphere
((1.45) and (1.47)), can be summarized by:


\[\begin{split}\begin{aligned}
\partial_t u + g \partial_x \eta & = & G_u \\
\partial_t v + g \partial_y \eta & = & G_v \\
\partial_x u + \partial_y v + \partial_z w & = & 0\end{aligned}\end{split}\]

where we are adopting the oceanic notation for brevity. All terms in
the momentum equations, except for surface pressure gradient, are
encapsulated in the \(G\) vector. The continuity equation, when
integrated over the fluid depth, \(H\), and with the rigid-lid/no
normal flow boundary conditions applied, becomes:


(2.1)\[\partial_x H \widehat{u} + \partial_y H \widehat{v} = 0\]

Here, \(H\widehat{u} = \int_H u dz\) is the depth integral of
\(u\), similarly for \(H\widehat{v}\). The rigid-lid
approximation sets \(w=0\) at the lid so that it does not move but
allows a pressure to be exerted on the fluid by the lid. The horizontal
momentum equations and vertically integrated continuity equation are be
discretized in time and space as follows:


(2.2)\[u^{n+1} + \Delta t g \partial_x \eta^{n+1}
=  u^{n} + \Delta t G_u^{(n+1/2)}\]


(2.3)\[v^{n+1} + \Delta t g \partial_y \eta^{n+1}
= v^{n} + \Delta t G_v^{(n+1/2)}\]


(2.4)\[\partial_x H \widehat{u^{n+1}}
+ \partial_y H \widehat{v^{n+1}} = 0\]

As written here, terms on the LHS all involve time level \(n+1\)
and are referred to as implicit; the implicit backward time stepping
scheme is being used. All other terms in the RHS are explicit in time.
The thermodynamic quantities are integrated forward in time in parallel
with the flow and will be discussed later. For the purposes of
describing the pressure method it suffices to say that the hydrostatic
pressure gradient is explicit and so can be included in the vector
\(G\).

Substituting the two momentum equations into the depth integrated
continuity equation eliminates \(u^{n+1}\) and \(v^{n+1}\)
yielding an elliptic equation for \(\eta^{n+1}\). Equations
(2.2), (2.3) and
(2.4) can then be re-arranged as follows:


(2.5)\[u^{*} = u^{n} + \Delta t G_u^{(n+1/2)}\]


(2.6)\[v^{*} = v^{n} + \Delta t G_v^{(n+1/2)}\]


(2.7)\[\partial_x \Delta t g H \partial_x \eta^{n+1}
+ \partial_y \Delta t g H \partial_y \eta^{n+1}
= \partial_x H \widehat{u^{*}}
+ \partial_y H \widehat{v^{*}}\]


(2.8)\[u^{n+1} = u^{*} - \Delta t g \partial_x \eta^{n+1}\]


(2.9)\[v^{n+1} = v^{*} - \Delta t g \partial_y \eta^{n+1}\]

Equations (2.5) to (2.9), solved
sequentially, represent the pressure method algorithm used in the model.
The essence of the pressure method lies in the fact that any explicit
prediction for the flow would lead to a divergence flow field so a
pressure field must be found that keeps the flow non-divergent over each
step of the integration. The particular location in time of the pressure
field is somewhat ambiguous; in Figure 2.1 we
depicted as co-located with the future flow field (time level
\(n+1\)) but it could equally have been drawn as staggered in time
with the flow.



[image: pressure-method-rigid-lid]Figure 2.1 A schematic of the evolution in time of the pressure method algorithm. A prediction for the flow variables at time level \(n+1\) is made based only on the explicit terms, \(G^{(n+^1/_2)}\), and denoted \(u^*\), \(v^*\). Next, a pressure field is found such that \(u^{n+1}\), \(v^{n+1}\) will be non-divergent. Conceptually, the \(*\) quantities exist at time level \(n+1\) but they are intermediate and only temporary.






The correspondence to the code is as follows:


	the prognostic phase, equations (2.5) and
(2.6), stepping forward \(u^n\) and \(v^n\) to
\(u^{*}\) and \(v^{*}\) is coded in timestep.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep.F]


	the vertical integration, \(H \widehat{u^*}\) and \(H
\widehat{v^*}\), divergence and inversion of the elliptic operator in
equation (2.7) is coded in solve_for_pressure.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F]


	finally, the new flow field at time level \(n+1\) given by
equations (2.8) and (2.9) is calculated
in correction_step.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F]




The calling tree for these routines is as follows:


Pressure method calling tree



FORWARD_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/forward_step.F]

\(\phantom{W}\) DYNAMICS [https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F]

\(\phantom{WW}\) TIMESTEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxxx}\) \(u^*,v^*\) (2.5) , (2.6)

\(\phantom{W}\) SOLVE_FOR_PRESSURE [https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F]

\(\phantom{WW}\) CALC_DIV_GHAT [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_div_ghat.F] \(\phantom{xxxxxxxxxxxxxxxx}\) \(H\widehat{u^*},H\widehat{v^*}\) (2.7)

\(\phantom{WW}\) CG2D [https://github.com/MITgcm/MITgcm/blob/master/model/src/cg2d.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxxxxxxx}\) \(\eta^{n+1}\) (2.7)

\(\phantom{W}\) MOMENTUM_CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/momentum_correction_step.F]

\(\phantom{WW}\) CALC_GRAD_PHI_SURF [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_grad_phi_surf.F] \(\phantom{xxxxxxxxxx}\) \(\nabla \eta^{n+1}\)

\(\phantom{WW}\) CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F] \(\phantom{xxxxxxxxxxxxw}\) \(u^{n+1},v^{n+1}\) (2.8) , (2.9)








In general, the horizontal momentum time-stepping can contain some terms
that are treated implicitly in time, such as the vertical viscosity when
using the backward time-stepping scheme (implicitViscosity [http://mitgcm.org/lxr/ident/MITgcm?_i=implicitViscosity] =.TRUE.). The method used to solve
those implicit terms is provided in Section 2.6, and modifies equations
(2.2) and (2.3) to give:


\[\begin{split}\begin{aligned}
u^{n+1} - \Delta t \partial_z A_v \partial_z u^{n+1}
+ \Delta t g \partial_x \eta^{n+1} & = & u^{n} + \Delta t G_u^{(n+1/2)}
\\
v^{n+1} - \Delta t \partial_z A_v \partial_z v^{n+1}
+ \Delta t g \partial_y \eta^{n+1} & = & v^{n} + \Delta t G_v^{(n+1/2)}\end{aligned}\end{split}\]




2.4. Pressure method with implicit linear free-surface

The rigid-lid approximation filters out external gravity waves
subsequently modifying the dispersion relation of barotropic Rossby
waves. The discrete form of the elliptic equation has some zero
eigenvalues which makes it a potentially tricky or inefficient problem
to solve.

The rigid-lid approximation can be easily replaced by a linearization of
the free-surface equation which can be written:


(2.10)\[\partial_t \eta + \partial_x H \widehat{u} + \partial_y H \widehat{v} = P-E+R\]

which differs from the depth integrated continuity equation with
rigid-lid ((2.1)) by the time-dependent term and
fresh-water source term.

Equation (2.4) in the rigid-lid pressure
method is then replaced by the time discretization of
(2.10) which is:


(2.11)\[\eta^{n+1}
+ \Delta t \partial_x H \widehat{u^{n+1}}
+ \Delta t \partial_y H \widehat{v^{n+1}}
= \eta^{n} + \Delta t ( P - E )\]

where the use of flow at time level \(n+1\) makes the method
implicit and backward in time. This is the preferred scheme since it
still filters the fast unresolved wave motions by damping them. A
centered scheme, such as Crank-Nicholson (see
Section 2.10.1), would alias the energy of the fast modes onto
slower modes of motion.

As for the rigid-lid pressure method, equations (2.2),
(2.3) and (2.11) can be
re-arranged as follows:


(2.12)\[u^{*} = u^{n} + \Delta t G_u^{(n+1/2)}\]


(2.13)\[v^{*} = v^{n} + \Delta t G_v^{(n+1/2)}\]


(2.14)\[\eta^* = \epsilon_{fs} ( \eta^{n} + \Delta t (P-E) )
         - \Delta t ( \partial_x H \widehat{u^{*}}
                         + \partial_y H \widehat{v^{*}} )\]


(2.15)\[\partial_x g H \partial_x \eta^{n+1}
+ \partial_y g H \partial_y \eta^{n+1}
- \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} =
- \frac{\eta^*}{\Delta t^2}\]


(2.16)\[u^{n+1} = u^{*} - \Delta t g \partial_x \eta^{n+1}\]


(2.17)\[v^{n+1} = v^{*} - \Delta t g \partial_y \eta^{n+1}\]

Equations (2.12)
to (2.17), solved sequentially, represent the
pressure method algorithm with a backward implicit, linearized free
surface. The method is still formerly a pressure method because in the
limit of large \(\Delta t\) the rigid-lid method is recovered.
However, the implicit treatment of the free-surface allows the flow to
be divergent and for the surface pressure/elevation to respond on a
finite time-scale (as opposed to instantly). To recover the rigid-lid
formulation, we introduced a switch-like parameter,
\(\epsilon_{fs}\) (freesurfFac [http://mitgcm.org/lxr/ident/MITgcm?_i=freesurfFac]), which selects between the free-surface and
rigid-lid; \(\epsilon_{fs}=1\) allows the free-surface to evolve;
\(\epsilon_{fs}=0\) imposes the rigid-lid. The evolution in time and
location of variables is exactly as it was for the rigid-lid model so
that Figure 2.1 is still applicable.
Similarly, the calling sequence, given here, is as for the pressure-method.




2.5. Explicit time-stepping: Adams-Bashforth

In describing the the pressure method above we deferred describing the
time discretization of the explicit terms. We have historically used the
quasi-second order Adams-Bashforth method for all explicit terms in both
the momentum and tracer equations. This is still the default mode of
operation but it is now possible to use alternate schemes for tracers
(see Section 2.16). In the previous sections, we summarized an explicit scheme as:


(2.18)\[\tau^{*} = \tau^{n} + \Delta t G_\tau^{(n+1/2)}\]

where \(\tau\) could be any prognostic variable (\(u\),
\(v\), \(\theta\) or \(S\)) and \(\tau^*\) is an
explicit estimate of \(\tau^{n+1}\) and would be exact if not for
implicit-in-time terms. The parenthesis about \(n+1/2\) indicates
that the term is explicit and extrapolated forward in time and for this
we use the quasi-second order Adams-Bashforth method:


(2.19)\[G_\tau^{(n+1/2)} = ( 3/2 + \epsilon_{AB}) G_\tau^n
- ( 1/2 + \epsilon_{AB}) G_\tau^{n-1}\]

This is a linear extrapolation, forward in time, to
\(t=(n+1/2+{\epsilon_{AB}})\Delta t\). An extrapolation to the
mid-point in time, \(t=(n+1/2)\Delta t\), corresponding to
\(\epsilon_{AB}=0\), would be second order accurate but is weakly
unstable for oscillatory terms. A small but finite value for
\(\epsilon_{AB}\) stabilizes the method. Strictly speaking, damping
terms such as diffusion and dissipation, and fixed terms (forcing), do
not need to be inside the Adams-Bashforth extrapolation. However, in the
current code, it is simpler to include these terms and this can be
justified if the flow and forcing evolves smoothly. Problems can, and
do, arise when forcing or motions are high frequency and this
corresponds to a reduced stability compared to a simple forward
time-stepping of such terms. The model offers the possibility to leave
terms outside the Adams-Bashforth extrapolation, by turning off the logical flag forcing_In_AB [http://mitgcm.org/lxr/ident/MITgcm?_i=forcing_In_AB]
(parameter file data, namelist PARM01, default value = TRUE) and then setting tracForcingOutAB [http://mitgcm.org/lxr/ident/MITgcm?_i=tracForcingOutAB]
(default=0), momForcingOutAB [http://mitgcm.org/lxr/ident/MITgcm?_i=momForcingOutAB] (default=0), and momDissip_In_AB [http://mitgcm.org/lxr/ident/MITgcm?_i=momDissip_In_AB] (parameter file data, namelist PARM01,
default value = TRUE), respectively for the tracer terms, momentum forcing terms, and the dissipation terms.

A stability analysis for an oscillation equation should be given at this
point.

A stability analysis for a relaxation equation should be given at this
point.



[image: stability_analysis]
Figure 2.2 Oscillatory and damping response of quasi-second order Adams-Bashforth scheme for different values of the  \(\epsilon _{AB}\) parameter (0.0, 0.1, 0.25, from top to bottom) The analytical solution (in black), the physical mode (in blue) and the numerical mode (in red) are represented with a CFL step of 0.1. The left column represents the oscillatory response on the complex plane for CFL ranging from 0.1 up to 0.9. The right column represents the damping response amplitude (y-axis) function of the CFL (x-axis).









2.6. Implicit time-stepping: backward method

Vertical diffusion and viscosity can be treated implicitly in time using
the backward method which is an intrinsic scheme. Recently, the option
to treat the vertical advection implicitly has been added, but not yet
tested; therefore, the description hereafter is limited to diffusion and
viscosity. For tracers, the time discretized equation is:


(2.20)\[\tau^{n+1} - \Delta t \partial_r \kappa_v \partial_r \tau^{n+1} = \tau^{n} + \Delta t G_\tau^{(n+1/2)}\]

where \(G_\tau^{(n+1/2)}\) is the remaining explicit terms
extrapolated using the Adams-Bashforth method as described above.
Equation (2.20) can be split split into:


(2.21)\[\tau^* = \tau^{n} + \Delta t G_\tau^{(n+1/2)}\]


(2.22)\[\tau^{n+1} = {\cal L}_\tau^{-1} ( \tau^* )\]

where \({\cal L}_\tau^{-1}\) is the inverse of the operator


\[{\cal L}_\tau = \left[ 1 + \Delta t \partial_r \kappa_v \partial_r \right]\]

Equation (2.21) looks exactly as (2.18) while
(2.22) involves an operator or matrix inversion. By
re-arranging (2.20) in this way we have cast the method
as an explicit prediction step and an implicit step allowing the latter
to be inserted into the over all algorithm with minimal interference.

The calling sequence for stepping forward a tracer variable such as temperature with implicit diffusion is
as follows:


Adams-Bashforth calling tree



FORWARD_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/forward_step.F]

\(\phantom{W}\) THERMODYNAMICS [https://github.com/MITgcm/MITgcm/blob/master/model/src/thermodynamics.F]

\(\phantom{WW}\) TEMP_INTEGRATE [https://github.com/MITgcm/MITgcm/blob/master/model/src/temp_integrate.F]

\(\phantom{WWW}\) GAD_CALC_RHS [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_calc_rhs.F] \(\phantom{xxxxxxxxxw}\) \(G_\theta^n = G_\theta( u, \theta^n)\)

\(\phantom{WWW}\) either

\(\phantom{WWWW}\) EXTERNAL_FORCING [https://github.com/MITgcm/MITgcm/blob/master/model/src/external_forcing.F] \(\phantom{xxxx}\) \(G_\theta^n = G_\theta^n + {\cal Q}\)

\(\phantom{WWWW}\) ADAMS_BASHFORTH2 [https://github.com/MITgcm/MITgcm/blob/master/model/src/adams_bashforth2.F] \(\phantom{xxi}\) \(G_\theta^{(n+1/2)}\) (2.19)

\(\phantom{WWW}\) or

\(\phantom{WWWW}\) EXTERNAL_FORCING [https://github.com/MITgcm/MITgcm/blob/master/model/src/external_forcing.F] \(\phantom{xxxx}\) \(G_\theta^{(n+1/2)} = G_\theta^{(n+1/2)} + {\cal Q}\)

\(\phantom{WW}\) TIMESTEP_TRACER [https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep_tracer.F] \(\phantom{xxxxxxxxxx}\) \(\tau^*\) (2.18)

\(\phantom{WW}\) IMPLDIFF [https://github.com/MITgcm/MITgcm/blob/master/model/src/impldiff.F] \(\phantom{xxxxxxxxxxxxxxxxxw}\) \(\tau^{(n+1)}\) (2.22)








In order to fit within the pressure method, the implicit viscosity must
not alter the barotropic flow. In other words, it can only redistribute
momentum in the vertical. The upshot of this is that although vertical
viscosity may be backward implicit and unconditionally stable, no-slip
boundary conditions may not be made implicit and are thus cast as a an
explicit drag term.




2.7. Synchronous time-stepping: variables co-located in time



[image: adams-bash-sync]Figure 2.3 A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the algorithm. All prognostic variables are co-located in time. Explicit tendencies are evaluated at time level \(n\) as a function of the state at that time level (dotted arrow). The explicit tendency from the previous time level, \(n-1\), is used to extrapolate tendencies to \(n+1/2\) (dashed arrow). This extrapolated tendency allows variables to be stably integrated forward-in-time to render an estimate (\(*\) -variables) at the \(n+1\) time level (solid arc-arrow). The operator \({\cal L}\) formed from implicit-in-time terms is solved to yield the state variables at time level \(n+1\).






The Adams-Bashforth extrapolation of explicit tendencies fits neatly
into the pressure method algorithm when all state variables are
co-located in time. The algorithm can be represented by the sequential solution of the
follow equations:


(2.23)\[G_{\theta,S}^{n} = G_{\theta,S} ( u^n, \theta^n, S^n )\]


(2.24)\[G_{\theta,S}^{(n+1/2)} = (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}\]


(2.25)\[(\theta^*,S^*) = (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}\]


(2.26)\[(\theta^{n+1},S^{n+1}) = {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)\]


(2.27)\[\phi^n_{hyd} = \int b(\theta^n,S^n) dr\]


(2.28)\[\vec{\bf G}_{\vec{\bf v}}^{n} = \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^n, \phi^n_{hyd} )\]


(2.29)\[\vec{\bf G}_{\vec{\bf v}}^{(n+1/2)} = (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1}\]


(2.30)\[\vec{\bf v}^{*} = \vec{\bf v}^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}}^{(n+1/2)}\]


(2.31)\[\vec{\bf v}^{**} = {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )\]


(2.32)\[\eta^* = \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)- \Delta t
  \nabla \cdot H \widehat{ \vec{\bf v}^{**} }\]


(2.33)\[\nabla \cdot g H \nabla \eta^{n+1} - \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2} ~ = ~ - \frac{\eta^*}{\Delta t^2}\]


(2.34)\[\vec{\bf v}^{n+1} = \vec{\bf v}^{**} - \Delta t g \nabla \eta^{n+1}\]

Figure 2.3 illustrates the location of variables
in time and evolution of the algorithm with time. The Adams-Bashforth
extrapolation of the tracer tendencies is illustrated by the dashed
arrow, the prediction at \(n+1\) is indicated by the solid arc.
Inversion of the implicit terms, \({\cal
L}^{-1}_{\theta,S}\), then yields the new tracer fields at \(n+1\).
All these operations are carried out in subroutine THERMODYNAMICS [https://github.com/MITgcm/MITgcm/blob/master/model/src/thermodynamics.F] and
subsidiaries, which correspond to equations (2.23) to
(2.26). Similarly illustrated is the Adams-Bashforth
extrapolation of accelerations, stepping forward and solving of implicit
viscosity and surface pressure gradient terms, corresponding to
equations (2.28) to (2.34). These operations are
carried out in subroutines DYNAMICS [https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F],
SOLVE_FOR_PRESSURE [https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F] and
MOMENTUM_CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/momentum_correction_step.F].
This, then, represents an entire algorithm
for stepping forward the model one time-step. The corresponding calling
tree for the overall synchronous algorithm using
Adams-Bashforth time-stepping is given below. The place where the model geometry
hFac [http://mitgcm.org/lxr/ident/MITgcm?_i=hFac] factors) is updated is added here but is only relevant
for the non-linear free-surface algorithm.
For completeness, the external forcing,
ocean and atmospheric physics have been added, although they are mainly optional.


Synchronous Adams-Bashforth calling tree



FORWARD_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/forward_step.F]

\(\phantom{WWW}\) EXTERNAL_FIELDS_LOAD [https://github.com/MITgcm/MITgcm/blob/master/model/src/external_fields_load.F]

\(\phantom{WWW}\) DO_ATMOSPHERIC_PHYS [https://github.com/MITgcm/MITgcm/blob/master/model/src/do_atmospheric_phys.F]

\(\phantom{WWW}\) DO_OCEANIC_PHYS [https://github.com/MITgcm/MITgcm/blob/master/model/src/do_oceanic_phys.F]

\(\phantom{WW}\) THERMODYNAMICS [https://github.com/MITgcm/MITgcm/blob/master/model/src/thermodynamics.F]

\(\phantom{WWW}\) CALC_GT [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gt.F]

\(\phantom{WWWW}\) GAD_CALC_RHS [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_calc_rhs.F] \(\phantom{xxxxxxxxxxxxxlwww}\) \(G_\theta^n = G_\theta( u, \theta^n )\) (2.23)

\(\phantom{WWWW}\) EXTERNAL_FORCING [https://github.com/MITgcm/MITgcm/blob/master/model/src/external_forcing.F] \(\phantom{xxxxxxxxxxlww}\) \(G_\theta^n = G_\theta^n + {\cal Q}\)

\(\phantom{WWWW}\) ADAMS_BASHFORTH2 [https://github.com/MITgcm/MITgcm/blob/master/model/src/adams_bashforth2.F] \(\phantom{xxxxxxxxxxxw}\) \(G_\theta^{(n+1/2)}\) (2.24)

\(\phantom{WWW}\) TIMESTEP_TRACER [https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep_tracer.F] \(\phantom{xxxxxxxxxxxxxxxww}\) \(\theta^*\) (2.25)

\(\phantom{WWW}\) IMPLDIFF [https://github.com/MITgcm/MITgcm/blob/master/model/src/impldiff.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxxvwww}\) \(\theta^{(n+1)}\) (2.26)

\(\phantom{WW}\) DYNAMICS [https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F]

\(\phantom{WWW}\) CALC_PHI_HYD [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_phi_hyd.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxi}\) \(\phi_{hyd}^n\) (2.27)

\(\phantom{WWW}\) MOM_FLUXFORM [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] or MOM_VECINV [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] \(\phantom{xxi}\) \(G_{\vec{\bf v}}^n\) (2.28)

\(\phantom{WWW}\) TIMESTEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxxxxxxx}\) \(\vec{\bf v}^*\) (2.29), (2.30)

\(\phantom{WWW}\) IMPLDIFF [https://github.com/MITgcm/MITgcm/blob/master/model/src/impldiff.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxxxxxlw}\) \(\vec{\bf v}^{**}\) (2.31)

\(\phantom{WW}\) UPDATE_R_STAR [https://github.com/MITgcm/MITgcm/blob/master/model/src/update_r_star.F] or UPDATE_SURF_DR [https://github.com/MITgcm/MITgcm/blob/master/model/src/update_surf_dr.F] (NonLin-FS only)

\(\phantom{WW}\) SOLVE_FOR_PRESSURE [https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F]

\(\phantom{WWW}\) CALC_DIV_GHAT [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_div_ghat.F] \(\phantom{xxxxxxxxxxxxxxxxxxxx}\) \(\eta^*\) (2.32)

\(\phantom{WWW}\) CG2D [https://github.com/MITgcm/MITgcm/blob/master/model/src/cg2d.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxi}\) \(\eta^{n+1}\) (2.33)

\(\phantom{WW}\) MOMENTUM_CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/momentum_correction_step.F]

\(\phantom{WWW}\) CALC_GRAD_PHI_SURF [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_grad_phi_surf.F] \(\phantom{xxxxxxxxxxxxxx}\) \(\nabla \eta^{n+1}\)

\(\phantom{WWW}\) CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F] \(\phantom{xxxxxxxxxxxxxxxxw}\) \(u^{n+1},v^{n+1}\) (2.34)

\(\phantom{WW}\) TRACERS_CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/tracers_correction_step.F]

\(\phantom{WWW}\) CYCLE_TRACER [https://github.com/MITgcm/MITgcm/blob/master/model/src/cycle_tracer.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxx}\) \(\theta^{n+1}\)

\(\phantom{WWW}\) SHAP_FILT_APPLY_TS [https://github.com/MITgcm/MITgcm/blob/master/pkg/shap_filt/shap_filt_apply_ts.F] or ZONAL_FILT_APPLY_TS [https://github.com/MITgcm/MITgcm/blob/master/pkg/zonal_filt/zonal_filt_apply_ts.F]

\(\phantom{WWW}\) CONVECTIVE_ADJUSTMENT [https://github.com/MITgcm/MITgcm/blob/master/model/src/convective_adjustment.F]











2.8. Staggered baroclinic time-stepping



[image: adams-bash-staggered]Figure 2.4 A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the algorithm but with staggering in time of thermodynamic variables with the flow. Explicit momentum tendencies are evaluated at time level \(n-1/2\) as a function of the flow field at that time level \(n-1/2\). The explicit tendency from the previous time level, \(n-3/2\), is used to extrapolate tendencies to \(n\) (dashed arrow). The hydrostatic pressure/geo-potential  \(\phi _{hyd}\) is evaluated directly at time level \(n\) (vertical arrows) and used with the extrapolated tendencies to step forward the flow variables from \(n-1/2\) to \(n+1/2\) (solid arc-arrow). The implicit-in-time operator  \({\cal L}_{\bf u,v}\) (vertical arrows) is then applied to the previous estimation of the the flow field (\(*\) -variables) and yields to the two velocity components \(u,v\) at time level \(n+1/2\). These are then used to calculate the advection term (dashed arc-arrow) of the thermo-dynamics tendencies at time step \(n\). The extrapolated thermodynamics tendency, from time level \(n-1\) and \(n\) to \(n+1/2\), allows thermodynamic variables to be stably integrated forward-in-time (solid arc-arrow) up to time level \(n+1\).






For well-stratified problems, internal gravity waves may be the limiting
process for determining a stable time-step. In the circumstance, it is
more efficient to stagger in time the thermodynamic variables with the
flow variables. Figure 2.4 illustrates the
staggering and algorithm. The key difference between this and
Figure 2.3 is that the thermodynamic variables are
solved after the dynamics, using the recently updated flow field. This
essentially allows the gravity wave terms to leap-frog in time giving
second order accuracy and more stability.

The essential change in the staggered algorithm is that the
thermodynamics solver is delayed from half a time step, allowing the use
of the most recent velocities to compute the advection terms. Once the
thermodynamics fields are updated, the hydrostatic pressure is computed
to step forward the dynamics. Note that the pressure gradient must also
be taken out of the Adams-Bashforth extrapolation. Also, retaining the
integer time-levels, \(n\) and \(n+1\), does not give a user the
sense of where variables are located in time. Instead, we re-write the
entire algorithm, (2.23) to (2.34), annotating the
position in time of variables appropriately:


(2.35)\[\phi^{n}_{hyd} =  \int b(\theta^{n},S^{n}) dr\]


(2.36)\[\vec{\bf G}_{\vec{\bf v}}^{n-1/2}  =  \vec{\bf G}_{\vec{\bf v}} ( \vec{\bf v}^{n-1/2} )\]


(2.37)\[\vec{\bf G}_{\vec{\bf v}}^{(n)} =  (3/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-1/2} - (1/2 + \epsilon_{AB} ) \vec{\bf G}_{\vec{\bf v}}^{n-3/2}\]


(2.38)\[\vec{\bf v}^{*}  =  \vec{\bf v}^{n-1/2} + \Delta t \left( \vec{\bf G}_{\vec{\bf v}}^{(n)} - \nabla \phi_{hyd}^{n} \right)\]


(2.39)\[\vec{\bf v}^{**}  =  {\cal L}_{\vec{\bf v}}^{-1} ( \vec{\bf v}^* )\]


(2.40)\[\eta^*  = \epsilon_{fs} \left( \eta^{n-1/2} + \Delta t (P-E)^n \right)- \Delta t
  \nabla \cdot H \widehat{ \vec{\bf v}^{**} }\]


(2.41)\[\nabla \cdot g H \nabla \eta^{n+1/2}  -  \frac{\epsilon_{fs} \eta^{n+1/2}}{\Delta t^2}
~ = ~ - \frac{\eta^*}{\Delta t^2}\]


(2.42)\[\vec{\bf v}^{n+1/2}  =  \vec{\bf v}^{**} - \Delta t g \nabla \eta^{n+1/2}\]


(2.43)\[G_{\theta,S}^{n}  =  G_{\theta,S} ( u^{n+1/2}, \theta^{n}, S^{n} )\]


(2.44)\[G_{\theta,S}^{(n+1/2)}  =  (3/2+\epsilon_{AB}) G_{\theta,S}^{n}-(1/2+\epsilon_{AB}) G_{\theta,S}^{n-1}\]


(2.45)\[(\theta^*,S^*)  =  (\theta^{n},S^{n}) + \Delta t G_{\theta,S}^{(n+1/2)}\]


(2.46)\[(\theta^{n+1},S^{n+1})  =  {\cal L}^{-1}_{\theta,S} (\theta^*,S^*)\]

The corresponding calling tree is given below. The staggered algorithm is
activated with the run-time flag staggerTimeStep [http://mitgcm.org/lxr/ident/MITgcm?_i=staggerTimeStep] =.TRUE. in
parameter file data, namelist PARM01.


Staggered Adams-Bashforth calling tree



FORWARD_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/forward_step.F]

\(\phantom{WWW}\) EXTERNAL_FIELDS_LOAD [https://github.com/MITgcm/MITgcm/blob/master/model/src/external_fields_load.F]

\(\phantom{WWW}\) DO_ATMOSPHERIC_PHYS [https://github.com/MITgcm/MITgcm/blob/master/model/src/do_atmospheric_phys.F]

\(\phantom{WWW}\) DO_OCEANIC_PHYS [https://github.com/MITgcm/MITgcm/blob/master/model/src/do_oceanic_phys.F]

\(\phantom{WW}\) DYNAMICS [https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F]

\(\phantom{WWW}\) CALC_PHI_HYD [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_phi_hyd.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxi}\) \(\phi_{hyd}^n\) (2.35)

\(\phantom{WWW}\) MOM_FLUXFORM [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] or MOM_VECINV [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] \(\phantom{xxi}\) \(G_{\vec{\bf v}}^{n-1/2}\) (2.36)

\(\phantom{WWW}\) TIMESTEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxxxxxxx}\) \(\vec{\bf v}^*\) (2.37), (2.38)

\(\phantom{WWW}\) IMPLDIFF [https://github.com/MITgcm/MITgcm/blob/master/model/src/impldiff.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxxxxxlw}\) \(\vec{\bf v}^{**}\) (2.39)

\(\phantom{WW}\) UPDATE_R_STAR [https://github.com/MITgcm/MITgcm/blob/master/model/src/update_r_star.F] or UPDATE_SURF_DR [https://github.com/MITgcm/MITgcm/blob/master/model/src/update_surf_dr.F] (NonLin-FS only)

\(\phantom{WW}\) SOLVE_FOR_PRESSURE [https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F]

\(\phantom{WWW}\) CALC_DIV_GHAT [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_div_ghat.F] \(\phantom{xxxxxxxxxxxxxxxxxxxx}\) \(\eta^*\) (2.40)

\(\phantom{WWW}\) CG2D [https://github.com/MITgcm/MITgcm/blob/master/model/src/cg2d.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxi}\) \(\eta^{n+1/2}\) (2.41)

\(\phantom{WW}\) MOMENTUM_CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/momentum_correction_step.F]

\(\phantom{WWW}\) CALC_GRAD_PHI_SURF [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_grad_phi_surf.F] \(\phantom{xxxxxxxxxxxxxx}\) \(\nabla \eta^{n+1/2}\)

\(\phantom{WWW}\) CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F] \(\phantom{xxxxxxxxxxxxxxxxw}\) \(u^{n+1/2},v^{n+1/2}\) (2.42)

\(\phantom{WW}\) THERMODYNAMICS [https://github.com/MITgcm/MITgcm/blob/master/model/src/thermodynamics.F]

\(\phantom{WWW}\) CALC_GT [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gt.F]

\(\phantom{WWWW}\) GAD_CALC_RHS [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_calc_rhs.F] \(\phantom{xxxxxxxxxxxxxlwww}\) \(G_\theta^n = G_\theta( u, \theta^n )\) (2.43)

\(\phantom{WWWW}\) EXTERNAL_FORCING [https://github.com/MITgcm/MITgcm/blob/master/model/src/external_forcing.F] \(\phantom{xxxxxxxxxxlww}\) \(G_\theta^n = G_\theta^n + {\cal Q}\)

\(\phantom{WWWW}\) ADAMS_BASHFORTH2 [https://github.com/MITgcm/MITgcm/blob/master/model/src/adams_bashforth2.F] \(\phantom{xxxxxxxxxxxw}\) \(G_\theta^{(n+1/2)}\) (2.44)

\(\phantom{WWW}\) TIMESTEP_TRACER [https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep_tracer.F] \(\phantom{xxxxxxxxxxxxxxxww}\) \(\theta^*\) (2.45)

\(\phantom{WWW}\) IMPLDIFF [https://github.com/MITgcm/MITgcm/blob/master/model/src/impldiff.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxxvwww}\) \(\theta^{(n+1)}\) (2.46)

\(\phantom{WW}\) TRACERS_CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/tracers_correction_step.F]

\(\phantom{WWW}\) CYCLE_TRACER [https://github.com/MITgcm/MITgcm/blob/master/model/src/cycle_tracer.F] \(\phantom{xxxxxxxxxxxxxxxxxxxxx}\) \(\theta^{n+1}\)

\(\phantom{WWW}\) SHAP_FILT_APPLY_TS [https://github.com/MITgcm/MITgcm/blob/master/pkg/shap_filt/shap_filt_apply_ts.F] or ZONAL_FILT_APPLY_TS [https://github.com/MITgcm/MITgcm/blob/master/pkg/zonal_filt/zonal_filt_apply_ts.F]

\(\phantom{WWW}\) CONVECTIVE_ADJUSTMENT [https://github.com/MITgcm/MITgcm/blob/master/model/src/convective_adjustment.F]








The only difficulty with this approach is apparent in equation
(2.43) and illustrated by the dotted arrow connecting
\(u,v^{n+1/2}\) with \(G_\theta^{n}\). The flow used to advect
tracers around is not naturally located in time. This could be avoided
by applying the Adams-Bashforth extrapolation to the tracer field itself
and advecting that around but this approach is not yet available. We’re
not aware of any detrimental effect of this feature. The difficulty lies
mainly in interpretation of what time-level variables and terms
correspond to.




2.9. Non-hydrostatic formulation

The non-hydrostatic formulation re-introduces the full vertical momentum
equation and requires the solution of a 3-D elliptic equations for
non-hydrostatic pressure perturbation. We still integrate vertically for
the hydrostatic pressure and solve a 2-D elliptic equation for the
surface pressure/elevation for this reduces the amount of work needed to
solve for the non-hydrostatic pressure.

The momentum equations are discretized in time as follows:


(2.47)\[\frac{1}{\Delta t} u^{n+1} + g \partial_x \eta^{n+1} + \partial_x \phi_{nh}^{n+1}
= \frac{1}{\Delta t} u^{n} + G_u^{(n+1/2)}\]


(2.48)\[\frac{1}{\Delta t} v^{n+1} + g \partial_y \eta^{n+1} + \partial_y \phi_{nh}^{n+1}
= \frac{1}{\Delta t} v^{n} + G_v^{(n+1/2)}\]


(2.49)\[\frac{1}{\Delta t} w^{n+1} + \partial_r \phi_{nh}^{n+1}
= \frac{1}{\Delta t} w^{n} + G_w^{(n+1/2)}\]

which must satisfy the discrete-in-time depth integrated continuity,
equation (2.11) and the local
continuity equation


(2.50)\[\partial_x u^{n+1} + \partial_y v^{n+1} + \partial_r w^{n+1} = 0\]

As before, the explicit predictions for momentum are consolidated as:


\[\begin{split}\begin{aligned}
u^* & = & u^n + \Delta t G_u^{(n+1/2)} \\
v^* & = & v^n + \Delta t G_v^{(n+1/2)} \\
w^* & = & w^n + \Delta t G_w^{(n+1/2)}\end{aligned}\end{split}\]

but this time we introduce an intermediate step by splitting the
tendency of the flow as follows:


\[\begin{split}\begin{aligned}
u^{n+1} = u^{**} - \Delta t \partial_x \phi_{nh}^{n+1}
& &
u^{**} = u^{*} - \Delta t g \partial_x \eta^{n+1} \\
v^{n+1} = v^{**} - \Delta t \partial_y \phi_{nh}^{n+1}
& &
v^{**} = v^{*} - \Delta t g \partial_y \eta^{n+1}\end{aligned}\end{split}\]

Substituting into the depth integrated continuity
(equation (2.11)) gives


(2.51)\[\partial_x H \partial_x \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
+ \partial_y H \partial_y \left( g \eta^{n+1} + \widehat{\phi}_{nh}^{n+1} \right)
 - \frac{\epsilon_{fs}\eta^{n+1}}{\Delta t^2}
= - \frac{\eta^*}{\Delta t^2}\]

which is approximated by equation (2.15)
on the basis that i) \(\phi_{nh}^{n+1}\) is not yet known and ii)
\(\nabla \widehat{\phi}_{nh}
<< g \nabla \eta\). If (2.15) is solved
accurately then the implication is that \(\widehat{\phi}_{nh}
\approx 0\) so that the non-hydrostatic pressure field does not drive
barotropic motion.

The flow must satisfy non-divergence (equation (2.50))
locally, as well as depth integrated, and this constraint is used to
form a 3-D elliptic equations for \(\phi_{nh}^{n+1}\):


(2.52)\[\partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
\partial_{rr} \phi_{nh}^{n+1} =
\partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*}\]

The entire algorithm can be summarized as the sequential solution of the
following equations:


(2.53)\[u^{*} = u^{n} + \Delta t G_u^{(n+1/2)}\]


(2.54)\[v^{*} = v^{n} + \Delta t G_v^{(n+1/2)}\]


(2.55)\[w^{*} = w^{n} + \Delta t G_w^{(n+1/2)}\]


(2.56)\[\eta^* ~ = ~ \epsilon_{fs} \left( \eta^{n} + \Delta t (P-E) \right)
- \Delta t \left( \partial_x H \widehat{u^{*}}
                    + \partial_y H \widehat{v^{*}} \right)\]


(2.57)\[\partial_x g H \partial_x \eta^{n+1}
+ \partial_y g H \partial_y \eta^{n+1}
- \frac{\epsilon_{fs} \eta^{n+1}}{\Delta t^2}
~ = ~ - \frac{\eta^*}{\Delta t^2}\]


(2.58)\[u^{**} = u^{*} - \Delta t g \partial_x \eta^{n+1}\]


(2.59)\[v^{**} = v^{*} - \Delta t g \partial_y \eta^{n+1}\]


(2.60)\[\partial_{xx} \phi_{nh}^{n+1} + \partial_{yy} \phi_{nh}^{n+1} +
\partial_{rr} \phi_{nh}^{n+1} =
\partial_x u^{**} + \partial_y v^{**} + \partial_r w^{*}\]


(2.61)\[u^{n+1} = u^{**} - \Delta t \partial_x \phi_{nh}^{n+1}\]


(2.62)\[v^{n+1} = v^{**} - \Delta t \partial_y \phi_{nh}^{n+1}\]


(2.63)\[\partial_r w^{n+1} = - \partial_x u^{n+1} - \partial_y v^{n+1}\]

where the last equation is solved by vertically integrating for
\(w^{n+1}\).




2.10. Variants on the Free Surface

We now describe the various formulations of the free-surface that
include non-linear forms, implicit in time using Crank-Nicholson,
explicit and [one day] split-explicit. First, we’ll reiterate the
underlying algorithm but this time using the notation consistent with
the more general vertical coordinate \(r\). The elliptic equation
for free-surface coordinate (units of \(r\)), corresponding to
(2.11), and assuming no
non-hydrostatic effects (\(\epsilon_{nh} = 0\)) is:


(2.64)\[\epsilon_{fs} {\eta}^{n+1} -
{\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed}) {\bf \nabla}_h b_s
{\eta}^{n+1} = {\eta}^*\]

where


(2.65)\[{\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
\Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o} \vec{\bf v}^* dr
\: + \: \epsilon_{fw} \Delta t (P-E)^{n}\]


S/R  SOLVE_FOR_PRESSURE [https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F]



\(u^*\) : gU [http://mitgcm.org/lxr/ident/MITgcm?_i=gU] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\(v^*\) : gV [http://mitgcm.org/lxr/ident/MITgcm?_i=gV] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\({\eta}^*\) : cg2d_b [http://mitgcm.org/lxr/ident/MITgcm?_i=cg2d_b] ( SOLVE_FOR_PRESSURE.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/SOLVE_FOR_PRESSURE.h] )

\({\eta}^{n+1}\) : etaN [http://mitgcm.org/lxr/ident/MITgcm?_i=etaN] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )








Once \({\eta}^{n+1}\) has been found, substituting into
(2.2), (2.3) yields
\(\vec{\bf v}^{n+1}\) if the model is hydrostatic
(\(\epsilon_{nh}=0\)):


\[\vec{\bf v}^{n+1} = \vec{\bf v}^{*}
- \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}\]

This is known as the correction step. However, when the model is
non-hydrostatic (\(\epsilon_{nh}=1\)) we need an additional step and
an additional equation for \(\phi'_{nh}\). This is obtained by
substituting (2.47), (2.48) and
(2.49) into continuity:


(2.66)\[[ {\bf \nabla}_h^2 + \partial_{rr} ] {\phi'_{nh}}^{n+1}
= \frac{1}{\Delta t}
{\bf \nabla}_h \cdot \vec{\bf v}^{**} + \partial_r \dot{r}^*\]

where


\[\vec{\bf v}^{**} = \vec{\bf v}^* - \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}\]

Note that \(\eta^{n+1}\) is also used to update the second RHS term
\(\partial_r \dot{r}^*\) since the vertical velocity at the surface
(\(\dot{r}_{surf}\)) is evaluated as
\((\eta^{n+1} - \eta^n) / \Delta t\).

Finally, the horizontal velocities at the new time level are found by:


(2.67)\[\vec{\bf v}^{n+1} = \vec{\bf v}^{**}
- \epsilon_{nh} \Delta t {\bf \nabla}_h {\phi'_{nh}}^{n+1}\]

and the vertical velocity is found by integrating the continuity
equation vertically. Note that, for the convenience of the restart
procedure, the vertical integration of the continuity equation has been
moved to the beginning of the time step (instead of at the end), without
any consequence on the solution.


S/R  CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F]



\({\eta}^{n+1}\) : etaN [http://mitgcm.org/lxr/ident/MITgcm?_i=etaN] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\({\phi}^{n+1}_{nh}\) : phi_nh [http://mitgcm.org/lxr/ident/MITgcm?_i=phi_nh] ( NH_VARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/NH_VARS.h] )

\(u^*\) : gU [http://mitgcm.org/lxr/ident/MITgcm?_i=gU] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\(v^*\) : gV [http://mitgcm.org/lxr/ident/MITgcm?_i=gV] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\(u^{n+1}\) : uVel [http://mitgcm.org/lxr/ident/MITgcm?_i=uVel] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\(v^{n+1}\) : vVel [http://mitgcm.org/lxr/ident/MITgcm?_i=vVel] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )








Regarding the implementation of the surface pressure solver, all
computation are done within the routine
SOLVE_FOR_PRESSURE [https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F] and its
dependent calls. The standard method to solve the 2D elliptic problem
(2.64) uses the conjugate gradient method
(routine CG2D [https://github.com/MITgcm/MITgcm/blob/master/model/src/cg2d.F]); the
solver matrix and conjugate gradient operator are only function of the
discretized domain and are therefore evaluated separately, before the
time iteration loop, within INI_CG2D [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_cg2d.F]. The computation of the RHS
\(\eta^*\) is partly done in CALC_DIV_GHAT [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_div_ghat.F] and in
SOLVE_FOR_PRESSURE [https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F].

The same method is applied for the non hydrostatic part, using a
conjugate gradient 3D solver (CG3D [https://github.com/MITgcm/MITgcm/blob/master/model/src/cg3d.F]) that is initialized in
INI_CG3D [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_cg3d.F]. The RHS terms of 2D and 3D problems are computed together
at the same point in the code.
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2.11. Spatial discretization of the dynamical equations

Spatial discretization is carried out using the finite volume method.
This amounts to a grid-point method (namely second-order centered finite
difference) in the fluid interior but allows boundaries to intersect a
regular grid allowing a more accurate representation of the position of
the boundary. We treat the horizontal and vertical directions as
separable and differently.
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2.12. Continuity and horizontal pressure gradient term

The core algorithm is based on the “C grid” discretization of the
continuity equation which can be summarized as:


(2.79)\[\partial_t u + \frac{1}{\Delta x_c} \delta_i \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta x_c} \delta_i \Phi_{nh}' = G_u - \frac{1}{\Delta x_c} \delta_i \Phi_h'\]


(2.80)\[\partial_t v + \frac{1}{\Delta y_c} \delta_j \left. \frac{ \partial \Phi}{\partial r}\right|_{s} \eta + \frac{\epsilon_{nh}}{\Delta y_c} \delta_j \Phi_{nh}' = G_v - \frac{1}{\Delta y_c} \delta_j \Phi_h'\]


(2.81)\[\epsilon_{nh} \left( \partial_t w + \frac{1}{\Delta r_c} \delta_k \Phi_{nh}' \right) = \epsilon_{nh} G_w + \overline{b}^k - \frac{1}{\Delta r_c} \delta_k \Phi_{h}'\]


(2.82)\[\delta_i \Delta y_g \Delta r_f h_w u +
\delta_j \Delta x_g \Delta r_f h_s v +
\delta_k {\cal A}_c w  = {\cal A}_c \delta_k (P-E)_{r=0}\]

where the continuity equation has been most naturally discretized by
staggering the three components of velocity as shown in
Figure 2.5. The grid lengths \(\Delta x_c\) and
\(\Delta y_c\) are the lengths between tracer points (cell centers).
The grid lengths \(\Delta x_g\), \(\Delta y_g\) are the grid
lengths between cell corners. \(\Delta r_f\) and \(\Delta r_c\)
are the distance (in units of \(r\)) between level interfaces
(w-level) and level centers (tracer level). The surface area presented
in the vertical is denoted \({\cal
A}_c\). The factors \(h_w\) and \(h_s\) are non-dimensional
fractions (between 0 and 1) that represent the fraction cell depth that
is “open” for fluid flow.

The last equation, the discrete continuity equation, can be summed in
the vertical to yield the free-surface equation:


(2.83)\[{\cal A}_c \partial_t \eta + \delta_i \sum_k \Delta y_g \Delta r_f h_w
 u + \delta_j \sum_k \Delta x_g \Delta r_f h_s v = {\cal
 A}_c(P-E)_{r=0}\]

The source term \(P-E\) on the rhs of continuity accounts for the
local addition of volume due to excess precipitation and run-off over
evaporation and only enters the top-level of the ocean model.




2.13. Hydrostatic balance

The vertical momentum equation has the hydrostatic or quasi-hydrostatic
balance on the right hand side. This discretization guarantees that the
conversion of potential to kinetic energy as derived from the buoyancy
equation exactly matches the form derived from the pressure gradient
terms when forming the kinetic energy equation.

In the ocean, using z-coordinates, the hydrostatic balance terms are
discretized:


(2.84)\[\epsilon_{nh} \partial_t w
+ g \overline{\rho'}^k + \frac{1}{\Delta z} \delta_k \Phi_h' = \ldots\]

In the atmosphere, using p-coordinates, hydrostatic balance is
discretized:


(2.85)\[\overline{\theta'}^k + \frac{1}{\Delta \Pi} \delta_k \Phi_h' = 0\]

where \(\Delta \Pi\) is the difference in Exner function between
the pressure points. The non-hydrostatic equations are not available in
the atmosphere.

The difference in approach between ocean and atmosphere occurs because
of the direct use of the ideal gas equation in forming the potential
energy conversion term \(\alpha \omega\). Because of the different
representation of hydrostatic balance between
ocean and atmosphere there is no elegant way to represent both systems
using an arbitrary coordinate.

The integration for hydrostatic pressure is made in the positive
\(r\) direction (increasing k-index). For the ocean, this is from
the free-surface down and for the atmosphere this is from the ground up.

The calculations are made in the subroutine CALC_PHI_HYD [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_phi_hyd.F]. Inside
this routine, one of other of the atmospheric/oceanic form is selected
based on the string variable buoyancyRelation [http://mitgcm.org/lxr/ident/MITgcm?_i=buoyancyRelation].




2.14. Flux-form momentum equations

The original finite volume model was based on the Eulerian flux form
momentum equations. This is the default though the vector invariant form
is optionally available (and recommended in some cases).

The “G’s” (our colloquial name for all terms on rhs!) are broken into
the various advective, Coriolis, horizontal dissipation, vertical
dissipation and metric forces:


(2.86)\[G_u = G_u^{adv} + G_u^{cor} + G_u^{h-diss} + G_u^{v-diss} +
G_u^{metric} + G_u^{nh-metric}\]


(2.87)\[G_v = G_v^{adv} + G_v^{cor} + G_v^{h-diss} + G_v^{v-diss} +
G_v^{metric} + G_v^{nh-metric}\]


(2.88)\[G_w = G_w^{adv} + G_w^{cor} + G_w^{h-diss} + G_w^{v-diss} +
G_w^{metric} + G_w^{nh-metric}\]

In the hydrostatic limit, \(G_w=0\) and \(\epsilon_{nh}=0\),
reducing the vertical momentum to hydrostatic balance.

These terms are calculated in routines called from subroutine
MOM_FLUXFORM [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F]  and collected into the global arrays gU [http://mitgcm.org/lxr/ident/MITgcm?_i=gU], gV [http://mitgcm.org/lxr/ident/MITgcm?_i=gV], and
gW [http://mitgcm.org/lxr/ident/MITgcm?_i=gW].


S/R  MOM_FLUXFORM [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F]



\(G_u\) : gU [http://mitgcm.org/lxr/ident/MITgcm?_i=gU] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\(G_v\) : gV [http://mitgcm.org/lxr/ident/MITgcm?_i=gV] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\(G_w\) : gW [http://mitgcm.org/lxr/ident/MITgcm?_i=gW] ( NH_VARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/NH_VARS.h] )









2.14.1. Advection of momentum

The advective operator is second order accurate in space:


(2.89)\[{\cal A}_w \Delta r_f h_w G_u^{adv} =
  \delta_i \overline{ U }^i \overline{ u }^i
+ \delta_j \overline{ V }^i \overline{ u }^j
+ \delta_k \overline{ W }^i \overline{ u }^k\]


(2.90)\[{\cal A}_s \Delta r_f h_s G_v^{adv} =
  \delta_i \overline{ U }^j \overline{ v }^i
+ \delta_j \overline{ V }^j \overline{ v }^j
+ \delta_k \overline{ W }^j \overline{ v }^k\]


(2.91)\[{\cal A}_c \Delta r_c G_w^{adv} =
  \delta_i \overline{ U }^k \overline{ w }^i
+ \delta_j \overline{ V }^k \overline{ w }^j
+ \delta_k \overline{ W }^k \overline{ w }^k\]

and because of the flux form does not contribute to the global budget
of linear momentum. The quantities \(U\), \(V\) and \(W\)
are volume fluxes defined:


(2.92)\[U = \Delta y_g \Delta r_f h_w u\]


(2.93)\[V = \Delta x_g \Delta r_f h_s v\]


(2.94)\[W = {\cal A}_c w\]

The advection of momentum takes the same form as the advection of
tracers but by a translated advective flow. Consequently, the
conservation of second moments, derived for tracers later, applies to
\(u^2\) and \(v^2\) and \(w^2\) so that advection of
momentum correctly conserves kinetic energy.


S/R  MOM_U_ADV_UU [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_u_adv_uu.F], MOM_U_ADV_VU [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_u_adv_vu.F], MOM_U_ADV_WU [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_u_adv_wu.F]



\(uu, vu, wu\) : fZon [http://mitgcm.org/lxr/ident/MITgcm?_i=fZon], fMer [http://mitgcm.org/lxr/ident/MITgcm?_i=fMer], fVerUkp [http://mitgcm.org/lxr/ident/MITgcm?_i=fVerUkp] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )









S/R  MOM_V_ADV_UV [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_v_adv_uv.F], MOM_V_ADV_VV [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_v_adv_vv.F], MOM_V_ADV_WV [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_v_adv_wv.F]



\(uv, vv, wv\) : fZon [http://mitgcm.org/lxr/ident/MITgcm?_i=fZon], fMer [http://mitgcm.org/lxr/ident/MITgcm?_i=fMer], fVerVkp [http://mitgcm.org/lxr/ident/MITgcm?_i=fVerVkp] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )











2.14.2. Coriolis terms

The “pure C grid” Coriolis terms (i.e. in absence of C-D scheme) are
discretized:


(2.95)\[{\cal A}_w \Delta r_f h_w G_u^{Cor} =
  \overline{ f {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i
- \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ w }^k }^i\]


(2.96)\[{\cal A}_s \Delta r_f h_s G_v^{Cor} =
- \overline{ f {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j\]


(2.97)\[{\cal A}_c \Delta r_c G_w^{Cor} =
 \epsilon_{nh} \overline{ f' {\cal A}_c \Delta r_f h_c \overline{ u }^i }^k\]

where the Coriolis parameters \(f\) and \(f'\) are defined:


\[\begin{split}\begin{aligned}
f & = & 2 \Omega \sin{\varphi} \\
f' & = & 2 \Omega \cos{\varphi}\end{aligned}\end{split}\]

where \(\varphi\) is geographic latitude when using spherical
geometry, otherwise the \(\beta\)-plane definition is used:


\[\begin{split}\begin{aligned}
f & = & f_o + \beta y \\
f' & = & 0\end{aligned}\end{split}\]

This discretization globally conserves kinetic energy. It should be
noted that despite the use of this discretization in former
publications, all calculations to date have used the following different
discretization:


(2.98)\[G_u^{Cor} = f_u \overline{ v }^{ji}
- \epsilon_{nh} f_u' \overline{ w }^{ik}\]


(2.99)\[G_v^{Cor} = - f_v \overline{ u }^{ij}\]


(2.100)\[G_w^{Cor} = \epsilon_{nh} f_w' \overline{ u }^{ik}\]

where the subscripts on \(f\) and \(f'\) indicate evaluation of
the Coriolis parameters at the appropriate points in space. The above
discretization does not conserve anything, especially energy, but for
historical reasons is the default for the code. A flag controls this
discretization: set run-time logical useEnergyConservingCoriolis [http://mitgcm.org/lxr/ident/MITgcm?_i=useEnergyConservingCoriolis] to
.TRUE. which otherwise defaults to .FALSE..


S/R  CD_CODE_SCHEME [https://github.com/MITgcm/MITgcm/blob/master/pkg/cd_code/cd_code_scheme.F], MOM_U_CORIOLIS [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_u_coriolis.F], MOM_V_CORIOLIS [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_v_coriolis.F]



\(G_u^{Cor}, G_v^{Cor}\) : cF [http://mitgcm.org/lxr/ident/MITgcm?_i=cF] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )











2.14.3. Curvature metric terms

The most commonly used coordinate system on the sphere is the geographic
system \((\lambda,\varphi)\). The curvilinear nature of these
coordinates on the sphere lead to some “metric” terms in the component
momentum equations. Under the thin-atmosphere and hydrostatic
approximations these terms are discretized:


(2.101)\[{\cal A}_w \Delta r_f h_w G_u^{metric} =
\overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ v }^j }^i\]


(2.102)\[\begin{split}{\cal A}_s \Delta r_f h_s G_v^{metric} =
- \overline{ \frac{ \overline{u}^i }{a} \tan{\varphi} {\cal A}_c \Delta r_f h_c \overline{ u }^i }^j \\\end{split}\]


(2.103)\[G_w^{metric} = 0\]

where \(a\) is the radius of the planet (sphericity is assumed) or
the radial distance of the particle (i.e. a function of height). It is
easy to see that this discretization satisfies all the properties of the
discrete Coriolis terms since the metric factor \(\frac{u}{a}
\tan{\varphi}\) can be viewed as a modification of the vertical Coriolis
parameter: \(f \rightarrow f+\frac{u}{a} \tan{\varphi}\).

However, as for the Coriolis terms, a non-energy conserving form has
exclusively been used to date:


\[\begin{split}\begin{aligned}
G_u^{metric} & = & \frac{u \overline{v}^{ij} }{a} \tan{\varphi} \\
G_v^{metric} & = & \frac{ \overline{u}^{ij} \overline{u}^{ij}}{a} \tan{\varphi}\end{aligned}\end{split}\]

where \(\tan{\varphi}\) is evaluated at the \(u\) and \(v\)
points respectively.


S/R  MOM_U_METRIC_SPHERE [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_u_metric_sphere.F], MOM_V_METRIC_SPHERE [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_v_metric_sphere.F]



\(G_u^{metric}, G_v^{metric}\) : mT [http://mitgcm.org/lxr/ident/MITgcm?_i=mT] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )











2.14.4. Non-hydrostatic metric terms

For the non-hydrostatic equations, dropping the thin-atmosphere
approximation re-introduces metric terms involving \(w\) which are
required to conserve angular momentum:


(2.104)\[{\cal A}_w \Delta r_f h_w G_u^{metric} =
- \overline{ \frac{ \overline{u}^i \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c }^i\]


(2.105)\[{\cal A}_s \Delta r_f h_s G_v^{metric} =
- \overline{ \frac{ \overline{v}^j \overline{w}^k }{a} {\cal A}_c \Delta r_f h_c}^j\]


(2.106)\[{\cal A}_c \Delta r_c G_w^{metric} =
  \overline{ \frac{ {\overline{u}^i}^2 + {\overline{v}^j}^2}{a} {\cal A}_c \Delta r_f h_c }^k\]

Because we are always consistent, even if consistently wrong, we have,
in the past, used a different discretization in the model which is:


\[\begin{split}\begin{aligned}
G_u^{metric} & = &
- \frac{u}{a} \overline{w}^{ik} \\
G_v^{metric} & = &
- \frac{v}{a} \overline{w}^{jk} \\
G_w^{metric} & = &
  \frac{1}{a} ( {\overline{u}^{ik}}^2 + {\overline{v}^{jk}}^2 )\end{aligned}\end{split}\]


S/R  MOM_U_METRIC_NH [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_u_metric_nh.F], MOM_V_METRIC_NH [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_v_metric_nh.F]



\(G_u^{metric}, G_v^{metric}\) : mT [http://mitgcm.org/lxr/ident/MITgcm?_i=mT] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )











2.14.5. Lateral dissipation

Historically, we have represented the SGS Reynolds stresses as simply
down gradient momentum fluxes, ignoring constraints on the stress tensor
such as symmetry.


(2.107)\[{\cal A}_w \Delta r_f h_w G_u^{h-diss} =
  \delta_i  \Delta y_f \Delta r_f h_c \tau_{11}
+ \delta_j  \Delta x_v \Delta r_f h_\zeta \tau_{12}\]


(2.108)\[{\cal A}_s \Delta r_f h_s G_v^{h-diss} =
  \delta_i  \Delta y_u \Delta r_f h_\zeta \tau_{21}
+ \delta_j  \Delta x_f \Delta r_f h_c \tau_{22}\]

The lateral viscous stresses are discretized:


(2.109)\[\tau_{11} = A_h c_{11\Delta}(\varphi) \frac{1}{\Delta x_f} \delta_i u
               -A_4 c_{11\Delta^2}(\varphi) \frac{1}{\Delta x_f} \delta_i \nabla^2 u\]


(2.110)\[\tau_{12} = A_h c_{12\Delta}(\varphi) \frac{1}{\Delta y_u} \delta_j u
               -A_4 c_{12\Delta^2}(\varphi)\frac{1}{\Delta y_u} \delta_j \nabla^2 u\]


(2.111)\[\tau_{21} = A_h c_{21\Delta}(\varphi) \frac{1}{\Delta x_v} \delta_i v
               -A_4 c_{21\Delta^2}(\varphi) \frac{1}{\Delta x_v} \delta_i \nabla^2 v\]


(2.112)\[\tau_{22} = A_h c_{22\Delta}(\varphi) \frac{1}{\Delta y_f} \delta_j v
               -A_4 c_{22\Delta^2}(\varphi) \frac{1}{\Delta y_f} \delta_j \nabla^2 v\]

where the non-dimensional factors
\(c_{lm\Delta^n}(\varphi), \{l,m,n\} \in
\{1,2\}\) define the “cosine” scaling with latitude which can be applied
in various ad-hoc ways. For instance, \(c_{11\Delta} =
c_{21\Delta} = (\cos{\varphi})^{3/2}\),
\(c_{12\Delta}=c_{22\Delta}=1\) would represent the anisotropic
cosine scaling typically used on the “lat-lon” grid for Laplacian
viscosity.

It should be noted that despite the ad-hoc nature of the scaling, some
scaling must be done since on a lat-lon grid the converging meridians
make it very unlikely that a stable viscosity parameter exists across
the entire model domain.

The Laplacian viscosity coefficient, \(A_h\) (viscAh [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAh]), has units
of \(m^2 s^{-1}\). The bi-harmonic viscosity coefficient,
\(A_4\) (viscA4 [http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4]), has units of \(m^4 s^{-1}\).


S/R  MOM_U_XVISCFLUX [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_u_xviscflux.F], MOM_U_YVISCFLUX [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_u_yviscflux.F]



\(\tau_{11}, \tau_{12}\) : vF [http://mitgcm.org/lxr/ident/MITgcm?_i=vF], v4F [http://mitgcm.org/lxr/ident/MITgcm?_i=v4F] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )









S/R  MOM_V_XVISCFLUX [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_v_xviscflux.F], MOM_V_YVISCFLUX [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_v_yviscflux.F]



\(\tau_{21}, \tau_{22}\) : vF [http://mitgcm.org/lxr/ident/MITgcm?_i=vF], v4F [http://mitgcm.org/lxr/ident/MITgcm?_i=v4F] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )








Two types of lateral boundary condition exist for the lateral viscous
terms, no-slip and free-slip.

The free-slip condition is most convenient to code since it is
equivalent to zero-stress on boundaries. Simple masking of the stress
components sets them to zero. The fractional open stress is properly
handled using the lopped cells.

The no-slip condition defines the normal gradient of a tangential flow
such that the flow is zero on the boundary. Rather than modify the
stresses by using complicated functions of the masks and “ghost” points
(see Adcroft and Marshall (1998) [AM98]) we add the boundary stresses as an
additional source term in cells next to solid boundaries. This has the
advantage of being able to cope with “thin walls” and also makes the
interior stress calculation (code) independent of the boundary
conditions. The “body” force takes the form:


(2.113)\[G_u^{side-drag} =
\frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta x_v}{\Delta y_u} }^j
\left( A_h c_{12\Delta}(\varphi) u - A_4 c_{12\Delta^2}(\varphi) \nabla^2 u \right)\]


(2.114)\[G_v^{side-drag} =
\frac{4}{\Delta z_f} \overline{ (1-h_\zeta) \frac{\Delta y_u}{\Delta x_v} }^i
\left( A_h c_{21\Delta}(\varphi) v - A_4 c_{21\Delta^2}(\varphi) \nabla^2 v \right)\]

In fact, the above discretization is not quite complete because it
assumes that the bathymetry at velocity points is deeper than at
neighboring vorticity points, e.g. \(1-h_w < 1-h_\zeta\)


S/R  MOM_U_SIDEDRAG [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_u_sidedrag.F], MOM_V_SIDEDRAG [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_v_sidedrag.F]



\(G_u^{side-drag}, G_v^{side-drag}\) : vF [http://mitgcm.org/lxr/ident/MITgcm?_i=vF] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )











2.14.6. Vertical dissipation

Vertical viscosity terms are discretized with only partial adherence to
the variable grid lengths introduced by the finite volume formulation.
This reduces the formal accuracy of these terms to just first order but
only next to boundaries; exactly where other terms appear such as linear
and quadratic bottom drag.


(2.115)\[G_u^{v-diss} =
\frac{1}{\Delta r_f h_w} \delta_k \tau_{13}\]


(2.116)\[G_v^{v-diss} =
\frac{1}{\Delta r_f h_s} \delta_k \tau_{23}\]


(2.117)\[G_w^{v-diss} = \epsilon_{nh}
\frac{1}{\Delta r_f h_d} \delta_k \tau_{33}\]

represents the general discrete form of the vertical dissipation terms.

In the interior the vertical stresses are discretized:


\[\begin{split}\begin{aligned}
\tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
\tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v \\
\tau_{33} & = & A_v \frac{1}{\Delta r_f} \delta_k w\end{aligned}\end{split}\]

It should be noted that in the non-hydrostatic form, the stress tensor
is even less consistent than for the hydrostatic (see Wajsowicz (1993)
[Waj93]). It is well known how to do this
properly (see Griffies and Hallberg (2000) [GH00]) and is on the list of
to-do’s.


S/R  MOM_U_RVISCFLUX [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_u_rviscflux.F], MOM_V_RVISCFLUX [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_v_rviscflux.F]



\(\tau_{13}\) : fVrUp [http://mitgcm.org/lxr/ident/MITgcm?_i=fVrUp], fVrDw [http://mitgcm.org/lxr/ident/MITgcm?_i=fVrDw] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )

\(\tau_{23}\) : fVrUp [http://mitgcm.org/lxr/ident/MITgcm?_i=fVrUp], fVrDw [http://mitgcm.org/lxr/ident/MITgcm?_i=fVrDw] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )








As for the lateral viscous terms, the free-slip condition is equivalent
to simply setting the stress to zero on boundaries. The no-slip
condition is implemented as an additional term acting on top of the
interior and free-slip stresses. Bottom drag represents additional
friction, in addition to that imposed by the no-slip condition at the
bottom. The drag is cast as a stress expressed as a linear or quadratic
function of the mean flow in the layer above the topography:


(2.118)\[\tau_{13}^{bottom-drag} =
\left(
2 A_v \frac{1}{\Delta r_c}
+ r_b
+ C_d \sqrt{ \overline{2 KE}^i }
\right) u\]


(2.119)\[\tau_{23}^{bottom-drag} =
\left(
2 A_v \frac{1}{\Delta r_c}
+ r_b
+ C_d \sqrt{ \overline{2 KE}^j }
\right) v\]

where these terms are only evaluated immediately above topography.
\(r_b\) (bottomDragLinear [http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragLinear]) has units of \(m s^{-1}\) and a
typical value of the order 0.0002 \(m s^{-1}\). \(C_d\)
(bottomDragQuadratic [http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragQuadratic]) is dimensionless with typical values in the
range 0.001–0.003.


S/R  MOM_U_BOTTOMDRAG [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_u_bottomdrag.F], MOM_V_BOTTOMDRAG [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_v_bottomdrag.F]



\(\tau_{13}^{bottom-drag} / \Delta r_f , \tau_{23}^{bottom-drag} / \Delta r_f\) : vF [http://mitgcm.org/lxr/ident/MITgcm?_i=vF] ( local to MOM_FLUXFORM.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_fluxform/mom_fluxform.F] )











2.14.7. Derivation of discrete energy conservation

These discrete equations conserve kinetic plus potential energy using
the following definitions:


(2.120)\[KE = \frac{1}{2} \left( \overline{ u^2 }^i + \overline{ v^2 }^j +
\epsilon_{nh} \overline{ w^2 }^k \right)\]




2.14.8. Mom Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
VISCAHZ | 15 |SZ      MR      |m^2/s           |Harmonic Visc Coefficient (m2/s) (Zeta Pt)
VISCA4Z | 15 |SZ      MR      |m^4/s           |Biharmonic Visc Coefficient (m4/s) (Zeta Pt)
VISCAHD | 15 |SM      MR      |m^2/s           |Harmonic Viscosity Coefficient (m2/s) (Div Pt)
VISCA4D | 15 |SM      MR      |m^4/s           |Biharmonic Viscosity Coefficient (m4/s) (Div Pt)
VAHZMAX | 15 |SZ      MR      |m^2/s           |CFL-MAX Harm Visc Coefficient (m2/s) (Zeta Pt)
VA4ZMAX | 15 |SZ      MR      |m^4/s           |CFL-MAX Biharm Visc Coefficient (m4/s) (Zeta Pt)
VAHDMAX | 15 |SM      MR      |m^2/s           |CFL-MAX Harm Visc Coefficient (m2/s) (Div Pt)
VA4DMAX | 15 |SM      MR      |m^4/s           |CFL-MAX Biharm Visc Coefficient (m4/s) (Div Pt)
VAHZMIN | 15 |SZ      MR      |m^2/s           |RE-MIN Harm Visc Coefficient (m2/s) (Zeta Pt)
VA4ZMIN | 15 |SZ      MR      |m^4/s           |RE-MIN Biharm Visc Coefficient (m4/s) (Zeta Pt)
VAHDMIN | 15 |SM      MR      |m^2/s           |RE-MIN Harm Visc Coefficient (m2/s) (Div Pt)
VA4DMIN | 15 |SM      MR      |m^4/s           |RE-MIN Biharm Visc Coefficient (m4/s) (Div Pt)
VAHZLTH | 15 |SZ      MR      |m^2/s           |Leith Harm Visc Coefficient (m2/s) (Zeta Pt)
VA4ZLTH | 15 |SZ      MR      |m^4/s           |Leith Biharm Visc Coefficient (m4/s) (Zeta Pt)
VAHDLTH | 15 |SM      MR      |m^2/s           |Leith Harm Visc Coefficient (m2/s) (Div Pt)
VA4DLTH | 15 |SM      MR      |m^4/s           |Leith Biharm Visc Coefficient (m4/s) (Div Pt)
VAHZLTHD| 15 |SZ      MR      |m^2/s           |LeithD Harm Visc Coefficient (m2/s) (Zeta Pt)
VA4ZLTHD| 15 |SZ      MR      |m^4/s           |LeithD Biharm Visc Coefficient (m4/s) (Zeta Pt)
VAHDLTHD| 15 |SM      MR      |m^2/s           |LeithD Harm Visc Coefficient (m2/s) (Div Pt)
VA4DLTHD| 15 |SM      MR      |m^4/s           |LeithD Biharm Visc Coefficient (m4/s) (Div Pt)
VAHZSMAG| 15 |SZ      MR      |m^2/s           |Smagorinsky Harm Visc Coefficient (m2/s) (Zeta Pt)
VA4ZSMAG| 15 |SZ      MR      |m^4/s           |Smagorinsky Biharm Visc Coeff. (m4/s) (Zeta Pt)
VAHDSMAG| 15 |SM      MR      |m^2/s           |Smagorinsky Harm Visc Coefficient (m2/s) (Div Pt)
VA4DSMAG| 15 |SM      MR      |m^4/s           |Smagorinsky Biharm Visc Coeff. (m4/s) (Div Pt)
momKE   | 15 |SM      MR      |m^2/s^2         |Kinetic Energy (in momentum Eq.)
momHDiv | 15 |SM      MR      |s^-1            |Horizontal Divergence (in momentum Eq.)
momVort3| 15 |SZ      MR      |s^-1            |3rd component (vertical) of Vorticity
Strain  | 15 |SZ      MR      |s^-1            |Horizontal Strain of Horizontal Velocities
Tension | 15 |SM      MR      |s^-1            |Horizontal Tension of Horizontal Velocities
UBotDrag| 15 |UU   129MR      |m/s^2           |U momentum tendency from Bottom Drag
VBotDrag| 15 |VV   128MR      |m/s^2           |V momentum tendency from Bottom Drag
USidDrag| 15 |UU   131MR      |m/s^2           |U momentum tendency from Side Drag
VSidDrag| 15 |VV   130MR      |m/s^2           |V momentum tendency from Side Drag
Um_Diss | 15 |UU   133MR      |m/s^2           |U momentum tendency from Dissipation
Vm_Diss | 15 |VV   132MR      |m/s^2           |V momentum tendency from Dissipation
Um_Advec| 15 |UU   135MR      |m/s^2           |U momentum tendency from Advection terms
Vm_Advec| 15 |VV   134MR      |m/s^2           |V momentum tendency from Advection terms
Um_Cori | 15 |UU   137MR      |m/s^2           |U momentum tendency from Coriolis term
Vm_Cori | 15 |VV   136MR      |m/s^2           |V momentum tendency from Coriolis term
Um_Ext  | 15 |UU   137MR      |m/s^2           |U momentum tendency from external forcing
Vm_Ext  | 15 |VV   138MR      |m/s^2           |V momentum tendency from external forcing
Um_AdvZ3| 15 |UU   141MR      |m/s^2           |U momentum tendency from Vorticity Advection
Vm_AdvZ3| 15 |VV   140MR      |m/s^2           |V momentum tendency from Vorticity Advection
Um_AdvRe| 15 |UU   143MR      |m/s^2           |U momentum tendency from vertical Advection (Explicit part)
Vm_AdvRe| 15 |VV   142MR      |m/s^2           |V momentum tendency from vertical Advection (Explicit part)
ADVx_Um | 15 |UM   145MR      |m^4/s^2         |Zonal      Advective Flux of U momentum
ADVy_Um | 15 |VZ   144MR      |m^4/s^2         |Meridional Advective Flux of U momentum
ADVrE_Um| 15 |WU      LR      |m^4/s^2         |Vertical   Advective Flux of U momentum (Explicit part)
ADVx_Vm | 15 |UZ   148MR      |m^4/s^2         |Zonal      Advective Flux of V momentum
ADVy_Vm | 15 |VM   147MR      |m^4/s^2         |Meridional Advective Flux of V momentum
ADVrE_Vm| 15 |WV      LR      |m^4/s^2         |Vertical   Advective Flux of V momentum (Explicit part)
VISCx_Um| 15 |UM   151MR      |m^4/s^2         |Zonal      Viscous Flux of U momentum
VISCy_Um| 15 |VZ   150MR      |m^4/s^2         |Meridional Viscous Flux of U momentum
VISrE_Um| 15 |WU      LR      |m^4/s^2         |Vertical   Viscous Flux of U momentum (Explicit part)
VISrI_Um| 15 |WU      LR      |m^4/s^2         |Vertical   Viscous Flux of U momentum (Implicit part)
VISCx_Vm| 15 |UZ   155MR      |m^4/s^2         |Zonal      Viscous Flux of V momentum
VISCy_Vm| 15 |VM   154MR      |m^4/s^2         |Meridional Viscous Flux of V momentum
VISrE_Vm| 15 |WV      LR      |m^4/s^2         |Vertical   Viscous Flux of V momentum (Explicit part)
VISrI_Vm| 15 |WV      LR      |m^4/s^2         |Vertical   Viscous Flux of V momentum (Implicit part)










2.15. Vector invariant momentum equations

The finite volume method lends itself to describing the continuity and
tracer equations in curvilinear coordinate systems. However, in
curvilinear coordinates many new metric terms appear in the momentum
equations (written in Lagrangian or flux-form) making generalization far
from elegant. Fortunately, an alternative form of the equations, the
vector invariant equations are exactly that; invariant under coordinate
transformations so that they can be applied uniformly in any orthogonal
curvilinear coordinate system such as spherical coordinates, boundary
following or the conformal spherical cube system.

The non-hydrostatic vector invariant equations read:


(2.121)\[\partial_t \vec{v} + ( 2\vec{\Omega} + \vec{\zeta}) \wedge \vec{v}
- b \hat{r}
+ \vec{\nabla} B = \vec{\nabla} \cdot \vec{\bf \tau}\]

which describe motions in any orthogonal curvilinear coordinate system.
Here, \(B\) is the Bernoulli function and \(\vec{\zeta}=\nabla
\wedge \vec{v}\) is the vorticity vector. We can take advantage of the
elegance of these equations when discretizing them and use the discrete
definitions of the grad, curl and divergence operators to satisfy
constraints. We can also consider the analogy to forming derived
equations, such as the vorticity equation, and examine how the
discretization can be adjusted to give suitable vorticity advection
among other things.

The underlying algorithm is the same as for the flux form equations. All
that has changed is the contents of the “G’s”. For the time-being, only
the hydrostatic terms have been coded but we will indicate the points
where non-hydrostatic contributions will enter:


(2.122)\[G_u = G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B}
+ G_u^{\partial_z \tau^x} + G_u^{h-dissip} + G_u^{v-dissip}\]


(2.123)\[G_v = G_v^{fu} + G_v^{\zeta_3 u} + G_v^{\zeta_1 w} + G_v^{\partial_y B}
+ G_v^{\partial_z \tau^y} + G_v^{h-dissip} + G_v^{v-dissip}\]


(2.124)\[G_w = G_w^{fu} + G_w^{\zeta_1 v} + G_w^{\zeta_2 u} + G_w^{\partial_z B}
+ G_w^{h-dissip} + G_w^{v-dissip}\]


S/R  MOM_VECINV [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F]



\(G_u\) : gU [http://mitgcm.org/lxr/ident/MITgcm?_i=gU] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\(G_v\) : gV [http://mitgcm.org/lxr/ident/MITgcm?_i=gV] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\(G_w\) : gW [http://mitgcm.org/lxr/ident/MITgcm?_i=gW] ( NH_VARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/NH_VARS.h] )









2.15.1. Relative vorticity

The vertical component of relative vorticity is explicitly calculated
and use in the discretization. The particular form is crucial for
numerical stability; alternative definitions break the conservation
properties of the discrete equations.

Relative vorticity is defined:


(2.125)\[\zeta_3 = \frac{\Gamma}{A_\zeta}
= \frac{1}{{\cal A}_\zeta} ( \delta_i \Delta y_c v - \delta_j \Delta x_c u )\]

where \({\cal A}_\zeta\) is the area of the vorticity cell
presented in the vertical and \(\Gamma\) is the circulation about
that cell.


S/R  MOM_CALC_RELVORT3 [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_calc_relvort3.F]



\(\zeta_3\) : vort3 [http://mitgcm.org/lxr/ident/MITgcm?_i=vort3] ( local to MOM_VECINV.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] )











2.15.2. Kinetic energy

The kinetic energy, denoted \(KE\), is defined:


(2.126)\[KE = \frac{1}{2} ( \overline{ u^2 }^i + \overline{ v^2 }^j
+ \epsilon_{nh} \overline{ w^2 }^k )\]


S/R  MOM_CALC_KE [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_calc_KE.F]



\(KE\) : KE [http://mitgcm.org/lxr/ident/MITgcm?_i=KE] ( local to MOM_VECINV.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] )











2.15.3. Coriolis terms

The potential enstrophy conserving form of the linear Coriolis terms are
written:


(2.127)\[G_u^{fv} = \frac{1}{\Delta x_c}
\overline{ \frac{f}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i\]


(2.128)\[G_v^{fu} = - \frac{1}{\Delta y_c}
\overline{ \frac{f}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j\]

Here, the Coriolis parameter \(f\) is defined at vorticity (corner)
points.

The potential enstrophy conserving form of the non-linear Coriolis terms
are written:


(2.129)\[G_u^{\zeta_3 v} = \frac{1}{\Delta x_c}
\overline{ \frac{\zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i\]


(2.130)\[G_v^{\zeta_3 u} = - \frac{1}{\Delta y_c}
\overline{ \frac{\zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j\]

The Coriolis terms can also be evaluated together and expressed in terms
of absolute vorticity \(f+\zeta_3\). The potential enstrophy
conserving form using the absolute vorticity is written:


(2.131)\[G_u^{fv} + G_u^{\zeta_3 v} = \frac{1}{\Delta x_c}
\overline{ \frac{f + \zeta_3}{h_\zeta} }^j \overline{ \overline{ \Delta x_g h_s v }^j }^i\]


(2.132)\[G_v^{fu} + G_v^{\zeta_3 u} = - \frac{1}{\Delta y_c}
\overline{ \frac{f + \zeta_3}{h_\zeta} }^i \overline{ \overline{ \Delta y_g h_w u }^i }^j\]

The distinction between using absolute vorticity or relative vorticity
is useful when constructing higher order advection schemes; monotone
advection of relative vorticity behaves differently to monotone
advection of absolute vorticity. Currently the choice of
relative/absolute vorticity, centered/upwind/high order advection is
available only through commented subroutine calls.


S/R  MOM_VI_CORIOLIS [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_coriolis.F], MOM_VI_U_CORIOLIS [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_u_coriolis.F], MOM_VI_V_CORIOLIS [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_v_coriolis.F]



\(G_u^{fv} , G_u^{\zeta_3 v}\) : uCf [http://mitgcm.org/lxr/ident/MITgcm?_i=uCf] ( local to MOM_VECINV.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] )

\(G_v^{fu} , G_v^{\zeta_3 u}\) : vCf [http://mitgcm.org/lxr/ident/MITgcm?_i=vCf] ( local to MOM_VECINV.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] )











2.15.4. Shear terms

The shear terms (\(\zeta_2w\) and \(\zeta_1w\)) are are
discretized to guarantee that no spurious generation of kinetic energy
is possible; the horizontal gradient of Bernoulli function has to be
consistent with the vertical advection of shear:


(2.133)\[G_u^{\zeta_2 w} = \frac{1}{ {\cal A}_w \Delta r_f h_w } \overline{
\overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w ) }^k\]


(2.134)\[G_v^{\zeta_1 w} = \frac{1}{ {\cal A}_s \Delta r_f h_s } \overline{
\overline{ {\cal A}_c w }^i ( \delta_k u - \epsilon_{nh} \delta_j w ) }^k\]


S/R  MOM_VI_U_VERTSHEAR [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_u_vertshear.F], MOM_VI_V_VERTSHEAR [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_v_vertshear.F]



\(G_u^{\zeta_2 w}\) : uCf [http://mitgcm.org/lxr/ident/MITgcm?_i=uCf] ( local to MOM_VECINV.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] )

\(G_v^{\zeta_1 w}\) : vCf [http://mitgcm.org/lxr/ident/MITgcm?_i=vCf] ( local to MOM_VECINV.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] )











2.15.5. Gradient of Bernoulli function


(2.135)\[G_u^{\partial_x B} =
\frac{1}{\Delta x_c} \delta_i ( \phi' + KE )\]


(2.136)\[G_v^{\partial_y B} =
\frac{1}{\Delta x_y} \delta_j ( \phi' + KE )\]


S/R  MOM_VI_U_GRAD_KE [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_u_grad_ke.F], MOM_VI_V_GRAD_KE [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_v_grad_ke.F]



\(G_u^{\partial_x KE}\) : uCf [http://mitgcm.org/lxr/ident/MITgcm?_i=uCf] ( local to MOM_VECINV.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] )

\(G_v^{\partial_y KE}\) : vCf [http://mitgcm.org/lxr/ident/MITgcm?_i=vCf] ( local to MOM_VECINV.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] )











2.15.6. Horizontal divergence

The horizontal divergence, a complimentary quantity to relative
vorticity, is used in parameterizing the Reynolds stresses and is
discretized:


(2.137)\[D = \frac{1}{{\cal A}_c h_c} (
  \delta_i \Delta y_g h_w u
+ \delta_j \Delta x_g h_s v )\]


S/R  MOM_CALC_KE [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_calc_ke.F]



\(D\) : hDiv [http://mitgcm.org/lxr/ident/MITgcm?_i=hDiv] ( local to MOM_VECINV.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] )











2.15.7. Horizontal dissipation

The following discretization of horizontal dissipation conserves
potential vorticity (thickness weighted relative vorticity) and
divergence and dissipates energy, enstrophy and divergence squared:


(2.138)\[G_u^{h-dissip} =
  \frac{1}{\Delta x_c} \delta_i ( A_D D - A_{D4} D^*)
- \frac{1}{\Delta y_u h_w} \delta_j h_\zeta ( A_\zeta \zeta - A_{\zeta4} \zeta^* )\]


(2.139)\[G_v^{h-dissip} =
  \frac{1}{\Delta x_v h_s} \delta_i h_\zeta ( A_\zeta \zeta - A_\zeta \zeta^* )
+ \frac{1}{\Delta y_c} \delta_j ( A_D D - A_{D4} D^* )\]

where


\[\begin{split}\begin{aligned}
D^* & = & \frac{1}{{\cal A}_c h_c} (
  \delta_i \Delta y_g h_w \nabla^2 u
+ \delta_j \Delta x_g h_s \nabla^2 v ) \\
\zeta^* & = & \frac{1}{{\cal A}_\zeta} (
  \delta_i \Delta y_c \nabla^2 v
- \delta_j \Delta x_c \nabla^2 u )\end{aligned}\end{split}\]


S/R  MOM_VI_HDISSIP [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_hdissip.F]



\(G_u^{h-dissip}\) : uDissip [http://mitgcm.org/lxr/ident/MITgcm?_i=uDissip] ( local to MOM_VI_HDISSIP.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_hdissip.F] )

\(G_v^{h-dissip}\) : vDissip [http://mitgcm.org/lxr/ident/MITgcm?_i=vDissip] ( local to MOM_VI_HDISSIP.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_hdissip.F] )











2.15.8. Vertical dissipation

Currently, this is exactly the same code as the flux form equations.


(2.140)\[G_u^{v-diss} =
\frac{1}{\Delta r_f h_w} \delta_k \tau_{13}\]


(2.141)\[G_v^{v-diss} =
\frac{1}{\Delta r_f h_s} \delta_k \tau_{23}\]

represents the general discrete form of the vertical dissipation terms.

In the interior the vertical stresses are discretized:


\[\begin{split}\begin{aligned}
\tau_{13} & = & A_v \frac{1}{\Delta r_c} \delta_k u \\
\tau_{23} & = & A_v \frac{1}{\Delta r_c} \delta_k v\end{aligned}\end{split}\]


S/R  MOM_U_RVISCFLUX [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_u_rviscflux.F], MOM_V_RVISCFLUX [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_common/mom_u_rviscflux.F]



\(\tau_{13}, \tau_{23}\) : vrf [http://mitgcm.org/lxr/ident/MITgcm?_i=vrf] ( local to MOM_VECINV.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F] )













2.16. Tracer equations

The basic discretization used for the tracer equations is the second
order piece-wise constant finite volume form of the forced
advection-diffusion equations. There are many alternatives to second
order method for advection and alternative parameterizations for the
sub-grid scale processes. The Gent-McWilliams eddy parameterization, KPP
mixing scheme and PV flux parameterization are all dealt with in
separate sections. The basic discretization of the advection-diffusion
part of the tracer equations and the various advection schemes will be
described here.


2.16.1. Time-stepping of tracers: ABII

The default advection scheme is the centered second order method which
requires a second order or quasi-second order time-stepping scheme to be
stable. Historically this has been the quasi-second order
Adams-Bashforth method (ABII) and applied to all terms. For an arbitrary
tracer, \(\tau\), the forced advection-diffusion equation reads:


(2.142)\[\partial_t \tau + G_{adv}^\tau = G_{diff}^\tau + G_{forc}^\tau\]

where \(G_{adv}^\tau\), \(G_{diff}^\tau\) and
\(G_{forc}^\tau\) are the tendencies due to advection, diffusion and
forcing, respectively, namely:


(2.143)\[G_{adv}^\tau = \partial_x u \tau + \partial_y v \tau + \partial_r w \tau
- \tau \nabla \cdot {\bf v}\]


(2.144)\[G_{diff}^\tau = \nabla \cdot {\bf K} \nabla \tau\]

and the forcing can be some arbitrary function of state, time and
space.

The term, \(\tau \nabla \cdot {\bf v}\), is required to retain local
conservation in conjunction with the linear implicit free-surface. It
only affects the surface layer since the flow is non-divergent
everywhere else. This term is therefore referred to as the surface
correction term. Global conservation is not possible using the flux-form
(as here) and a linearized free-surface
(Griffies and Hallberg (2000) [GH00] , Campin et al. (2004) [CAHM04]).

The continuity equation can be recovered by setting
\(G_{diff}=G_{forc}=0\) and \(\tau=1\).

The driver routine that calls the routines to calculate tendencies are
CALC_GT [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gt.F] and CALC_GS [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gs.F] for temperature and salt (moisture),
respectively. These in turn call a generic advection diffusion routine
GAD_CALC_RHS [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_calc_rhs.F] that is called with the flow field and relevant
tracer as arguments and returns the collective tendency due to advection
and diffusion. Forcing is add subsequently in CALC_GT [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gt.F]
or CALC_GS [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gs.F] to the same tendency array.


S/R  GAD_CALC_RHS [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_calc_rhs.F]



\(\tau\) : tau [http://mitgcm.org/lxr/ident/MITgcm?_i=tau] ( argument )

\(G^{(n)}\) : gTracer [http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer] ( argument )

\(F_r\) : fVerT [http://mitgcm.org/lxr/ident/MITgcm?_i=fVerT] ( argument )








The space and time discretization are treated separately (method of
lines). Tendencies are calculated at time levels \(n\) and
\(n-1\) and extrapolated to \(n+1/2\) using the Adams-Bashforth
method:


(2.145)\[G^{(n+1/2)} =
(\frac{3}{2} + \epsilon) G^{(n)} - (\frac{1}{2} + \epsilon) G^{(n-1)}\]

where \(G^{(n)} = G_{adv}^\tau + G_{diff}^\tau + G_{src}^\tau\) at
time step \(n\). The tendency at \(n-1\) is not re-calculated
but rather the tendency at \(n\) is stored in a global array for
later re-use.


S/R  ADAMS_BASHFORTH2 [https://github.com/MITgcm/MITgcm/blob/master/model/src/gad_calc_rhs.F]



\(G^{(n+1/2)}\) : gTracer [http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer] ( argument on exit )

\(G^{(n)}\) : gTracer [http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer] ( argument on entry )

\(G^{(n-1)}\) : gTrNm1 [http://mitgcm.org/lxr/ident/MITgcm?_i=gTrNm1] ( argument )

\(\epsilon\) : ABeps [http://mitgcm.org/lxr/ident/MITgcm?_i=ABeps] ( PARAMS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/PARAMS.h] )








The tracers are stepped forward in time using the extrapolated tendency:


(2.146)\[\tau^{(n+1)} = \tau^{(n)} + \Delta t G^{(n+1/2)}\]


S/R  TIMESTEP_TRACER [https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep_tracer.F]



\(\tau^{(n+1)}\) : gTracer [http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer] ( argument on exit )

\(\tau^{(n)}\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument on entry )

\(G^{(n+1/2)}\) : gTracer [http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer] ( argument )

\(\Delta t\) : deltaTtracer [http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTtracer] ( PARAMS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/PARAMS.h] )








Strictly speaking the ABII scheme should be applied only to the
advection terms. However, this scheme is only used in conjunction with
the standard second, third and fourth order advection schemes. Selection
of any other advection scheme disables Adams-Bashforth for tracers so
that explicit diffusion and forcing use the forward method.






2.17. Linear advection schemes

The advection schemes known as centered second order, centered fourth
order, first order upwind and upwind biased third order are known as
linear advection schemes because the coefficient for interpolation of
the advected tracer are linear and a function only of the flow, not the
tracer field it self. We discuss these first since they are most
commonly used in the field and most familiar.


2.17.1. Centered second order advection-diffusion

The basic discretization, centered second order, is the default. It is
designed to be consistent with the continuity equation to facilitate
conservation properties analogous to the continuum. However, centered
second order advection is notoriously noisy and must be used in
conjunction with some finite amount of diffusion to produce a sensible
solution.

The advection operator is discretized:


(2.147)\[{\cal A}_c \Delta r_f h_c G_{adv}^\tau =
\delta_i F_x + \delta_j F_y + \delta_k F_r\]

where the area integrated fluxes are given by:


\[\begin{split}\begin{aligned}
F_x & = & U \overline{ \tau }^i \\
F_y & = & V \overline{ \tau }^j \\
F_r & = & W \overline{ \tau }^k\end{aligned}\end{split}\]

The quantities \(U\), \(V\) and \(W\) are volume fluxes.
defined as:


\[\begin{split}\begin{aligned}
U & = & \Delta y_g \Delta r_f h_w u \\
V & = & \Delta x_g \Delta r_f h_s v \\
W & = & {\cal A}_c w\end{aligned}\end{split}\]

For non-divergent flow, this discretization can be shown to conserve the
tracer both locally and globally and to globally conserve tracer
variance, \(\tau^2\). The proof is given in
Adcroft (1995) [Adc95] and Adcroft et al. (1997) [AHM97] .


S/R  GAD_C2_ADV_X [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_c2_adv_x.F]



\(F_x\) : uT [http://mitgcm.org/lxr/ident/MITgcm?_i=uT] ( argument )

\(U\) : uTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_C2_ADV_Y [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_c2_adv_y.F]



\(F_y\) : vT [http://mitgcm.org/lxr/ident/MITgcm?_i=vT] ( argument )

\(V\) : vTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_C2_ADV_R [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_c2_adv_r.F]



\(F_r\) : wT [http://mitgcm.org/lxr/ident/MITgcm?_i=wT] ( argument )

\(W\) : rTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )











2.17.2. Third order upwind bias advection

Upwind biased third order advection offers a relatively good compromise
between accuracy and smoothness. It is not a “positive” scheme meaning
false extrema are permitted but the amplitude of such are significantly
reduced over the centered second order method.

The third order upwind fluxes are discretized:


\[\begin{split}\begin{aligned}
F_x & = & U \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^i
         + \frac{1}{2} |U| \delta_i \frac{1}{6} \delta_{ii} \tau \\
F_y & = & V \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^j
         + \frac{1}{2} |V| \delta_j \frac{1}{6} \delta_{jj} \tau \\
F_r & = & W \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^k
         + \frac{1}{2} |W| \delta_k \frac{1}{6} \delta_{kk} \tau \end{aligned}\end{split}\]

At boundaries, \(\delta_{\hat{n}} \tau\) is set to zero allowing
\(\delta_{nn}\) to be evaluated. We are currently examine the
accuracy of this boundary condition and the effect on the solution.


S/R  GAD_U3_ADV_X [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_u3_adv_x.F]



\(F_x\) : uT [http://mitgcm.org/lxr/ident/MITgcm?_i=uT] ( argument )

\(U\) : uTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_U3_ADV_Y [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_u3_adv_y.F]



\(F_y\) : vT [http://mitgcm.org/lxr/ident/MITgcm?_i=vT] ( argument )

\(V\) : vTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_U3_ADV_R [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_u3_adv_r.F]



\(F_r\) : wT [http://mitgcm.org/lxr/ident/MITgcm?_i=wT] ( argument )

\(W\) : rTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )











2.17.3. Centered fourth order advection

Centered fourth order advection is formally the most accurate scheme we
have implemented and can be used to great effect in high resolution
simulations where dynamical scales are well resolved. However, the scheme
is noisy, like the centered second order method, and so must be used with
some finite amount of diffusion. Bi-harmonic is recommended since it is
more scale selective and less likely to diffuse away the well resolved
gradient the fourth order scheme worked so hard to create.

The centered fourth order fluxes are discretized:


\[\begin{split}\begin{aligned}
F_x & = & U \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^i \\
F_y & = & V \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^j \\
F_r & = & W \overline{\tau - \frac{1}{6} \delta_{ii} \tau}^k\end{aligned}\end{split}\]

As for the third order scheme, the best discretization near boundaries
is under investigation but currently \(\delta_i \tau=0\) on a
boundary.


S/R  GAD_C4_ADV_X [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_c4_adv_x.F]



\(F_x\) : uT [http://mitgcm.org/lxr/ident/MITgcm?_i=uT] ( argument )

\(U\) : uTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_C4_ADV_Y [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_c4_adv_y.F]



\(F_y\) : vT [http://mitgcm.org/lxr/ident/MITgcm?_i=vT] ( argument )

\(V\) : vTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_C4_ADV_R [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_c4_adv_r.F]



\(F_r\) : wT [http://mitgcm.org/lxr/ident/MITgcm?_i=wT] ( argument )

\(W\) : rTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )











2.17.4. First order upwind advection

Although the upwind scheme is the underlying scheme for the robust or
non-linear methods given in Section 2.18, we haven’t actually implemented this method
for general use. It would be very diffusive and it is unlikely that it
could ever produce more useful results than the positive higher order
schemes.

Upwind bias is introduced into many schemes using the abs function and
it allows the first order upwind flux to be written:


\[\begin{split}\begin{aligned}
F_x & = & U \overline{ \tau }^i - \frac{1}{2} |U| \delta_i \tau \\
F_y & = & V \overline{ \tau }^j - \frac{1}{2} |V| \delta_j \tau \\
F_r & = & W \overline{ \tau }^k - \frac{1}{2} |W| \delta_k \tau\end{aligned}\end{split}\]

If for some reason the above method is desired, the second order
flux limiter scheme described in Section 2.18.1 reduces to the above scheme if the
limiter is set to zero.






2.18. Non-linear advection schemes

Non-linear advection schemes invoke non-linear interpolation and are
widely used in computational fluid dynamics (non-linear does not refer
to the non-linearity of the advection operator). The flux limited
advection schemes belong to the class of finite volume methods which
neatly ties into the spatial discretization of the model.

When employing the flux limited schemes, first order upwind or
direct-space-time method, the time-stepping is switched to forward in
time.


2.18.1. Second order flux limiters

The second order flux limiter method can be cast in several ways but is
generally expressed in terms of other flux approximations. For example,
in terms of a first order upwind flux and second order Lax-Wendroff
flux, the limited flux is given as:


(2.148)\[F = F_1 + \psi(r) F_{LW}\]

where \(\psi(r)\) is the limiter function,


\[F_1 = u \overline{\tau}^i - \frac{1}{2} |u| \delta_i \tau\]

is the upwind flux,


\[F_{LW} = F_1 + \frac{|u|}{2} (1-c) \delta_i \tau\]

is the Lax-Wendroff flux and \(c = \frac{u \Delta t}{\Delta x}\) is
the Courant (CFL) number.

The limiter function, \(\psi(r)\), takes the slope ratio


\[\begin{split}\begin{aligned}
r = \frac{ \tau_{i-1} - \tau_{i-2} }{ \tau_{i} - \tau_{i-1} } & \forall & u > 0
\\
r = \frac{ \tau_{i+1} - \tau_{i} }{ \tau_{i} - \tau_{i-1} } & \forall & u < 0\end{aligned}\end{split}\]

as its argument. There are many choices of limiter function but we
only provide the Superbee limiter (Roe 1995 [Roe85]):


\[\psi(r) = \max[0,\min[1,2r],\min[2,r]]\]


S/R  GAD_FLUXLIMIT_ADV_X [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_fluxlimit_adv_x.F]



\(F_x\) : uT [http://mitgcm.org/lxr/ident/MITgcm?_i=uT] ( argument )

\(U\) : uTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_FLUXLIMIT_ADV_Y [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_fluxlimit_adv_y.F]



\(F_y\) : vT [http://mitgcm.org/lxr/ident/MITgcm?_i=vT] ( argument )

\(V\) : vTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_FLUXLIMIT_ADV_R [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_fluxlimit_adv_r.F]



\(F_r\) : wT [http://mitgcm.org/lxr/ident/MITgcm?_i=wT] ( argument )

\(W\) : rTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )











2.18.2. Third order direct space time

The direct-space-time method deals with space and time discretization
together (other methods that treat space and time separately are known
collectively as the “Method of Lines”). The Lax-Wendroff scheme falls
into this category; it adds sufficient diffusion to a second order flux
that the forward-in-time method is stable. The upwind biased third order
DST scheme is:


(2.149)\[\begin{split}\begin{aligned}F = u \left( \tau_{i-1}
        + d_0 (\tau_{i}-\tau_{i-1}) + d_1 (\tau_{i-1}-\tau_{i-2}) \right)
\phantom{W} & \forall & u > 0 \\
F = u \left( \tau_{i}
        - d_0 (\tau_{i}-\tau_{i-1}) - d_1 (\tau_{i+1}-\tau_{i}) \right)
\phantom{W} & \forall & u < 0\end{aligned}\end{split}\]

where


\[\begin{split}\begin{aligned}
d_1 & = & \frac{1}{6} ( 2 - |c| ) ( 1 - |c| ) \\
d_2 & = & \frac{1}{6} ( 1 - |c| ) ( 1 + |c| )\end{aligned}\end{split}\]

The coefficients \(d_0\) and \(d_1\) approach \(1/3\) and
\(1/6\) respectively as the Courant number, \(c\), vanishes. In
this limit, the conventional third order upwind method is recovered. For
finite Courant number, the deviations from the linear method are
analogous to the diffusion added to centered second order advection in
the Lax-Wendroff scheme.

The DST3 method described above must be used in a forward-in-time manner
and is stable for \(0 \le |c| \le 1\). Although the scheme appears
to be forward-in-time, it is in fact third order in time and the
accuracy increases with the Courant number! For low Courant number, DST3
produces very similar results (indistinguishable in
Figure 2.10) to the linear third order method but for large
Courant number, where the linear upwind third order method is unstable,
the scheme is extremely accurate (Figure 2.11) with only
minor overshoots.


S/R  GAD_DST3_ADV_X [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_dst3_adv_x.F]



\(F_x\) : uT [http://mitgcm.org/lxr/ident/MITgcm?_i=uT] ( argument )

\(U\) : uTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_DST3_ADV_Y [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_dst3_adv_y.F]



\(F_y\) : vT [http://mitgcm.org/lxr/ident/MITgcm?_i=vT] ( argument )

\(V\) : vTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_DST3_ADV_R [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_dst3_adv_r.F]



\(F_r\) : wT [http://mitgcm.org/lxr/ident/MITgcm?_i=wT] ( argument )

\(W\) : rTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )











2.18.3. Third order direct space time with flux limiting

The overshoots in the DST3 method can be controlled with a flux limiter.
The limited flux is written:


(2.150)\[F = \frac{1}{2}(u+|u|)\left( \tau_{i-1} + \psi(r^+)(\tau_{i} - \tau_{i-1} )\right)
+ \frac{1}{2}(u-|u|)\left( \tau_{i-1} + \psi(r^-)(\tau_{i} - \tau_{i-1} )\right)\]

where


\[\begin{split}\begin{aligned}
r^+ & = & \frac{\tau_{i-1} - \tau_{i-2}}{\tau_{i} - \tau_{i-1}} \\
r^- & = & \frac{\tau_{i+1} - \tau_{i}}{\tau_{i} - \tau_{i-1}}\end{aligned}\end{split}\]

and the limiter is the Sweby limiter:


\[\psi(r) = \max[0, \min[\min(1,d_0+d_1r],\frac{1-c}{c}r ]]\]


S/R  GAD_DST3FL_ADV_X [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_dst3fl_adv_x.F]



\(F_x\) : uT [http://mitgcm.org/lxr/ident/MITgcm?_i=uT] ( argument )

\(U\) : uTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_DST3FL_ADV_Y [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_dst3fl_adv_y.F]



\(F_y\) : vT [http://mitgcm.org/lxr/ident/MITgcm?_i=vT] ( argument )

\(V\) : vTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )









S/R  GAD_DST3FL_ADV_R [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_dst3fl_adv_r.F]



\(F_r\) : wT [http://mitgcm.org/lxr/ident/MITgcm?_i=wT] ( argument )

\(W\) : rTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans] ( argument )

\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )











2.18.4. Multi-dimensional advection

In many of the aforementioned advection schemes the behavior in multiple
dimensions is not necessarily as good as the one dimensional behavior.
For instance, a shape preserving monotonic scheme in one dimension can
have severe shape distortion in two dimensions if the two components of
horizontal fluxes are treated independently. There is a large body of
literature on the subject dealing with this problem and among the fixes
are operator and flux splitting methods, corner flux methods, and more.
We have adopted a variant on the standard splitting methods that allows
the flux calculations to be implemented as if in one dimension:


(2.151)\[\begin{split}\begin{aligned}
\tau^{n+1/3} & = & \tau^{n}
- \Delta t \left( \frac{1}{\Delta x} \delta_i F^x(\tau^{n})
           + \tau^{n} \frac{1}{\Delta x} \delta_i u \right) \\
\tau^{n+2/3} & = & \tau^{n+1/3}
- \Delta t \left( \frac{1}{\Delta y} \delta_j F^y(\tau^{n+1/3})
           + \tau^{n} \frac{1}{\Delta y} \delta_i v \right) \\
\tau^{n+3/3} & = & \tau^{n+2/3}
- \Delta t \left( \frac{1}{\Delta r} \delta_k F^x(\tau^{n+2/3})
           + \tau^{n} \frac{1}{\Delta r} \delta_i w \right)\end{aligned}\end{split}\]

In order to incorporate this method into the general model algorithm, we
compute the effective tendency rather than update the tracer so that
other terms such as diffusion are using the \(n\) time-level and not
the updated \(n+3/3\) quantities:


\[G^{n+1/2}_{adv} = \frac{1}{\Delta t} ( \tau^{n+3/3} - \tau^{n} )\]

So that the over all time-stepping looks likes:


\[\tau^{n+1} = \tau^{n} + \Delta t \left( G^{n+1/2}_{adv} + G_{diff}(\tau^{n}) + G^{n}_{forcing} \right)\]


S/R  GAD_ADVECTION [https://github.com/MITgcm/MITgcm/blob/master/pkg/generic_advdiff/gad_advection.F]



\(\tau\) : tracer [http://mitgcm.org/lxr/ident/MITgcm?_i=tracer] ( argument )

\(G^{n+1/2}_{adv}\) : gTracer [http://mitgcm.org/lxr/ident/MITgcm?_i=gTracer] ( argument )

\(F_x, F_y, F_r\) : aF [http://mitgcm.org/lxr/ident/MITgcm?_i=aF] ( local )

\(U\) : uTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=uTrans] ( local )

\(V\) : vTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=vTrans] ( local )

\(W\) : rTrans [http://mitgcm.org/lxr/ident/MITgcm?_i=rTrans] ( local )








A schematic of multi-dimension time stepping for the cube sphere configuration is show in Figure 2.9 .



[image: multiDim_CS]
Figure 2.9 Multi-dimensional advection time-stepping with cubed-sphere topology.











2.19. Comparison of advection schemes

Table 2.2 shows a summary of the different advection schemes available in MITgcm. “A.B.” stands for Adams-Bashforth and “DST” for direct space time. The code corresponds to the number used to select the corresponding advection scheme in the parameter file (e.g., tempAdvScheme=3 in file data selects the 3rd order upwind advection scheme for temperature).


Table 2.2 MITgcm Advection Schemes









	
	
	
	use

	
	


	
	
	use

	multi

	stencil

	


	Advection Scheme

	Code

	AB?

	-dim?

	(1-D)

	comments





	1st order upwind

	1

	no

	yes

	3

	linear \(\tau\), non-linear v



	centered 2nd order

	2

	yes

	no

	3

	linear



	3rd order upwind

	3

	yes

	no

	5

	linear \(\tau\)



	centered 4th order

	4

	yes

	no

	5

	linear



	2nd order DST (Lax-Wendroff)

	20

	no

	yes

	3

	linear \(\tau\), non-linear v



	3rd order DST

	30

	no

	yes

	5

	linear \(\tau\), non-linear v



	2nd order-moment Prather

	80

	no

	yes

	
	


	2nd order flux limiters

	77

	no

	yes

	5

	non-linear



	3rd order DST flux limiter

	33

	no

	yes

	5

	non-linear



	2nd order-moment Prather w/limiter

	81

	no

	yes

	
	


	piecewise parabolic w/“null” limiter

	40

	no

	yes

	
	


	piecewise parabolic w/“mono” limiter

	41

	no

	yes

	
	


	piecewise quartic w/“null” limiter

	50

	no

	yes

	
	


	piecewise quartic w/“mono” limiter

	51

	no

	yes

	
	


	piecewise quartic w/“weno” limiter

	52

	no

	yes

	
	


	7th order one-step method w/

	7

	no

	yes

	
	


	monotonicity preserving limiter

	
	
	
	
	





Shown in Figure 2.10 and Figure 2.11 is a 1-D comparison of advection schemes. Here we advect both a smooth hill and a hill with a more abrupt shock.
Figure 2.10 shown the result for a weak flow  (low Courant number) whereas  Figure 2.11 shows the result for a stronger flow (high Courant number).



[image: advect-1d-lo]
Figure 2.10 Comparison of 1-D advection schemes: Courant number is 0.05 with 60 points and solutions are shown for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind, DST3, third order upwind and second order upwind. b) Shows the centered schemes; Lax-Wendroff, DST4, centered second order, centered fourth order and finite volume fourth order. c) Shows the second order flux limiters: minmod, Superbee, MC limiter and the van Leer limiter. d) Shows the DST3 method with flux limiters due to Sweby with \(\mu =1\) ,  \(\mu =c/(1-c)\) and a fourth order DST method with Sweby limiter,  \(\mu =c/(1-c)\) .




[image: advect-1d-hi]
Figure 2.11 Comparison of 1-D advection schemes: Courant number is 0.89 with 60 points and solutions are shown for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind and DST3. Third order upwind and second order upwind are unstable at this Courant number. b) Shows the centered schemes; Lax-Wendroff, DST4. Centered second order, centered fourth order and finite volume fourth order are unstable at this Courant number. c) Shows the second order flux limiters: minmod, Superbee, MC limiter and the van Leer limiter. d) Shows the DST3 method with flux limiters due to Sweby with \(\mu =1\) ,  \(\mu =c/(1-c)\) and a fourth order DST method with Sweby limiter,  \(\mu =c/(1-c)\) .






Figure 2.12, Figure 2.13 and
Figure 2.14 show solutions to a simple diagonal advection
problem using a selection of schemes for low, moderate and high Courant
numbers, respectively. The top row shows the linear schemes, integrated
with the Adams-Bashforth method. Theses schemes are clearly unstable for
the high Courant number and weakly unstable for the moderate Courant
number. The presence of false extrema is very apparent for all Courant
numbers. The middle row shows solutions obtained with the unlimited but
multi-dimensional schemes. These solutions also exhibit false extrema
though the pattern now shows symmetry due to the multi-dimensional
scheme. Also, the schemes are stable at high Courant number where the
linear schemes weren’t. The bottom row (left and middle) shows the
limited schemes and most obvious is the absence of false extrema. The
accuracy and stability of the unlimited non-linear schemes is retained
at high Courant number but at low Courant number the tendency is to
lose amplitude in sharp peaks due to diffusion. The one dimensional
tests shown in Figure 2.10 and Figure 2.11 show
this phenomenon.

Finally, the bottom left and right panels use the same advection scheme
but the right does not use the multi-dimensional method. At low Courant
number this appears to not matter but for moderate Courant number severe
distortion of the feature is apparent. Moreover, the stability of the
multi-dimensional scheme is determined by the maximum Courant number
applied of each dimension while the stability of the method of lines is
determined by the sum. Hence, in the high Courant number plot, the
scheme is unstable.



[image: advect-2d-lo-diag]
Figure 2.12 Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature. Courant number is 0.01 with 30 \(\times\) 30 points and solutions are shown for T=1/2. White lines indicate zero crossing (ie. the presence of false minima). The left column shows the second order schemes; top) centered second order with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method and bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the Superbee flux limiter (second order) applied independently in each direction (method of lines).




[image: advect-2d-mid-diag]
Figure 2.13 Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature. Courant number is 0.27 with 30 \(\times\) 30 points and solutions are shown for T=1/2. White lines indicate zero crossing (ie. the presence of false minima). The left column shows the second order schemes; top) centered second order with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method and bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the Superbee flux limiter (second order) applied independently in each direction (method of lines).




[image: advect-2d-hi-diag]
Figure 2.14 Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature. Courant number is 0.47 with 30 \(\times\) 30 points and solutions are shown for T=1/2. White lines indicate zero crossings and initial maximum values (ie. the presence of false extrema). The left column shows the second order schemes; top) centered second order with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method and bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the Superbee flux limiter (second order) applied independently in each direction (method of lines).






With many advection schemes implemented in the code two questions arise:
“Which scheme is best?” and “Why don’t you just offer the best advection
scheme?”. Unfortunately, no one advection scheme is “the best” for all
particular applications and for new applications it is often a matter of
trial to determine which is most suitable. Here are some guidelines but
these are not the rule;


	If you have a coarsely resolved model, using a positive or upwind
biased scheme will introduce significant diffusion to the solution
and using a centered higher order scheme will introduce more noise.
In this case, simplest may be best.


	If you have a high resolution model, using a higher order scheme will
give a more accurate solution but scale-selective diffusion might
need to be employed. The flux limited methods offer similar accuracy
in this regime.


	If your solution has shocks or propagating fronts then a flux limited
scheme is almost essential.


	If your time-step is limited by advection, the multi-dimensional
non-linear schemes have the most stability (up to Courant number 1).


	If you need to know how much diffusion/dissipation has occurred you
will have a lot of trouble figuring it out with a non-linear method.


	The presence of false extrema is non-physical and this alone is the
strongest argument for using a positive scheme.







2.20. Shapiro Filter

The Shapiro filter (Shapiro 1970) [Sha70] is a high order
horizontal filter that efficiently remove small scale grid noise without
affecting the physical structures of a field. It is applied at the end
of the time step on both velocity and tracer fields.

Three different space operators are considered here (S1,S2 and S4). They
differ essentially by the sequence of derivative in both X and Y
directions. Consequently they show different damping response function
specially in the diagonal directions X+Y and X-Y.

Space derivatives can be computed in the real space, taking into account
the grid spacing. Alternatively, a pure computational filter can be
defined, using pure numerical differences and ignoring grid spacing.
This later form is stable whatever the grid is, and therefore specially
useful for highly anisotropic grid such as spherical coordinate grid. A
damping time-scale parameter \(\tau_{shap}\) defines the strength of
the filter damping.

The three computational filter operators are :


\[\mathrm{S1c:}\hspace{2cm}
[1 - 1/2 \frac{\Delta t}{\tau_{shap}}
   \{ (\frac{1}{4}\delta_{ii})^n
    + (\frac{1}{4}\delta_{jj})^n \} ]\]


\[\mathrm{S2c:}\hspace{2cm}
[1 - \frac{\Delta t}{\tau_{shap}}
\{ \frac{1}{8} (\delta_{ii} + \delta_{jj}) \}^n]\]


\[\mathrm{S4c:}\hspace{2cm}
[1 - \frac{\Delta t}{\tau_{shap}} (\frac{1}{4}\delta_{ii})^n]
[1 - \frac{\Delta t}{\tau_{shap}} (\frac{1}{4}\delta_{jj})^n]\]

In addition, the S2 operator can easily be extended to a physical space
filter:


\[\mathrm{S2g:}\hspace{2cm}
[1 - \frac{\Delta t}{\tau_{shap}}
\{ \frac{L_{shap}^2}{8} \overline{\nabla}^2 \}^n]\]

with the Laplacian operator \(\overline{\nabla}^2\) and a length
scale parameter \(L_{shap}\). The stability of this S2g filter
requires \(L_{shap} < \mathrm{Min}^{(Global)}(\Delta x,\Delta y)\).


2.20.1. SHAP Diagnostics

--------------------------------------------------------------
<-Name->|Levs|parsing code|<-Units->|<- Tile (max=80c)
--------------------------------------------------------------
SHAP_dT |  5 |SM      MR  |K/s      |Temperature Tendency due to Shapiro Filter
SHAP_dS |  5 |SM      MR  |g/kg/s   |Specific Humidity Tendency due to Shapiro Filter
SHAP_dU |  5 |UU   148MR  |m/s^2    |Zonal Wind Tendency due to Shapiro Filter
SHAP_dV |  5 |VV   147MR  |m/s^2    |Meridional Wind Tendency due to Shapiro Filter










2.21. Nonlinear Viscosities for Large Eddy Simulation

In Large Eddy Simulations (LES), a turbulent closure needs to be
provided that accounts for the effects of subgridscale motions on the
large scale. With sufficiently powerful computers, we could resolve the
entire flow down to the molecular viscosity scales
(\(L_{\nu}\approx 1 \rm cm\)). Current computation allows perhaps
four decades to be resolved, so the largest problem computationally
feasible would be about 10m. Most oceanographic problems are much larger
in scale, so some form of LES is required, where only the largest scales
of motion are resolved, and the subgridscale effects on the
large-scale are parameterized.

To formalize this process, we can introduce a filter over the
subgridscale L: \(u_\alpha\rightarrow \overline{u_\alpha}\) and L:
\(b\rightarrow \overline{b}\). This filter has some intrinsic length and time
scales, and we assume that the flow at that scale can be characterized
with a single velocity scale (\(V\)) and vertical buoyancy gradient
(\(N^2\)). The filtered equations of motion in a local Mercator
projection about the gridpoint in question (see Appendix for notation
and details of approximation) are:


(2.152)\[{\frac{{ \overline{D} {{\tilde {\overline{u}}}}}} {{\overline{Dt}}}}  - \frac{{{\tilde {\overline{v}}}}
  \sin\theta}{{\rm Ro}\sin\theta_0} + \frac{{M_{Ro}}}{{\rm Ro}} \frac{\partial{\overline{\pi}}}{\partial{x}}
= -\left({\overline{\frac{D{\tilde u}}{Dt} }} - {\frac{{\overline{D} {{\tilde {\overline{u}}}}}}{{\overline{Dt}}} }\right)
+\frac{\nabla^2{{\tilde {\overline{u}}}}}{{\rm Re}}\]


(2.153)\[{\frac{{ \overline{D} {{\tilde {\overline{v}}}}}} {{\overline{Dt}}}}  - \frac{{{\tilde {\overline{u}}}}
  \sin\theta}{{\rm Ro}\sin\theta_0} + \frac{{M_{Ro}}}{{\rm Ro}} \frac{\partial{\overline{\pi}}}{\partial{y}}
= -\left({\overline{\frac{D{\tilde v}}{Dt} }} - {\frac{{\overline{D} {{\tilde {\overline{v}}}}}}{{\overline{Dt}}} }\right)
+\frac{\nabla^2{{\tilde {\overline{v}}}}}{{\rm Re}}\]


(2.154)\[\frac{{\overline{D} \overline w}}{{\overline{Dt}}} + \frac{ \frac{\partial{\overline{\pi}}}{\partial{z}} - \overline b}{{\rm Fr}^2\lambda^2}
= -\left(\overline{\frac{D{w}}{Dt}} - \frac{{\overline{D} \overline w}}{{\overline{Dt}}}\right)
+\frac{\nabla^2 \overline w}{{\rm Re}}\nonumber\]


(2.155)\[\frac{{\overline{D} \bar b}}{{\overline{Dt}}} + \overline w =
 -\left(\overline{\frac{D{b}}{Dt}} - \frac{{\overline{D} \bar b}}{{\overline{Dt}}}\right)
+\frac{\nabla^2 \overline b}{\Pr{\rm Re}}\nonumber\]


(2.156)\[\mu^2\left({\frac{\partial{\tilde {\overline{u}}}}{\partial{x}}}   + {\frac{\partial{\tilde {\overline{v}}}}{\partial{y}}} \right)
+ {\frac{\partial{\overline w}}{\partial{z}}} = 0\]

Tildes denote multiplication by \(\cos\theta/\cos\theta_0\) to
account for converging meridians.

The ocean is usually turbulent, and an operational definition of
turbulence is that the terms in parentheses (the ’eddy’ terms) on the
right of (2.152) - (2.155)) are of comparable magnitude to the terms on the
left-hand side. The terms proportional to the inverse of , instead, are
many orders of magnitude smaller than all of the other terms in
virtually every oceanic application.


2.21.1. Eddy Viscosity

A turbulent closure provides an approximation to the ’eddy’ terms on the
right of the preceding equations. The simplest form of LES is just to
increase the viscosity and diffusivity until the viscous and diffusive
scales are resolved. That is, we approximate (2.152) - (2.155):


(2.157)\[\left({\overline{\frac{D{\tilde u}}{Dt} }} - {\frac{{\overline{D} {{\tilde {\overline{u}}}}}}{{\overline{Dt}}} }\right)
\approx\frac{\nabla^2_h{{\tilde {\overline{u}}}}}{{\rm Re}_h}
+\frac{{\frac{\partial^2{{\tilde {\overline{u}}}}}{{\partial{z}}^2}}}{{\rm Re}_v}\]


(2.158)\[\left({\overline{\frac{D{\tilde v}}{Dt} }} - {\frac{{\overline{D} {{\tilde {\overline{v}}}}}}{{\overline{Dt}}} }\right)
\approx\frac{\nabla^2_h{{\tilde {\overline{v}}}}}{{\rm Re}_h}
+\frac{{\frac{\partial^2{{\tilde {\overline{v}}}}}{{\partial{z}}^2}}}{{\rm Re}_v}\]


(2.159)\[\left(\overline{\frac{D{w}}{Dt}} - \frac{{\overline{D} \overline w}}{{\overline{Dt}}}\right)
\approx\frac{\nabla^2_h \overline w}{{\rm Re}_h}
+\frac{{\frac{\partial^2{\overline w}}{{\partial{z}}^2}}}{{\rm Re}_v}\]


(2.160)\[\left(\overline{\frac{D{b}}{Dt}} - \frac{{\overline{D} \bar b}}{{\overline{Dt}}}\right)
\approx\frac{\nabla^2_h \overline b}{\Pr{\rm Re}_h}
+\frac{{\frac{\partial^2{\overline b}}{{\partial{z}}^2}}}{\Pr{\rm Re}_v}\nonumber\]


2.21.1.1. Reynolds-Number Limited Eddy Viscosity

One way of ensuring that the gridscale is sufficiently viscous (i.e.,
resolved) is to choose the eddy viscosity \(A_h\) so that the
gridscale horizontal Reynolds number based on this eddy viscosity,
\({\rm Re}_h\), is O(1). That is, if the gridscale is to be
viscous, then the viscosity should be chosen to make the viscous terms
as large as the advective ones. Bryan et al. (1975)
[BMP75] notes that a computational mode is
squelched by using \({\rm Re}_h<\)2.

MITgcm users can select horizontal eddy viscosities based on
\({\rm Re}_h\) using two methods. 1) The user may estimate the
velocity scale expected from the calculation and grid spacing and set
viscAh [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAh] to satisfy \({\rm Re}_h<2\). 2) The user may use
viscAhReMax [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhReMax], which ensures that the viscosity is always chosen so that
\({\rm Re}_h<\) viscAhReMax [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhReMax]. This last option should be used with
caution, however, since it effectively implies that viscous terms are
fixed in magnitude relative to advective terms. While it may be a useful
method for specifying a minimum viscosity with little effort, tests
Bryan et al. (1975) [BMP75] have shown that setting viscAhReMax [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhReMax] =2
often tends to increase the viscosity substantially over other more
’physical’ parameterizations below, especially in regions where
gradients of velocity are small (and thus turbulence may be weak), so
perhaps a more liberal value should be used, e.g. viscAhReMax [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhReMax] =10.

While it is certainly necessary that viscosity be active at the
gridscale, the wavelength where dissipation of energy or enstrophy
occurs is not necessarily \(L=A_h/U\). In fact, it is by ensuring
that either the dissipation of energy in a 3-d turbulent cascade
(Smagorinsky) or dissipation of enstrophy in a 2-d turbulent cascade
(Leith) is resolved that these parameterizations derive their physical
meaning.




2.21.1.2. Vertical Eddy Viscosities

Vertical eddy viscosities are often chosen in a more subjective way, as
model stability is not usually as sensitive to vertical viscosity.
Usually the ’observed’ value from finescale measurements is used
(e.g. viscAr [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAr]\(\approx1\times10^{-4} m^2/s\)). However,
Smagorinsky (1993) [Sma93] notes that the Smagorinsky
parameterization of isotropic turbulence implies a value of the vertical
viscosity as well as the horizontal viscosity (see below).




2.21.1.3. Smagorinsky Viscosity

Some suggest (see Smagorinsky 1963 [Sma63]; Smagorinsky 1993 [Sma93]) choosing a viscosity
that depends on the resolved motions. Thus, the overall viscous
operator has a nonlinear dependence on velocity. Smagorinsky chose his
form of viscosity by considering Kolmogorov’s ideas about the energy
spectrum of 3-d isotropic turbulence.

Kolmogorov supposed that energy is injected into the flow at
large scales (small \(k\)) and is ’cascaded’ or transferred
conservatively by nonlinear processes to smaller and smaller scales
until it is dissipated near the viscous scale. By setting the energy
flux through a particular wavenumber \(k\), \(\epsilon\), to be
a constant in \(k\), there is only one combination of viscosity and
energy flux that has the units of length, the Kolmogorov wavelength. It
is \(L_\epsilon(\nu)\propto\pi\epsilon^{-1/4}\nu^{3/4}\) (the
\(\pi\) stems from conversion from wavenumber to wavelength). To
ensure that this viscous scale is resolved in a numerical model, the
gridscale should be decreased until \(L_\epsilon(\nu)>L\) (so-called
Direct Numerical Simulation, or DNS). Alternatively, an eddy viscosity
can be used and the corresponding Kolmogorov length can be made larger
than the gridscale,
\(L_\epsilon(A_h)\propto\pi\epsilon^{-1/4}A_h^{3/4}\) (for Large
Eddy Simulation or LES).

There are two methods of ensuring that the Kolmogorov length is resolved
in MITgcm. 1) The user can estimate the flux of energy through spectral
space for a given simulation and adjust grid spacing or viscAh [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAh] to ensure
that \(L_\epsilon(A_h)>L\); 2) The user may use the approach of
Smagorinsky with viscC2Smag [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2Smag], which estimates the energy flux at every
grid point, and adjusts the viscosity accordingly.

Smagorinsky formed the energy equation from the momentum equations by
dotting them with velocity. There are some complications when using the
hydrostatic approximation as described by Smagorinsky (1993)
[Sma93]. The positive definite energy
dissipation by horizontal viscosity in a hydrostatic flow is
\(\nu D^2\), where D is the deformation rate at the viscous scale.
According to Kolmogorov’s theory, this should be a good approximation to
the energy flux at any wavenumber \(\epsilon\approx\nu D^2\).
Kolmogorov and Smagorinsky noted that using an eddy viscosity that
exceeds the molecular value \(\nu\) should ensure that the energy
flux through viscous scale set by the eddy viscosity is the same as it
would have been had we resolved all the way to the true viscous scale.
That is, \(\epsilon\approx
A_{hSmag} \overline D^2\). If we use this approximation to estimate the
Kolmogorov viscous length, then


(2.161)\[L_\epsilon(A_{hSmag})\propto\pi\epsilon^{-1/4}A_{hSmag}^{3/4}\approx\pi(A_{hSmag}
\overline D^2)^{-1/4}A_{hSmag}^{3/4} = \pi A_{hSmag}^{1/2}\overline D^{-1/2}\]

To make \(L_\epsilon(A_{hSmag})\) scale with the gridscale, then


(2.162)\[A_{hSmag} = \left(\frac{{\sf viscC2Smag}}{\pi}\right)^2L^2|\overline D|\]

Where the deformation rate appropriate for hydrostatic flows with
shallow-water scaling is


(2.163)\[|\overline D|=\sqrt{\left({\frac{\partial{\overline {\tilde u}}}{\partial{x}}} - {\frac{\partial{\overline {\tilde v}}}{\partial{y}}}\right)^2
+ \left({\frac{\partial{\overline {\tilde u}}}{\partial{y}}} + {\frac{\partial{\overline {\tilde v}}}{\partial{x}}}\right)^2}\]

The coefficient viscC2Smag [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2Smag] is what an MITgcm user sets, and it replaces
the proportionality in the Kolmogorov length with an equality. Others
(Griffies and Hallberg, 2000 [GH00]) suggest values of viscC2Smag [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2Smag] from 2.2 to
4 for oceanic problems. Smagorinsky (1993) [Sma93]
shows that values from 0.2 to 0.9 have been used in atmospheric modeling.

Smagorinsky (1993) [Sma93] shows that a corresponding
vertical viscosity should be used:


(2.164)\[A_{vSmag} = \left(\frac{{\sf viscC2Smag}}{\pi}\right)^2H^2
\sqrt{\left({\frac{\partial{\overline {\tilde u}}}{\partial{z}}}\right)^2
+ \left({\frac{\partial{\overline {\tilde v}}}{\partial{z}}}\right)^2}\]

This vertical viscosity is currently not implemented in MITgcm.




2.21.1.4. Leith Viscosity

Leith (1968, 1996) [Lei68] [Lei96] notes that 2-d turbulence is
quite different from 3-d. In two-dimensional turbulence, energy cascades
to larger scales, so there is no concern about resolving the scales of
energy dissipation. Instead, another quantity, enstrophy, (which is the
vertical component of vorticity squared) is conserved in 2-d turbulence,
and it cascades to smaller scales where it is dissipated.

Following a similar argument to that above about energy flux, the
enstrophy flux is estimated to be equal to the positive-definite
gridscale dissipation rate of enstrophy \(\eta\approx A_{hLeith}
|\nabla\overline \omega_3|^2\). By dimensional analysis, the
enstrophy-dissipation scale is \(L_\eta(A_{hLeith})\propto\pi
A_{hLeith}^{1/2}\eta^{-1/6}\). Thus, the Leith-estimated length scale of
enstrophy-dissipation and the resulting eddy viscosity are


(2.165)\[L_\eta(A_{hLeith})\propto\pi A_{hLeith}^{1/2}\eta^{-1/6}
= \pi A_{hLeith}^{1/3}|\nabla \overline \omega_3|^{-1/3}\]


(2.166)\[A_{hLeith} = \left(\frac{{\sf viscC2Leith}}{\pi}\right)^3L^3|\nabla \overline\omega_3|\]


(2.167)\[|\nabla\omega_3| \equiv \sqrt{\left[{\frac{\partial{\ }}{\partial{x}}}
\left({\frac{\partial{\overline {\tilde v}}}{\partial{x}}} - {\frac{\partial{\overline {\tilde u}}}{\partial{y}}}\right)\right]^2
+ \left[{\frac{\partial{\ }}{\partial{y}}}\left({\frac{\partial{\overline {\tilde v}}}{\partial{x}}}
- {\frac{\partial{\overline {\tilde u}}}{\partial{y}}}\right)\right]^2}\]




2.21.1.5. Modified Leith Viscosity

The argument above for the Leith viscosity parameterization uses
concepts from purely 2-dimensional turbulence, where the horizontal flow
field is assumed to be non-divergent. However, oceanic flows are only
quasi-two dimensional. While the barotropic flow, or the flow within
isopycnal layers may behave nearly as two-dimensional turbulence, there
is a possibility that these flows will be divergent. In a
high-resolution numerical model, these flows may be substantially
divergent near the grid scale, and in fact, numerical instabilities
exist which are only horizontally divergent and have little vertical
vorticity. This causes a difficulty with the Leith viscosity, which can
only respond to buildup of vorticity at the grid scale.

MITgcm offers two options for dealing with this problem. 1) The
Smagorinsky viscosity can be used instead of Leith, or in conjunction
with Leith – a purely divergent flow does cause an increase in Smagorinsky
viscosity; 2) The viscC2LeithD [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2LeithD] parameter can be set. This is a damping
specifically targeting purely divergent instabilities near the
gridscale. The combined viscosity has the form:


(2.168)\[A_{hLeith} = L^3\sqrt{\left(\frac{{\sf viscC2Leith}}{\pi}\right)^6
|\nabla \overline \omega_3|^2 + \left(\frac{{\sf viscC2LeithD}}{\pi}\right)^6
|\nabla \nabla\cdot \overline {\tilde u}_h|^2}\]


(2.169)\[|\nabla \nabla\cdot \overline {\tilde u}_h| \equiv
\sqrt{\left[{\frac{\partial{\ }}{\partial{x}}}\left({\frac{\partial{\overline {\tilde u}}}{\partial{x}}}
+ {\frac{\partial{\overline {\tilde v}}}{\partial{y}}}\right)\right]^2
+ \left[{\frac{\partial{\ }}{\partial{y}}}\left({\frac{\partial{\overline {\tilde u}}}{\partial{x}}}
+ {\frac{\partial{\overline {\tilde v}}}{\partial{y}}}\right)\right]^2}\]

Whether there is any physical rationale for this correction is unclear,
but the numerical consequences are good. The divergence
in flows with the grid scale larger or comparable to the Rossby radius
is typically much smaller than the vorticity, so this adjustment only
rarely adjusts the viscosity if viscC2LeithD [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2LeithD] = viscC2Leith [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2Leith].
However, the rare regions where this
viscosity acts are often the locations for the largest vales of vertical
velocity in the domain. Since the CFL condition on vertical velocity is
often what sets the maximum timestep, this viscosity may substantially
increase the allowable timestep without severely compromising the verity
of the simulation. Tests have shown that in some calculations, a
timestep three times larger was allowed when viscC2LeithD [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2LeithD] = viscC2Leith [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2Leith].




2.21.1.6. Courant–Freidrichs–Lewy Constraint on Viscosity

Whatever viscosities are used in the model, the choice is constrained by
gridscale and timestep by the Courant–Freidrichs–Lewy (CFL) constraint
on stability:


\[\begin{split}\begin{aligned}
A_h & < \frac{L^2}{4\Delta t} \\
A_4 & \le \frac{L^4}{32\Delta t}\end{aligned}\end{split}\]

The viscosities may be automatically limited to be no greater than
these values in MITgcm by specifying viscAhGridMax [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhGridMax] \(<1\) and
viscA4GridMax [http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4GridMax] \(<1\). Similarly-scaled minimum values of
viscosities are provided by viscAhGridMin [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhGridMin] and viscA4GridMin [http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4GridMin], which if
used, should be set to values \(\ll 1\). \(L\) is roughly the
gridscale (see below).

Following Griffies and Hallberg (2000) [GH00], we note that there is a
factor of \(\Delta x^2/8\) difference between the harmonic and biharmonic viscosities. Thus,
whenever a non-dimensional harmonic coefficient is used in the MITgcm
(e.g. viscAhGridMax [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhGridMax] \(<1\)), the biharmonic equivalent is scaled
so that the same non-dimensional value can be used (e.g. viscA4GridMax [http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4GridMax] \(<1\)).




2.21.1.7. Biharmonic Viscosity

Holland (1978) [Hol78] suggested that eddy viscosities ought to be
focused on the dynamics at the grid scale, as larger motions would be
’resolved’. To enhance the scale selectivity of the viscous operator, he
suggested a biharmonic eddy viscosity instead of a harmonic (or Laplacian) viscosity:


(2.170)\[\left({\overline{\frac{D{\tilde u}}{Dt} }} - {\frac{{\overline{D} {{\tilde {\overline{u}}}}}}{{\overline{Dt}}} }\right)
\approx \frac{-\nabla^4_h{{\tilde {\overline{u}}}}}{{\rm Re}_4}
+ \frac{{\frac{\partial^2{{\tilde {\overline{u}}}}}{{\partial{z}}^2}}}{{\rm Re}_v}\]


(2.171)\[\left({\overline{\frac{D{\tilde v}}{Dt} }} - {\frac{{\overline{D} {{\tilde {\overline{v}}}}}}{{\overline{Dt}}} }\right)
\approx \frac{-\nabla^4_h{{\tilde {\overline{v}}}}}{{\rm Re}_4}
+ \frac{{\frac{\partial^2{{\tilde {\overline{v}}}}}{{\partial{z}}^2}}}{{\rm Re}_v}\nonumber\]


(2.172)\[\left(\overline{\frac{D{w}}{Dt}} - \frac{{\overline{D} \overline w}}{{\overline{Dt}}}\right)
\approx\frac{-\nabla^4_h\overline w}{{\rm Re}_4} + \frac{{\frac{\partial^2{\overline w}}{{\partial{z}}^2}}}{{\rm Re}_v}\nonumber\]


(2.173)\[\left(\overline{\frac{D{b}}{Dt}} - \frac{{\overline{D} \bar b}}{{\overline{Dt}}}\right)
\approx \frac{-\nabla^4_h \overline b}{\Pr{\rm Re}_4}
+\frac{{\frac{\partial^2{\overline b}}{{\partial{z}}^2}}}{\Pr{\rm Re}_v}\nonumber\]

Griffies and Hallberg (2000) [GH00] propose that if one scales the
biharmonic viscosity by stability considerations, then the biharmonic
viscous terms will be similarly active to harmonic viscous terms at the
gridscale of the model, but much less active on larger scale motions.
Similarly, a biharmonic diffusivity can be used for less diffusive
flows.

In practice, biharmonic viscosity and diffusivity allow a less viscous,
yet numerically stable, simulation than harmonic viscosity and
diffusivity. However, there is no physical rationale for such operators
being of leading order, and more boundary conditions must be specified
than for the harmonic operators. If one considers the approximations of
(2.157) - (2.160) and (2.170) - (2.173)
to be terms in the Taylor series
expansions of the eddy terms as functions of the large-scale gradient,
then one can argue that both harmonic and biharmonic terms would occur
in the series, and the only question is the choice of coefficients.
Using biharmonic viscosity alone implies that one zeros the first
non-vanishing term in the Taylor series, which is unsupported by any
fluid theory or observation.

Nonetheless, MITgcm supports a plethora of biharmonic viscosities and
diffusivities, which are controlled with parameters named similarly to
the harmonic viscosities and diffusivities with the substitution
h \(\rightarrow 4\) in the MITgcm parameter name. MITgcm also supports biharmonic Leith and
Smagorinsky viscosities:


(2.174)\[A_{4Smag} = \left(\frac{{\sf viscC4Smag}}{\pi}\right)^2\frac{L^4}{8}|D|\]


(2.175)\[A_{4Leith} = \frac{L^5}{8}\sqrt{\left(\frac{{\sf viscC4Leith}}{\pi}\right)^6
|\nabla \overline \omega_3|^2 + \left(\frac{{\sf viscC4LeithD}}{\pi}\right)^6
|\nabla \nabla\cdot \overline {\bf {\tilde u}}_h|^2}\]

However, it should be noted that unlike the harmonic forms, the
biharmonic scaling does not easily relate to whether energy-dissipation
or enstrophy-dissipation scales are resolved. If similar arguments are
used to estimate these scales and scale them to the gridscale, the
resulting biharmonic viscosities should be:


(2.176)\[A_{4Smag} = \left(\frac{{\sf viscC4Smag}}{\pi}\right)^5L^5
|\nabla^2\overline {\bf {\tilde u}}_h|\]


(2.177)\[A_{4Leith} = L^6\sqrt{\left(\frac{{\sf viscC4Leith}}{\pi}\right)^{12}
|\nabla^2 \overline \omega_3|^2 + \left(\frac{{\sf viscC4LeithD}}{\pi}\right)^{12}
|\nabla^2 \nabla\cdot \overline {\bf {\tilde u}}_h|^2}\]

Thus, the biharmonic scaling suggested by Griffies and Hallberg (2000)
[GH00] implies:


\[\begin{split}\begin{aligned}
|D| & \propto  L|\nabla^2\overline {\bf {\tilde u}}_h|\\
|\nabla \overline \omega_3| & \propto L|\nabla^2 \overline \omega_3|\end{aligned}\end{split}\]

It is not at all clear that these assumptions ought to hold. Only the
Griffies and Hallberg (2000) [GH00] forms are currently implemented in
MITgcm.




2.21.1.8. Selection of Length Scale

Above, the length scale of the grid has been denoted \(L\). However,
in strongly anisotropic grids, \(L_x\) and \(L_y\) will be quite
different in some locations. In that case, the CFL condition suggests
that the minimum of \(L_x\) and \(L_y\) be used. On the other
hand, other viscosities which involve whether a particular wavelength is
’resolved’ might be better suited to use the maximum of \(L_x\) and
\(L_y\). Currently, MITgcm uses useAreaViscLength [http://mitgcm.org/lxr/ident/MITgcm?_i=useAreaViscLength] to select between
two options. If false, the geometric mean of \(L^2_x\) and
\(L^2_y\) is used for all viscosities, which is closer to the
minimum and occurs naturally in the CFL constraint. If useAreaViscLength [http://mitgcm.org/lxr/ident/MITgcm?_i=useAreaViscLength]
is true, then the square root of the area of the grid cell is used.






2.21.2. Mercator, Nondimensional Equations

The rotating, incompressible, Boussinesq equations of motion
(Gill, 1982) [Gil82] on a sphere can be written in Mercator
projection about a latitude \(\theta_0\) and geopotential height
\(z=r-r_0\). The nondimensional form of these equations is:


(2.178)\[{\rm Ro} \frac{D{\tilde u}}{Dt} - \frac{{\tilde v}
 \sin\theta}{\sin\theta_0}+M_{Ro}{\frac{\partial{\pi}}{\partial{x}}}
+ \frac{\lambda{\rm Fr}^2 M_{Ro}\cos \theta}{\mu\sin\theta_0} w
= -\frac{{\rm Fr}^2 M_{Ro} {\tilde u} w}{r/H}
+ \frac{{\rm Ro} {\bf \hat x}\cdot\nabla^2{\bf u}}{{\rm Re}}\]


(2.179)\[{\rm Ro} \frac{D{\tilde v}}{Dt} +
\frac{{\tilde u}\sin\theta}{\sin\theta_0} + M_{Ro}{\frac{\partial{\pi}}{\partial{y}}}
= -\frac{\mu{\rm Ro} \tan\theta({\tilde u}^2 + {\tilde v}^2)}{r/L}
- \frac{{\rm Fr}^2M_{Ro} {\tilde v} w}{r/H}
+ \frac{{\rm Ro} {\bf \hat y}\cdot\nabla^2{\bf u}}{{\rm Re}}\]


(2.180)\[{\rm Fr}^2\lambda^2\frac{D{w}}{Dt}  - b + {\frac{\partial{\pi}}{\partial{z}}}
-\frac{\lambda\cot \theta_0 {\tilde u}}{M_{Ro}}
= \frac{\lambda\mu^2({\tilde u}^2+{\tilde v}^2)}{M_{Ro}(r/L)}
+ \frac{{\rm Fr}^2\lambda^2{\bf \hat z}\cdot\nabla^2{\bf u}}{{\rm Re}}\]


(2.181)\[\frac{D{b}}{Dt} + w = \frac{\nabla^2 b}{\Pr{\rm Re}}\nonumber\]


(2.182)\[\mu^2\left({\frac{\partial{\tilde u}}{\partial{x}}} + {\frac{\partial{\tilde v}}{\partial{y}}} \right)+{\frac{\partial{w}}{\partial{z}}}  = 0\]

Where


\[\mu\equiv\frac{\cos\theta_0}{\cos\theta},\ \ \
{\tilde u}=\frac{u^*}{V\mu},\ \ \  {\tilde v}=\frac{v^*}{V\mu}\]


\[f_0\equiv2\Omega\sin\theta_0,\ \ \
%,\ \ \  \BFKDt\  \equiv \mu^2\left({\tilde u}\BFKpd x\
%+{\tilde v} \BFKpd y\  \right)+\frac{\rm Fr^2M_{Ro}}{\rm Ro} w\BFKpd z\
\frac{D}{Dt}  \equiv \mu^2\left({\tilde u}\frac{\partial}{\partial x}
+{\tilde v} \frac{\partial}{\partial y}  \right)
+\frac{\rm Fr^2M_{Ro}}{\rm Ro} w\frac{\partial}{\partial z}\]


\[x\equiv \frac{r}{L} \phi \cos \theta_0, \ \ \
y\equiv \frac{r}{L} \int_{\theta_0}^\theta
\frac{\cos \theta_0 {\,\rm d\theta}'}{\cos\theta'}, \ \ \
z\equiv \lambda\frac{r-r_0}{L}\]


\[t^*=t \frac{L}{V},\ \ \  b^*= b\frac{V f_0M_{Ro}}{\lambda}\]


\[\pi^* = \pi V f_0 LM_{Ro},\ \ \
 w^* = w V \frac{{\rm Fr}^2 \lambda M_{Ro}}{\rm Ro}\]


\[{\rm Ro} \equiv \frac{V}{f_0 L},\ \ \  M_{Ro}\equiv \max[1,\rm Ro]\]


\[{\rm Fr} \equiv \frac{V}{N \lambda L}, \ \ \
{\rm Re} \equiv \frac{VL}{\nu}, \ \ \
{\rm Pr} \equiv \frac{\nu}{\kappa}\]

Dimensional variables are denoted by an asterisk where necessary. If we
filter over a grid scale typical for ocean models:


1m \(< L <\) 100km

0.0001 \(< \lambda <\) 1

0.001m/s \(< V <\) 1 m/s

\(f_0 <\) 0.0001 s -1

0.01 s -1 \(< N <\) 0.0001 s -1






these equations are very well approximated by


(2.183)\[\begin{split}{\rm Ro}\frac{D{\tilde u}}{Dt} - \frac{{\tilde v}
  \sin\theta}{\sin\theta_0}+M_{Ro}{\frac{\partial{\pi}}{\partial{x}}}
= -\frac{\lambda{\rm Fr}^2M_{Ro}\cos \theta}{\mu\sin\theta_0} w
+ \frac{{\rm Ro}\nabla^2{{\tilde u}}}{{\rm Re}} \\\end{split}\]


(2.184)\[\begin{split}{\rm Ro}\frac{D{\tilde v}}{Dt} +
\frac{{\tilde u}\sin\theta}{\sin\theta_0}+M_{Ro}{\frac{\partial{\pi}}{\partial{y}}}
= \frac{{\rm Ro}\nabla^2{{\tilde v}}}{{\rm Re}} \\\end{split}\]


(2.185)\[{\rm Fr}^2\lambda^2\frac{D{w}}{Dt} - b + {\frac{\partial{\pi}}{\partial{z}}}
= \frac{\lambda\cot \theta_0 {\tilde u}}{M_{Ro}}
+\frac{{\rm Fr}^2\lambda^2\nabla^2w}{{\rm Re}}\]


(2.186)\[\frac{D{b}}{Dt} + w = \frac{\nabla^2 b}{\Pr{\rm Re}}\]


(2.187)\[\mu^2\left({\frac{\partial{\tilde u}}{\partial{x}}} + {\frac{\partial{\tilde v}}{\partial{y}}} \right)+{\frac{\partial{w}}{\partial{z}}} = 0\]


\[\nabla^2 \approx \left(\frac{\partial^2}{\partial x^2}
+\frac{\partial^2}{\partial y^2}
+\frac{\partial^2}{\lambda^2\partial z^2}\right)\]

Neglecting the non-frictional terms on the right-hand side is usually
called the ’traditional’ approximation. It is appropriate, with either
large aspect ratio or far from the tropics. This approximation is used
here, as it does not affect the form of the eddy stresses which is the
main topic. The frictional terms are preserved in this approximate form
for later comparison with eddy stresses.









          

      

      

    

  

    
      
          
            
  
2.10.1. Crank-Nicolson barotropic time stepping

The full implicit time stepping described previously is
unconditionally stable but damps the fast gravity waves, resulting in
a loss of potential energy. The modification presented now allows one
to combine an implicit part (\(\beta,\gamma\)) and an explicit
part (\(1-\beta,1-\gamma\)) for the surface pressure gradient
(\(\beta\)) and for the barotropic flow divergence
(\(\gamma\)). For instance, \(\beta=\gamma=1\) is the previous fully implicit
scheme; \(\beta=\gamma=1/2\) is the non damping (energy
conserving), unconditionally stable, Crank-Nicolson scheme;
\((\beta,\gamma)=(1,0)\) or \(=(0,1)\) corresponds to the
forward - backward scheme that conserves energy but is only stable for
small time steps. In the code, \(\beta,\gamma\) are defined as parameters,
respectively implicSurfPress [http://mitgcm.org/lxr/ident/MITgcm?_i=implicSurfPress], implicDiv2DFlow [http://mitgcm.org/lxr/ident/MITgcm?_i=implicDiv2DFlow]. They are read
from the main parameter file data (namelist PARM01) and are set
by default to 1,1.

Equations (2.12) –
(2.17) are modified as follows:


\[\frac{ \vec{\bf v}^{n+1} }{ \Delta t }
+ {\bf \nabla}_h b_s [ \beta {\eta}^{n+1} + (1-\beta) {\eta}^{n} ]
+ \epsilon_{nh} {\bf \nabla}_h {\phi'_{nh}}^{n+1}
= \frac{ \vec{\bf v}^{n} }{ \Delta t }
+ \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}
+ {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}\]


(2.68)\[\epsilon_{fs} \frac{ {\eta}^{n+1} - {\eta}^{n} }{ \Delta t}
+ {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
[ \gamma \vec{\bf v}^{n+1} + (1-\gamma) \vec{\bf v}^{n}] dr
= \epsilon_{fw} (P-E)\]

We set


\[\begin{split}\begin{aligned}
\vec{\bf v}^* & = &
\vec{\bf v} ^{n} + \Delta t \vec{\bf G}_{\vec{\bf v}} ^{(n+1/2)}
+ (\beta-1) \Delta t {\bf \nabla}_h b_s {\eta}^{n}
+ \Delta t {\bf \nabla}_h {\phi'_{hyd}}^{(n+1/2)}
\\
{\eta}^* & = &
\epsilon_{fs} {\eta}^{n} + \epsilon_{fw} \Delta t (P-E)
- \Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o}
[ \gamma \vec{\bf v}^* + (1-\gamma) \vec{\bf v}^{n}] dr\end{aligned}\end{split}\]

In the hydrostatic case \(\epsilon_{nh}=0\), allowing us to find
\({\eta}^{n+1}\), thus:


\[\epsilon_{fs} {\eta}^{n+1} -
{\bf \nabla}_h \cdot \beta\gamma \Delta t^2 b_s (R_o - R_{fixed})
{\bf \nabla}_h {\eta}^{n+1}
= {\eta}^*\]

and then to compute (CORRECTION_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/correction_step.F]):


\[\vec{\bf v}^{n+1} = \vec{\bf v}^{*}
- \beta \Delta t {\bf \nabla}_h b_s {\eta}^{n+1}\]

Notes:


	The RHS term of equation (2.68) corresponds the
contribution of fresh water flux (P-E) to the free-surface variations
(\(\epsilon_{fw}=1\), useRealFreshWaterFlux [http://mitgcm.org/lxr/ident/MITgcm?_i=useRealFreshWaterFlux] =.TRUE. in parameter
file data). In order to remain consistent with the tracer equation,
specially in the non-linear free-surface formulation, this term is
also affected by the Crank-Nicolson time stepping. The RHS reads:
\(\epsilon_{fw} ( \gamma (P-E)^{n+1/2} + (1-\gamma) (P-E)^{n-1/2} )\)


	The stability criteria with Crank-Nicolson time stepping for the pure
linear gravity wave problem in cartesian coordinates is:


	\(\beta + \gamma < 1\) : unstable


	\(\beta \geq 1/2\) and \(\gamma \geq 1/2\) : stable


	\(\beta + \gamma \geq 1\) : stable if \(c_{max}^2 (\beta - 1/2)(\gamma - 1/2) + 1 \geq 0\)
with \(c_{max} = 2 \Delta t \sqrt{gH} \sqrt{ \frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} }\)






	A similar mixed forward/backward time-stepping is also available for
the non-hydrostatic algorithm, with a fraction \(\beta_{nh}\)
(\(0 < \beta_{nh} \leq 1\)) of the non-hydrostatic pressure
gradient being evaluated at time step \(n+1\) (backward in time)
and the remaining part (\(1 - \beta_{nh}\)) being evaluated at
time step \(n\) (forward in time). The run-time parameter
implicitNHPress [http://mitgcm.org/lxr/ident/MITgcm?_i=implicitNHPress] corresponding to the implicit fraction
\(\beta_{nh}\) of the non-hydrostatic pressure is set by default
to the implicit fraction \(\beta\) of surface pressure
(implicSurfPress [http://mitgcm.org/lxr/ident/MITgcm?_i=implicSurfPress]), but can also be specified independently (in
main parameter file data, namelist PARM01).








          

      

      

    

  

    
      
          
            
  
2.10.2. Non-linear free-surface

Options have been added to the model that concern the free surface formulation.


2.10.2.1. Pressure/geo-potential and free surface

For the atmosphere, since \(\phi = \phi_{topo} - \int^p_{p_s} \alpha dp\), subtracting the
reference state defined in section Section 1.4.1.2 :


\[\phi_o = \phi_{topo} - \int^p_{p_o} \alpha_o dp
\hspace{5mm}\mathrm{with}\hspace{3mm} \phi_o(p_o)=\phi_{topo}\]

we get:


\[\phi' = \phi - \phi_o = \int^{p_s}_p \alpha dp - \int^{p_o}_p \alpha_o dp\]

For the ocean, the reference state is simpler since \(\rho_c\)
does not dependent on \(z\) (\(b_o=g\)) and the surface
reference position is uniformly \(z=0\) (\(R_o=0\)), and the
same subtraction leads to a similar relation. For both fluids, using
the isomorphic notations, we can write:


\[\phi' = \int^{r_{surf}}_r b~ dr - \int^{R_o}_r b_o dr\]

and re-write as:


(2.69)\[\phi' = \int^{r_{surf}}_{R_o} b~ dr + \int^{R_o}_r (b - b_o) dr\]

or:


(2.70)\[\phi' = \int^{r_{surf}}_{R_o} b_o dr + \int^{r_{surf}}_r (b - b_o) dr\]

In section Section 1.3.6, following
eq. (2.69), the pressure/geo-potential \(\phi'\) has been
separated into surface (\(\phi_s\)), and hydrostatic anomaly
(\(\phi'_{hyd}\)). In this section, the split between \(\phi_s\)
and \(\phi'_{hyd}\) is made according to equation (2.70).
This slightly different definition reflects the actual implementation in
the code and is valid for both linear and non-linear free-surface
formulation, in both r-coordinate and r*-coordinate.

Because the linear free-surface approximation ignores the tracer
content of the fluid parcel between \(R_o\) and
\(r_{surf}=R_o+\eta\), for consistency reasons, this part is also
neglected in \(\phi'_{hyd}\) :


\[\phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr \simeq \int^{R_o}_r (b - b_o) dr\]

Note that in this case, the two definitions of \(\phi_s\) and
\(\phi'_{hyd}\) from equations (2.69) and
(2.70) converge toward the same (approximated) expressions:
\(\phi_s = \int^{r_{surf}}_{R_o} b_o dr\) and
\(\phi'_{hyd}=\int^{R_o}_r b' dr\).
On the contrary, the unapproximated formulation (“non-linear
free-surface”, see the next section) retains the full expression:
\(\phi'_{hyd} = \int^{r_{surf}}_r (b - b_o) dr\) . This is
obtained by selecting nonlinFreeSurf [http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf] =4 in parameter file data.
Regarding the surface potential:


\[\phi_s = \int_{R_o}^{R_o+\eta} b_o dr = b_s \eta
 \hspace{5mm}\mathrm{with}\hspace{5mm}
 b_s = \frac{1}{\eta} \int_{R_o}^{R_o+\eta} b_o dr\]

\(b_s \simeq b_o(R_o)\) is an excellent approximation (better
than the usual numerical truncation, since generally \(|\eta|\) is
smaller than the vertical grid increment).

For the ocean, \(\phi_s = g \eta\) and \(b_s = g\) is uniform.
For the atmosphere, however, because of topographic effects, the
reference surface pressure \(R_o=p_o\) has large spatial variations
that are responsible for significant \(b_s\) variations (from 0.8 to
1.2 \([m^3/kg]\)). For this reason, when uniformLin_PhiSurf [http://mitgcm.org/lxr/ident/MITgcm?_i=uniformLin_PhiSurf]
=.FALSE. (parameter file data, namelist PARAM01) a non-uniform
linear coefficient \(b_s\) is used and computed (INI_LINEAR_PHISURF [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_linear_phisurf.F])
according to the reference surface pressure \(p_o\):
\(b_s = b_o(R_o) = c_p \kappa (p_o / P^o_{SL})^{(\kappa - 1)} \theta_{ref}(p_o)\),
with \(P^o_{SL}\) the mean sea-level pressure.




2.10.2.2. Free surface effect on column total thickness (Non-linear free-surface)

The total thickness of the fluid column is \(r_{surf} - R_{fixed} =
\eta + R_o - R_{fixed}\). In most applications, the free surface
displacements are small compared to the total thickness
\(\eta \ll H_o = R_o - R_{fixed}\). In the previous sections and in
older version of the model, the linearized free-surface approximation
was made, assuming \(r_{surf} - R_{fixed} \simeq H_o\) when
computing horizontal transports, either in the continuity equation or in
tracer and momentum advection terms. This approximation is dropped when
using the non-linear free-surface formulation and the total thickness,
including the time varying part \(\eta\), is considered when
computing horizontal transports. Implications for the barotropic part
are presented hereafter. In section Section 2.10.2.3
consequences for tracer conservation is briefly discussed (more details
can be found in Campin et al. (2004) [CAHM04]) ; the general
time-stepping is presented in section Section 2.10.2.4
with some limitations regarding the vertical resolution in section
Section 2.10.2.5.

In the non-linear formulation, the continuous form of the model
equations remains unchanged, except for the 2D continuity equation
(2.11) which is now integrated from
\(R_{fixed}(x,y)\) up to \(r_{surf}=R_o+\eta\) :


\[\epsilon_{fs} \partial_t \eta =
\left. \dot{r} \right|_{r=r_{surf}} + \epsilon_{fw} (P-E) =
- {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta} \vec{\bf v} dr
+ \epsilon_{fw} (P-E)\]

Since \(\eta\) has a direct effect on the horizontal velocity
(through \(\nabla_h \Phi_{surf}\)), this adds a non-linear term to
the free surface equation. Several options for the time discretization
of this non-linear part can be considered, as detailed below.

If the column thickness is evaluated at time step \(n\), and with
implicit treatment of the surface potential gradient, equations
(2.64) and (2.65) become:


\[\begin{aligned}
\epsilon_{fs} {\eta}^{n+1} -
{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n}+R_o-R_{fixed})
{\bf \nabla}_h b_s {\eta}^{n+1}
= {\eta}^*\end{aligned}\]

where


\[\begin{aligned}
{\eta}^* = \epsilon_{fs} \: {\eta}^{n} -
\Delta t {\bf \nabla}_h \cdot \int_{R_{fixed}}^{R_o+\eta^n} \vec{\bf v}^* dr
\: + \: \epsilon_{fw} \Delta_t (P-E)^{n}\end{aligned}\]

This method requires us to update the solver matrix at each time step.

Alternatively, the non-linear contribution can be evaluated fully
explicitly:


\[\begin{aligned}
\epsilon_{fs} {\eta}^{n+1} -
{\bf \nabla}_h \cdot \Delta t^2 (R_o-R_{fixed})
{\bf \nabla}_h b_s {\eta}^{n+1}
= {\eta}^*
+{\bf \nabla}_h \cdot \Delta t^2 (\eta^{n})
{\bf \nabla}_h b_s {\eta}^{n}\end{aligned}\]

This formulation allows one to keep the initial solver matrix unchanged
though throughout the integration, since the non-linear free surface
only affects the RHS.

Finally, another option is a “linearized” formulation where the total
column thickness appears only in the integral term of the RHS
(2.65) but not directly in the equation (2.64).

Those different options (see Table 2.1) have
been tested and show little differences. However, we recommend the use
of the most precise method (nonlinFreeSurf [http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf] =4) since the computation cost
involved in the solver matrix update is negligible.


Table 2.1 Non-linear free-surface flags






	parameter

	value

	description





	
	-1

	linear free-surface, restart from a pickup file



	
	
	produced with #undef EXACT_CONSERV code



	
	0

	Linear free-surface



	nonlinFreeSurf [http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf]

	4

	Non-linear free-surface



	
	3

	same as 4 but neglecting \(\int_{R_o}^{R_o+\eta} b' dr\) in \(\Phi'_{hyd}\)



	
	2

	same as 3 but do not update cg2d solver matrix



	
	1

	same as 2 but treat momentum as in Linear FS



	
	0

	do not use \(r*\) vertical coordinate (= default)



	select_rStar [http://mitgcm.org/lxr/ident/MITgcm?_i=select_rStar]

	2

	use \(r^*\) vertical coordinate



	
	1

	same as 2 but without the contribution of the



	
	
	slope of the coordinate in \(\nabla \Phi\)









2.10.2.3. Tracer conservation with non-linear free-surface

To ensure global tracer conservation (i.e., the total amount) as well as
local conservation, the change in the surface level thickness must be
consistent with the way the continuity equation is integrated, both in
the barotropic part (to find \(\eta\)) and baroclinic part (to find
\(w = \dot{r}\)).

To illustrate this, consider the shallow water model, with a source of
fresh water (P):


\[\partial_t h + \nabla \cdot h \vec{\bf v} = P\]

where \(h\) is the total thickness of the water column. To conserve
the tracer \(\theta\) we have to discretize:


\[\partial_t (h \theta) + \nabla \cdot ( h \theta \vec{\bf v})
  = P \theta_{\mathrm{rain}}\]

Using the implicit (non-linear) free surface described above
(Section 2.4) we have:


\[\begin{split}\begin{aligned}
h^{n+1} = h^{n} - \Delta t \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) + \Delta t P \\\end{aligned}\end{split}\]

The discretized form of the tracer equation must adopt the same “form”
in the computation of tracer fluxes, that is, the same value of
\(h\), as used in the continuity equation:


\[\begin{aligned}
h^{n+1} \, \theta^{n+1} = h^n \, \theta^n
        - \Delta t \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
        + \Delta t P \theta_{rain}\end{aligned}\]

The use of a 3 time-levels time-stepping scheme such as the
Adams-Bashforth make the conservation sightly tricky. The current
implementation with the Adams-Bashforth time-stepping provides an exact
local conservation and prevents any drift in the global tracer content
(Campin et al. (2004) [CAHM04]). Compared to the linear free-surface
method, an additional step is required: the variation of the water
column thickness (from \(h^n\) to \(h^{n+1}\)) is not
incorporated directly into the tracer equation. Instead, the model uses
the \(G_\theta\) terms (first step) as in the linear free surface
formulation (with the “surface correction” turned “on”, see tracer
section):


\[G_\theta^n = \left(- \nabla \cdot (h^n \, \theta^n \, \vec{\bf v}^{n+1})
         - \dot{r}_{surf}^{n+1} \theta^n \right) / h^n\]

Then, in a second step, the thickness variation (expansion/reduction)
is taken into account:


\[\theta^{n+1} = \theta^n + \Delta t \frac{h^n}{h^{n+1}}
   \left( G_\theta^{(n+1/2)} + P (\theta_{\mathrm{rain}} - \theta^n )/h^n \right)\]

Note that with a simple forward time step (no Adams-Bashforth), these
two formulations are equivalent, since
\((h^{n+1} - h^{n})/ \Delta t = P - \nabla \cdot (h^n \, \vec{\bf v}^{n+1} ) = P + \dot{r}_{surf}^{n+1}\)




2.10.2.4. Time stepping implementation of the non-linear free-surface

The grid cell thickness was hold constant with the linear free-surface;
with the non-linear free-surface, it is now varying in time, at least at
the surface level. This implies some modifications of the general
algorithm described earlier in sections Section 2.7 and
Section 2.8.

A simplified version of the staggered in time, non-linear free-surface
algorithm is detailed hereafter, and can be compared to the equivalent
linear free-surface case (eq. (2.36) to
(2.46)) and can also be easily transposed to the
synchronous time-stepping case. Among the simplifications, salinity
equation, implicit operator and detailed elliptic equation are
omitted. Surface forcing is explicitly written as fluxes of
temperature, fresh water and momentum,
\(Q^{n+1/2}, P^{n+1/2}, F_{\bf v}^n\) respectively. \(h^n\)
and \(dh^n\) are the column and grid box thickness in
r-coordinate.



(2.71)\[\phi^{n}_{hyd} = \int b(\theta^{n},S^{n},r) dr\]


(2.72)\[\vec{\bf G}_{\vec{\bf v}}^{n-1/2}\hspace{-2mm} =
\vec{\bf G}_{\vec{\bf v}} (dh^{n-1},\vec{\bf v}^{n-1/2})
\hspace{+2mm};\hspace{+2mm}
\vec{\bf G}_{\vec{\bf v}}^{(n)} =
   \frac{3}{2} \vec{\bf G}_{\vec{\bf v}}^{n-1/2}
-  \frac{1}{2} \vec{\bf G}_{\vec{\bf v}}^{n-3/2}\]


(2.73)\[\vec{\bf v}^{*} = \vec{\bf v}^{n-1/2} + \Delta t \frac{dh^{n-1}}{dh^{n}} \left(
\vec{\bf G}_{\vec{\bf v}}^{(n)} + F_{\vec{\bf v}}^{n}/dh^{n-1} \right)
- \Delta t \nabla \phi_{hyd}^{n}\]


\[\longrightarrow update \phantom{x} model \phantom{x} geometry : {\bf hFac}(dh^n)\]


(2.74)\[\begin{split}\begin{aligned}
\eta^{n+1/2} \hspace{-1mm} & =
\eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
\nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n} \\
& = \eta^{n-1/2} + \Delta t P^{n+1/2} - \Delta t
\nabla \cdot \int \!\!\! \left( \vec{\bf v}^* - g \Delta t \nabla \eta^{n+1/2} \right) dh^{n}\end{aligned}\end{split}\]


(2.75)\[\vec{\bf v}^{n+1/2}\hspace{-2mm} =
\vec{\bf v}^{*} - g \Delta t \nabla \eta^{n+1/2}\]


(2.76)\[h^{n+1} = h^{n} + \Delta t P^{n+1/2} - \Delta t
  \nabla \cdot \int \vec{\bf v}^{n+1/2} dh^{n}\]


(2.77)\[G_{\theta}^{n} = G_{\theta} ( dh^{n}, u^{n+1/2}, \theta^{n} )
\hspace{+2mm};\hspace{+2mm}
G_{\theta}^{(n+1/2)} = \frac{3}{2} G_{\theta}^{n} - \frac{1}{2} G_{\theta}^{n-1}\]


(2.78)\[\theta^{n+1} =\theta^{n} + \Delta t \frac{dh^n}{dh^{n+1}} \left(
G_{\theta}^{(n+1/2)}
+( P^{n+1/2} (\theta_{\mathrm{rain}}-\theta^n) + Q^{n+1/2})/dh^n \right)
\nonumber\]




Two steps have been added to linear free-surface algorithm (eq.
(2.36) to (2.46)): Firstly, the model
“geometry” (here the hFacC,W,S) is updated just before entering
SOLVE_FOR_PRESSURE [https://github.com/MITgcm/MITgcm/blob/master/model/src/solve_for_pressure.F],
using the current \(dh^{n}\) field.
Secondly, the vertically integrated continuity equation
(2.76) has been added (exactConserv [http://mitgcm.org/lxr/ident/MITgcm?_i=exactConserv] =.TRUE., in
parameter file data, namelist PARM01) just before computing the
vertical velocity, in subroutine INTEGR_CONTINUITY [https://github.com/MITgcm/MITgcm/blob/master/model/src/integr_continuity.F]. Although this
equation might appear redundant with (2.74), the
integrated column thickness \(h^{n+1}\) will be different from
\(\eta^{n+1/2} + H\)  in the following cases:


	when Crank-Nicolson time-stepping is used (see Section 2.10.1).


	when filters are applied to the flow field, after (2.75),
and alter the divergence of the flow.


	when the solver does not iterate until convergence; for example,
because a too large residual target was set (cg2dTargetResidual [http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dTargetResidual],
parameter file data, namelist PARM02).




In this staggered time-stepping algorithm, the momentum tendencies are
computed using \(dh^{n-1}\) geometry factors (2.72)
and then rescaled in subroutine TIMESTEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/timestep.F], (2.73),
similarly to tracer tendencies (see Section 2.10.2.3).
The tracers are stepped forward later,
using the recently updated flow field \({\bf v}^{n+1/2}\) and the
corresponding model geometry \(dh^{n}\) to compute the tendencies
(2.77); then the tendencies are rescaled by
\(dh^n/dh^{n+1}\) to derive the new tracers values
\((\theta,S)^{n+1}\) ((2.78), in subroutines CALC_GT [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gt.F],
CALC_GS [https://github.com/MITgcm/MITgcm/blob/master/model/src/calc_gs.F]).

Note that the fresh-water input is added in a consistent way in the
continuity equation and in the tracer equation, taking into account the
fresh-water temperature \(\theta_{\mathrm{rain}}\).

Regarding the restart procedure, two 2D fields \(h^{n-1}\) and
\((h^n-h^{n-1})/\Delta t\) in addition to the standard state
variables and tendencies (\(\eta^{n-1/2}\),
\({\bf v}^{n-1/2}\), \(\theta^n\), \(S^n\),
\({\bf G}_{\bf v}^{n-3/2}\), \(G_{\theta,S}^{n-1}\)) are
stored in a “pickup” file. The model restarts reading this
pickup file, then updates the model geometry according to
\(h^{n-1}\), and compute \(h^n\) and the vertical velocity
before starting the main calling sequence (eq. (2.71) to
(2.78), FORWARD_STEP [https://github.com/MITgcm/MITgcm/blob/master/model/src/forward_step.F]).


S/R  INTEGR_CONTINUITY [https://github.com/MITgcm/MITgcm/blob/master/model/src/integr_continuity.F]



\(h^{n+1} - H_o\) : etaH [http://mitgcm.org/lxr/ident/MITgcm?_i=etaH] ( DYNVARS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/DYNVARS.h] )

\(h^n - H_o\) : etaHnm1 [http://mitgcm.org/lxr/ident/MITgcm?_i=etaHnm1] ( SURFACE.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/SURFACE.h] )

\((h^{n+1} - h^n ) / \Delta t\) : dEtaHdt [http://mitgcm.org/lxr/ident/MITgcm?_i=dEtaHdt] ( SURFACE.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/SURFACE.h] )











2.10.2.5. Non-linear free-surface and vertical resolution

When the amplitude of the free-surface variations becomes as large as
the vertical resolution near the surface, the surface layer thickness
can decrease to nearly zero or can even vanish completely. This later
possibility has not been implemented, and a minimum relative thickness
is imposed (hFacInf [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacInf], parameter file data, namelist PARM01) to
prevent numerical instabilities caused by very thin surface level.

A better alternative to the vanishing level problem relies on a different vertical coordinate
\(r^*\) : The time variation of the total column thickness becomes
part of the \(r^*\) coordinate motion, as in a \(\sigma_{z},\sigma_{p}\)
model, but the fixed part related to topography is treated as in a
height or pressure coordinate model. A complete description is given in
Adcroft and Campin (2004) [AC04].

The time-stepping implementation of the \(r^*\) coordinate is
identical to the non-linear free-surface in \(r\) coordinate, and
differences appear only in the spacial discretization.







          

      

      

    

  

    
      
          
            
  
2.11.1. The finite volume method: finite volumes versus finite difference

The finite volume method is used to discretize the equations in space.
The expression “finite volume” actually has two meanings; one is the
method of embedded or intersecting boundaries (shaved or lopped cells in
our terminology) and the other is non-linear interpolation methods that
can deal with non-smooth solutions such as shocks (i.e. flux limiters
for advection). Both make use of the integral form of the conservation
laws to which the weak solution is a solution on each finite volume of
(sub-domain). The weak solution can be constructed out of piece-wise
constant elements or be differentiable. The differentiable equations can
not be satisfied by piece-wise constant functions.

As an example, the 1-D constant coefficient advection-diffusion
equation:


\[\partial_t \theta + \partial_x ( u \theta - \kappa \partial_x \theta ) = 0\]

can be discretized by integrating over finite sub-domains, i.e. the
lengths \(\Delta x_i\):


\[\Delta x \partial_t \theta + \delta_i ( F ) = 0\]

is exact if \(\theta(x)\) is piece-wise constant over the interval
\(\Delta x_i\) or more generally if \(\theta_i\) is defined as
the average over the interval \(\Delta x_i\).

The flux, \(F_{i-1/2}\), must be approximated:


\[F = u \overline{\theta} - \frac{\kappa}{\Delta x_c} \partial_i \theta\]

and this is where truncation errors can enter the solution. The method
for obtaining \(\overline{\theta}\) is unspecified and a wide range
of possibilities exist including centered and upwind interpolation,
polynomial fits based on the the volume average definitions of
quantities and non-linear interpolation such as flux-limiters.

Choosing simple centered second-order interpolation and differencing
recovers the same ODE’s resulting from finite differencing for the
interior of a fluid. Differences arise at boundaries where a boundary is
not positioned on a regular or smoothly varying grid. This method is
used to represent the topography using lopped cell, see Adcroft et al. (1997)
[AHM97]. Subtle difference also appear in more
than one dimension away from boundaries. This happens because each
direction is discretized independently in the finite difference method
while the integrating over finite volume implicitly treats all
directions simultaneously.





          

      

      

    

  

    
      
          
            
  
2.11.2. C grid staggering of variables

The basic algorithm employed for stepping forward the momentum equations
is based on retaining non-divergence of the flow at all times. This is
most naturally done if the components of flow are staggered in space in
the form of an Arakawa C grid (Arakawa and Lamb, 1977 [AL77]).

Figure 2.5 shows the components of flow
(\(u\),\(v\),\(w\)) staggered in space such that the
zonal component falls on the interface between continuity cells in the
zonal direction. Similarly for the meridional and vertical directions.
The continuity cell is synonymous with tracer cells (they are one and
the same).



[image: cgrid3d]Figure 2.5 Three dimensional staggering of velocity components. This facilitates the natural discretization of the continuity and tracer equations.









2.11.3. Grid initialization and data

Initialization of grid data is controlled by subroutine INI_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_grid.F]
which in calls INI_VERTICAL_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F] to initialize the vertical grid,
and then either of INI_CARTESIAN_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_cartesian_grid.F],
INI_SPHERICAL_POLAR_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_spherical_polar_grid.F]
or INI_CURVILINEAR_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_curvilinear_grid.F] to initialize the horizontal grid for
cartesian, spherical-polar or curvilinear coordinates respectively.

The reciprocals of all grid quantities are pre-calculated and this is
done in subroutine INI_MASKS_ETC [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_masks_etc.F] which is called later by subroutine
INITIALISE_FIXED [https://github.com/MITgcm/MITgcm/blob/master/model/src/initialise_fixed.F].

All grid descriptors are global arrays and stored in common blocks in
GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] and a generally declared as _RS.





          

      

      

    

  

    
      
          
            
  
2.11.4. Horizontal grid

The model domain is decomposed into tiles and within each tile a
quasi-regular grid is used. A tile is the basic unit of domain
decomposition for parallelization but may be used whether parallelized
or not; see section [sec:domain_decomposition] for more details.
Although the tiles may be patched together in an unstructured manner
(i.e. irregular or non-tessilating pattern), the interior of tiles is a
structured grid of quadrilateral cells. The horizontal coordinate system
is orthogonal curvilinear meaning we can not necessarily treat the two
horizontal directions as separable. Instead, each cell in the horizontal
grid is described by the length of it’s sides and it’s area.

The grid information is quite general and describes any of the available
coordinates systems, cartesian, spherical-polar or curvilinear. All that
is necessary to distinguish between the coordinate systems is to
initialize the grid data (descriptors) appropriately.

In the following, we refer to the orientation of quantities on the
computational grid using geographic terminology such as points of the
compass. This is purely for convenience but should not be confused with
the actual geographic orientation of model quantities.



[image: hgrid-abcd]Figure 2.6 Staggering of horizontal grid descriptors (lengths and areas). The grid lines indicate the tracer cell boundaries and are the reference grid for all panels. a) The area of a tracer cell, \(A_c\), is bordered by the lengths \(\Delta x_g\) and \(\Delta y_g\). b) The area of a vorticity cell, \(A_\zeta\), is bordered by the lengths \(\Delta x_c\) and \(\Delta y_c\). c) The area of a u cell, \(A_w\), is bordered by the lengths \(\Delta x_v\) and \(\Delta y_f\). d) The area of a v cell, \(A_s\), is bordered by the lengths \(\Delta x_f\) and \(\Delta y_u\).






Figure 2.6 (a) shows the tracer cell (synonymous with the continuity
cell). The length of the southern edge, \(\Delta x_g\), western
edge, \(\Delta y_g\) and surface area, \(A_c\), presented in the
vertical are stored in arrays dxG [http://mitgcm.org/lxr/ident/MITgcm?_i=dxG], dyG [http://mitgcm.org/lxr/ident/MITgcm?_i=dyG] and rA [http://mitgcm.org/lxr/ident/MITgcm?_i=rA]. The “g”
suffix indicates that the lengths are along the defining grid
boundaries. The “c” suffix associates the quantity with the cell
centers. The quantities are staggered in space and the indexing is such
that dxG(i,j) is positioned to the south of rA(i,j) and
dyG(i,j) positioned to the west.

Figure 2.6 (b) shows the vorticity cell. The length of the southern
edge, \(\Delta x_c\), western edge, \(\Delta y_c\) and surface
area, \(A_\zeta\), presented in the vertical are stored in arrays
dxC [http://mitgcm.org/lxr/ident/MITgcm?_i=dxC], dyC [http://mitgcm.org/lxr/ident/MITgcm?_i=dyC] and rAz [http://mitgcm.org/lxr/ident/MITgcm?_i=rAz]. The “z” suffix indicates that the lengths
are measured between the cell centers and the “\(\zeta\)” suffix
associates points with the vorticity points. The quantities are
staggered in space and the indexing is such that dxC(i,j) is
positioned to the north of rAz(i,j) and dyC(i,j) positioned to
the east.

Figure 2.6 (c) shows the “u” or western (w) cell. The length of the
southern edge, \(\Delta x_v\), eastern edge, \(\Delta y_f\) and
surface area, \(A_w\), presented in the vertical are stored in
arrays dxV [http://mitgcm.org/lxr/ident/MITgcm?_i=dxV], dyF [http://mitgcm.org/lxr/ident/MITgcm?_i=dyF] and rAw [http://mitgcm.org/lxr/ident/MITgcm?_i=rAw]. The “v” suffix indicates that the
length is measured between the v-points, the “f” suffix indicates that
the length is measured between the (tracer) cell faces and the “w”
suffix associates points with the u-points (w stands for west). The
quantities are staggered in space and the indexing is such that
dxV(i,j) is positioned to the south of rAw(i,j) and dyF(i,j)
positioned to the east.

Figure 2.6 (d) shows the “v” or southern (s) cell. The length of the
northern edge, \(\Delta x_f\), western edge, \(\Delta y_u\) and
surface area, \(A_s\), presented in the vertical are stored in
arrays dxF [http://mitgcm.org/lxr/ident/MITgcm?_i=dxF], dyU [http://mitgcm.org/lxr/ident/MITgcm?_i=dyU] and rAs [http://mitgcm.org/lxr/ident/MITgcm?_i=rAs]. The “u” suffix indicates that the
length is measured between the u-points, the “f” suffix indicates that
the length is measured between the (tracer) cell faces and the “s”
suffix associates points with the v-points (s stands for south). The
quantities are staggered in space and the indexing is such that
dxF(i,j) is positioned to the north of rAs(i,j) and dyU(i,j)
positioned to the west.


S/R INI_CARTESIAN_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_cartesian_grid.F] , INI_SPHERICAL_POLAR_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_spherical_polar_grid.F] , INI_CURVILINEAR_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_curvilinear_grid.F]



\(A_c , A_\zeta , A_w , A_s\) : rA [http://mitgcm.org/lxr/ident/MITgcm?_i=rA], rAz [http://mitgcm.org/lxr/ident/MITgcm?_i=rAz], rAw [http://mitgcm.org/lxr/ident/MITgcm?_i=rAw], rAs [http://mitgcm.org/lxr/ident/MITgcm?_i=rAs] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )

\(\Delta x_g , \Delta y_g\) : dxG [http://mitgcm.org/lxr/ident/MITgcm?_i=dxG], dyG [http://mitgcm.org/lxr/ident/MITgcm?_i=dyG] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )

\(\Delta x_c , \Delta y_c\) : dxC [http://mitgcm.org/lxr/ident/MITgcm?_i=dxC], dyC [http://mitgcm.org/lxr/ident/MITgcm?_i=dyC] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )

\(\Delta x_f , \Delta y_f\) : dxF [http://mitgcm.org/lxr/ident/MITgcm?_i=dxF], dyF [http://mitgcm.org/lxr/ident/MITgcm?_i=dyF] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )

\(\Delta x_v , \Delta y_u\) : dxV [http://mitgcm.org/lxr/ident/MITgcm?_i=dxV], dyU [http://mitgcm.org/lxr/ident/MITgcm?_i=dyU] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )









2.11.4.1. Reciprocals of horizontal grid descriptors

Lengths and areas appear in the denominator of expressions as much as in
the numerator. For efficiency and portability, we pre-calculate the
reciprocal of the horizontal grid quantities so that in-line divisions
can be avoided.

For each grid descriptor (array) there is a reciprocal named using the
prefix recip_. This doubles the amount of storage in GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] but
they are all only 2-D descriptors.


S/R INI_MASKS_ETC [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_masks_etc.F]



\(A_c^{-1} , A_\zeta^{-1} , A_w^{-1} , A_s^{-1}\) : recip_rA [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rA], recip_rAz [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rAz], recip_rAw [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rAw], recip_rAs [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_rAs] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )

\(\Delta x_g^{-1} , \Delta y_g^{-1}\) : recip_dxG [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxG], recip_dyG [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyG] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )

\(\Delta x_c^{-1} , \Delta y_c^{-1}\) : recip_dxC [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxC], recip_dyC [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyC] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )

\(\Delta x_f^{-1} , \Delta y_f^{-1}\) : recip_dxF [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxF], recip_dyF [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyF] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )

\(\Delta x_v^{-1} , \Delta y_u^{-1}\) : recip_dxV [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dxV], recip_dyU [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_dyU] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )











2.11.4.2. Cartesian coordinates

Cartesian coordinates are selected when the logical flag
usingCartesianGrid [http://mitgcm.org/lxr/ident/MITgcm?_i=usingCartesianGrid] in namelist PARM04 is set to true. The grid
spacing can be set to uniform via scalars dXspacing [http://mitgcm.org/lxr/ident/MITgcm?_i=dXspacing] and
dYspacing [http://mitgcm.org/lxr/ident/MITgcm?_i=dYspacing] in namelist PARM04 or to variable resolution by the
vectors DELX [http://mitgcm.org/lxr/ident/MITgcm?_i=DELX] and DELY [http://mitgcm.org/lxr/ident/MITgcm?_i=DELY]. Units are normally meters.
Non-dimensional coordinates can be used by interpreting the
gravitational constant as the Rayleigh number.




2.11.4.3. Spherical-polar coordinates

Spherical coordinates are selected when the logical flag
usingSphericalPolarGrid [http://mitgcm.org/lxr/ident/MITgcm?_i=usingSphericalPolarGrid] in namelist PARM04 is set to true. The
grid spacing can be set to uniform via scalars dXspacing [http://mitgcm.org/lxr/ident/MITgcm?_i=dXspacing] and
dYspacing [http://mitgcm.org/lxr/ident/MITgcm?_i=dYspacing] in namelist PARM04 or to variable resolution by the
vectors DELX [http://mitgcm.org/lxr/ident/MITgcm?_i=DELX] and DELY [http://mitgcm.org/lxr/ident/MITgcm?_i=DELY]. Units of these namelist variables are
alway degrees. The horizontal grid descriptors are calculated from these
namelist variables have units of meters.




2.11.4.4. Curvilinear coordinates

Curvilinear coordinates are selected when the logical flag
usingCurvilinearGrid [http://mitgcm.org/lxr/ident/MITgcm?_i=usingCurvilinearGrid] in namelist PARM04 is set to true. The grid
spacing can not be set via the namelist. Instead, the grid descriptors
are read from data files, one for each descriptor. As for other grids,
the horizontal grid descriptors have units of meters.







          

      

      

    

  

    
      
          
            
  
2.11.5. Vertical grid



[image: vgrid-accur-center]Figure 2.7 Two versions of the vertical grid. a) The cell centered approach where the interface depths are specified and the tracer points centered in between the interfaces. b) The interface centered approach where tracer levels are specified and the w-interfaces are centered in between.






As for the horizontal grid, we use the suffixes “c” and “f” to indicates
faces and centers. Figure 2.7 (a) shows the default vertical grid
used by the model. \(\Delta r_f\) is the difference in \(r\)
(vertical coordinate) between the faces (i.e. \(\Delta r_f \equiv -
\delta_k r\) where the minus sign appears due to the convention that the
surface layer has index \(k=1\).).

The vertical grid is calculated in subroutine INI_VERTICAL_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F] and
specified via the vector delR [http://mitgcm.org/lxr/ident/MITgcm?_i=delR] in namelist PARM04. The units of “r”
are either meters or Pascals depending on the isomorphism being used
which in turn is dependent only on the choice of equation of state.

There are alternative namelist vectors delZ [http://mitgcm.org/lxr/ident/MITgcm?_i=delZ] and delP [http://mitgcm.org/lxr/ident/MITgcm?_i=delP] which
dictate whether z- or p- coordinates are to be used but we intend to
phase this out since they are redundant.

The reciprocals \(\Delta r_f^{-1}\) and \(\Delta r_c^{-1}\) are
pre-calculated (also in subroutine INI_VERTICAL_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F]). All vertical
grid descriptors are stored in common blocks in GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h].

The above grid Figure 2.7 (a) is known as the cell centered
approach because the tracer points are at cell centers; the cell centers
are mid-way between the cell interfaces. This discretization is selected
when the thickness of the levels are provided (delR [http://mitgcm.org/lxr/ident/MITgcm?_i=delR], parameter file
data, namelist PARM04) An alternative, the vertex or interface
centered approach, is shown in Figure 2.7 (b). Here, the interior
interfaces are positioned mid-way between the tracer nodes (no longer
cell centers). This approach is formally more accurate for evaluation of
hydrostatic pressure and vertical advection but historically the cell
centered approach has been used. An alternative form of subroutine
INI_VERTICAL_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F] is used to select the interface centered approach
This form requires to specify \(Nr+1\) vertical distances delRc [http://mitgcm.org/lxr/ident/MITgcm?_i=delRc]
(parameter file data, namelist PARM04, e.g.
ideal_2D_oce/input/data [https://github.com/MITgcm/MITgcm/blob/master/verification/ideal_2D_oce/input/data]) corresponding to surface to
center, \(Nr-1\) center to center, and center to bottom distances.


S/R INI_VERTICAL_GRID [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F]



\(\Delta r_f , \Delta r_c\) : drF [http://mitgcm.org/lxr/ident/MITgcm?_i=drF], drC [http://mitgcm.org/lxr/ident/MITgcm?_i=drC] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )

\(\Delta r_f^{-1} , \Delta r_c^{-1}\) : recip_drF [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_drF], recip_drC [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_drC] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )











2.11.6. Topography: partially filled cells

Adcroft et al. (1997) [AHM97] presented two alternatives to the
step-wise finite difference representation of topography. The method is
known to the engineering community as intersecting boundary method. It
involves allowing the boundary to intersect a grid of cells thereby
modifying the shape of those cells intersected. We suggested allowing
the topography to take on a piece-wise linear representation (shaved
cells) or a simpler piecewise constant representation (partial step).
Both show dramatic improvements in solution compared to the traditional
full step representation, the piece-wise linear being the best. However,
the storage requirements are excessive so the simpler piece-wise
constant or partial-step method is all that is currently supported.



[image: vgrid-xz]Figure 2.8 A schematic of the x-r plane showing the location of the non-dimensional fractions \(h_c\) and \(h_w\) . The physical thickness of a tracer cell is given by \(h_c(i,j,k) \Delta r_f(k)\) and the physical thickness of the open side is given by  \(h_w(i,j,k) \Delta r_f(k)\) .






Figure 2.8 shows a schematic of the x-r plane indicating how the
thickness of a level is determined at tracer and u points. The physical
thickness of a tracer cell is given by \(h_c(i,j,k) \Delta
r_f(k)\) and the physical thickness of the open side is given by
\(h_w(i,j,k) \Delta r_f(k)\). Three 3-D descriptors \(h_c\),
\(h_w\) and \(h_s\) are used to describe the geometry:
hFacC [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacC], hFacW [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacW] and hFacS [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacS] respectively. These are calculated in
subroutine INI_MASKS_ETC [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_masks_etc.F] along with there reciprocals
recip_hFacC [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacC], recip_hFacW [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacW] and recip_hFacS [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacS].

The non-dimensional fractions (or h-facs as we call them) are calculated
from the model depth array and then processed to avoid tiny volumes. The
rule is that if a fraction is less than hFacMin [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin] then it is rounded
to the nearer of \(0\) or hFacMin [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin] or if the physical thickness
is less than hFacMinDr [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMinDr] then it is similarly rounded. The larger of
the two methods is used when there is a conflict. By setting
hFacMinDr [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMinDr] equal to or larger than the thinnest nominal layers,
\(\min{(\Delta z_f)}\), but setting hFacMin [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin] to some small
fraction then the model will only lop thick layers but retain stability
based on the thinnest unlopped thickness;
\(\min{(\Delta z_f,hFacMinDr)}\).


S/R :filelink:INI_MASKS_ETC [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_masks_etc.F]



\(h_c , h_w , h_s\) : hFacC [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacC], hFacW [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacW], hFacS [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacS] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )

\(h_c^{-1} , h_w^{-1} , h_s^{-1}\) : recip_hFacC [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacC], recip_hFacW [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacW], recip_hFacS [http://mitgcm.org/lxr/ident/MITgcm?_i=recip_hFacS] ( GRID.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h] )












          

      

      

    

  

    
      
          
            
  
3. Getting Started with MITgcm

This chapter is divided into two main parts. The first part, which is
covered in sections Section 3.1 through
Section 3.6, contains information about how to download, build and run the  MITgcm.
The second part, covered in Section 4, contains a set of
step-by-step tutorials for running specific pre-configured atmospheric
and oceanic experiments.

We believe the best way to familiarize yourself with the
model is to run the case study examples provided in the MITgcm repository.
Information is also provided
here on how to customize the code when you are ready to try implementing
the configuration you have in mind.  The code and algorithm
are described more fully in Section 2 and
Section 6 and chapters thereafter.


3.1. Where to find information

There is a web-archived support mailing list for the model that you can
email at MITgcm-support@mitgcm.org once you have subscribed.

To sign up (subscribe) for the mailing list (highly recommended), click here [http://mailman.mitgcm.org/mailman/listinfo/mitgcm-support/]

To browse through the support archive, click here [http://mailman.mitgcm.org/pipermail/mitgcm-support/]




3.2. Obtaining the code

The MITgcm code and documentation are under continuous development and we generally recommend that one downloads the latest version of the code. You will need to decide if you want to work in a “git-aware” environment (Method 1) or with a one-time “stagnant” download (Method 2). We generally recommend method 1, as it is more flexible and allows your version of the code to be regularly updated as MITgcm developers check in bug fixes and new features. However, this typically requires at minimum a rudimentary understanding of git in order to make it worth one’s while.

Periodically we release an official checkpoint (or “tag”). We recommend one download the latest code, unless there are reasons for obtaining a specific checkpoint (e.g. duplicating older results, collaborating with someone using an older release, etc.)


3.2.1. Method 1

This section describes how to download git-aware copies of the repository.
In a terminal window, cd to the directory where you want your code to reside.
Type:

% git clone https://github.com/MITgcm/MITgcm.git





This will download the latest available code. If you now want to revert this code to a specific checkpoint release,
first cd into the MITgcm directory you just downloaded, then type git checkout checkpointXXX where XXX is the checkpoint version.

Alternatively, if you prefer to use ssh keys (say for example, you have a firewall which won’t allow a https download), type:

% git clone git@github.com:MITgcm/MITgcm.git





You will need a GitHub account for this, and will have to generate a ssh key though your GitHub account user settings.

The fully git-aware download is over several hundred MB, which is considerable if one has limited internet download speed. In comparison, the one-time download zip file (Method 2, below) is order 100MB. However, one can obtain a truncated, yet still git-aware copy of the current code by adding the option --depth=1 to the git clone command above; all files will be present, but it will not include the full git history. However, the repository can be updated going forward.




3.2.2. Method 2

This section describes how to do a one-time download of the MITgcm, NOT git-aware.
In a terminal window, cd to the directory where you want your code to reside.
To obtain the current code, type:

% wget https://github.com/MITgcm/MITgcm/archive/master.zip





For specific checkpoint release XXX, instead type:

% wget https://github.com/MITgcm/MITgcm/archive/checkpointXXX.zip










3.3. Updating the code

There are several different approaches one can use to obtain updates to the MITgcm; which is best for
you depends a bit on how you intend to use the MITgcm and your knowledge of git (and/or willingness
to learn). Below we outline three suggested update pathways:


	Fresh Download of the MITgcm




This approach is the most simple, and virtually foolproof. Whether you downloaded the code from a static
zip file (Method 2) or used the git clone command (Method 1), create a new directory and repeat
this procedure to download a current copy of the MITgcm. Say for example you are starting a new
research project, this would be a great time to grab the most recent code repository and keep this
new work entirely separate from any past simulations. This approach requires no understanding of git,
and you are free to make changes to any files in the MIT repo tree (although we generally recommend
that you avoid doing so, instead working in new subdirectories or on separate scratch disks as described
in Section 3.5.1, for example).


	Using git pull to update the (unmodified) MITgcm repo tree




If you have downloaded the code through a git clone command (Method 1 above), you can incorporate
any changes to the source code (including any changes to any files in the MITgcm repository, new packages
or analysis routines, etc.) that may have occurred since your original download. There is a simple
command to bring all code in the repository to a ‘current release’ state. From the MITgcm top directory
or any of its subdirectories, type:

% git pull





and all files will be updated to match the current state of the code repository, as it exists
at GitHub [https://github.com/MITgcm/MITgcm.git]. (Note: if you plan to contribute to
the MITgcm and followed the steps to download the code as described in
Section 5, you will need to type git pull upstream instead.)

This update pathway is ideal if you are in the midst of a project and you want to incorporate new
MITgcm features into your executable(s), or take advantage of recently added analysis utilties, etc.
After the git pull, any changes in model source code and include files will be updated, so you can
repeat the build procedure (Section 3.5) and you will include all these new features
in your new executable.

Be forewarned, this will only work if you have not modified ANY of the files in the MITgcm repository
(adding new files is ok; also, all verification run subdirectories build and run are also ignored by git).
If you have modified files and the git pull fails with errors, there is no easy fix other than
to learn something about git (continue reading…)


	Fully embracing the power of git!




Git offers many tools to help organize and track changes in your work.  For example, one might keep separate
projects on different branches, and update the code separately (using git pull) on these separate branches.
You can even make changes to code in the MIT repo tree; when git then tries to update code from upstream
(see Figure 5.1), it will notify you about possible conflicts and even merge the code changes
together if it can. You can also use git commit to help you track what you are modifying in your
simulations over time. If you’re planning to submit a pull request to include your changes, you should
read the contributing guide in Section 5, and we suggest you do this model development
in a separate, fresh copy of the code. See Section 5.2 for more information and how
to use git effectively to manage your workflow.




3.4. Model and directory structure

The “numerical” model is contained within a execution environment
support wrapper. This wrapper is designed to provide a general framework
for grid-point models; MITgcm is a specific numerical model that makes use of
this framework (see chapWrapper for additional detail). Under this structure,
the model is split into execution
environment support code and conventional numerical model code. The
execution environment support code is held under the eesupp
directory. The grid point model code is held under the model
directory. Code execution actually starts in the eesupp routines and
not in the model routines. For this reason the top-level MAIN.F
is in the eesupp/src directory. In general, end-users should not
need to worry about the wrapper support code. The top-level routine for the numerical
part of the code is in model/src/THE_MODEL_MAIN.F. Here is a brief
description of the directory structure of the model under the root tree.


	model: this directory contains the main source code. Also
subdivided into two subdirectories inc (includes files) and src (source code).


	eesupp: contains the execution environment source code. Also
subdivided into two subdirectories inc and src.


	pkg: contains the source code for the packages. Each package
corresponds to a subdirectory. For example, gmredi contains the
code related to the Gent-McWilliams/Redi scheme, seaice the code
for a dynamic seaice model which can be coupled to the ocean model. The packages are
described in detail in Section 8].


	doc: contains the MITgcm documentation in reStructured Text (rst) format.


	tools: this directory contains various useful tools. For example,
genmake2 is a script written in bash that should be used
to generate your makefile. The subdirectory build_options contains
‘optfiles’ with the compiler options for many different compilers and machines
that can run MITgcm (see Section 3.5.2.1).
This directory also contains subdirectories adjoint and OAD_support
that are used to generate the tangent linear and adjoint model (see details
in Section 7).


	utils: this directory contains various utilities. The matlab subdirectory
contains matlab scripts for reading model output directly into
matlab. The subdirectory python contains similar routines for python.
scripts contains C-shell post-processing scripts for
joining processor-based and tiled-based model output.


	verification: this directory contains the model examples. See
Section 4.


	jobs: contains sample job scripts for running MITgcm.


	lsopt: Line search code used for optimization.


	optim: Interface between MITgcm and line search code.







3.5. Building the code

To compile the code, we use the make program. This uses a file
(Makefile) that allows us to pre-process source files, specify
compiler and optimization options and also figures out any file
dependencies. We supply a script (genmake2), described in section
Section 3.5.2, that automatically creates the Makefile for you. You
then need to build the dependencies and compile the code.

As an example, assume that you want to build and run experiment
verification/exp2. Let’s build the code in verification/exp2/build:

% cd verification/exp2/build





First, build the Makefile:

% ../../../tools/genmake2 -mods ../code





The -mods command line option tells genmake2 to override model source code
with any files in the directory ../code/. This and additional genmake2 command line options are described
more fully in Section 3.5.2.2.

On many systems, the genmake2 program will be able to automatically
recognize the hardware, find compilers and other tools within the user’s
path (“echo $PATH”), and then choose an appropriate set of options
from the files (“optfiles”) contained in the tools/build_options
directory. Under some circumstances, a user may have to create a new
optfile in order to specify the exact combination of compiler,
compiler flags, libraries, and other options necessary to build a
particular configuration of MITgcm. In such cases, it is generally
helpful to peruse the existing optfiles and mimic their syntax.
See Section 3.5.2.1.

The MITgcm developers are willing to
provide help writing or modifing optfiles. And we encourage users to
ask for assistance or post new optfiles (particularly ones for new machines or
architectures) through the GitHub issue tracker [https://github.com/MITgcm/MITgcm/issues]
or email the MITgcm-support@mitgcm.org list.

To specify an optfile to genmake2, the command line syntax is:

% ../../../tools/genmake2 -mods ../code -of /path/to/optfile





Once a Makefile has been generated, we create the dependencies with
the command:

% make depend





This modifies the Makefile by attaching a (usually, long) list of
files upon which other files depend. The purpose of this is to reduce
re-compilation if and when you start to modify the code. The make depend
command also creates links from the model source to this directory, except for links to those files
in the specified -mods directory. IMPORTANT NOTE: Editing the source code files in the build directory
will not edit a local copy (since these are just links) but will edit the original files in model/src (or model/inc)
or in the specified -mods directory. While the latter might be what you intend, editing the master copy in model/src
is usually NOT what was intended and may cause grief somewhere down the road. Rather, if you need to add
to the list of modified source code files, place a copy of
the file(s) to edit in the -mods directory, make the edits to these -mods directory files, go back to the build directory and type make Clean,
and then re-build the makefile (these latter steps critical or the makefile will not
link to to this newly edited file).

It is important to note that the make depend stage will occasionally
produce warnings or errors if the dependency parsing tool is unable
to find all of the necessary header files (e.g., netcdf.inc). In some cases you
may need to obtain help from your system administrator to locate these files.

Next, one can compile the code using:

% make





The make command creates an executable called mitgcmuv. Additional
make “targets” are defined within the makefile to aid in the production
of adjoint and other versions of MITgcm. On computers with multiple processor cores
or shared multi-processor (a.k.a. SMP) systems, the build process can often be sped
up appreciably using the command:

% make -j 2





where the “2” can be replaced with a number that corresponds to the
number of cores (or discrete CPUs) available.

In addition, there are several housekeeping make clean options that might be useful:


	make clean removes files that make generates (e.g., *.o and *.f files)


	make Clean removes files and links generated by make and make depend


	make CLEAN removes pretty much everything, including any executibles and output from genmake2




Now you are ready to run the model. General instructions for doing so
are given in section Section 3.6.


3.5.1. Building/compiling the code elsewhere

In the example above (Section 3.5) we built the
executable in the build directory of the experiment.
Model object files and output data can use up large amounts of disk
space so it is often preferable to operate on a large
scratch disk. Here, we show how to configure and compile the code on a scratch disk,
without having to copy the entire source
tree. The only requirement to do so is you have genmake2 in your path, or
you know the absolute path to genmake2.

Assuming the model source is in ~/MITgcm, then the
following commands will build the model in /scratch/exp2-run1:

% cd /scratch/exp2-run1
% ~/MITgcm/tools/genmake2 -rootdir ~/MITgcm -mods ~/MITgcm/verification/exp2/code
% make depend
% make





Note the use of the command line option -rootdir to tell genmake2 where to find the MITgcm directory tree.
In general, one can compile the code in any given directory by following this procedure.




3.5.2. Using genmake2

This section describes further details and capabilities of genmake2 (located in the
tools directory), the MITgcm tool used to generate a Makefile. genmake2 is a shell
script written to work with all “sh”–compatible shells including bash
v1, bash v2, and Bourne (like many unix tools, there is a help option that is invoked thru genmake -h).
genmake2 parses information from the following sources:


	a genmake_local file if one is found in the current directory


	command-line options


	an “options file” as specified by the command-line option
–of /path/to/filename


	a packages.conf file (if one is found) with the specific list of
packages to compile. The search path for file packages.conf is
first the current directory, and then each of the -mods directories
in the given order (see here).





3.5.2.1. Optfiles in tools/build_options directory:

The purpose of the optfiles is to provide all the compilation options
for particular “platforms” (where “platform” roughly means the
combination of the hardware and the compiler) and code configurations.
Given the combinations of possible compilers and library dependencies
(e.g., MPI and NetCDF) there may be numerous optfiles available for a
single machine. The naming scheme for the majority of the optfiles
shipped with the code is OS_HARDWARE_COMPILER where


	OS

	is the name of the operating system (generally the lower-case output
of a linux terminal uname command)



	HARDWARE

	is a string that describes the CPU type and corresponds to output
from a uname -m command. Some common CPU types:


	amd64

	is for x86_64 systems (most common, including AMD and Intel 64-bit CPUs)



	ia64

	is for Intel IA64 systems (eg. Itanium, Itanium2)



	ppc

	is for (old) Mac PowerPC systems







	COMPILER

	is the compiler name (generally, the name of the FORTRAN executable)





In many cases, the default optfiles are sufficient and will result in
usable Makefiles. However, for some machines or code configurations, new
optfiles must be written. To create a new optfile, it is generally
best to start with one of the defaults and modify it to suit your needs.
Like genmake2, the optfiles are all written using a simple
sh–compatible syntax. While nearly all variables used within
genmake2 may be specified in the optfiles, the critical ones that
should be defined are:


	FC

	the FORTRAN compiler (executable) to use



	DEFINES

	the command-line DEFINE options passed to the compiler



	CPP

	the C pre-processor to use



	NOOPTFLAGS

	options flags for special files that should not be optimized





For example, the optfile for a typical Red Hat Linux machine (amd64
architecture) using the GCC (g77) compiler is

FC=g77
DEFINES='-D_BYTESWAPIO -DWORDLENGTH=4'
CPP='cpp  -traditional -P'
NOOPTFLAGS='-O0'
#  For IEEE, use the "-ffloat-store" option
if test "x$IEEE" = x ; then
    FFLAGS='-Wimplicit -Wunused -Wuninitialized'
    FOPTIM='-O3 -malign-double -funroll-loops'
else
    FFLAGS='-Wimplicit -Wunused -ffloat-store'
    FOPTIM='-O0 -malign-double'
fi





If you write an optfile for an unrepresented machine or compiler, you
are strongly encouraged to submit the optfile to the MITgcm project for
inclusion. Please submit the file through the GitHub issue tracker [https://github.com/MITgcm/MITgcm/issues]
or email the MITgcm-support@mitgcm.org list.




3.5.2.2. Command-line options:

In addition to the optfiles, genmake2 supports a number of helpful
command-line options. A complete list of these options can be obtained by:

% genmake2 -h





The most important command-line options are:


	–optfile /path/to/file

	specifies the optfile that should be used for a particular build.

If no optfile is specified (either through the command line or the
MITGCM_OPTFILE environment variable), genmake2 will try to make a
reasonable guess from the list provided in tools/build_options.
The method used for making this guess is to first determine the
combination of operating system and hardware (eg. “linux_amd64”) and
then find a working FORTRAN compiler within the user’s path. When
these three items have been identified, genmake2 will try to find an
optfile that has a matching name.






	–mods ’dir1 dir2 dir3 ...’

	specifies a list of directories containing “modifications”. These
directories contain files with names that may (or may not) exist in
the main MITgcm source tree but will be overridden by any
identically-named sources within the -mods directories.

The order of precedence for this “name-hiding” is as follows:


	“mods” directories (in the order given)


	Packages either explicitly specified or provided by default (in
the order given)


	Packages included due to package dependencies (in the order that
that package dependencies are parsed)


	The “standard dirs” (which may have been specified by the
“-standarddirs” option)






	-oad

	generates a makefile for a OpenAD build



	–adof /path/to/file

	specifies the “adjoint” or automatic differentiation options file to
be used. The file is analogous to the optfile defined above but it
specifies information for the AD build process.

The default file is located in
tools/adjoint_options/adjoint_default and it defines the “TAF”
and “TAMC” compilers. An alternate version is also available at
tools/adjoint_options/adjoint_staf that selects the newer “STAF”
compiler. As with any compilers, it is helpful to have their
directories listed in your $PATH environment variable.



	–mpi

	enables certain MPI features (using CPP #define)
within the code and is necessary for MPI builds (see Section 3.5.3).



	–omp

	enables OPENMP code and compiler flag OMPFLAG



	–ieee

	use IEEE numerics (requires support in optfile)



	–make /path/to/gmake

	due to the poor handling of soft-links and other bugs common with
the make versions provided by commercial Unix vendors, GNU
make (sometimes called gmake) may be preferred. This
option provides a means for specifying the make executable to be
used.










3.5.3. Building  with MPI

Building MITgcm to use MPI libraries can be complicated due to the
variety of different MPI implementations available, their dependencies
or interactions with different compilers, and their often ad-hoc
locations within file systems. For these reasons, its generally a good
idea to start by finding and reading the documentation for your
machine(s) and, if necessary, seeking help from your local systems
administrator.

The steps for building MITgcm with MPI support are:


	Determine the locations of your MPI-enabled compiler and/or MPI
libraries and put them into an options file as described in Section 3.5.2.1.
One can start with one of the examples in
tools/build_options [https://github.com/MITgcm/MITgcm/blob/master/tools/build_options]
such as linux_amd64_gfortran or linux_amd64_ifort+impi and
then edit it to suit the machine at hand. You may need help from your
user guide or local systems administrator to determine the exact
location of the MPI libraries. If libraries are not installed, MPI
implementations and related tools are available including:


	Open MPI [https://www.open-mpi.org/]


	MVAPICH2 [http:mvapich.cse.ohio-state.edu/]


	MPICH [https://www.mpich.org/]


	Intel MPI [https://software.intel.com/en-us/intel-mpi-library/]






	Build the code with the genmake2 -mpi option (see Section 3.5.2.2)
using commands such as:

%  ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
%  make depend
%  make














3.6. Running the model

If compilation finished successfully (Section 3.5) then an
executable called mitgcmuv will now exist in the local (build) directory.

To run the model as a single process (i.e., not in parallel) simply
type (assuming you are still in the build directory):

% cd ../run
% ln -s ../input/* .
% cp ../build/mitgcmuv .
% ./mitgcmuv





Here, we are making a link to all the support data files needed by the MITgcm
for this experiment, and then copying the executable from the the build directory.
The ./ in the last step is a safe-guard to make sure you use the local executable in
case you have others that might exist in your $PATH.
The above command will spew out many lines of text output to your
screen. This output contains details such as parameter values as well as
diagnostics such as mean kinetic energy, largest CFL number, etc. It is
worth keeping this text output with the binary output so we normally
re-direct the stdout stream as follows:

% ./mitgcmuv > output.txt





In the event that the model encounters an error and stops, it is very
helpful to include the last few line of this output.txt file along
with the (stderr) error message within any bug reports.

For the example experiments in verification, an example of the
output is kept in results/output.txt for comparison. You can compare
your output.txt with the corresponding one for that experiment to
check that your set-up indeed works. Congratulations!


3.6.1. Running with MPI

Run the code with the appropriate MPI “run” or “exec” program
provided with your particular implementation of MPI. Typical MPI
packages such as Open MPI [https://www.open-mpi.org/] will use something like:


%  mpirun -np 4 ./mitgcmuv








Sightly more complicated scripts may be needed for many machines
since execution of the code may be controlled by both the MPI library
and a job scheduling and queueing system such as SLURM, PBS, LoadLeveler,
or any of a number of similar tools. See your local cluster documentation
or system administrator for the specific syntax required to run on your computing facility.




3.6.2. Output files

The model produces various output files and, when using mnc (i.e., NetCDF),
sometimes even directories. Depending upon the I/O package(s) selected
at compile time (either mdsio or mnc or both as determined by
code/packages.conf) and the run-time flags set (in
input/data.pkg), the following output may appear. More complete information describing output files
and model diagnostics is described in chap_diagnosticsio.


3.6.2.1. MDSIO output files

The “traditional” output files are generated by the mdsio package
(link to section_mdsio).The mdsio model data are written according to a
“meta/data” file format. Each variable is associated with two files with
suffix names .data and .meta. The .data file contains the
data written in binary form (big endian by default). The .meta file
is a “header” file that contains information about the size and the
structure of the .data file. This way of organizing the output is
particularly useful when running multi-processors calculations.

At a minimum, the instantaneous “state” of the model is written out,
which is made of the following files:


	U.00000nIter - zonal component of velocity field (m/s and
positive eastward).


	V.00000nIter - meridional component of velocity field (m/s and
positive northward).


	W.00000nIter - vertical component of velocity field (ocean: m/s
and positive upward, atmosphere: Pa/s and positive towards increasing
pressure i.e., downward).


	T.00000nIter - potential temperature (ocean:
\(^{\circ}\mathrm{C}\), atmosphere: \(^{\circ}\mathrm{K}\)).


	S.00000nIter - ocean: salinity (psu), atmosphere: water vapor
(g/kg).


	Eta.00000nIter - ocean: surface elevation (m), atmosphere:
surface pressure anomaly (Pa).




The chain 00000nIter consists of ten figures that specify the
iteration number at which the output is written out. For example,
U.0000000300 is the zonal velocity at iteration 300.

In addition, a “pickup” or “checkpoint” file called:


	pickup.00000nIter




is written out. This file represents the state of the model in a
condensed form and is used for restarting the integration (at the specific iteration number).
Some additional packages and parameterizations also produce separate pickup files, e.g.,


	pickup_cd.00000nIter if the C-D scheme is used (see link to description)


	pickup_seaice.00000nIter if the seaice package is turned on (see link to description)


	pickup_ptracers.00000nIter if passive tracers are included in the simulation (see link to description)




Rolling checkpoint files are
the same as the pickup files but are named differently. Their name
contain the chain ckptA or ckptB instead of 00000nIter. They
can be used to restart the model but are overwritten every other time
they are output to save disk space during long integrations.




3.6.2.2. MNC output files

The MNC package (link to section_mnc) is a set of routines written to read, write, and
append NetCDF files [http://www.unidata.ucar.edu/software/netcdf/]. Unlike the mdsio output, the mnc–generated output is usually
placed within a subdirectory with a name such as mnc_output_ (by default, NetCDF tries to append, rather than overwrite, existing files,
so a unique output directory is helpful for each separate run).

The MNC output files are all in the “self-describing” NetCDF format and
can thus be browsed and/or plotted using tools such as:


	ncdump [https://www.unidata.ucar.edu/software/netcdf/netcdf-4/newdocs/netcdf/ncdump.html] is a utility which is typically included with every NetCDF
install, and converts the NetCDF binaries into formatted ASCII text files.


	ncview [http://meteora.ucsd.edu/~pierce/ncview_home_page.html] is a very convenient and quick way to plot NetCDF
data and it runs on most platforms. Panoply [https://www.giss.nasa.gov/tools/panoply/] is a similar alternative.


	Matlab, GrADS, IDL and other common post-processing environments provide
built-in NetCDF interfaces.









3.6.3. Looking at the output


3.6.3.1. MATLAB


MDSIO output

The repository includes a few Matlab utilities to read output
files written in the mdsio format. The Matlab scripts are located in the
directory utils/matlab under the root tree. The script rdmds.m
reads the data. Look at the comments inside the script to see how to use
it.

Some examples of reading and visualizing some output in Matlab:

% matlab
>> H=rdmds('Depth');
>> contourf(H');colorbar;
>> title('Depth of fluid as used by model');

>> eta=rdmds('Eta',10);
>> imagesc(eta');axis ij;colorbar;
>> title('Surface height at iter=10');

>> eta=rdmds('Eta',[0:10:100]);
>> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end








NetCDF

Similar scripts for netCDF output (rdmnc.m) are available and they
are described in Section [sec:pkg:mnc].






3.6.3.2. Python


MDSIO output

The repository includes Python scripts for reading the mdsio format under utils/python.
The following example shows how to load in some data:

# python
import mds

Eta = mds.rdmds('Eta', itrs=10)





The docstring for mds.rdmds contains much more detail about using this function and the options that it takes.




NetCDF output

The NetCDF output is currently produced with one file per processor. This means the individual tiles
need to be stitched together to create a single NetCDF file that spans the model domain. The script
gluemncbig.py in the utils/python folder can do this efficiently from the command line.

The following example shows how to use the xarray package [http://xarray.pydata.org/] to read
the resulting NetCDF file into python:

# python
import xarray as xr

Eta = xr.open_dataset('Eta.nc')














3.7. Customizing the model configuration

When you are ready to run the model in the configuration you want, the
easiest thing is to use and adapt the setup of the case studies
experiment (described in Section 4) that is the closest to your
configuration. Then, the amount of setup will be minimized. In this
section, we focus on the setup relative to the “numerical model” part of
the code (the setup relative to the “execution environment” part is
covered in the software architecture/wrapper section) and on the variables and
parameters that you are likely to change.

In what follows, the parameters are grouped into categories related to
the computational domain, the equations solved in the model, and the
simulation controls.


3.7.1. Parameters: Computational Domain, Geometry and Time-Discretization

Dimensions


The number of points in the x, y, and r directions are represented
by the variables sNx [http://mitgcm.org/lxr/ident/MITgcm?_i=sNx], sNy [http://mitgcm.org/lxr/ident/MITgcm?_i=sNy] and Nr [http://mitgcm.org/lxr/ident/MITgcm?_i=Nr] respectively which are
declared and set in the file SIZE.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/SIZE.h]. (Again, this
assumes a mono-processor calculation. For multiprocessor
calculations see the section on parallel implementation.)




Grid


Three different grids are available: cartesian, spherical polar, and
curvilinear (which includes the cubed sphere). The grid is set
through the logical variables usingCartesianGrid [http://mitgcm.org/lxr/ident/MITgcm?_i=usingCartesianGrid],
usingSphericalPolarGrid [http://mitgcm.org/lxr/ident/MITgcm?_i=usingSphericalPolarGrid], and usingCurvilinearGrid [http://mitgcm.org/lxr/ident/MITgcm?_i=usingCurvilinearGrid]. In the
case of spherical and curvilinear grids, the southern boundary is
defined through the variable ygOrigin [http://mitgcm.org/lxr/ident/MITgcm?_i=ygOrigin] which corresponds to the
latitude of the southern most cell face (in degrees). The resolution
along the x and y directions is controlled by the 1D arrays delx [http://mitgcm.org/lxr/ident/MITgcm?_i=delx]
and dely [http://mitgcm.org/lxr/ident/MITgcm?_i=dely] (in meters in the case of a cartesian grid, in degrees
otherwise). The vertical grid spacing is set through the 1D array
delz [http://mitgcm.org/lxr/ident/MITgcm?_i=delz] for the ocean (in meters) or delp [http://mitgcm.org/lxr/ident/MITgcm?_i=delp] for the atmosphere
(in Pa). The variable Ro_SeaLevel [http://mitgcm.org/lxr/ident/MITgcm?_i=Ro_SeaLevel] represents the standard
position of sea level in “r” coordinate. This is typically set to 0 m
for the ocean (default value) and 105 Pa for the
atmosphere. For the atmosphere, also set the logical variable
groundAtK1 [http://mitgcm.org/lxr/ident/MITgcm?_i=groundAtK1] to .TRUE. which puts the first level (k=1) at
the lower boundary (ground).

For the cartesian grid case, the Coriolis parameter \(f\) is set
through the variables f0 [http://mitgcm.org/lxr/ident/MITgcm?_i=f0] and beta [http://mitgcm.org/lxr/ident/MITgcm?_i=beta] which correspond to the
reference Coriolis parameter (in s–1) and
\(\frac{\partial f}{ \partial y}\)(in
m–1s–1) respectively. If beta [http://mitgcm.org/lxr/ident/MITgcm?_i=beta] is set
to a nonzero value, f0 [http://mitgcm.org/lxr/ident/MITgcm?_i=f0] is the value of \(f\) at the southern
edge of the domain.




Topography - Full and Partial Cells


The domain bathymetry is read from a file that contains a 2D (x,y)
map of depths (in m) for the ocean or pressures (in Pa) for the
atmosphere. The file name is represented by the variable
bathyFile [http://mitgcm.org/lxr/ident/MITgcm?_i=bathyFile]. The file is assumed to contain binary numbers giving
the depth (pressure) of the model at each grid cell, ordered with
the x coordinate varying fastest. The points are ordered from low
coordinate to high coordinate for both axes. The model code applies
without modification to enclosed, periodic, and double periodic
domains. Periodicity is assumed by default and is suppressed by
setting the depths to 0 m for the cells at the limits of the
computational domain (note: not sure this is the case for the
atmosphere). The precision with which to read the binary data is
controlled by the integer variable readBinaryPrec [http://mitgcm.org/lxr/ident/MITgcm?_i=readBinaryPrec] which can take
the value 32 (single precision) or 64 (double precision).
See the matlab program gendata.m in the input directories of
verification for several tutorial examples (e.g. gendata.m [https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/input/gendata.m]
in the barotropic gyre tutorial)
to see how the bathymetry files are generated for the
case study experiments.

To use the partial cell capability, the variable hFacMin [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin] needs
to be set to a value between 0 and 1 (it is set to 1 by default)
corresponding to the minimum fractional size of the cell. For
example if the bottom cell is 500 m thick and hFacMin [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin] is set to
0.1, the actual thickness of the cell (i.e. used in the code) can
cover a range of discrete values 50 m apart from 50 m to 500 m
depending on the value of the bottom depth (in bathyFile [http://mitgcm.org/lxr/ident/MITgcm?_i=bathyFile]) at
this point.

Note that the bottom depths (or pressures) need not coincide with
the models levels as deduced from delz [http://mitgcm.org/lxr/ident/MITgcm?_i=delz] or delp [http://mitgcm.org/lxr/ident/MITgcm?_i=delp]. The model
will interpolate the numbers in bathyFile [http://mitgcm.org/lxr/ident/MITgcm?_i=bathyFile] so that they match the
levels obtained from delz [http://mitgcm.org/lxr/ident/MITgcm?_i=delz] or delp [http://mitgcm.org/lxr/ident/MITgcm?_i=delp] and hFacMin [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacMin].

(Note: the atmospheric case is a bit more complicated than what is
written here. To come soon…)




Time-Discretization


The time steps are set through the real variables deltaTMom [http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTMom] and
deltaTtracer [http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTtracer] (in s) which represent the time step for the
momentum and tracer equations, respectively. For synchronous
integrations, simply set the two variables to the same value (or you
can prescribe one time step only through the variable deltaT [http://mitgcm.org/lxr/ident/MITgcm?_i=deltaT]).
The Adams-Bashforth stabilizing parameter is set through the
variable abEps [http://mitgcm.org/lxr/ident/MITgcm?_i=abEps] (dimensionless). The stagger baroclinic time
stepping can be activated by setting the logical variable
staggerTimeStep [http://mitgcm.org/lxr/ident/MITgcm?_i=staggerTimeStep] to .TRUE..







3.7.2. Parameters: Equation of State

First, because the model equations are written in terms of
perturbations, a reference thermodynamic state needs to be specified.
This is done through the 1D arrays tRef [http://mitgcm.org/lxr/ident/MITgcm?_i=tRef] and sRef [http://mitgcm.org/lxr/ident/MITgcm?_i=sRef]. tRef [http://mitgcm.org/lxr/ident/MITgcm?_i=tRef]
specifies the reference potential temperature profile (in
oC for the ocean and K for the atmosphere)
starting from the level k=1. Similarly, sRef [http://mitgcm.org/lxr/ident/MITgcm?_i=sRef] specifies the reference
salinity profile (in ppt) for the ocean or the reference specific
humidity profile (in g/kg) for the atmosphere.

The form of the equation of state is controlled by the character
variables buoyancyRelation [http://mitgcm.org/lxr/ident/MITgcm?_i=buoyancyRelation] and eosType [http://mitgcm.org/lxr/ident/MITgcm?_i=eosType]. buoyancyRelation [http://mitgcm.org/lxr/ident/MITgcm?_i=buoyancyRelation] is
set to OCEANIC by default and needs to be set to ATMOSPHERIC
for atmosphere simulations. In this case, eosType [http://mitgcm.org/lxr/ident/MITgcm?_i=eosType] must be set to
IDEALGAS. For the ocean, two forms of the equation of state are
available: linear (set eosType [http://mitgcm.org/lxr/ident/MITgcm?_i=eosType] to LINEAR) and a polynomial
approximation to the full nonlinear equation ( set eosType [http://mitgcm.org/lxr/ident/MITgcm?_i=eosType] to
POLYNOMIAL). In the linear case, you need to specify the thermal
and haline expansion coefficients represented by the variables
tAlpha [http://mitgcm.org/lxr/ident/MITgcm?_i=tAlpha] (in K–1) and sBeta [http://mitgcm.org/lxr/ident/MITgcm?_i=sBeta] (in ppt–1).
For the nonlinear case, you need to generate a file of polynomial
coefficients called POLY3.COEFFS. To do this, use the program
utils/knudsen2/knudsen2.f [https://github.com/MITgcm/MITgcm/blob/master/utils/knudsen2/knudsen2.f] under the model tree (a Makefile is
available in the same directory and you will need to edit the number and
the values of the vertical levels in knudsen2.f [https://github.com/MITgcm/MITgcm/blob/master/utils/knudsen2/knudsen2.f] so that they match
those of your configuration).

There there are also higher polynomials for the equation of state:


	’UNESCO’:

	The UNESCO equation of state formula of Fofonoff and Millard (1983)
[FRM83]. This equation of state assumes
in-situ temperature, which is not a model variable; its use is
therefore discouraged, and it is only listed for completeness.



	’JMD95Z’:

	A modified UNESCO formula by Jackett and McDougall (1995)
[JM95], which uses the model variable
potential temperature as input. The ’Z’ indicates that this
equation of state uses a horizontally and temporally constant
pressure \(p_{0}=-g\rho_{0}z\).



	’JMD95P’:

	A modified UNESCO formula by Jackett and McDougall (1995)
[JM95], which uses the model variable
potential temperature as input. The ’P’ indicates that this
equation of state uses the actual hydrostatic pressure of the last
time step. Lagging the pressure in this way requires an additional
pickup file for restarts.



	’MDJWF’:

	The new, more accurate and less expensive equation of state by
McDougall et al. (1983) [MJWF03]. It also requires
lagging the pressure and therefore an additional pickup file for
restarts.





For none of these options an reference profile of temperature or
salinity is required.




3.7.3. Parameters: Momentum Equations

In this section, we only focus for now on the parameters that you are
likely to change, i.e. the ones relative to forcing and dissipation for
example. The details relevant to the vector-invariant form of the
equations and the various advection schemes are not covered for the
moment. We assume that you use the standard form of the momentum
equations (i.e. the flux-form) with the default advection scheme. Also,
there are a few logical variables that allow you to turn on/off various
terms in the momentum equation. These variables are called
momViscosity [http://mitgcm.org/lxr/ident/MITgcm?_i=momViscosity], momAdvection [http://mitgcm.org/lxr/ident/MITgcm?_i=momAdvection], momForcing [http://mitgcm.org/lxr/ident/MITgcm?_i=momForcing], useCoriolis [http://mitgcm.org/lxr/ident/MITgcm?_i=useCoriolis],
momPressureForcing [http://mitgcm.org/lxr/ident/MITgcm?_i=momPressureForcing], momStepping [http://mitgcm.org/lxr/ident/MITgcm?_i=momStepping] and metricTerms [http://mitgcm.org/lxr/ident/MITgcm?_i=metricTerms] and are assumed to
be set to .TRUE. here. Look at the file PARAMS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/PARAMS.h] for a
precise definition of these variables.

Initialization


The initial horizontal velocity components can be specified from
binary files uVelInitFile [http://mitgcm.org/lxr/ident/MITgcm?_i=uVelInitFile] and vVelInitFile [http://mitgcm.org/lxr/ident/MITgcm?_i=vVelInitFile]. These files
should contain 3D data ordered in an (x,y,r) fashion with k=1 as the
first vertical level (surface level). If no file names are provided,
the velocity is initialized to zero. The initial vertical velocity
is always derived from the horizontal velocity using the continuity
equation, even in the case of non-hydrostatic simulation (see, e.g.,
verification/tutorial_deep_convection/input/ [https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_deep_convection/input/]).

In the case of a restart (from the end of a previous simulation),
the velocity field is read from a pickup file (see section on
simulation control parameters) and the initial velocity files are
ignored.




Forcing


This section only applies to the ocean. You need to generate
wind-stress data into two files zonalWindFile [http://mitgcm.org/lxr/ident/MITgcm?_i=zonalWindFile] and
meridWindFile [http://mitgcm.org/lxr/ident/MITgcm?_i=meridWindFile] corresponding to the zonal and meridional
components of the wind stress, respectively (if you want the stress
to be along the direction of only one of the model horizontal axes,
you only need to generate one file). The format of the files is
similar to the bathymetry file. The zonal (meridional) stress data
are assumed to be in Pa and located at U-points (V-points). As for
the bathymetry, the precision with which to read the binary data is
controlled by the variable readBinaryPrec [http://mitgcm.org/lxr/ident/MITgcm?_i=readBinaryPrec]. See the matlab
program gendata.m in the input directories of
verification for several tutorial example
(e.g. gendata.m [https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/input/gendata.m]
in the barotropic gyre tutorial)
to see how simple analytical wind forcing data are generated for the
case study experiments.





There is also the possibility of prescribing time-dependent periodic
forcing. To do this, concatenate the successive time records into a
single file (for each stress component) ordered in a (x,y,t) fashion
and set the following variables: periodicExternalForcing [http://mitgcm.org/lxr/ident/MITgcm?_i=periodicExternalForcing] to
.TRUE., externForcingPeriod [http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingPeriod] to the period (in s) of which
the forcing varies (typically 1 month), and externForcingCycle [http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingCycle]
to the repeat time (in s) of the forcing (typically 1 year; note
externForcingCycle [http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingCycle] must be a multiple of
externForcingPeriod [http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingPeriod]). With these variables set up, the model
will interpolate the forcing linearly at each iteration.




Dissipation


The lateral eddy viscosity coefficient is specified through the
variable viscAh [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAh] (in m2s–1). The
vertical eddy viscosity coefficient is specified through the
variable viscAz [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAz] (in m2s–1) for the
ocean and viscAp [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAp] (in Pa2s–1) for the
atmosphere. The vertical diffusive fluxes can be computed implicitly
by setting the logical variable implicitViscosity [http://mitgcm.org/lxr/ident/MITgcm?_i=implicitViscosity] to
.TRUE.. In addition, biharmonic mixing can be added as well
through the variable viscA4 [http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4] (in
m4s–1). On a spherical polar grid, you
might also need to set the variable cosPower [http://mitgcm.org/lxr/ident/MITgcm?_i=cosPower] which is set to 0
by default and which represents the power of cosine of latitude to
multiply viscosity. Slip or no-slip conditions at lateral and bottom
boundaries are specified through the logical variables
no_slip_sides [http://mitgcm.org/lxr/ident/MITgcm?_i=no_slip_sides] and no_slip_bottom [http://mitgcm.org/lxr/ident/MITgcm?_i=no_slip_bottom]. If set to
.FALSE., free-slip boundary conditions are applied. If no-slip
boundary conditions are applied at the bottom, a bottom drag can be
applied as well. Two forms are available: linear (set the variable
bottomDragLinear [http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragLinear] in m/s) and quadratic (set the variable
bottomDragQuadratic [http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragQuadratic], dimensionless).

The Fourier and Shapiro filters are described elsewhere.




C-D Scheme


If you run at a sufficiently coarse resolution, you will need the
C-D scheme for the computation of the Coriolis terms. The
variable tauCD [http://mitgcm.org/lxr/ident/MITgcm?_i=tauCD], which represents the C-D scheme coupling
timescale (in s) needs to be set.




Calculation of Pressure/Geopotential


First, to run a non-hydrostatic ocean simulation, set the logical
variable nonHydrostatic [http://mitgcm.org/lxr/ident/MITgcm?_i=nonHydrostatic] to .TRUE.. The pressure field is
then inverted through a 3D elliptic equation. (Note: this capability
is not available for the atmosphere yet.) By default, a hydrostatic
simulation is assumed and a 2D elliptic equation is used to invert
the pressure field. The parameters controlling the behavior of the
elliptic solvers are the variables cg2dMaxIters [http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dMaxIters] and
cg2dTargetResidual [http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dTargetResidual] for the 2D case and cg3dMaxIters [http://mitgcm.org/lxr/ident/MITgcm?_i=cg3dMaxIters] and
cg3dTargetResidual [http://mitgcm.org/lxr/ident/MITgcm?_i=cg3dTargetResidual] for the 3D case. You probably won’t need to
alter the default values (are we sure of this?).

For the calculation of the surface pressure (for the ocean) or
surface geopotential (for the atmosphere) you need to set the
logical variables rigidLid [http://mitgcm.org/lxr/ident/MITgcm?_i=rigidLid] and implicitFreeSurface [http://mitgcm.org/lxr/ident/MITgcm?_i=implicitFreeSurface] (set one
to .TRUE. and the other to .FALSE. depending on how you
want to deal with the ocean upper or atmosphere lower boundary).







3.7.4. Parameters: Tracer Equations

This section covers the tracer equations i.e. the potential temperature
equation and the salinity (for the ocean) or specific humidity (for the
atmosphere) equation. As for the momentum equations, we only describe
for now the parameters that you are likely to change. The logical
variables tempDiffusion [http://mitgcm.org/lxr/ident/MITgcm?_i=tempDiffusion], tempAdvection [http://mitgcm.org/lxr/ident/MITgcm?_i=tempAdvection], tempForcing [http://mitgcm.org/lxr/ident/MITgcm?_i=tempForcing], and
tempStepping [http://mitgcm.org/lxr/ident/MITgcm?_i=tempStepping] allow you to turn on/off terms in the temperature
equation (same thing for salinity or specific humidity with variables
saltDiffusion [http://mitgcm.org/lxr/ident/MITgcm?_i=saltDiffusion], saltAdvection [http://mitgcm.org/lxr/ident/MITgcm?_i=saltAdvection] etc.). These variables are all
assumed here to be set to .TRUE.. Look at file
PARAMS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/PARAMS.h] for a precise definition.

Initialization


The initial tracer data can be contained in the binary files
hydrogThetaFile [http://mitgcm.org/lxr/ident/MITgcm?_i=hydrogThetaFile] and hydrogSaltFile [http://mitgcm.org/lxr/ident/MITgcm?_i=hydrogSaltFile]. These files should
contain 3D data ordered in an (x,y,r) fashion with k=1 as the first
vertical level. If no file names are provided, the tracers are then
initialized with the values of tRef [http://mitgcm.org/lxr/ident/MITgcm?_i=tRef] and sRef [http://mitgcm.org/lxr/ident/MITgcm?_i=sRef] mentioned above.
In this case, the initial tracer
data are uniform in x and y for each depth level.




Forcing


This part is more relevant for the ocean, the procedure for the
atmosphere not being completely stabilized at the moment.

A combination of fluxes data and relaxation terms can be used for
driving the tracer equations. For potential temperature, heat flux
data (in W/m2) can be stored in the 2D binary file
surfQfile [http://mitgcm.org/lxr/ident/MITgcm?_i=surfQfile]. Alternatively or in addition, the forcing can be
specified through a relaxation term. The SST data to which the model
surface temperatures are restored to are supposed to be stored in
the 2D binary file thetaClimFile [http://mitgcm.org/lxr/ident/MITgcm?_i=thetaClimFile]. The corresponding relaxation
time scale coefficient is set through the variable
tauThetaClimRelax [http://mitgcm.org/lxr/ident/MITgcm?_i=tauThetaClimRelax] (in s). The same procedure applies for
salinity with the variable names EmPmRfile [http://mitgcm.org/lxr/ident/MITgcm?_i=EmPmRfile], saltClimFile [http://mitgcm.org/lxr/ident/MITgcm?_i=saltClimFile],
and tauSaltClimRelax [http://mitgcm.org/lxr/ident/MITgcm?_i=tauSaltClimRelax] for freshwater flux (in m/s) and surface
salinity (in ppt) data files and relaxation time scale coefficient
(in s), respectively. Also for salinity, if the CPP key
USE_NATURAL_BCS is turned on, natural boundary conditions are
applied, i.e., when computing the surface salinity tendency, the
freshwater flux is multiplied by the model surface salinity instead
of a constant salinity value.

As for the other input files, the precision with which to read the
data is controlled by the variable readBinaryPrec [http://mitgcm.org/lxr/ident/MITgcm?_i=readBinaryPrec].
Time-dependent, periodic forcing can be applied as well following
the same procedure used for the wind forcing data (see above).




Dissipation


Lateral eddy diffusivities for temperature and salinity/specific
humidity are specified through the variables diffKhT [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKhT] and
diffKhS [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKhS] (in m2/s). Vertical eddy diffusivities are
specified through the variables diffKzT [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKzT] and diffKzS [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKzS] (in
m2/s) for the ocean and diffKpT [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKpT] and diffKpS [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKpS] (in
Pa2/s) for the atmosphere. The vertical diffusive
fluxes can be computed implicitly by setting the logical variable
implicitDiffusion [http://mitgcm.org/lxr/ident/MITgcm?_i=implicitDiffusion] to .TRUE.. In addition, biharmonic
diffusivities can be specified as well through the coefficients
diffK4T [http://mitgcm.org/lxr/ident/MITgcm?_i=diffK4T] and diffK4S [http://mitgcm.org/lxr/ident/MITgcm?_i=diffK4S] (in m4/s). Note that the
cosine power scaling (specified through cosPower [http://mitgcm.org/lxr/ident/MITgcm?_i=cosPower]; see above)
is applied to the tracer diffusivities
(Laplacian and biharmonic) as well. The Gent and McWilliams
parameterization for oceanic tracers is described in the package
section. Finally, note that tracers can be also subject to Fourier
and Shapiro filtering (see the corresponding section on these
filters).




Ocean convection


Two options are available to parameterize ocean convection.
To use the first option, a convective adjustment scheme, you need to
set the variable cadjFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=cadjFreq], which represents the frequency (in s)
with which the adjustment algorithm is called, to a non-zero value
(note, if cadjFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=cadjFreq] set to a negative value by the user, the model will set it to
the tracer time step). The second option is to parameterize
convection with implicit vertical diffusion. To do this, set the
logical variable implicitDiffusion [http://mitgcm.org/lxr/ident/MITgcm?_i=implicitDiffusion] to .TRUE. and the real
variable ivdc_kappa [http://mitgcm.org/lxr/ident/MITgcm?_i=ivdc_kappa] to a value (in m2/s) you wish
the tracer vertical diffusivities to have when mixing tracers
vertically due to static instabilities. Note that cadjFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=cadjFreq] and
ivdc_kappa [http://mitgcm.org/lxr/ident/MITgcm?_i=ivdc_kappa] cannot both have non-zero value.







3.7.5. Parameters: Simulation Controls

The model ”clock” is defined by the variable deltaTClock [http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTClock] (in s)
which determines the I/O frequencies and is used in tagging output.
Typically, you will set it to the tracer time step for accelerated runs
(otherwise it is simply set to the default time step deltaT [http://mitgcm.org/lxr/ident/MITgcm?_i=deltaT]).
Frequency of checkpointing and dumping of the model state are referenced
to this clock (see below).

Run Duration


The beginning of a simulation is set by specifying a start time (in s)
through the real variable startTime [http://mitgcm.org/lxr/ident/MITgcm?_i=startTime] or by specifying an
initial iteration number through the integer variable nIter0 [http://mitgcm.org/lxr/ident/MITgcm?_i=nIter0]. If
these variables are set to nonzero values, the model will look for a
”pickup” file pickup.0000nIter0 to restart the integration. The
end of a simulation is set through the real variable endTime [http://mitgcm.org/lxr/ident/MITgcm?_i=endTime] (in s).
Alternatively, you can specify instead the number of time steps
to execute through the integer variable nTimeSteps [http://mitgcm.org/lxr/ident/MITgcm?_i=nTimeSteps].




Frequency of Output


Real variables defining frequencies (in s) with which output files
are written on disk need to be set up. dumpFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=dumpFreq] controls the
frequency with which the instantaneous state of the model is saved.
chkPtFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=chkPtFreq] and pchkPtFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=pchkPtFreq] control the output frequency of
rolling and permanent checkpoint files, respectively. In addition, time-averaged fields can be written out by
setting the variable taveFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=taveFreq] (in s). The precision with which
to write the binary data is controlled by the integer variable
writeBinaryPrec [http://mitgcm.org/lxr/ident/MITgcm?_i=writeBinaryPrec] (set it to 32 or 64).







3.7.6. Parameters: Default Values

The CPP keys relative to the “numerical model” part of the code are all
defined and set in the file CPP_OPTIONS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/CPP_OPTIONS.h] in the directory
model/inc/ [https://github.com/MITgcm/MITgcm/blob/master/model/inc/] or in one of the code directories of the case study
experiments under verification/ [https://github.com/MITgcm/MITgcm/blob/master/verification/]. The model parameters are defined and
declared in the file PARAMS.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/PARAMS.h] and their default values are
set in the routine set_defaults.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/set_defaults.F]. The default values can
be modified in the namelist file data which needs to be located in the
directory where you will run the model. The parameters are initialized
in the routine ini_parms.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_parms.F]. Look at this routine to see in
what part of the namelist the parameters are located. Here is a complete
list of the model parameters related to the main model (namelist
parameters for the packages are located in the package descriptions),
their meaning, and their default values:








	Name

	Value

	Description



	
	
	


	buoyancyRelation [http://mitgcm.org/lxr/ident/MITgcm?_i=buoyancyRelation]

	OCEANIC

	buoyancy relation



	fluidIsAir [http://mitgcm.org/lxr/ident/MITgcm?_i=fluidIsAir]

	F

	fluid major constituent is air



	fluidIsWater [http://mitgcm.org/lxr/ident/MITgcm?_i=fluidIsWater]

	T

	fluid major constituent is water



	usingPCoords [http://mitgcm.org/lxr/ident/MITgcm?_i=usingPCoords]

	F

	use pressure coordinates



	usingZCoords [http://mitgcm.org/lxr/ident/MITgcm?_i=usingZCoords]

	T

	use z-coordinates



	tRef [http://mitgcm.org/lxr/ident/MITgcm?_i=tRef]

	2.0E+01 at k=top

	reference temperature profile ( oC or K )



	sRef [http://mitgcm.org/lxr/ident/MITgcm?_i=sRef]

	3.0E+01 at k=top

	reference salinity profile ( psu )



	viscAh [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAh]

	0.0E+00

	lateral eddy viscosity ( m2/s )



	viscAhMax [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhMax]

	1.0E+21

	maximum lateral eddy viscosity ( m2/s )



	viscAhGrid [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAhGrid]

	0.0E+00

	grid dependent lateral eddy viscosity ( non-dim. )



	useFullLeith [http://mitgcm.org/lxr/ident/MITgcm?_i=useFullLeith]

	F

	use full form of Leith viscosity on/off flag



	useStrainTensionVisc [http://mitgcm.org/lxr/ident/MITgcm?_i=useStrainTensionVisc]

	F

	use StrainTension form of viscous operator on/off flag



	useAreaViscLength [http://mitgcm.org/lxr/ident/MITgcm?_i=useAreaViscLength]

	F

	use area for visc length instead of geom. mean



	viscC2leith [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2leith]

	0.0E+00

	Leith harmonic visc. factor (on grad(vort),non-dim.)



	viscC2leithD [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2leithD]

	0.0E+00

	Leith harmonic viscosity factor (on grad(div),non-dim.)



	viscC2smag [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC2smag]

	0.0E+00

	Smagorinsky harmonic viscosity factor (non-dim.)



	viscA4 [http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4]

	0.0E+00

	lateral biharmonic viscosity ( m4/s )



	viscA4Max [http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4Max]

	1.0E+21

	maximum biharmonic viscosity ( m4/s )



	viscA4Grid [http://mitgcm.org/lxr/ident/MITgcm?_i=viscA4Grid]

	0.0E+00

	grid dependent biharmonic viscosity ( non-dim. )



	viscC4leith [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC4leith]

	0.0E+00

	Leith biharmonic viscosity factor (on grad(vort), non-dim.)



	viscC4leithD [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC4leithD]

	0.0E+00

	Leith biharmonic viscosity factor (on grad(div), non-dim.)



	viscC4Smag [http://mitgcm.org/lxr/ident/MITgcm?_i=viscC4Smag]

	0.0E+00

	Smagorinsky biharmonic viscosity factor (non-dim)



	no_slip_sides [http://mitgcm.org/lxr/ident/MITgcm?_i=no_slip_sides]

	T

	viscous BCs: no-slip sides



	sideDragFactor [http://mitgcm.org/lxr/ident/MITgcm?_i=sideDragFactor]

	2.0E+00

	side-drag scaling factor (non-dim)



	viscAr [http://mitgcm.org/lxr/ident/MITgcm?_i=viscAr]

	0.0E+00

	vertical eddy viscosity ( units of r2/s )



	no_slip_bottom [http://mitgcm.org/lxr/ident/MITgcm?_i=no_slip_bottom]

	T

	viscous BCs: no-slip bottom



	bottomDragLinear [http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragLinear]

	0.0E+00

	linear bottom-drag coefficient ( m/s )



	bottomDragQuadratic [http://mitgcm.org/lxr/ident/MITgcm?_i=bottomDragQuadratic]

	0.0E+00

	quadratic bottom-drag coeff. ( 1 )



	diffKhT [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKhT]

	0.0E+00

	Laplacian diffusion of heat laterally ( m2/s )



	diffK4T [http://mitgcm.org/lxr/ident/MITgcm?_i=diffK4T]

	0.0E+00

	biharmonic diffusion of heat laterally ( m4/s )



	diffKhS [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKhS]

	0.0E+00

	Laplacian diffusion of salt laterally ( m2/s )



	diffK4S [http://mitgcm.org/lxr/ident/MITgcm?_i=diffK4S]

	0.0E+00

	biharmonic diffusion of salt laterally ( m4/s  )



	diffKrNrT [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrNrT]

	0.0E+00 at k=top

	vertical profile of vertical diffusion of temp ( m2/s )



	diffKrNrS [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrNrS]

	0.0E+00 at k=top

	vertical profile of vertical diffusion of salt ( m2/s )



	diffKrBL79surf [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrBL79surf]

	0.0E+00

	surface diffusion for Bryan and Lewis 1979 ( m2/s )



	diffKrBL79deep [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrBL79deep]

	0.0E+00

	deep diffusion for Bryan and Lewis 1979 ( m2/s )



	diffKrBL79scl [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrBL79scl]

	2.0E+02

	depth scale for Bryan and Lewis 1979 ( m )



	diffKrBL79Ho [http://mitgcm.org/lxr/ident/MITgcm?_i=diffKrBL79Ho]

	-2.0E+03

	turning depth for Bryan and Lewis 1979 ( m )



	eosType [http://mitgcm.org/lxr/ident/MITgcm?_i=eosType]

	LINEAR

	equation of state



	tAlpha [http://mitgcm.org/lxr/ident/MITgcm?_i=tAlpha]

	2.0E-04

	linear EOS thermal expansion coefficient ( 1/oC )













	Name

	Value

	Description



	
	
	


	sBeta [http://mitgcm.org/lxr/ident/MITgcm?_i=sBeta]

	7.4E-04

	linear EOS haline contraction coef ( 1/psu )



	rhonil [http://mitgcm.org/lxr/ident/MITgcm?_i=rhonil]

	9.998E+02

	reference density ( kg/m3 )



	rhoConst [http://mitgcm.org/lxr/ident/MITgcm?_i=rhoConst]

	9.998E+02

	reference density ( kg/m3 )



	rhoConstFresh [http://mitgcm.org/lxr/ident/MITgcm?_i=rhoConstFresh]

	9.998E+02

	reference density ( kg/m3 )



	gravity [http://mitgcm.org/lxr/ident/MITgcm?_i=gravity]

	9.81E+00

	gravitational acceleration ( m/s2 )



	gBaro [http://mitgcm.org/lxr/ident/MITgcm?_i=gBaro]

	9.81E+00

	barotropic gravity ( m/s2 )



	rotationPeriod [http://mitgcm.org/lxr/ident/MITgcm?_i=rotationPeriod]

	8.6164E+04

	rotation period ( s )



	omega [http://mitgcm.org/lxr/ident/MITgcm?_i=omega]

	\(2\pi/\)rotationPeriod

	angular velocity ( rad/s )



	f0 [http://mitgcm.org/lxr/ident/MITgcm?_i=f0]

	1.0E-04

	reference coriolis parameter ( 1/s )



	beta [http://mitgcm.org/lxr/ident/MITgcm?_i=beta]

	1.0E-11

	beta ( m–1s–1 )



	freeSurfFac [http://mitgcm.org/lxr/ident/MITgcm?_i=freeSurfFac]

	1.0E+00

	implicit free surface factor



	implicitFreeSurface [http://mitgcm.org/lxr/ident/MITgcm?_i=implicitFreeSurface]

	T

	implicit free surface on/off flag



	rigidLid [http://mitgcm.org/lxr/ident/MITgcm?_i=rigidLid]

	F

	rigid lid on/off flag



	implicSurfPress [http://mitgcm.org/lxr/ident/MITgcm?_i=implicSurfPress]

	1.0E+00

	surface pressure implicit factor (0-1)



	implicDiv2Dflow [http://mitgcm.org/lxr/ident/MITgcm?_i=implicDiv2Dflow]

	1.0E+00

	barotropic flow div. implicit factor (0-1)



	exactConserv [http://mitgcm.org/lxr/ident/MITgcm?_i=exactConserv]

	F

	exact volume conservation on/off flag



	uniformLin_PhiSurf [http://mitgcm.org/lxr/ident/MITgcm?_i=uniformLin_PhiSurf]

	T

	use uniform Bo_surf on/off flag



	nonlinFreeSurf [http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf]

	0

	non-linear free surf. options (-1,0,1,2,3)



	hFacInf [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacInf]

	2.0E-01

	lower threshold for hFac (nonlinFreeSurf only)



	hFacSup [http://mitgcm.org/lxr/ident/MITgcm?_i=hFacSup]

	2.0E+00

	upper threshold for hFac (nonlinFreeSurf only)



	select_rStar [http://mitgcm.org/lxr/ident/MITgcm?_i=select_rStar]

	0

	r



	useRealFreshWaterFlux [http://mitgcm.org/lxr/ident/MITgcm?_i=useRealFreshWaterFlux]

	F

	real freshwater flux on/off flag



	convertFW2Salt [http://mitgcm.org/lxr/ident/MITgcm?_i=convertFW2Salt]

	3.5E+01

	convert FW flux to salt flux (-1=use local S)



	use3Dsolver [http://mitgcm.org/lxr/ident/MITgcm?_i=use3Dsolver]

	F

	use 3-D pressure solver on/off flag



	nonHydrostatic [http://mitgcm.org/lxr/ident/MITgcm?_i=nonHydrostatic]

	F

	non-hydrostatic on/off flag



	nh_Am2 [http://mitgcm.org/lxr/ident/MITgcm?_i=nh_Am2]

	1.0E+00

	non-hydrostatic terms scaling factor



	quasiHydrostatic [http://mitgcm.org/lxr/ident/MITgcm?_i=quasiHydrostatic]

	F

	quasi-hydrostatic on/off flag



	momStepping [http://mitgcm.org/lxr/ident/MITgcm?_i=momStepping]

	T

	momentum equation on/off flag



	vectorInvariantMomentum [http://mitgcm.org/lxr/ident/MITgcm?_i=vectorInvariantMomentum]

	F

	vector-invariant momentum on/off



	momAdvection [http://mitgcm.org/lxr/ident/MITgcm?_i=momAdvection]

	T

	momentum advection on/off flag



	momViscosity [http://mitgcm.org/lxr/ident/MITgcm?_i=momViscosity]

	T

	momentum viscosity on/off flag



	momImplVertAdv [http://mitgcm.org/lxr/ident/MITgcm?_i=momImplVertAdv]

	F

	momentum implicit vert. advection on/off



	implicitViscosity [http://mitgcm.org/lxr/ident/MITgcm?_i=implicitViscosity]

	F

	implicit viscosity on/off flag



	metricTerms [http://mitgcm.org/lxr/ident/MITgcm?_i=metricTerms]

	F

	metric terms on/off flag



	useNHMTerms [http://mitgcm.org/lxr/ident/MITgcm?_i=useNHMTerms]

	F

	non-hydrostatic metric terms on/off



	useCoriolis [http://mitgcm.org/lxr/ident/MITgcm?_i=useCoriolis]

	T

	Coriolis on/off flag



	useCDscheme [http://mitgcm.org/lxr/ident/MITgcm?_i=useCDscheme]

	F

	CD scheme on/off flag



	useJamartWetPoints [http://mitgcm.org/lxr/ident/MITgcm?_i=useJamartWetPoints]

	F

	Coriolis wetpoints method flag



	useJamartMomAdv [http://mitgcm.org/lxr/ident/MITgcm?_i=useJamartMomAdv]

	F

	VI non-linear terms Jamart flag













	Name

	Value

	Description



	
	
	


	SadournyCoriolis [http://mitgcm.org/lxr/ident/MITgcm?_i=SadournyCoriolis]

	F

	Sadourny Coriolis discretization flag



	upwindVorticity [http://mitgcm.org/lxr/ident/MITgcm?_i=upwindVorticity]

	F

	upwind bias vorticity flag



	useAbsVorticity [http://mitgcm.org/lxr/ident/MITgcm?_i=useAbsVorticity]

	F

	work with f



	highOrderVorticity [http://mitgcm.org/lxr/ident/MITgcm?_i=highOrderVorticity]

	F

	high order interp. of vort. flag



	upwindShear [http://mitgcm.org/lxr/ident/MITgcm?_i=upwindShear]

	F

	upwind vertical shear advection flag



	selectKEscheme [http://mitgcm.org/lxr/ident/MITgcm?_i=selectKEscheme]

	0

	kinetic energy scheme selector



	momForcing [http://mitgcm.org/lxr/ident/MITgcm?_i=momForcing]

	T

	momentum forcing on/off flag



	momPressureForcing [http://mitgcm.org/lxr/ident/MITgcm?_i=momPressureForcing]

	T

	momentum pressure term on/off flag



	implicitIntGravWave [http://mitgcm.org/lxr/ident/MITgcm?_i=implicitIntGravWave]

	F

	implicit internal gravity wave flag



	staggerTimeStep [http://mitgcm.org/lxr/ident/MITgcm?_i=staggerTimeStep]

	F

	stagger time stepping on/off flag



	multiDimAdvection [http://mitgcm.org/lxr/ident/MITgcm?_i=multiDimAdvection]

	T

	enable/disable multi-dim advection



	useMultiDimAdvec [http://mitgcm.org/lxr/ident/MITgcm?_i=useMultiDimAdvec]

	F

	multi-dim advection is/is-not used



	implicitDiffusion [http://mitgcm.org/lxr/ident/MITgcm?_i=implicitDiffusion]

	F

	implicit diffusion on/off flag



	tempStepping [http://mitgcm.org/lxr/ident/MITgcm?_i=tempStepping]

	T

	temperature equation on/off flag



	tempAdvection [http://mitgcm.org/lxr/ident/MITgcm?_i=tempAdvection]

	T

	temperature advection on/off flag



	tempImplVertAdv [http://mitgcm.org/lxr/ident/MITgcm?_i=tempImplVertAdv]

	F

	temp. implicit vert. advection on/off



	tempForcing [http://mitgcm.org/lxr/ident/MITgcm?_i=tempForcing]

	T

	temperature forcing on/off flag



	saltStepping [http://mitgcm.org/lxr/ident/MITgcm?_i=saltStepping]

	T

	salinity equation on/off flag



	saltAdvection [http://mitgcm.org/lxr/ident/MITgcm?_i=saltAdvection]

	T

	salinity advection on/off flag



	saltImplVertAdv [http://mitgcm.org/lxr/ident/MITgcm?_i=saltImplVertAdv]

	F

	salinity implicit vert. advection on/off



	saltForcing [http://mitgcm.org/lxr/ident/MITgcm?_i=saltForcing]

	T

	salinity forcing on/off flag



	readBinaryPrec [http://mitgcm.org/lxr/ident/MITgcm?_i=readBinaryPrec]

	32

	precision used for reading binary files



	writeBinaryPrec [http://mitgcm.org/lxr/ident/MITgcm?_i=writeBinaryPrec]

	32

	precision used for writing binary files



	globalFiles [http://mitgcm.org/lxr/ident/MITgcm?_i=globalFiles]

	F

	write “global” (=not per tile) files



	useSingleCpuIO [http://mitgcm.org/lxr/ident/MITgcm?_i=useSingleCpuIO]

	F

	only master MPI process does I/O



	debugMode [http://mitgcm.org/lxr/ident/MITgcm?_i=debugMode]

	F

	debug Mode on/off flag



	debLevA [http://mitgcm.org/lxr/ident/MITgcm?_i=debLevA]

	1

	1st level of debugging



	debLevB [http://mitgcm.org/lxr/ident/MITgcm?_i=debLevB]

	2

	2nd level of debugging



	debugLevel [http://mitgcm.org/lxr/ident/MITgcm?_i=debugLevel]

	1

	select debugging level



	cg2dMaxIters [http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dMaxIters]

	150

	upper limit on 2d con. grad iterations



	cg2dChkResFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dChkResFreq]

	1

	2d con. grad convergence test frequency



	cg2dTargetResidual [http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dTargetResidual]

	1.0E-07

	2d con. grad target residual



	cg2dTargetResWunit [http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dTargetResWunit]

	-1.0E+00

	cg2d target residual [W units]



	cg2dPreCondFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=cg2dPreCondFreq]

	1

	freq. for updating cg2d pre-conditioner



	nIter0 [http://mitgcm.org/lxr/ident/MITgcm?_i=nIter0]

	0

	run starting timestep number



	nTimeSteps [http://mitgcm.org/lxr/ident/MITgcm?_i=nTimeSteps]

	0

	number of timesteps



	deltatTmom [http://mitgcm.org/lxr/ident/MITgcm?_i=deltatTmom]

	6.0E+01

	momentum equation timestep ( s )



	deltaTfreesurf [http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTfreesurf]

	6.0E+01

	freeSurface equation timestep ( s )



	dTtracerLev [http://mitgcm.org/lxr/ident/MITgcm?_i=dTtracerLev]

	6.0E+01 at k=top

	tracer equation timestep ( s )



	deltaTClock [http://mitgcm.org/lxr/ident/MITgcm?_i=deltaTClock]

	6.0E+01

	model clock timestep ( s )
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	Description



	
	
	


	cAdjFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=cAdjFreq]

	0.0E+00

	convective adjustment interval ( s )



	momForcingOutAB [http://mitgcm.org/lxr/ident/MITgcm?_i=momForcingOutAB]

	0

	=1: take momentum forcing out of Adams-Bashforth



	tracForcingOutAB [http://mitgcm.org/lxr/ident/MITgcm?_i=tracForcingOutAB]

	0

	=1: take T,S,pTr forcing out of Adams-Bashforth



	momDissip_In_AB [http://mitgcm.org/lxr/ident/MITgcm?_i=momDissip_In_AB]

	T

	put dissipation tendency in Adams-Bashforth



	doAB_onGtGs [http://mitgcm.org/lxr/ident/MITgcm?_i=doAB_onGtGs]

	T

	apply AB on tendencies (rather than on T,S)



	abEps [http://mitgcm.org/lxr/ident/MITgcm?_i=abEps]

	1.0E-02

	Adams-Bashforth-2 stabilizing weight



	baseTime [http://mitgcm.org/lxr/ident/MITgcm?_i=baseTime]

	0.0E+00

	model base time ( s )



	startTime [http://mitgcm.org/lxr/ident/MITgcm?_i=startTime]

	0.0E+00

	run start time ( s )



	endTime [http://mitgcm.org/lxr/ident/MITgcm?_i=endTime]

	0.0E+00

	integration ending time ( s )



	pChkPtFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=pChkPtFreq]

	0.0E+00

	permanent restart/checkpoint file interval ( s )



	chkPtFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=chkPtFreq]

	0.0E+00

	rolling restart/checkpoint file interval ( s )



	pickup_write_mdsio [http://mitgcm.org/lxr/ident/MITgcm?_i=pickup_write_mdsio]

	T

	model I/O flag



	pickup_read_mdsio [http://mitgcm.org/lxr/ident/MITgcm?_i=pickup_read_mdsio]

	T

	model I/O flag



	pickup_write_immed [http://mitgcm.org/lxr/ident/MITgcm?_i=pickup_write_immed]

	F

	model I/O flag



	dumpFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=dumpFreq]

	0.0E+00

	model state write out interval ( s )



	dumpInitAndLast [http://mitgcm.org/lxr/ident/MITgcm?_i=dumpInitAndLast]

	T

	write out initial and last iteration model state



	snapshot_mdsio [http://mitgcm.org/lxr/ident/MITgcm?_i=snapshot_mdsio]          | T                         | model I/O flag.



	monitorFreq [http://mitgcm.org/lxr/ident/MITgcm?_i=monitorFreq]

	6.0E+01

	monitor output interval ( s )



	monitor_stdio [http://mitgcm.org/lxr/ident/MITgcm?_i=monitor_stdio]           | T                         | model I/O flag.



	externForcingPeriod [http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingPeriod]

	0.0E+00

	forcing period (s)



	externForcingCycle [http://mitgcm.org/lxr/ident/MITgcm?_i=externForcingCycle]

	0.0E+00

	period of the cycle (s)



	tauThetaClimRelax [http://mitgcm.org/lxr/ident/MITgcm?_i=tauThetaClimRelax]

	0.0E+00

	relaxation time scale (s)



	tauSaltClimRelax [http://mitgcm.org/lxr/ident/MITgcm?_i=tauSaltClimRelax]

	0.0E+00

	relaxation time scale (s)



	latBandClimRelax [http://mitgcm.org/lxr/ident/MITgcm?_i=latBandClimRelax]

	3.703701E+05

	maximum latitude where relaxation applied



	usingCartesianGrid [http://mitgcm.org/lxr/ident/MITgcm?_i=usingCartesianGrid]

	T

	Cartesian coordinates flag ( true / false )



	usingSphericalPolarGrid [http://mitgcm.org/lxr/ident/MITgcm?_i=usingSphericalPolarGrid]

	F

	spherical coordinates flag ( true / false )



	usingCylindricalGrid [http://mitgcm.org/lxr/ident/MITgcm?_i=usingCylindricalGrid]

	F

	spherical coordinates flag ( true / false )



	Ro_SeaLevel [http://mitgcm.org/lxr/ident/MITgcm?_i=Ro_SeaLevel]

	0.0E+00

	r(1) ( units of r )



	rkSign [http://mitgcm.org/lxr/ident/MITgcm?_i=rkSign]

	-1.0E+00

	index orientation relative to vertical coordinate



	horiVertRatio [http://mitgcm.org/lxr/ident/MITgcm?_i=horiVertRatio]

	1.0E+00

	ratio on units : horizontal - vertical



	drC [http://mitgcm.org/lxr/ident/MITgcm?_i=drC]

	5.0E+03 at k=1

	center cell separation along Z axis ( units of r )



	drF [http://mitgcm.org/lxr/ident/MITgcm?_i=drF]

	1.0E+04 at k=top

	cell face separation along Z axis ( units of r )



	delX [http://mitgcm.org/lxr/ident/MITgcm?_i=delX]

	1.234567E+05 at i=east

	U-point spacing ( m - cartesian, degrees - spherical )



	delY [http://mitgcm.org/lxr/ident/MITgcm?_i=delY]

	1.234567E+05 at j=1

	V-point spacing ( m - cartesian, degrees - spherical )



	ygOrigin [http://mitgcm.org/lxr/ident/MITgcm?_i=ygOrigin]

	0.0E+00

	South edge Y-axis origin (cartesian: m, spherical: deg.)



	xgOrigin [http://mitgcm.org/lxr/ident/MITgcm?_i=xgOrigin]

	0.0E+00

	West edge X-axis origin (cartesian: m, spherical: deg.)



	rSphere [http://mitgcm.org/lxr/ident/MITgcm?_i=rSphere]

	6.37E+06

	Radius ( ignored - cartesian, m - spherical )



	xcoord [http://mitgcm.org/lxr/ident/MITgcm?_i=xcoord]

	6.172835E+04 at i=1

	P-point X coord ( m - cartesian, degrees - spherical )



	ycoord [http://mitgcm.org/lxr/ident/MITgcm?_i=ycoord]

	6.172835E+04 at j=1

	P-point Y coord ( m - cartesian, degrees - spherical )



	rcoord [http://mitgcm.org/lxr/ident/MITgcm?_i=rcoord]

	-5.0E+03 at k=1

	P-point r coordinate ( units of r )



	rF [http://mitgcm.org/lxr/ident/MITgcm?_i=rF]

	0.0E+00 at k=1

	W-interface r coordinate ( units of r )



	dBdrRef [http://mitgcm.org/lxr/ident/MITgcm?_i=dBdrRef]

	0.0E+00 at k=top

	vertical gradient of reference buoyancy [ (m/s/r)2 ]
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	dxF [http://mitgcm.org/lxr/ident/MITgcm?_i=dxF]

	1.234567E+05 at k=top

	dxF(:,1,:,1) ( m - cartesian, degrees - spherical )



	dyF [http://mitgcm.org/lxr/ident/MITgcm?_i=dyF]

	1.234567E+05 at i=east

	dyF(:,1,:,1) ( m - cartesian, degrees - spherical )



	dxG [http://mitgcm.org/lxr/ident/MITgcm?_i=dxG]

	1.234567E+05 at i=east

	dxG(:,1,:,1) ( m - cartesian, degrees - spherical )



	dyG [http://mitgcm.org/lxr/ident/MITgcm?_i=dyG]

	1.234567E+05 at i=east

	dyG(:,1,:,1) ( m - cartesian, degrees - spherical )



	dxC [http://mitgcm.org/lxr/ident/MITgcm?_i=dxC]

	1.234567E+05 at i=east

	dxC(:,1,:,1) ( m - cartesian, degrees - spherical )



	dyC [http://mitgcm.org/lxr/ident/MITgcm?_i=dyC]

	1.234567E+05 at i=east

	dyC(:,1,:,1) ( m - cartesian, degrees - spherical )



	dxV [http://mitgcm.org/lxr/ident/MITgcm?_i=dxV]

	1.234567E+05 at i=east

	dxV(:,1,:,1) ( m - cartesian, degrees - spherical )



	dyU [http://mitgcm.org/lxr/ident/MITgcm?_i=dyU]

	1.234567E+05 at i=east

	dyU(:,1,:,1) ( m - cartesian, degrees - spherical )



	rA [http://mitgcm.org/lxr/ident/MITgcm?_i=rA]

	1.524155E+10 at i=east

	rA(:,1,:,1) ( m - cartesian, degrees - spherical )



	rAw [http://mitgcm.org/lxr/ident/MITgcm?_i=rAw]

	1.524155E+10 at k=top

	rAw(:,1,:,1) ( m - cartesian, degrees - spherical )



	rAs [http://mitgcm.org/lxr/ident/MITgcm?_i=rAs]

	1.524155E+10 at k=top

	rAs(:,1,:,1) ( m - cartesian, degrees - spherical )













	Name

	Value

	Description



	
	
	


	tempAdvScheme [http://mitgcm.org/lxr/ident/MITgcm?_i=tempAdvScheme]

	2

	temp. horiz. advection scheme selector



	tempVertAdvScheme [http://mitgcm.org/lxr/ident/MITgcm?_i=tempVertAdvScheme]

	2

	temp. vert. advection scheme selector



	tempMultiDimAdvec [http://mitgcm.org/lxr/ident/MITgcm?_i=tempMultiDimAdvec]

	F

	use multi-dim advection method for temp



	tempAdamsBashforth [http://mitgcm.org/lxr/ident/MITgcm?_i=tempAdamsBashforth]

	T

	use Adams-Bashforth time-stepping for temp



	saltAdvScheme [http://mitgcm.org/lxr/ident/MITgcm?_i=saltAdvScheme]

	2

	salinity horiz. advection scheme selector



	saltVertAdvScheme [http://mitgcm.org/lxr/ident/MITgcm?_i=saltVertAdvScheme]

	2

	salinity vert.  advection scheme selector



	saltMultiDimAdvec [http://mitgcm.org/lxr/ident/MITgcm?_i=saltMultiDimAdvec]

	F

	use multi-dim advection method for salt



	saltAdamsBashforth [http://mitgcm.org/lxr/ident/MITgcm?_i=saltAdamsBashforth]

	T

	use Adams-Bashforth time-stepping for salt














          

      

      

    

  

    
      
          
            
  
4. MITgcm Tutorial Example Experiments

The full MITgcm distribution comes with a set of pre-configured
numerical experiments.  Some of these example experiments are tests of
individual parts of the model code, but many are fully fledged
numerical simulations. Full tutorials exist for a few of the examples,
and are documented in sections Section 4.1 -
Section 4.2. The other examples follow the same general
structure as the tutorial examples. However, they only include brief
instructions in text file README.  The examples are
located in subdirectories under the directory verification [https://github.com/MITgcm/MITgcm/blob/master/verification].
Each example is briefly described below.


4.1. Barotropic Gyre MITgcm Example


(in directory  verification/tutorial_barotropic_gyre/ [https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/])




This example experiment demonstrates using the MITgcm to simulate a Barotropic, wind-forced, ocean gyre circulation. The experiment is a numerical rendition of the gyre circulation problem similar to the problems described analytically by Stommel in 1966  [Sto48] and numerically in Holland et. al [HL75].

In this experiment the model is configured to represent a rectangular enclosed box of fluid, \(1200 \times 1200\) km in lateral extent. The fluid is 5 km deep and is forced by a constant in time zonal wind stress, \(\tau_x\), that varies sinusoidally in the ‘north-south’ direction. Topologically the grid is Cartesian and the coriolis parameter \(f\) is defined according to a mid-latitude beta-plane equation


(4.1)\[f(y) = f_{0}+\beta y\]

where \(y\) is the distance along the ‘north-south’ axis of the simulated domain. For this experiment \(f_{0}\) is set to \(10^{-4}s^{-1}\) in (4.1) and \(\beta = 10^{-11}s^{-1}m^{-1}\).

The sinusoidal wind-stress variations are defined according to


(4.2)\[\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})\]

where \(L_{y}\) is the lateral domain extent (1200~km) and
\(\tau_0\) is set to \(0.1N m^{-2}\).

Figure 4.1 summarizes the configuration simulated.



[image: barotropic gyre configuration]Figure 4.1 Schematic of simulation domain and wind-stress forcing function for barotropic gyre numerical experiment. The domain is enclosed by solid walls at \(x=\) 0, 1200 km and at \(y=\) 0, 1200 km.
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	4.1.2. Discrete Numerical Configuration
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4.2. A Rotating Tank in Cylindrical Coordinates


(in directory: verification/rotating_tank/ [https://github.com/MITgcm/MITgcm/blob/master/verification/rotating_tank/])




This example configuration demonstrates using the MITgcm to simulate a
laboratory demonstration using a differentially heated rotating
annulus of water.  The simulation is configured for a laboratory scale
on a \(3^{\circ}\times1\mathrm{cm}\) cyclindrical grid with twenty-nine
vertical levels of 0.5cm each.  This is a typical laboratory setup for
illustration principles of GFD, as well as for a laboratory data
assimilation project.

example illustration from GFD lab here
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4.1.1. Equations Solved

The model is configured in hydrostatic form. The implicit free surface form of the
pressure equation described in [MHPA97] is
employed.
A horizontal Laplacian operator \(\nabla_{h}^2\) provides viscous
dissipation. The wind-stress momentum input is added to the momentum equation
for the ‘zonal flow’, \(u\). Other terms in the model
are explicitly switched off for this experiment configuration (see section
Section 4.1.3 ), yielding an active set of equations solved
in this configuration as follows


(4.3)\[ \begin{align}\begin{aligned}\frac{Du}{Dt} - fv + g\frac{\partial \eta}{\partial x} - A_{h}\nabla_{h}^2u
 = & \frac{\tau_{x}}{\rho_{0}\Delta z}\\\frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} - A_{h}\nabla_{h}^2v
 = & 0\\\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
 = & 0\end{aligned}\end{align} \]

where \(u\) and \(v\) and the \(x\) and \(y\) components of the
flow vector \(\vec{u}\).




4.1.2. Discrete Numerical Configuration

The domain is discretised with a uniform grid spacing in the horizontal set to \(\Delta x=\Delta y=20\) km, so that there are sixty grid cells in the \(x\) and \(y\) directions. Vertically the model is configured with a single layer with depth, \(\Delta z\), of \(5000\) m.


4.1.2.1. Numerical Stability Criteria

The Laplacian dissipation coefficient, \(A_{h}\), is set to \(400 m s^{-1}\). This value is chosen to yield a Munk layer width [Adc95],


(4.4)\[M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}\]

of \(\approx\) 100km. This is greater than the model
resolution \(\Delta x\), ensuring that the frictional boundary
layer is well resolved.

The model is stepped forward with a
time step \(\delta t=1200\) secs. With this time step the stability
parameter to the horizontal Laplacian friction [Adc95]


(4.5)\[S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}\]

evaluates to 0.012, which is well below the 0.3 upper limit for stability.

The numerical stability for inertial oscillations [Adc95]


(4.6)\[S_{i} = f^{2} {\delta t}^2\]

evaluates to \(0.0144\) , which is well below the 0.5 upper limit for stability.

The advective CFL [Adc95] for an extreme maximum horizontal flow speed of \({|\vec{u}|} = 2 ms^{-1}\)


(4.7)\[S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}\]

evaluates to 0.12. This is approaching the stability limit of 0.5 and limits \(\delta t\) to 1200 s.






4.1.3. Code Configuration

The model configuration for this experiment resides under the directory verification/tutorial_barotropic_gyre/.

The experiment files



	input/data


	input/data.pkg


	input/eedata


	input/windx.sin_y


	input/topog.box


	code/CPP_EEOPTIONS.h


	code/CPP_OPTIONS.h


	code/SIZE.h







contain the code customizations and parameter settings for this
experiments. Below we describe the customizations
to these files associated with this experiment.


4.1.3.1. File input/data

This file, reproduced completely below, specifies the main parameters
for the experiment. The parameters that are significant for this configuration
are

	7

	 viscAh=4.E2,








	this line sets the Laplacian friction coefficient to \(400 m^2s^{-1}\)




	10

	 beta=1.E-11,








	this line sets \(\beta\) (the gradient of the coriolis parameter, \(f\))
to \(10^{-11} s^{-1}m^{-1}\)




	15
16

	 rigidLid=.FALSE.,
 implicitFreeSurface=.TRUE.,








	these lines suppress the rigid lid formulation of the surface pressure
inverter and activate the implicit free surface form of the pressure inverter.




The above was coded like this in rst:

.. literalinclude:: ../../../verification/tutorial_barotropic_gyre/input/data
   :start-at: viscAh=
   :end-at: viscAh=
   :linenos:
   :lineno-match:

- this line sets the Laplacian friction coefficient to :math:`400 m^2s^{-1}`

.. literalinclude:: ../../../verification/tutorial_barotropic_gyre/input/data
   :start-at: beta=
   :end-at: beta=
   :linenos:
   :lineno-match:

- this line sets :math:`\beta` (the gradient of the coriolis parameter, :math:`f`)
  to :math:`10^{-11} s^{-1}m^{-1}`

.. literalinclude:: ../../../verification/tutorial_barotropic_gyre/input/data
   :start-at: rigidLid=
   :end-at: implicitFreeSurface=
   :linenos:
   :lineno-match:

- these lines suppress the rigid lid formulation of the surface pressure
  inverter and activate the implicit free surface form of the pressure inverter.





…



	Line 27


	startTime=0,


	this line indicates that the experiment should start from \(t=0\) and implicitly suppresses searching for checkpoint files associated with restarting an numerical integration from a previously saved state.






	Line 29


	endTime=12000,


	this line indicates that the experiment should start finish at \(t=12000s\). A restart file will be written at this time that will enable the simulation to be continued from this point.






	Line 30



	deltaTmom=1200,


	This line sets the momentum equation timestep to \(1200s\).









	Line 39


	usingCartesianGrid=.TRUE.,


	This line requests that the simulation be performed in a Cartesian coordinate system.






	Line 41


	delX=60*20E3,


	This line sets the horizontal grid spacing between each x-coordinate line in the discrete grid. The syntax indicates that the discrete grid should be comprise of $60$ grid lines each separated by \(20 \times 10^{3}m\) (20 km).






	Line 42


	delY=60*20E3,


	This line sets the horizontal grid spacing between each y-coordinate line in the discrete grid to \(20 \times 10^{3}m\) (20 km).






	Line 43


	delZ=5000,


	This line sets the vertical grid spacing between each z-coordinate line in the discrete grid to 5000m (5 km).






	Line 46


	bathyFile=’topog.box’


	This line specifies the name of the file from which the domain bathymetry is read. This file is a two-dimensional (\(x,y\)) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth of the model at each grid cell, ordered with the x coordinate varying fastest. The points are ordered from low coordinate to high coordinate for both axes. The units and orientation of the depths in this file are the same as used in the MITgcm code. In this experiment, a depth of 0 m indicates a solid wall and a depth of -5000 m indicates open ocean. The matlab program input/gendata.m shows an example of how to generate a bathymetry file.






	Line 49


	zonalWindFile=’windx.sin_y’


	This line specifies the name of the file from which the x-direction surface wind stress is read. This file is also a two-dimensional (\(x,y\)) map and is enumerated and formatted in the same manner as the bathymetry file. The matlab program input/gendata.m includes example code to generate a valid zonalWindFile file.











other lines in the file input/data are standard values that are described in the MITgcm Getting Started and MITgcm Parameters notes.


Listing 4.1 verification/tutorial_barotropic_gyre/input/data

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	# Model parameters
# Continuous equation parameters
 &PARM01
 tRef=20.,
 sRef=10.,
 viscAz=1.E-2,
 viscAh=4.E2,
 diffKhT=4.E2,
 diffKzT=1.E-2,
 beta=1.E-11,
 tAlpha=2.E-4,
 sBeta =0.,
 gravity=9.81,
 gBaro=9.81,
 rigidLid=.FALSE.,
 implicitFreeSurface=.TRUE.,
 eosType='LINEAR',
 readBinaryPrec=64,
 &

# Elliptic solver parameters
 &PARM02
 cg2dMaxIters=1000,
 cg2dTargetResidual=1.E-7,
 &

# Time stepping parameters
 &PARM03
 startTime=0,
#endTime=311040000,
 endTime=12000.0,
 deltaTmom=1200.0,
 deltaTtracer=1200.0,
 abEps=0.1,
 pChkptFreq=2592000.0,
 chkptFreq=120000.0,
 dumpFreq=2592000.0,
 monitorSelect=2,
 monitorFreq=1.,
 &

# Gridding parameters
 &PARM04
 usingCartesianGrid=.TRUE.,
 usingSphericalPolarGrid=.FALSE.,
 delX=60*20E3,
 delY=60*20E3,
 delZ=5000.,
 &

# Input datasets
 &PARM05
 bathyFile='topog.box',
 hydrogThetaFile=,
 hydrogSaltFile=,
 zonalWindFile='windx.sin_y',
 meridWindFile=,
 &












4.1.3.2. File input/data.pkg

This file uses standard default values and does not contain
customizations for this experiment.




4.1.3.3. File input/eedata

This file uses standard default values and does not contain
customizations for this experiment.




4.1.3.4. File input/windx.sin_y

The input/windx.sin_y file specifies a two-dimensional (\(x,y\))
map of wind stress, \(\tau_{x}\), values. The units used are \(Nm^{-2}\). Although \(\tau_{x}\) is only a function of \(y\) in this experiment
this file must still define a complete two-dimensional map in order
to be compatible with the standard code for loading forcing fields
in MITgcm. The included matlab program input/gendata.m gives a complete
code for creating the input/windx.sin_y file.




4.1.3.5. File input/topog.box

The input/topog.box file specifies a two-dimensional (\(x,y\)) map of depth values. For this experiment values are either 0 m or \(-delZ\) m, corresponding respectively to a wall or to deep ocean. The file contains a raw binary stream of data that is enumerated in the same way as standard MITgcm two-dimensional, horizontal arrays. The included matlab program input/gendata.m gives a completecode for creating the input/topog.box file.




4.1.3.6. File code/SIZE.h

Two lines are customized in this file for the current experiment



	Line 39


	sNx=60,


	this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.






	Line 40


	sNy=60,


	this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.












Listing 4.2 verification/tutorial_barotropic_gyre/code/SIZE.h

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	C
C     /==========================================================\
C     | SIZE.h Declare size of underlying computational grid.    |
C     |==========================================================|
C     | The design here support a three-dimensional model grid   |
C     | with indices I,J and K. The three-dimensional domain     |
C     | is comprised of nPx*nSx blocks of size sNx along one axis|
C     | nPy*nSy blocks of size sNy along another axis and one    |
C     | block of size Nz along the final axis.                   |
C     | Blocks have overlap regions of size OLx and OLy along the|
C     | dimensions that are subdivided.                          |
C     \==========================================================/
C     Voodoo numbers controlling data layout.
C     sNx - No. X points in sub-grid.
C     sNy - No. Y points in sub-grid.
C     OLx - Overlap extent in X.
C     OLy - Overlat extent in Y.
C     nSx - No. sub-grids in X.
C     nSy - No. sub-grids in Y.
C     nPx - No. of processes to use in X.
C     nPy - No. of processes to use in Y.
C     Nx  - No. points in X for the total domain.
C     Ny  - No. points in Y for the total domain.
C     Nr  - No. points in R for full process domain.
      INTEGER sNx
      INTEGER sNy
      INTEGER OLx
      INTEGER OLy
      INTEGER nSx
      INTEGER nSy
      INTEGER nPx
      INTEGER nPy
      INTEGER Nx
      INTEGER Ny
      INTEGER Nr
      PARAMETER (
     &           sNx =  30,
     &           sNy =  30,
     &           OLx =   2,
     &           OLy =   2,
     &           nSx =   2,
     &           nSy =   2,
     &           nPx =   1,
     &           nPy =   1,
     &           Nx  = sNx*nSx*nPx,
     &           Ny  = sNy*nSy*nPy,
     &           Nr  =   1)

C     MAX_OLX  - Set to the maximum overlap region size of any array
C     MAX_OLY    that will be exchanged. Controls the sizing of exch
C                routine buufers.
      INTEGER MAX_OLX
      INTEGER MAX_OLY
      PARAMETER ( MAX_OLX = OLx,
     &            MAX_OLY = OLy )













4.1.3.7. File code/CPP_OPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.




4.1.3.8. File code/CPP_EEOPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.







          

      

      

    

  

    
      
          
            
  
4.2.1. Equations Solved




4.2.2. Discrete Numerical Configuration

The domain is discretised with a uniform cylindrical grid spacing in
the horizontal set to \(\Delta a=1`~cm and :math:\)Delta phi=3^{circ}`, so
that there are 120 grid cells in the azimuthal direction and
thirty-one grid cells in the radial, representing a tank 62cm in
diameter.  The bathymetry file sets the depth=0 in the nine lowest
radial rows to represent the central of the annulus.  Vertically the
model is configured with twenty-nine layers of uniform 0.5cm
thickness.

something about heat flux




4.2.3. Code Configuration

The model configuration for this experiment resides under the
directory verification/rotatingi_tank/.  The experiment files



	input/data


	input/data.pkg


	input/eedata


	input/bathyPol.bin


	input/thetaPol.bin


	code/CPP\_EEOPTIONS.h


	code/CPP\_OPTIONS.h


	code/SIZE.h







contain the code customizations and parameter settings for this
experiments. Below we describe the customizations
to these files associated with this experiment.


4.2.3.1. File input/data

This file, reproduced completely below, specifies the main parameters
for the experiment. The parameters that are significant for this configuration
are



	Lines 9-10,


	viscAh=5.0E-6,


	viscAz=5.0E-6,











These lines set the Laplacian friction coefficient in the horizontal
and vertical, respectively.  Note that they are several orders of
magnitude smaller than the other examples due to the small scale of
this example.



	Lines 13-16,


	diffKhT=2.5E-6,


	diffKzT=2.5E-6,


	diffKhS=1.0E-6,


	diffKzS=1.0E-6,











These lines set horizontal and vertical diffusion coefficients for
temperature and salinity.  Similarly to the friction coefficients, the
values are a couple of orders of magnitude less than most
configurations.



	Line 17, f0=0.5, this line sets the coriolis term, and represents a tank spinning at about 2.4 rpm.


	Lines 23 and 24


	rigidLid=.TRUE.,


	implicitFreeSurface=.FALSE.,











These lines activate  the rigid lid formulation of the surface
pressure inverter and suppress the implicit free surface form
of the pressure inverter.



	Line 40,


	nIter=0,











This line indicates that the experiment should start from $t=0$ and
implicitly suppresses searching for checkpoint files associated with
restarting an numerical integration from a previously saved state.
Instead, the file thetaPol.bin will be loaded to initialized the
temperature fields as indicated below, and other variables will be
initialized to their defaults.



	Line 43,


	deltaT=0.1,











This line sets the integration timestep to $0.1s$.  This is an
unsually small value among the examples due to the small physical
scale of the experiment.  Using the ensemble Kalman filter to produce
input fields can necessitate even shorter timesteps.



	Line 56,


	usingCylindricalGrid=.TRUE.,











This line requests that the simulation be performed in a
cylindrical coordinate system.



	Line 57,


	dXspacing=3,











This line sets the azimuthal grid spacing between each $x$-coordinate line
in the discrete grid. The syntax indicates that the discrete grid
should be comprised of $120$ grid lines each separated by $3^{circ}$.



	Line 58,


	dYspacing=0.01,











This line sets the radial cylindrical grid spacing between each
\(a\)-coordinate line in the discrete grid to \(1cm\).



	Line 59,


	delZ=29*0.005,











This line sets the vertical grid spacing between each of 29
z-coordinate lines in the discrete grid to $0.005m$ ($5$~mm).



	Line 64,


	bathyFile=’bathyPol.bin’,











This line specifies the name of the file from which the domain
‘bathymetry’ (tank depth) is read. This file is a two-dimensional
(\(a,\phi\)) map of
depths. This file is assumed to contain 64-bit binary numbers
giving the depth of the model at each grid cell, ordered with the $phi$
coordinate varying fastest. The points are ordered from low coordinate
to high coordinate for both axes.  The units and orientation of the
depths in this file are the same as used in the MITgcm code. In this
experiment, a depth of $0m$ indicates an area outside of the tank
and a depth
f \(-0.145m\) indicates the tank itself.



	Line 65,


	hydrogThetaFile=’thetaPol.bin’,











This line specifies the name of the file from which the initial values
of temperature
are read. This file is a three-dimensional
(\(x,y,z\)) map and is enumerated and formatted in the same manner as the
bathymetry file.



	Lines 66 and 67


	tCylIn  = 0


	tCylOut  = 20











These line specify the temperatures in degrees Celsius of the interior
and exterior walls of the tank – typically taken to be icewater on
the inside and room temperature on the outside.

Other lines in the file input/data are standard values
that are described in the MITgcm Getting Started and MITgcm Parameters
notes.


Listing 4.3 verification/rotating_tank/input/data

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	# ====================
# | Model parameters |
# ====================
#
# Continuous equation parameters
 &PARM01
 tRef=29*20.0,
 sRef=29*35.0,
 viscAh=5.0E-6,
 viscAz=5.0E-6,
 no_slip_sides=.FALSE.,
 no_slip_bottom=.FALSE.,
 diffKhT=2.5E-6,
 diffKzT=2.5E-6,
 diffKhS=1.0E-6,
 diffKzS=1.0E-6,
 f0=0.5,
 eosType='LINEAR',
 sBeta =0.,
 gravity=9.81,
 rhoConst=1000.0,
 rhoNil=1000.0,
#heatCapacity_Cp=3900.0,
 rigidLid=.TRUE.,
 implicitFreeSurface=.FALSE.,
 nonHydrostatic=.TRUE.,
 readBinaryPrec=32,
 &

# Elliptic solver parameters
 &PARM02
 cg2dMaxIters=1000,
 cg2dTargetResidual=1.E-7,
 cg3dMaxIters=10,
 cg3dTargetResidual=1.E-9,
 &

# Time stepping parameters
 &PARM03
 nIter0=0,
 nTimeSteps=20,
#nTimeSteps=36000000,
 deltaT=0.1,
 abEps=0.1,
 pChkptFreq=2.0,
#chkptFreq=2.0,
 dumpFreq=2.0,
 monitorSelect=2,
 monitorFreq=0.1,
 &

# Gridding parameters
 &PARM04
 usingCylindricalGrid=.TRUE.,
 dXspacing=3.,
 dYspacing=0.01,
 delZ=29*0.005,
 ygOrigin=0.07,
 &

# Input datasets
 &PARM05
 hydrogThetaFile='thetaPolR.bin',
 bathyFile='bathyPolR.bin',
 tCylIn  = 0.,
 tCylOut = 20.,
 &












4.2.3.2. File input/data.pkg

This file uses standard default values and does not contain
customizations for this experiment.




4.2.3.3. File input/eedata

This file uses standard default values and does not contain
customizations for this experiment.




4.2.3.4. File input/thetaPol.bin

The {it input/thetaPol.bin} file specifies a three-dimensional ($x,y,z$)
map of initial values of $theta$ in degrees Celsius.  This particular
experiment is set to random values x around 20C to provide initial
perturbations.




4.2.3.5. File input/bathyPol.bin

The {it input/bathyPol.bin} file specifies a two-dimensional ($x,y$)
map of depth values. For this experiment values are either
$0m$ or {bf -delZ}m, corresponding respectively to outside or inside of
the tank. The file contains a raw binary stream of data that is enumerated
in the same way as standard MITgcm two-dimensional, horizontal arrays.




4.2.3.6. File code/SIZE.h

Two lines are customized in this file for the current experiment



	Line 39,
- sNx=120,







this line sets
the lateral domain extent in grid points for the
axis aligned with the x-coordinate.



	Line 40,
- sNy=31,







this line sets
the lateral domain extent in grid points for the
axis aligned with the y-coordinate.


Listing 4.4 verification/rotating_tank/code/SIZE.h

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	C
C     /==========================================================\
C     | SIZE.h Declare size of underlying computational grid.    |
C     |==========================================================|
C     | The design here support a three-dimensional model grid   |
C     | with indices I,J and K. The three-dimensional domain     |
C     | is comprised of nPx*nSx blocks of size sNx along one axis|
C     | nPy*nSy blocks of size sNy along another axis and one    |
C     | block of size Nz along the final axis.                   |
C     | Blocks have overlap regions of size OLx and OLy along the|
C     | dimensions that are subdivided.                          |
C     \==========================================================/
C     Voodoo numbers controlling data layout.
C     sNx - No. X points in sub-grid.
C     sNy - No. Y points in sub-grid.
C     OLx - Overlap extent in X.
C     OLy - Overlat extent in Y.
C     nSx - No. sub-grids in X.
C     nSy - No. sub-grids in Y.
C     nPx - No. of processes to use in X.
C     nPy - No. of processes to use in Y.
C     Nx  - No. points in X for the total domain.
C     Ny  - No. points in Y for the total domain.
C     Nr  - No. points in Z for full process domain.
      INTEGER sNx
      INTEGER sNy
      INTEGER OLx
      INTEGER OLy
      INTEGER nSx
      INTEGER nSy
      INTEGER nPx
      INTEGER nPy
      INTEGER Nx
      INTEGER Ny
      INTEGER Nr
      PARAMETER (
     &           sNx =  30,
     &           sNy =  23,
     &           OLx =   3,
     &           OLy =   3,
     &           nSx =   4,
     &           nSy =   1,
     &           nPx =   1,
     &           nPy =   1,
     &           Nx  = sNx*nSx*nPx,
     &           Ny  = sNy*nSy*nPy,
     &           Nr  =  29)

C     MAX_OLX  - Set to the maximum overlap region size of any array
C     MAX_OLY    that will be exchanged. Controls the sizing of exch
C                routine buufers.
      INTEGER MAX_OLX
      INTEGER MAX_OLY
      PARAMETER ( MAX_OLX = OLx,
     &            MAX_OLY = OLy )













4.2.3.7. File code/CPP_OPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.




4.2.3.8. File code/CPP_EEOPTIONS.h

This file uses standard default values and does not contain
customizations for this experiment.







          

      

      

    

  

    
      
          
            
  
5. Contributing to the MITgcm

The MITgcm is an open source project that relies on the participation of its users, and we welcome contributions. This chapter sets out how you can contribute to the MITgcm.


5.1. Bugs and feature requests

If you think you’ve found a bug, the first thing to check that you’re using the latest version of the model. If the bug is still in the latest version, then think about how you might fix it and file a ticket in the GitHub issue tracker [https://github.com/MITgcm/MITgcm/issues]. Please include as much detail as possible. At a minimum your ticket should include:



	what the bug does;


	the location of the bug: file name and line number(s); and


	any suggestions you have for how it might be fixed.







To request a new feature, or guidance on how to implement it yourself, please open a ticket with the following details:



	a clear explanation of what the feature will do; and


	a summary of the equations to be solved.










5.2. Using Git and Github

To contribute to the source code of the model you will need to fork the repository and place a pull request on GitHub. The two following sections describe this process in different levels of detail. If you are unfamiliar with git, you may wish to skip the quickstart guide and use the detailed instructions. All contributions to the source code are expected to conform with the Coding style guide. Contributions to the manual should follow the same procedure and conform with Section 5.4.


5.2.1. Quickstart Guide

1. Fork the project on GitHub (using the fork button).

2. Create a local clone (we strongly suggest keeping a separate repository for development work):

% git clone https://github.com/user_name/MITgcm.git





3. Move into your local clone directory (cd MITgcm) and and set up a remote that points to the original:

% git remote add upstream https://github.com/MITgcm/MITgcm.git





4. Make a new branch from upstream/master (name it something appropriate, here we call the new feature branch newfeature) and make edits on this branch:

% git fetch upstream
% git checkout -b newfeature upstream/master





5. When edits are done, do all git add’s and git commit’s. In the commit message, make a succinct (<70 char) summary of your changes. If you need more space to describe your changes, you can leave a blank line and type a longer description, or break your commit into multiple smaller commits. Reference any outstanding issues addressed using the syntax #ISSUE_NUMBER.

6. Push the edited branch to the origin remote (i.e. your fork) on GitHub:

% git push -u origin newfeature





7. On GitHub, go to your fork and hit the pull request (PR) button, and wait for the MITgcm head developers to review your proposed changes.
In general the MITgcm code reviewers try to respond to a new PR within
a week. A response may accept the changes, or may request edits and
changes. Occasionally the review team will reject changes that are not
sufficiently aligned with and do not fit with the code structure. The
review team is always happy to discuss their decisions, but wants to
avoid people investing extensive effort in code that has a fundamental
design flaw. The current review team is Jean-Michel Campin, Ed Doddridge, Chris
Hill and Oliver Jahn.

If you want to update your code branch before submitting a PR (or any point in development), follow the recipe below. It will ensure that your GitHub repo stays up to date with the main repository. Note again that your edits should always be to a development branch (here, newfeature), not the master branch.

% git checkout master
% git pull upstream master
% git push origin master
% git checkout newfeature
% git merge master





If you prefer, you can rebase rather than merge in the final step above; just be careful regarding your rebase syntax!




5.2.2. Detailed guide for those less familiar with Git and GitHub

What is Git [https://en.wikipedia.org/wiki/Git]? Git is a version control software tool used to help coordinate work among the many MITgcm model contributors. Version control is a management system to track changes in code over time, not only facilitating ongoing changes to code, but also as a means to check differences and/or obtain code from any past time in the project history. Without such a tool, keeping track of bug fixes and new features submitted by the global network of MITgcm contributors would be virtually impossible. If you are familiar with the older form of version control used by the MITgcm (CVS), there are many similarities, but we now take advantage of the modern capabilities offered by Git.

Git itself is open source linux software (typically included with any new linux installation, check with your sys-admin if it seems to be missing) that is necessary for tracking changes in files, etc. through your local computer’s terminal session. All Git-related terminal commands are of the form git <arguments>.  Important functions include syncing or updating your code library, adding files to a collection of files with edits, and commands to “finalize” these changes for sending back to the MITgcm maintainers. There are numerous other Git command-line tools to help along the way (see man pages via man git).

The most common git commands are:



	git clone download (clone) a repository to your local machine


	git status obtain information about the local git repository


	git diff highlight differences between the current version of a file and the version from the most recent commit


	git add stage a file, or changes to a file, so that they are ready for git commit


	git commit create a commit. A commit is a snapshot of the repository with an associated message that describes the changes.







What is GitHub then? GitHub is a website that has three major purposes: 1) Code Viewer: through your browser, you can view all source code and all changes to such over time; 2) “Pull Requests”: facilitates the process whereby code developers submit changes to the primary MITgcm maintainers; 3) the “Cloud”: GitHub functions as a cloud server to store different copies of the code. The utility of #1 is fairly obvious. For #2 and #3, without GitHub, one might envision making a big tarball of edited files and emailing the maintainers for inclusion in the main repository. Instead, GitHub effectively does something like this for you in a much more elegant way.  Note unlike using (linux terminal command) git, GitHub commands are NOT typed in a terminal, but are typically invoked by hitting a button on the web interface, or clicking on a webpage link etc. To contribute edits to MITgcm, you need to obtain a github account. It’s free; do this first if you don’t have one already.

Before you start working with git, make sure you identify yourself. From your terminal, type:

% git config --global user.email your_email@example.edu
% git config --global user.name ‘John Doe’





(note the required quotes around your name). You should also personalize your profile associated with your GitHub account.

There are many online tutorials to using Git and GitHub (see for example https://akrabat.com/the-beginners-guide-to-contributing-to-a-github-project ); here, we are just communicating the basics necessary to submit code changes to the MITgcm. Spending some time learning the more advanced features of Git will likely pay off in the long run, and not just for MITgcm contributions, as you are likely to encounter it in all sorts of different projects.

To better understand this process, Figure 5.1 shows a conceptual map of the Git setup. Note three copies of the code: the main MITgcm repository sourcecode “upstream” (i.e., owned by the MITgcm maintainers) in the GitHub cloud, a copy of the repository “origin” owned by you, also residing in the GitHub cloud, and a local copy on your personal computer or compute cluster (where you intend to compile and run). The Git and GitHub commands to create this setup are explained more fully below.



[image: Conceptual model of GitHub]Figure 5.1 A conceptual map of the GitHub setup. Git terminal commands are shown in red, GitHub commands are shown in green.






One other aspect of Git that requires some explanation to the uninitiated: your local linux copy of the code repository can contain different “branches”, each branch being a different copy of the code repository (this can occur in all git-aware directories). When you switch branches, basic unix commands such as ls or cat will show a different set of files specific to current branch. In other words, Git interacts with your local file system so that edits or newly created files only appear in the current branch, i.e., such changes do not appear in any other branches. So if you swore you made some changes to a particular file, and now it appears those changes have vanished, first check which branch you are on (git status is a useful command here), all is probably not lost.

A detailed explanation of steps for contributing MITgcm repository edits:

1. On GitHub, create a local copy of the repository in your GitHub cloud user space: from the main repository (https://github.com/MITgcm/MITgcm) hit the Fork button.
As mentioned, your GitHub copy “origin” is necessary to streamline the collaborative development process – you need to create a place for your edits in the GitHub cloud, for developers to peruse.

2. Download the code onto your local computer using the git clone command. Even if you previously downloaded the code through a “git-aware” method (i.e., a git clone command, see Section 3.2.1),
we STRONGLY SUGGEST you download a fresh repository, to a separate disk location, for your development work (keeping your research work separate). Type:

% git clone https://github.com/your_github_user_name/MITgcm.git





from your terminal (technically, here you are copying the forked “origin” version from the cloud, not the “upstream” version, but these will be identical at this point).

3. Move into the local clone directory on your computer:

% cd MITgcm





We need to set up a remote that points to the main repository:

% git remote add upstream https://github.com/MITgcm/MITgcm.git





This means that we now have two “remotes” of the project. A remote is just a pointer to a repository not on your computer, i.e., in the GitHub cloud, one pointing to your GitHub user space (“origin”), and this new remote pointing to the original (“upstream”). You can read and write into your “origin” version (since it belongs to you, in the cloud), but not into the “upstream” version. This command just sets up this remote, which is needed in step #4 – no actual file manipulation is done at this point. If in doubt, the command git remote -v will list what remotes have been set up.

4.  Next make a new branch.

% git fetch upstream
% git checkout -b newfeature upstream/master





You will make edits on this new branch, to keep these new edits completely separate from all files on the master branch. The first command git fetch upstream makes sure your new branch is the latest code from the main repository; as such, you can redo step 4 at any time to start additional, separate development projects (on a separate, new branch). Note that this second command above not only creates this new branch, which we name newfeature, from the upstream/master branch, it also switches you onto this newly created branch.  Naming the branch something more descriptive than ‘newfeature’ is helpful.

5. Doing stuff! This usually comes in one of three flavors:


i) cosmetic changes, formatting, documentation, etc.;

ii) fixing bug(s), or any change to the code which results in different numerical output; or

iii) adding a feature or new package.




To do this you should:





	edit the relevant file(s) and/or create new files. Refer to Coding style guide for details on expected documentation standards and code style requirements. Of course, changes should be thoroughly tested to ensure they compile and run successfully!


	type git add <FILENAME1> <FILENAME2> ... to stage the file(s) ready for a commit command (note both existing and brand new files need to be added). “Stage” effectively means to notify Git of the the list of files you plan to “commit” for changes into the version tracking system. Note you can change other files and NOT have them sent to model developers; only staged files will be sent. You can repeat this git add command as many times as you like and it will continue to augment the list of files.  git diff and git status are useful commands to see what you have done so far.


	use git commit to commit the files. This is the first step in bundling a collection of files together to be sent off to the MITgcm maintainers. When you enter this command, an editor window will pop up. On the top line, type a succinct (<70 character) summary of what these changes accomplished. If your commit is non-trivial and additional explanation is required, leave a blank line and then type a longer description of why the action in this commit was appropriate etc. It is good practice to link with known issues using the syntax #ISSUE_NUMBER in either the summary line or detailed comment. Note that all the changes do not have to be handled in a single commit (i.e. you can git add some files, do a commit, than continue anew by adding different files, do another commit etc.); the git commit command itself does not (yet) submit anything to maintainers.


	if you are fixing a more involved bug or adding a new feature, such that many changes are required, it is preferable to break your contribution into multiple commits (each documented separately) rather than submitting one massive commit; each commit should encompass a single conceptual change to the code base, regardless of how many files it touches. This will allow the MITgcm maintainers to more easily understand your proposed changes and will expedite the review process.


	if you make any change to the code, however small, i.e., flavor ii or iii above, we expect you to add your changes to the top of doc/tag-index [https://github.com/MITgcm/MITgcm/blob/master/doc/tag-index] (starting at line 4), which is a running history of all development of the MITgcm. Again, be concise, describing your changes in one or several lines of text. We will not accept code changes without this edit.







When your changes are tested and documented, continue on to step #6, but read all of step #6 and #7 before proceeding; you might want to do an optional “bring my development branch up to date” sequence of steps before step #6.

6. Now we “push” our modified branch with committed changes onto the origin remote in the GitHub cloud. This effectively updates your GitHub cloud copy of the MITgcm repo to reflect the wonderful changes you are contributing.

% git push -u origin newfeature





Some time might elapse during step #5, as you make and test your edits, during which continuing development occurs in the main MITgcm repository. In contrast with some models that opt for static, major releases, the MITgcm is in a constant state of improvement and development. It is very possible that some of your edits occur to files that have also been modified by others; in fact, it is very likely doc/tag-index [https://github.com/MITgcm/MITgcm/blob/master/doc/tag-index] will have been updated in the main repo if even a week has elapsed. Your local clone however will not know anything about any changes that may have occurred to the MITgcm repo in the cloud, which may cause an issue in step #7 below, when one of three things will occur:



	the files you have modified in your development have NOT been modified in the main repo during this elapsed time, thus git will have no conflicts in trying to update (i.e. merge) your changes into the main repo.


	during the elapsed time, the files you have modified have also been edited/updated in the main repo, but you edited different places in these files than those edits to the main repo, such that git is smart enough to be able to merge these edits without conflict.


	during the elapsed time, the files you have modified have also been edited/updated in the main repo, but git is not smart enough to know how to deal with this conflict (it will notify you of this problem during step #7).







One option is to NOT attempt to bring your development code branch up to date, instead simply proceed with steps #6 and #7 and let the maintainers assess and resolve any conflict(s), should such occur (there is a checkbox ‘Allow edits by maintainers’ that is checked by default when you do step #7). If very little time elapsed during step #5, such conflict is less likely (exception would be to doc/tag-index [https://github.com/MITgcm/MITgcm/blob/master/doc/tag-index], which the maintainers can easily resolve). However, if step #5 takes on the order of months, we do suggest you follow this recipe below to update the code and merge yourself. And/or during the development process, you might have reasons to bring the latest changes in the main repo into your development branch, and thus might opt to follow these same steps.

Development branch code update recipe:

% git checkout master
% git pull upstream master
% git push origin master
% git checkout newfeature
% git merge master





This first command switches you from your development branch to the master branch. The second command above will synchronize your local master branch with the main MITgcm repository master branch (i.e. “pull” any new changes that might have occurred in the upstream repository into your local clone). Note you should not have made any changes to your clone’s master branch; in other words, prior to the pull, master should be a stagnant copy of the code from the day you performed step #1 above. The git push command does the opposite of pull, so in the third step you are synchronizing your GitHub cloud copy (“origin”) master branch to your local clone’s master branch (which you just updated). Then, switch back to your development branch via the second git checkout command. Finally, the last command will merge any changes into your development branch. If conflicts occur that git cannot resolve, git will provide you a list of the problematic file names, and in these files, areas of conflict will be demarcated. You will need to edit these files at these problem spots (while removing git’s demarcation text),
then do a git add FILENAME for each of these files, followed by a final git commit to finish off the merger.

Some additional git diff commands to help sort out file changes, in case you want to assess the scope of development changes, are as follows. git diff master upstream/master will show you all differences between your local master branch and the main MITgcm repo, i.e., so you can peruse what parallel MITgcm changes have occurred while you were doing your development (this assumes you have not yet updated your clone’s master branch). You can check for differences on individual files via git diff master upstream/master  <FILENAME>. If you want to see all differences in files you have modified during your development, the command is git diff master. Similarly, to see a combined list of both your changes and those occurring to the main repo, git diff upstream/master.

Aside comment: if you are familiar with git, you might realize there is an alternate way to merge, using the “rebase” syntax. If you know what you are doing, feel free to use this command instead of our suggested merge command above.

7. Finally create a “pull request” (a.k.a. “PR”; in other words, you are requesting that the maintainers pull your changes into the main code repository). In GitHub, go to the fork of the project that you made (https://github.com/your_github_user_name/MITgcm.git). There is a button for “Compare and Pull” in your newly created branch. Click the button! Now you can add a final succinct summary description of what you’ve done in your commit(s), and flag up any issues. The maintainers will now be notified and be able to peruse your changes! In general, the maintainers will try to respond to a new PR within
a week. While the PR remains open, you can go back to step #5 and make additional edits, git adds,
git commits, and then redo step #6; such changes will be added to the PR (and maintainers re-notified), no need to redo step #7.

Your pull request remains open until either the maintainers fully accept and
merge your code changes into the main repository, or decide to reject your changes
(occasionally, the review team will reject changes that are not
sufficiently aligned with and do not fit with the code structure).
But much more likely than the latter, you will instead be asked to respond to feedback,
modify your code changes in some way, and/or clean up your code to better satisfy our style requirements, etc.,
and the pull request will remain open instead of outright rejection.
The review team is always happy to discuss their decisions, but wants to
avoid people investing extensive effort in code that has a fundamental
design flaw.

It is possible for other users (besides the maintainers) to examine
or even download your pull request; see Reviewing pull requests.

The current review team is Jean-Michel Campin, Ed Doddridge, Chris
Hill and Oliver Jahn.






5.3. Coding style guide

Detailed instructions or link to be added.


5.3.1. Automatic testing with Travis-CI

The MITgcm uses the continuous integration service Travis-CI to test code before it is accepted into the repository. When you submit a pull request your contributions will be automatically tested. However, it is a good idea to test before submitting a pull request, so that you have time to fix any issues that are identified. To do this, you will need to activate Travis-CI for your fork of the repository.

Detailed instructions or link to be added.






5.4. Contributing to the manual

Whether you are simply correcting typos or describing undocumented packages, we welcome all contributions to the manual. The following information will help you make sure that your contribution is consistent with the style of the MITgcm documentation. (We know that not all of the current documentation follows these guidelines - we’re working on it)

The manual is written in rst format, which is short for ReStructuredText directives. rst offers many wonderful features: it automatically does much of the formatting for you, it is reasonably well documented on the web (e.g. primers available here [http://www.sphinx-doc.org/en/stable/rest.html] and
here [http://docutils.sourceforge.net/docs/user/rst/quickref.html]), it can accept raw latex syntax and track equation labelling for you, in addition to numerous other useful features. On the down side however, it can be very fussy about formatting, requiring exact spacing and indenting, and seemingly innocuous things such as blank spaces at ends of lines can wreak havoc. We suggest looking at the existing rst files in the manual to see exactly how something is formatted, along with the syntax guidelines specified in this section, prior to writing and formatting your own manual text.

The manual can be viewed either of two ways: interactively (i.e., web-based), as hosted by read-the-docs (https://readthedocs.org/),
requiring an html format build, or downloaded as a pdf file.
When you have completed your documentation edits, you should double check both versions are to your satisfaction, particularly noting that figure sizing and placement
may be rendered differently in the pdf build.


5.4.1. Section headings


	Chapter headings - these are the main headings with integer numbers - underlined with ****


	section headings - headings with number format X.Y - underlined with ====


	Subsection headings - headings with number format X.Y.Z - underlined with ---


	Subsubsection headings - headings with number format X.Y.Z.A - underlined with +++


	Paragraph headings - headings with no numbers - underlined with ###




N.B. all underlinings should be the same length as the heading. If they are too short an error will be produced.




5.4.2. Internal document references

rst allows internal referencing of figures, tables, section headings, and equations, i.e. clickable links that bring the reader to the respective figure etc. in the manual.
To be referenced, a unique label is required. To reference figures, tables, or section headings by number,
the rst (inline) directive is :numref:`LABELNAME`. For example, this syntax would write out Figure XX on a line (assuming LABELNAME referred to a figure),
and when clicked, would relocate your position
in the manual to figure XX.  Section headings can also be referenced so that the name is written out instead of the section number, instead using this
directive :ref:`LABELNAME`.

Equation references have a slightly different inline syntax: :eq:`LABELNAME` will produce a clickable equation number reference,  surrounded by parentheses.

For instructions how to assign a label to tables and figures, see below. To label a section heading,
labels go above the section heading they refer to, with the format .. _LABELNAME:.
Note the necessary leading underscore. You can also place a clickable link to any spot in the text (e.g., mid-section),
using this same syntax to make the label, and using the syntax
:ref:`some_text_to_clickon <LABELNAME>` for the link.




5.4.3. Other embedded links

Hyperlinks: to reference a (clickable) URL, simply enter the full URL. If you want to have a different,
clickable text link instead of displaying the full URL, the syntax
is `clickable_text <URL>`_  (the ‘<’ and ‘>’ are literal characters, and note the trailing underscore).
For this kind of link, the clickable text has to be unique for each URL.  If
you would like to use a non-unique text (like ‘click here’), you should use
an ‘anonymous reference’ with a double trailing underscore:
`clickable_text <URL>`__.

File references: to create a link to pull up MITgcm code (or any file in the repo) in a code browser window, the syntax is :filelink:`path/filename`.
If you want to have a different text link to click on (e.g., say you didn’t want to display the full path), the syntax is :filelink:`clickable_text <path/filename>`
(again, the ‘<‘ and ‘>’ are literal characters). The top directory here is https://github.com/MITgcm/MITgcm ,
so if for example you wanted to pop open the file dynamics.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F]
from the main model source directory, you would specify model/src/dynamics.F in place of path/filename.

Variable references: to create a link to bring up a webpage displaying all MITgcm repo references to a particular variable name (for this purpose we are using the LXR Cross Referencer),
the syntax is :varlink:`name_of_variable`.




5.4.4. Symbolic Notation

Inline math is done with :math:`LATEX_HERE`

Separate equations, which will be typeset on their own lines, are produced with:

.. math::
   LATEX_HERE
   :label: EQN_LABEL_HERE





Labelled separate equations are assigned an equation number, which may be referenced elsewhere in the document (see Section 5.4.2). Omitting the :label: above
will still produce an equation on its own line, except without an equation label.
Note that using latex formatting \begin{aligned} …  \end{aligned} across multiple lines of equations will not work in conjunction with unique equation labels for each separate line
(any embedded formatting & characters will cause errors too). Latex alignment will work however if you assign a single label for the multiple lines of equations.

Discuss conversion of .tex files.




5.4.5. Figures

The syntax to insert a figure is as follows:

.. figure:: pathname/filename.*
   :width: 80%
   :align: center
   :alt: text description of figure here
   :name: myfigure

   The figure caption goes here as a single line of text.





figure::: The figure file is located in subdirectory pathname above; in practice, we have located figure files in subdirectories figs
off each manual chapter subdirectory.
The wild-card is used here so that different file formats can be used in the build process.
For vector graphic images, save a pdf for the pdf build plus a svg file for the html build.
For bitmapped images, gif, png, or jpeg formats can be used for both builds, no wild-card necessary
(see here [http://www.sphinx-doc.org/en/stable/builders.html] for more info
on compatible formats).

:width::  used to scale the size of the figure, here specified as 80% scaling factor
(check sizing in both the pdf and html builds, as you may need to adjust the figure size within the pdf file independently).

:align:: can be right, center, or left.

:name:  use this name when you refer to the figure in the text, i.e. :numref:`myfigure`.

Note the indentation and line spacing employed above.




5.4.6. Tables

There are two syntaxes for tables in reStructuredText. Grid tables are more flexible but cumbersome to create. Simple
tables are easy to create but limited (no row spans, etc.).  The raw rst syntax is shown first, then the output.

Grid Table Example:

+------------+------------+-----------+
| Header 1   | Header 2   | Header 3  |
+============+============+===========+
| body row 1 | column 2   | column 3  |
+------------+------------+-----------+
| body row 2 | Cells may span columns.|
+------------+------------+-----------+
| body row 3 | Cells may  | - Cells   |
+------------+ span rows. | - contain |
| body row 4 |            | - blocks. |
+------------+------------+-----------+












	Header 1

	Header 2

	Header 3





	body row 1

	column 2

	column 3



	body row 2

	Cells may span columns.



	body row 3

	Cells may
span rows.

	
	Cells


	contain


	blocks.







	body row 4






Simple Table Example:

=====  =====  ======
   Inputs     Output
------------  ------
  A      B    A or B
=====  =====  ======
False  False  False
True   False  True
False  True   True
True   True   True
=====  =====  ======












	Inputs

	Output



	A

	B

	A or B





	False

	False

	False



	True

	False

	True



	False

	True

	True



	True

	True

	True






Note that the spacing of your tables in your .rst file(s) will not match the generated output; rather,
when you build the final output, the rst builder (Sphinx) will determine how wide the columns need to be and space them appropriately.




5.4.7. Other text blocks

To set several lines apart in an whitespace box, e.g. useful for showing lines in from a terminal session, rst uses :: to set off a ‘literal block’.
For example:

::

    % unix_command_foo
    % unix_command_fum





(note the :: would not appear in the output html) A splashier way to outline a block, including a box label,
is to employ what is termed in rst as an ‘admonition block’.
In the manual these are used to show calling trees and for describing subroutine inputs and outputs. An example of
a subroutine input/output block is as follows:


This is an admonition block showing subroutine in/out syntax


.. admonition:: SUBROUTINE_NAME [https://github.com/MITgcm/MITgcm/blob/master//model/src/subroutine_name.F]


:class: note




| \(var1\) : VAR1 ( WHERE_VAR1_DEFINED.h [https://github.com/MITgcm/MITgcm/blob/master//model/inc/where_var1_defined.h])

| \(var2\) : VAR1 ( WHERE_VAR2_DEFINED.h [https://github.com/MITgcm/MITgcm/blob/master//model/inc/where_var2_defined.h] )

| \(var3\) : VAR1 ( WHERE_VAR3_DEFINED.h [https://github.com/MITgcm/MITgcm/blob/master//model/inc/where_var3_defined.h] )







An example of a subroutine in/out admonition box in the documentation is here.

An example of a calling tree in the documentation is here.




5.4.8. Other style conventions

Units should be typeset in normal text, with a space between a numeric value and the unit, and exponents added with the :sup: command.

9.8 m/s\ :sup:`2`





will produce 9.8 m/s2. If the exponent is negative use two dashes -- to make the minus sign sufficiently long.
The backslash removes the space between the unit and the exponent.

Alternatively, latex :math: directives (see above) may also be used to display units, using the \text{} syntax to display non-italic characters.


	double quotes for inline literal computer command, variables, syntax etc.


	discuss how to break up sections into smaller files


	discuss | lines







5.4.9. Building the manual

Once you’ve made your changes to the manual, you should build it locally to verify that it works as expected. To do this you will need a working python installation with the following modules installed (use pip install MODULE in the terminal):



	sphinx


	sphinxcontrib-bibtex


	sphinx_rtd_theme







Then, run make html in the docs directory.






5.5. Reviewing pull requests

The only people with write access to the main repository are a small number of core MITgcm developers. They are the people that will eventually merge your pull requests. However, before your PR gets merged, it will undergo the automated testing on Travis-CI, and it will be assessed by the MITgcm community.

Everyone can review and comment on pull requests. Even if you are not one of the core developers you can still comment on a pull request.

To test pull requests locally you should download the pull request branch. You can do this either by cloning the branch from the pull request:

git clone -b BRANCHNAME https://github.com/USERNAME/MITgcm.git





where USERNAME is replaced by the username of the person proposing the pull request, and BRANCHNAME is the branch from the pull request.

Alternatively, you can add the repository of the user proposing the pull request as a remote to your existing local repository. Move directories in to your local repository and then

git remote add USERNAME https://github.com/USERNAME/MITgcm.git





where USERNAME is replaced by the user name of the person who has made the pull request. Then download the branch from the pull request

git fetch USERNAME





and switch to the desired branch

git checkout --track USERNAME/foo





You now have a local copy of the code from the pull request and can run tests locally. If you have write access to the main repository you can push fixes or changes directly to the pull request.

None of these steps, apart from pushing fixes back to the pull request, require write access to either the main repository or the repository of the person proposing the pull request. This means that anyone can review pull requests. However, unless you are one of the core developers you won’t be able to directly push changes. You will instead have to make a comment describing any problems you find.







          

      

      

    

  

    
      
          
            
  
6. Software Architecture

This chapter focuses on describing the WRAPPER environment within
which both the core numerics and the pluggable packages operate. The
description presented here is intended to be a detailed exposition and
contains significant background material, as well as advanced details on
working with the WRAPPER. The tutorial examples in this manual (see
Section 4) contain more
succinct, step-by-step instructions on running basic numerical
experiments, of various types, both sequentially and in parallel. For
many projects, simply starting from an example code and adapting it to
suit a particular situation will be all that is required. The first part
of this chapter discusses the MITgcm architecture at an abstract level.
In the second part of the chapter we described practical details of the
MITgcm implementation and the current tools and operating system features
that are employed.


6.1. Overall architectural goals

Broadly, the goals of the software architecture employed in MITgcm are
three-fold:


	To be able to study a very broad range of interesting and
challenging rotating fluids problems;


	The model code should be readily targeted to a wide range of
platforms; and


	On any given platform, performance should be
comparable to an implementation developed and specialized
specifically for that platform.




These points are summarized in Figure 6.1,
which conveys the goals of the MITgcm design. The goals lead to a
software architecture which at the broadest level can be viewed as
consisting of:


	A core set of numerical and support code. This is discussed in detail
in Section 2.


	A scheme for supporting optional “pluggable” packages (containing
for example mixed-layer schemes, biogeochemical schemes, atmospheric
physics). These packages are used both to overlay alternate dynamics
and to introduce specialized physical content onto the core numerical
code. An overview of the package scheme is given at the start of
Section 8.


	A support framework called WRAPPER (Wrappable Application
Parallel Programming Environment Resource), within which the core
numerics and pluggable packages operate.






[image: span of mitgcm goals]Figure 6.1 The MITgcm architecture is designed to allow simulation of a wide range of physical problems on a wide range of hardware. The computational resource requirements of the applications targeted range from around 107 bytes ( \(\approx\) 10 megabytes) of memory to 1011 bytes ( \(\approx\) 100 gigabytes). Arithmetic operation counts for the applications of interest range from 109 floating point operations to more than 1017 floating point operations.






This chapter focuses on describing the WRAPPER environment under
which both the core numerics and the pluggable packages function. The
description presented here is intended to be a detailed exposition and
contains significant background material, as well as advanced details on
working with the WRAPPER. The “Getting Started” chapter of this manual
(Section 3) contains more succinct, step-by-step
instructions on running basic numerical experiments both sequentially
and in parallel. For many projects simply starting from an example code
and adapting it to suit a particular situation will be all that is
required.




6.2. WRAPPER

A significant element of the software architecture utilized in MITgcm is
a software superstructure and substructure collectively called the
WRAPPER (Wrappable Application Parallel Programming Environment
Resource). All numerical and support code in MITgcm is written to “fit”
within the WRAPPER infrastructure. Writing code to fit within the
WRAPPER means that coding has to follow certain, relatively
straightforward, rules and conventions (these are discussed further in
Section 6.3.1).

The approach taken by the WRAPPER is illustrated in Figure 6.2,
which shows how the WRAPPER serves to insulate
code that fits within it from architectural differences between hardware
platforms and operating systems. This allows numerical code to be easily
retargeted.



[image: schematic of a wrapper]
Figure 6.2 Numerical code is written to fit within a software support infrastructure called WRAPPER. The WRAPPER is portable and can be specialized for a wide range of specific target hardware and programming environments, without impacting numerical code that fits within the WRAPPER. Codes that fit within the WRAPPER can generally be made to run as fast on a particular platform as codes specially optimized for that platform.







6.2.1. Target hardware

The WRAPPER is designed to target as broad as possible a range of
computer systems. The original development of the WRAPPER took place on
a multi-processor, CRAY Y-MP system. On that system, numerical code
performance and scaling under the WRAPPER was in excess of that of an
implementation that was tightly bound to the CRAY system’s proprietary
multi-tasking and micro-tasking approach. Later developments have been
carried out on uniprocessor and multiprocessor Sun systems with both
uniform memory access (UMA) and non-uniform memory access (NUMA)
designs. Significant work has also been undertaken on x86 cluster
systems, Alpha processor based clustered SMP systems, and on
cache-coherent NUMA (CC-NUMA) systems such as Silicon Graphics Altix
systems. The MITgcm code, operating within the WRAPPER, is also
routinely used on large scale MPP systems (for example, Cray T3E and IBM
SP systems). In all cases, numerical code, operating within the WRAPPER,
performs and scales very competitively with equivalent numerical code
that has been modified to contain native optimizations for a particular
system (see Hoe et al. 1999) [HHA99] .




6.2.2. Supporting hardware neutrality

The different systems mentioned in Section 6.2.1 can be
categorized in many different ways. For example, one common distinction
is between shared-memory parallel systems (SMP and PVP) and distributed
memory parallel systems (for example x86 clusters and large MPP
systems). This is one example of a difference between compute platforms
that can impact an application. Another common distinction is between
vector processing systems with highly specialized CPUs and memory
subsystems and commodity microprocessor based systems. There are
numerous other differences, especially in relation to how parallel
execution is supported. To capture the essential differences between
different platforms the WRAPPER uses a machine model.




6.2.3. WRAPPER machine model

Applications using the WRAPPER are not written to target just one
particular machine (for example an IBM SP2) or just one particular
family or class of machines (for example Parallel Vector Processor
Systems). Instead the WRAPPER provides applications with an abstract
machine model. The machine model is very general; however, it can
easily be specialized to fit, in a computationally efficient manner, any
computer architecture currently available to the scientific computing
community.




6.2.4. Machine model parallelism

Codes operating under the WRAPPER target an abstract machine that is
assumed to consist of one or more logical processors that can compute
concurrently. Computational work is divided among the logical processors
by allocating “ownership” to each processor of a certain set (or sets)
of calculations. Each set of calculations owned by a particular
processor is associated with a specific region of the physical space
that is being simulated, and only one processor will be associated with each
such region (domain decomposition).

In a strict sense the logical processors over which work is divided do
not need to correspond to physical processors. It is perfectly possible
to execute a configuration decomposed for multiple logical processors on
a single physical processor. This helps ensure that numerical code that
is written to fit within the WRAPPER will parallelize with no additional
effort. It is also useful for debugging purposes. Generally, however,
the computational domain will be subdivided over multiple logical
processors in order to then bind those logical processors to physical
processor resources that can compute in parallel.


6.2.4.1. Tiles

Computationally, the data structures (e.g., arrays, scalar variables,
etc.) that hold the simulated state are associated with each region of
physical space and are allocated to a particular logical processor. We
refer to these data structures as being owned by the processor to
which their associated region of physical space has been allocated.
Individual regions that are allocated to processors are called
tiles. A processor can own more than one tile. Figure 6.3
shows a physical domain being mapped to a set of
logical processors, with each processor owning a single region of the
domain (a single tile). Except for periods of communication and
coordination, each processor computes autonomously, working only with
data from the tile that the processor owns. If instead multiple
tiles were allotted to a single processor, each of these tiles would be computed on
independently of the other allotted tiles, in a sequential fashion.



[image: domain decomposition]
Figure 6.3 The WRAPPER provides support for one and two dimensional decompositions of grid-point domains. The figure shows a hypothetical domain of total size \(N_{x}N_{y}N_{z}\). This hypothetical domain is decomposed in two-dimensions along the \(N_{x}\) and \(N_{y}\) directions. The resulting tiles are owned by different processors. The owning processors perform the arithmetic operations associated with a tile. Although not illustrated here, a single processor can own several tiles. Whenever a processor wishes to transfer data between tiles or communicate with other processors it calls a WRAPPER supplied function.









6.2.4.2. Tile layout

Tiles consist of an interior region and an overlap region. The overlap
region of a tile corresponds to the interior region of an adjacent tile.
In Figure 6.4 each tile would own the region within the
black square and hold duplicate information for overlap regions
extending into the tiles to the north, south, east and west. During
computational phases a processor will reference data in an overlap
region whenever it requires values that lie outside the domain it owns.
Periodically processors will make calls to WRAPPER functions to
communicate data between tiles, in order to keep the overlap regions up
to date (see Section 6.2.6). The WRAPPER
functions can use a variety of different mechanisms to communicate data
between tiles.



[image: global earth subdivided into tiles]
Figure 6.4 A global grid subdivided into tiles. Tiles contain a interior region and an overlap region. Overlap regions are periodically updated from neighboring tiles.











6.2.5. Communication mechanisms

Logical processors are assumed to be able to exchange information
between tiles (and between each other) using at least one of two possible
mechanisms, shared memory or distributed memory communication.
The WRAPPER assumes that communication will use one of these two styles.
The underlying hardware and operating system support
for the style used is not specified and can vary from system to system.


6.2.5.1. Shared memory communication

Under this mode of communication, data transfers are assumed to be possible using direct addressing of
regions of memory.  In the WRAPPER shared memory communication model,
simple writes to an array can be made to be visible to other CPUs at
the application code level. So, as shown below, if one CPU (CPU1) writes
the value 8 to element 3 of array a, then other CPUs (here, CPU2) will be
able to see the value 8 when they read from a(3). This provides a very low
latency and high bandwidth communication mechanism. Thus, in this way one CPU
can communicate information to another CPU by assigning a particular value to a particular memory
location.

  CPU1                    |        CPU2
  ====                    |        ====
                          |
a(3) = 8                  |        WHILE ( a(3) .NE. 8 )
                          |         WAIT
                          |        END WHILE
                          |





Under shared communication independent CPUs are operating on the exact
same global address space at the application level. This is the model of
memory access that is supported at the basic system design level in
“shared-memory” systems such as PVP systems, SMP systems, and on
distributed shared memory systems (e.g., SGI Origin, SGI Altix, and some
AMD Opteron systems). On such systems the WRAPPER will generally use
simple read and write statements to access directly application data
structures when communicating between CPUs.

In a system where assignments statements map directly to hardware instructions that
transport data between CPU and memory banks, this can be a very
efficient mechanism for communication. In such case multiple CPUs
can communicate simply be reading and writing to agreed
locations and following a few basic rules. The latency of this sort of
communication is generally not that much higher than the hardware
latency of other memory accesses on the system. The bandwidth available
between CPUs communicating in this way can be close to the bandwidth of
the systems main-memory interconnect. This can make this method of
communication very efficient provided it is used appropriately.


Memory consistency

When using shared memory communication between multiple processors, the
WRAPPER level shields user applications from certain counter-intuitive
system behaviors. In particular, one issue the WRAPPER layer must deal
with is a systems memory model. In general the order of reads and writes
expressed by the textual order of an application code may not be the
ordering of instructions executed by the processor performing the
application. The processor performing the application instructions will
always operate so that, for the application instructions the processor
is executing, any reordering is not apparent. However,
machines are often designed so that reordering of instructions is not
hidden from other second processors. This means that, in general, even
on a shared memory system two processors can observe inconsistent memory
values.

The issue of memory consistency between multiple processors is discussed
at length in many computer science papers. From a practical point of
view, in order to deal with this issue, shared memory machines all
provide some mechanism to enforce memory consistency when it is needed.
The exact mechanism employed will vary between systems. For
communication using shared memory, the WRAPPER provides a place to
invoke the appropriate mechanism to ensure memory consistency for a
particular platform.




Cache effects and false sharing

Shared-memory machines often have local-to-processor memory caches which
contain mirrored copies of main memory. Automatic cache-coherence
protocols are used to maintain consistency between caches on different
processors. These cache-coherence protocols typically enforce
consistency between regions of memory with large granularity (typically
128 or 256 byte chunks). The coherency protocols employed can be
expensive relative to other memory accesses and so care is taken in the
WRAPPER (by padding synchronization structures appropriately) to avoid
unnecessary coherence traffic.




Operating system support for shared memory

Applications running under multiple threads within a single process can
use shared memory communication. In this case all the memory locations
in an application are potentially visible to all the compute threads.
Multiple threads operating within a single process is the standard
mechanism for supporting shared memory that the WRAPPER utilizes.
Configuring and launching code to run in multi-threaded mode on specific
platforms is discussed in Section 6.3.2.1.
However, on many systems, potentially very efficient mechanisms for
using shared memory communication between multiple processes (in
contrast to multiple threads within a single process) also exist. In
most cases this works by making a limited region of memory shared
between processes. The MMAP and IPC facilities in UNIX systems provide
this capability as do vendor specific tools like LAPI and IMC.
Extensions exist for the WRAPPER that allow these mechanisms to be used
for shared memory communication. However, these mechanisms are not
distributed with the default WRAPPER sources, because of their
proprietary nature.






6.2.5.2. Distributed memory communication

Under this mode of communication there is no mechanism, at the application code level,
for directly addressing regions of memory owned and visible to
another CPU. Instead a communication library must be used, as
illustrated below. If one CPU (here, CPU1) writes the value 8 to element 3 of array a,
then at least one of CPU1 and/or CPU2 will need to call a
function in the API of the communication library to communicate data
from a tile that it owns to a tile that another CPU owns. By default
the WRAPPER binds to the MPI communication library
for this style of communication (see https://computing.llnl.gov/tutorials/mpi/
for more information about the MPI Standard).

  CPU1                    |        CPU2
  ====                    |        ====
                          |
a(3) = 8                  |        WHILE ( a(3) .NE. 8 )
CALL SEND( CPU2,a(3) )    |         CALL RECV( CPU1, a(3) )
                          |        END WHILE
                          |





Many parallel systems are not constructed in a way where it is possible
or practical for an application to use shared memory for communication.
For cluster systems consisting of individual computers connected by
a fast network, there is no notion of shared memory at
the system level. For this sort of system the WRAPPER provides support
for communication based on a bespoke communication library.
The default communication library used is MPI. It is relatively
straightforward to implement bindings to optimized platform specific
communication libraries. For example the work described in
Hoe et al. (1999) [HHA99] substituted standard MPI communication
for a highly optimized library.






6.2.6. Communication primitives

Optimized communication support is assumed to be potentially available
for a small number of communication operations. It is also assumed that
communication performance optimizations can be achieved by optimizing a
small number of communication primitives. Three optimizable primitives
are provided by the WRAPPER.



[image: global sum and exchange comm primitives]
Figure 6.5 Three performance critical parallel primitives are provided by the WRAPPER. These primitives are always used to communicate data between tiles. The figure shows four tiles. The curved arrows indicate exchange primitives which transfer data between the overlap regions at tile edges and interior regions for nearest-neighbor tiles. The straight arrows symbolize global sum operations which connect all tiles. The global sum operation provides both a key arithmetic primitive and can serve as a synchronization primitive. A third barrier primitive is also provided, which behaves much like the global sum primitive.







	EXCHANGE This operation is used to transfer data between interior
and overlap regions of neighboring tiles. A number of different forms
of this operation are supported. These different forms handle:


	Data type differences. Sixty-four bit and thirty-two bit fields
may be handled separately.


	Bindings to different communication methods. Exchange primitives
select between using shared memory or distributed memory
communication.


	Transformation operations required when transporting data between
different grid regions. Transferring data between faces of a
cube-sphere grid, for example, involves a rotation of vector
components.


	Forward and reverse mode computations. Derivative calculations
require tangent linear and adjoint forms of the exchange
primitives.






	GLOBAL SUM The global sum operation is a central arithmetic
operation for the pressure inversion phase of the MITgcm algorithm.
For certain configurations, scaling can be highly sensitive to the
performance of the global sum primitive. This operation is a
collective operation involving all tiles of the simulated domain.
Different forms of the global sum primitive exist for handling:


	Data type differences. Sixty-four bit and thirty-two bit fields
may be handled separately.


	Bindings to different communication methods. Exchange primitives
select between using shared memory or distributed memory
communication.


	Forward and reverse mode computations. Derivative calculations
require tangent linear and adjoint forms of the exchange
primitives.






	BARRIER The WRAPPER provides a global synchronization function
called barrier. This is used to synchronize computations over all
tiles. The BARRIER and GLOBAL SUM primitives have much in
common and in some cases use the same underlying code.







6.2.7. Memory architecture

The WRAPPER machine model is aimed to target efficient systems with
highly pipelined memory architectures and systems with deep memory
hierarchies that favor memory reuse. This is achieved by supporting a
flexible tiling strategy as shown in Figure 6.6.
Within a CPU, computations are carried out sequentially on each tile in
turn. By reshaping tiles according to the target platform it is possible
to automatically tune code to improve memory performance. On a vector
machine a given domain might be subdivided into a few long, thin
regions. On a commodity microprocessor based system, however, the same
region could be simulated use many more smaller sub-domains.



[image: tiling strategy in WRAPPER]
Figure 6.6 The tiling strategy that the WRAPPER supports allows tiles to be shaped to suit the underlying system memory architecture. Compact tiles that lead to greater memory reuse can be used on cache based systems (upper half of figure) with deep memory hierarchies, whereas long tiles with large inner loops can be used to exploit vector systems having highly pipelined memory systems.









6.2.8. Summary

Following the discussion above, the machine model that the WRAPPER
presents to an application has the following characteristics:


	The machine consists of one or more logical processors.


	Each processor operates on tiles that it owns.


	A processor may own more than one tile.


	Processors may compute concurrently.


	Exchange of information between tiles is handled by the machine
(WRAPPER) not by the application.




Behind the scenes this allows the WRAPPER to adapt the machine model
functions to exploit hardware on which:


	Processors may be able to communicate very efficiently with each
other using shared memory.


	An alternative communication mechanism based on a relatively simple
interprocess communication API may be required.


	Shared memory may not necessarily obey sequential consistency,
however some mechanism will exist for enforcing memory consistency.


	Memory consistency that is enforced at the hardware level may be
expensive. Unnecessary triggering of consistency protocols should be
avoided.


	Memory access patterns may need to be either repetitive or highly
pipelined for optimum hardware performance.




This generic model, summarized in Figure 6.7, captures the essential hardware ingredients of almost
all successful scientific computer systems designed in the last 50
years.



[image: summary figure tiles and wrapper]
Figure 6.7 Summary of the WRAPPER machine model.











6.3. Using the WRAPPER

In order to support maximum portability the WRAPPER is implemented
primarily in sequential Fortran 77. At a practical level the key steps
provided by the WRAPPER are:


	specifying how a domain will be decomposed


	starting a code in either sequential or parallel modes of operations


	controlling communication between tiles and between concurrently
computing CPUs.




This section describes the details of each of these operations.
Section 6.3.1 explains the way a
domain is decomposed (or composed) is expressed. Section 6.3.2
describes practical details of running codes
in various different parallel modes on contemporary computer systems.
Section 6.3.3 explains the internal
information that the WRAPPER uses to control how information is
communicated between tiles.


6.3.1. Specifying a domain decomposition

At its heart, much of the WRAPPER works only in terms of a collection
of tiles which are interconnected to each other. This is also true of
application code operating within the WRAPPER. Application code is
written as a series of compute operations, each of which operates on a
single tile. If application code needs to perform operations involving
data associated with another tile, it uses a WRAPPER function to
obtain that data. The specification of how a global domain is
constructed from tiles or alternatively how a global domain is
decomposed into tiles is made in the file SIZE.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/SIZE.h]. This file defines
the following parameters:


File: model/inc/SIZE.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/SIZE.h]



Parameter: sNx [http://mitgcm.org/lxr/ident/MITgcm?_i=sNx], sNx [http://mitgcm.org/lxr/ident/MITgcm?_i=sNx]

Parameter: OLx [http://mitgcm.org/lxr/ident/MITgcm?_i=OLx], OLy [http://mitgcm.org/lxr/ident/MITgcm?_i=OLy]

Parameter: nSx [http://mitgcm.org/lxr/ident/MITgcm?_i=nSx], nSy [http://mitgcm.org/lxr/ident/MITgcm?_i=nSy]

Parameter: nPx [http://mitgcm.org/lxr/ident/MITgcm?_i=nPx], nPy [http://mitgcm.org/lxr/ident/MITgcm?_i=nPy]








Together these parameters define a tiling decomposition of the style
shown in Figure 6.8. The parameters sNx and sNx
define the size of an individual tile. The parameters OLx and OLy
define the maximum size of the overlap extent. This must be set to the
maximum width of the computation stencil that the numerical code
finite-difference operations require between overlap region updates.
The maximum overlap required by any of the operations in the MITgcm
code distributed at this time is four grid points (some of the higher-order advection schemes
require a large overlap region). Code modifications and enhancements that involve adding wide
finite-difference stencils may require increasing OLx and OLy.
Setting OLx and OLy to a too large value will decrease code
performance (because redundant computations will be performed),
however it will not cause any other problems.



[image: explanation of SIZE.h domain decomposition]
Figure 6.8 The three level domain decomposition hierarchy employed by the WRAPPER. A domain is composed of tiles. Multiple tiles can be allocated to a single process. Multiple processes can exist, each with multiple tiles. Tiles within a process can be spread over multiple compute threads.






The parameters nSx and nSy specify the number of tiles that will be
created within a single process. Each of these tiles will have internal
dimensions of sNx and sNy. If, when the code is executed, these
tiles are allocated to different threads of a process that are then
bound to different physical processors (see the multi-threaded
execution discussion in Section 6.3.2), then
computation will be performed concurrently on each tile. However, it is
also possible to run the same decomposition within a process running a
single thread on a single processor. In this case the tiles will be
computed over sequentially. If the decomposition is run in a single
process running multiple threads but attached to a single physical
processor, then, in general, the computation for different tiles will be
interleaved by system level software. This too is a valid mode of
operation.

The parameters sNx, sNy, OLx, OLy,
nSx and nSy are used extensively
by numerical code. The settings of sNx, sNy, OLx, and OLy are used to
form the loop ranges for many numerical calculations and to provide
dimensions for arrays holding numerical state. The nSx and nSy are
used in conjunction with the thread number parameter myThid. Much of
the numerical code operating within the WRAPPER takes the form:

DO bj=myByLo(myThid),myByHi(myThid)
 DO bi=myBxLo(myThid),myBxHi(myThid)
    :
    a block of computations ranging
    over 1,sNx +/- OLx and 1,sNy +/- OLy grid points
    :
 ENDDO
ENDDO

communication code to sum a number or maybe update
tile overlap regions

DO bj=myByLo(myThid),myByHi(myThid)
 DO bi=myBxLo(myThid),myBxHi(myThid)
    :
    another block of computations ranging
    over 1,sNx +/- OLx and 1,sNy +/- OLy grid points
    :
 ENDDO
ENDDO





The variables myBxLo(myThid), myBxHi(myThid), myByLo(myThid) and
myByHi(myThid) set the bounds of the loops in bi and bj in this
schematic. These variables specify the subset of the tiles in the range
1, nSx and 1, nSy1 that the logical processor bound to thread
number myThid owns. The thread number variable myThid ranges from 1
to the total number of threads requested at execution time. For each
value of myThid the loop scheme above will step sequentially through
the tiles owned by that thread. However, different threads will have
different ranges of tiles assigned to them, so that separate threads can
compute iterations of the bi, bj loop concurrently. Within a bi,
bj loop, computation is performed concurrently over as many processes
and threads as there are physical processors available to compute.

An exception to the the use of bi and bj in loops arises in the
exchange routines used when the exch2 package is used with the cubed
sphere. In this case bj is generally set to 1 and the loop runs from
1, bi. Within the loop bi is used to retrieve the tile number,
which is then used to reference exchange parameters.

The amount of computation that can be embedded in a single loop over bi
and bj varies for different parts of the MITgcm algorithm.
Consider  a code extract from the two-dimensional
implicit elliptic solver:

REAL*8  cg2d_r(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
REAL*8  err
    :
    :
  other computations
    :
    :
err = 0.
DO bj=myByLo(myThid),myByHi(myThid)
 DO bi=myBxLo(myThid),myBxHi(myThid)
  DO J=1,sNy
   DO I=1,sNx
     err = err + cg2d_r(I,J,bi,bj)*cg2d_r(I,J,bi,bj)
   ENDDO
  ENDDO
 ENDDO
ENDDO

CALL GLOBAL_SUM_R8( err   , myThid )
err = SQRT(err)





This portion of the code computes the \(L_2\)-Norm
of a vector whose elements are held in the array cg2d_r, writing the
final result to scalar variable err. Notice that under the WRAPPER,
arrays such as cg2d_r have two extra trailing dimensions. These right
most indices are tile indexes. Different threads with a single process
operate on different ranges of tile index, as controlled by the settings
of myByLo(myThid), myByHi(myThid), myBxLo(myThid) and
myBxHi(myThid). Because the \(L_2\)-Norm
requires a global reduction, the bi, bj loop above only contains one
statement. This computation phase is then followed by a communication
phase in which all threads and processes must participate. However, in
other areas of the MITgcm, code entries subsections of code are within a
single bi, bj loop. For example the evaluation of all the momentum
equation prognostic terms (see dynamics.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/dynamics.F]) is within a single
bi, bj loop.

The final decomposition parameters are nPx and nPy. These parameters
are used to indicate to the WRAPPER level how many processes (each with
nSx\(\times\)nSy tiles) will be used for this simulation.
This information is needed during initialization and during I/O phases.
However, unlike the variables sNx, sNy, OLx, OLy, nSx and nSy the
values of nPx and nPy are absent from the core numerical and support
code.


6.3.1.1. Examples of SIZE.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/SIZE.h] specifications

The following different SIZE.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/SIZE.h] parameter setting illustrate how to
interpret the values of sNx, sNy, OLx, OLy, nSx, nSy, nPx and nPy.


	 PARAMETER (
&           sNx =  90,
&           sNy =  40,
&           OLx =   3,
&           OLy =   3,
&           nSx =   1,
&           nSy =   1,
&           nPx =   1,
&           nPy =   1)





This sets up a single tile with x-dimension of ninety grid points,
y-dimension of forty grid points, and x and y overlaps of three grid
points each.



	 PARAMETER (
&           sNx =  45,
&           sNy =  20,
&           OLx =   3,
&           OLy =   3,
&           nSx =   1,
&           nSy =   1,
&           nPx =   2,
&           nPy =   2)





This sets up tiles with x-dimension of forty-five grid points,
y-dimension of twenty grid points, and x and y overlaps of three grid
points each. There are four tiles allocated to four separate
processes (nPx=2, nPy=2) and arranged so that the global domain size
is again ninety grid points in x and forty grid points in y. In
general the formula for global grid size (held in model variables
Nx and Ny) is

Nx  = sNx*nSx*nPx
Ny  = sNy*nSy*nPy







	 PARAMETER (
&           sNx =  90,
&           sNy =  10,
&           OLx =   3,
&           OLy =   3,
&           nSx =   1,
&           nSy =   2,
&           nPx =   1,
&           nPy =   2)





This sets up tiles with x-dimension of ninety grid points,
y-dimension of ten grid points, and x and y overlaps of three grid
points each. There are four tiles allocated to two separate processes
(nPy=2) each of which has two separate sub-domains nSy=2. The
global domain size is again ninety grid points in x and forty grid
points in y. The two sub-domains in each process will be computed
sequentially if they are given to a single thread within a single
process. Alternatively if the code is invoked with multiple threads
per process the two domains in y may be computed concurrently.



	 PARAMETER (
&           sNx =  32,
&           sNy =  32,
&           OLx =   3,
&           OLy =   3,
&           nSx =   6,
&           nSy =   1,
&           nPx =   1,
&           nPy =   1)





This sets up tiles with x-dimension of thirty-two grid points,
y-dimension of thirty-two grid points, and x and y overlaps of three
grid points each. There are six tiles allocated to six separate
logical processors (nSx=6). This set of values can be used for a
cube sphere calculation. Each tile of size \(32 \times 32\)
represents a face of the cube. Initializing the tile connectivity
correctly (see Section 6.3.3.3. allows the
rotations associated with moving between the six cube faces to be
embedded within the tile-tile communication code.










6.3.2. Starting the code

When code is started under the WRAPPER, execution begins in a main
routine eesupp/src/main.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/main.F] that is owned by the WRAPPER. Control is
transferred to the application through a routine called
model/src/the_model_main.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/the_model_main.F] once the WRAPPER has initialized correctly and has
created the necessary variables to support subsequent calls to
communication routines by the application code. The main stages of the WRAPPER startup calling
sequence are as follows:

MAIN
|
|--EEBOOT               :: WRAPPER initialization
|  |
|  |-- EEBOOT_MINMAL    :: Minimal startup. Just enough to
|  |                       allow basic I/O.
|  |-- EEINTRO_MSG      :: Write startup greeting.
|  |
|  |-- EESET_PARMS      :: Set WRAPPER parameters
|  |
|  |-- EEWRITE_EEENV    :: Print WRAPPER parameter settings
|  |
|  |-- INI_PROCS        :: Associate processes with grid regions.
|  |
|  |-- INI_THREADING_ENVIRONMENT   :: Associate threads with grid regions.
|       |
|       |--INI_COMMUNICATION_PATTERNS :: Initialize between tile
|                                     :: communication data structures
|
|
|--CHECK_THREADS    :: Validate multiple thread start up.
|
|--THE_MODEL_MAIN   :: Numerical code top-level driver routine





The steps above preceeds transfer of control to application code, which occurs in the procedure the_main_model.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/the_model_main.F]


6.3.2.1. Multi-threaded execution

Prior to transferring control to the procedure the_main_model.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/the_model_main.F]
the WRAPPER may cause several coarse grain threads to be initialized.
The routine the_main_model.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/the_model_main.F] is called once for each thread and is
passed a single stack argument which is the thread number, stored in
the myThid [http://mitgcm.org/lxr/ident/MITgcm?_i=myThid]. In addition to specifying a decomposition with
multiple tiles per process (see Section 6.3.1) configuring and starting a code to
run using multiple threads requires the following steps.


Compilation

First the code must be compiled with appropriate multi-threading
directives active in the file eesupp/src/main.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/main.F] and with appropriate compiler
flags to request multi-threading support. The header files
eesupp/inc/MAIN_PDIRECTIVES1.h [https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/MAIN_PDIRECTIVES1.h] and eesupp/inc/MAIN_PDIRECTIVES2.h [https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/MAIN_PDIRECTIVES2.h] contain directives
compatible with compilers for Sun, Compaq, SGI, Hewlett-Packard SMP
systems and CRAY PVP systems. These directives can be activated by using
compile time directives -DTARGET_SUN, -DTARGET_DEC,
-DTARGET_SGI, -DTARGET_HP or -DTARGET_CRAY_VECTOR
respectively. Compiler options for invoking multi-threaded compilation
vary from system to system and from compiler to compiler. The options
will be described in the individual compiler documentation. For the
Fortran compiler from Sun the following options are needed to correctly
compile multi-threaded code

-stackvar -explicitpar -vpara -noautopar





These options are specific to the Sun compiler. Other compilers will use
different syntax that will be described in their documentation. The
effect of these options is as follows:


	-stackvar Causes all local variables to be allocated in stack
storage. This is necessary for local variables to ensure that they
are private to their thread. Note, when using this option it may be
necessary to override the default limit on stack-size that the
operating system assigns to a process. This can normally be done by
changing the settings of the command shell’s stack-size.
However, on some systems changing this limit will require
privileged administrator access to modify system parameters.


	-explicitpar Requests that multiple threads be spawned in
response to explicit directives in the application code. These
directives are inserted with syntax appropriate to the particular
target platform when, for example, the -DTARGET_SUN flag is
selected.


	-vpara This causes the compiler to describe the multi-threaded
configuration it is creating. This is not required but it can be
useful when troubleshooting.


	-noautopar This inhibits any automatic multi-threaded
parallelization the compiler may otherwise generate.




An example of valid settings for the eedata file for a domain with two
subdomains in y and running with two threads is shown below

nTx=1,nTy=2





This set of values will cause computations to stay within a single
thread when moving across the nSx sub-domains. In the y-direction,
however, sub-domains will be split equally between two threads.

Despite its appealing programming model, multi-threaded execution
remains less common than multi-process execution (described in Section 6.3.2.2).
One major reason for
this is that many system libraries are still not “thread-safe”. This
means that, for example, on some systems it is not safe to call system
routines to perform I/O when running in multi-threaded mode (except,
perhaps, in a limited set of circumstances). Another reason is that
support for multi-threaded programming models varies between systems.






6.3.2.2. Multi-process execution

Multi-process execution is more ubiquitous than multi-threaded execution.
In order to run code in a
multi-process configuration, a decomposition specification (see
Section 6.3.1) is given (in which at least one
of the parameters nPx or nPy will be greater than one). Then, as
for multi-threaded operation, appropriate compile time and run time
steps must be taken.


Compilation

Multi-process execution under the WRAPPER assumes that portable,
MPI libraries are available for controlling the start-up of multiple
processes. The MPI libraries are not required, although they are
usually used, for performance critical communication. However, in
order to simplify the task of controlling and coordinating the start
up of a large number (hundreds and possibly even thousands) of copies
of the same program, MPI is used. The calls to the MPI multi-process
startup routines must be activated at compile time. Currently MPI
libraries are invoked by specifying the appropriate options file with
the -of flag when running the genmake2 [https://github.com/MITgcm/MITgcm/blob/master/tools/genmake2]
script, which generates the
Makefile for compiling and linking MITgcm. (Previously this was done
by setting the ALLOW_USE_MPI and ALWAYS_USE_MPI flags in the
CPP_EEOPTIONS.h [https://github.com/MITgcm/MITgcm/blob/master//eesupp/inc/CPP_EEOPTIONS.h] file.) More
detailed information about the use of
genmake2 [https://github.com/MITgcm/MITgcm/blob/master/tools/genmake2] for specifying local compiler
flags is located in Section 3.5.2.




Execution

The mechanics of starting a program in multi-process mode under MPI is
not standardized. Documentation associated with the distribution of MPI
installed on a system will describe how to start a program using that
distribution. For the open-source MPICH [https://www.mpich.org/]
system, the MITgcm program can
be started using a command such as

mpirun -np 64 -machinefile mf ./mitgcmuv





In this example the text -np 64 specifies the number of processes
that will be created. The numeric value 64 must be equal to (or greater than) the
product of the processor grid settings of nPx and nPy in the file
SIZE.h [https://github.com/MITgcm/MITgcm/blob/master/model/inc/SIZE.h]. The option -machinefile mf
specifies that a text file called mf
will be read to get a list of processor names on which the sixty-four
processes will execute. The syntax of this file is specified by the
MPI distribution.






6.3.2.3. Environment variables

On some systems multi-threaded execution also requires the setting of a
special environment variable. On many machines this variable is called
PARALLEL and its values should be set to the number of parallel threads
required. Generally the help or manual pages associated with the
multi-threaded compiler on a machine will explain how to set the
required environment variables.




6.3.2.4. Runtime input parameters

Finally the file eedata
needs to be configured to indicate the number
of threads to be used in the x and y directions:

# Example "eedata" file
# Lines beginning "#" are comments
# nTx - No. threads per process in X
# nTy - No. threads per process in Y
 &EEPARMS
 nTx=1,
 nTy=1,
 &





The product of nTx and nTy must be equal to the number of threads
spawned, i.e., the setting of the environment variable PARALLEL. The value
of nTx must subdivide the number of sub-domains in x (nSx) exactly.
The value of nTy must subdivide the number of sub-domains in y (nSy)
exactly. The multi-process startup of the MITgcm executable mitgcmuv is
controlled by the routines eeboot_minimal.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/eeboot_minimal.F]
and ini_procs.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/ini_procs.F]. The
first routine performs basic steps required to make sure each process is
started and has a textual output stream associated with it. By default
two output files are opened for each process with names STDOUT.NNNN
and STDERR.NNNN. The NNNNN part of the name is filled in with
the process number so that process number 0 will create output files
STDOUT.0000 and STDERR.0000, process number 1 will create output
files STDOUT.0001 and STDERR.0001, etc. These files are used for
reporting status and configuration information and for reporting error
conditions on a process-by-process basis. The eeboot_minimal.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/eeboot_minimal.F]
procedure also sets the variables myProcId [http://mitgcm.org/lxr/ident/MITgcm?_i=myProcId] and MPI_COMM_MODEL [http://mitgcm.org/lxr/ident/MITgcm?_i=MPI_COMM_MODEL].
These variables are related to processor identification and are used
later in the routine ini_procs.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/ini_procs.F] to allocate tiles to processes.

Allocation of processes to tiles is controlled by the routine
ini_procs.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/ini_procs.F]. For each process this routine sets the variables
myXGlobalLo [http://mitgcm.org/lxr/ident/MITgcm?_i=myXGlobalLo] and myYGlobalLo [http://mitgcm.org/lxr/ident/MITgcm?_i=myYGlobalLo]. These variables specify, in index
space, the coordinates of the southernmost and westernmost corner of
the southernmost and westernmost tile owned by this process. The
variables pidW [http://mitgcm.org/lxr/ident/MITgcm?_i=pidW], pidE [http://mitgcm.org/lxr/ident/MITgcm?_i=pidE], pidS [http://mitgcm.org/lxr/ident/MITgcm?_i=pidS] and pidN [http://mitgcm.org/lxr/ident/MITgcm?_i=pidN] are also set in this
routine. These are used to identify processes holding tiles to the
west, east, south and north of a given process. These values are
stored in global storage in the header file EESUPPORT.h [https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/EESUPPORT.h] for use by
communication routines. The above does not hold when the exch2 package
is used. The exch2 package sets its own parameters to specify the global
indices of tiles and their relationships to each other. See the
documentation on the exch2 package for details.






6.3.3. Controlling communication

The WRAPPER maintains internal information that is used for
communication operations and can be customized for different
platforms. This section describes the information that is held and used.


	Tile-tile connectivity information For each tile the WRAPPER sets
a flag that sets the tile number to the north, south, east and west
of that tile. This number is unique over all tiles in a
configuration. Except when using the cubed sphere and
the exch2 package,
the number is held in the variables tileNo [http://mitgcm.org/lxr/ident/MITgcm?_i=tileNo] (this holds
the tiles own number), tileNoN [http://mitgcm.org/lxr/ident/MITgcm?_i=tileNoN], tileNoS [http://mitgcm.org/lxr/ident/MITgcm?_i=tileNoS],
tileNoE [http://mitgcm.org/lxr/ident/MITgcm?_i=tileNoE] and tileNoW [http://mitgcm.org/lxr/ident/MITgcm?_i=tileNoW].
A parameter is also stored with each tile that specifies the type of
communication that is used between tiles. This information is held in
the variables tileCommModeN [http://mitgcm.org/lxr/ident/MITgcm?_i=tileCommModeN], tileCommModeS [http://mitgcm.org/lxr/ident/MITgcm?_i=tileCommModeS],
tileCommModeE [http://mitgcm.org/lxr/ident/MITgcm?_i=tileCommModeE] and
tileCommModeW [http://mitgcm.org/lxr/ident/MITgcm?_i=tileCommModeW]. This latter set of variables can take one of the
following values COMM_NONE, COMM_MSG, COMM_PUT and
COMM_GET. A value of COMM_NONE is used to indicate that a tile
has no neighbor to communicate with on a particular face. A value of
COMM_MSG is used to indicate that some form of distributed memory
communication is required to communicate between these tile faces
(see Section 6.2.5.2). A value of
COMM_PUT or COMM_GET is used to indicate forms of shared memory
communication (see Section 6.2.5.1). The
COMM_PUT value indicates that a CPU should communicate by writing
to data structures owned by another CPU. A COMM_GET value
indicates that a CPU should communicate by reading from data
structures owned by another CPU. These flags affect the behavior of
the WRAPPER exchange primitive (see Figure 6.5). The routine
ini_communication_patterns.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/ini_communication_patterns.F]
is responsible for setting the
communication mode values for each tile.

When using the cubed sphere configuration with the exch2 package, the
relationships between tiles and their communication methods are set
by the exch2 package and stored in different variables.
See the exch2 package
documentation for details.









	MP directives The WRAPPER transfers control to numerical
application code through the routine
the_model_main.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/the_model_main.F]. This routine
is called in a way that allows for it to be invoked by several
threads. Support for this is based on either multi-processing (MP)
compiler directives or specific calls to multi-threading libraries
(e.g., POSIX threads). Most commercially available Fortran compilers
support the generation of code to spawn multiple threads through some
form of compiler directives. Compiler directives are generally more
convenient than writing code to explicitly spawn threads. On
some systems, compiler directives may be the only method available.
The WRAPPER is distributed with template MP directives for a number
of systems.

These directives are inserted into the code just before and after the
transfer of control to numerical algorithm code through the routine
the_model_main.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/the_model_main.F]. An example of
the code that performs this process for a Silicon Graphics system is as follows:

C--
C--  Parallel directives for MIPS Pro Fortran compiler
C--
C      Parallel compiler directives for SGI with IRIX
C$PAR  PARALLEL DO
C$PAR&  CHUNK=1,MP_SCHEDTYPE=INTERLEAVE,
C$PAR&  SHARE(nThreads),LOCAL(myThid,I)
C
      DO I=1,nThreads
        myThid = I

C--     Invoke nThreads instances of the numerical model
        CALL THE_MODEL_MAIN(myThid)

      ENDDO





Prior to transferring control to the procedure
the_model_main.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/the_model_main.F] the
WRAPPER may use MP directives to spawn multiple threads.  This code
is extracted from the files main.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/main.F] and
eesupp/inc/MAIN_PDIRECTIVES1.h [https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/MAIN_PDIRECTIVES1.h]. The variable
nThreads [http://mitgcm.org/lxr/ident/MITgcm?_i=nThreads] specifies how many instances of the routine
the_model_main.F [https://github.com/MITgcm/MITgcm/blob/master/model/src/the_model_main.F] will be created.
The value of nThreads [http://mitgcm.org/lxr/ident/MITgcm?_i=nThreads] is set in the routine
ini_threading_environment.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/ini_threading_environment.F].
The value is set equal to the the product of the parameters
nTx [http://mitgcm.org/lxr/ident/MITgcm?_i=nTx] and nTy [http://mitgcm.org/lxr/ident/MITgcm?_i=nTy] that are read from the file
eedata. If the value of nThreads [http://mitgcm.org/lxr/ident/MITgcm?_i=nThreads] is inconsistent with the number
of threads requested from the operating system (for example by using
an environment variable as described in Section 6.3.2.1)
then usually an error will be
reported by the routine check_threads.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/check_threads.F].









	memsync flags As discussed in Section 6.2.5.1,
a low-level system function may be need to force memory consistency
on some shared memory systems. The routine
memsync.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/memsync.F] is used for
this purpose. This routine should not need modifying and the
information below is only provided for completeness. A logical
parameter exchNeedsMemSync [http://mitgcm.org/lxr/ident/MITgcm?_i=exchNeedsMemSync] set in the routine
ini_communication_patterns.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/ini_communication_patterns.F]
controls whether the memsync.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/memsync.F]
primitive is called. In general this routine is only used for
multi-threaded execution. The code that goes into the memsync.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/memsync.F]
routine is specific to the compiler and processor used. In some
cases, it must be written using a short code snippet of assembly
language. For an Ultra Sparc system the following code snippet is
used

asm("membar #LoadStore|#StoreStore");





For an Alpha based system the equivalent code reads

asm("mb");





while on an x86 system the following code is required

asm("lock; addl $0,0(%%esp)": : :"memory")







	Cache line size As discussed in Section 6.2.5.1,
multi-threaded codes
explicitly avoid penalties associated with excessive coherence
traffic on an SMP system. To do this the shared memory data
structures used by the global_sum.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/global_sum.F],
global_max.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/global_max.F] and
barrier.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/barrier.F]
routines are padded. The variables that control the padding are set
in the header file EEPARAMS.h [https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/EEPARAMS.h].
These variables are called cacheLineSize [http://mitgcm.org/lxr/ident/MITgcm?_i=cacheLineSize], lShare1 [http://mitgcm.org/lxr/ident/MITgcm?_i=lShare1],
lShare4 [http://mitgcm.org/lxr/ident/MITgcm?_i=lShare4] and lShare8 [http://mitgcm.org/lxr/ident/MITgcm?_i=lShare8]. The default
values should not normally need changing.









	_BARRIER This is a CPP macro that is expanded to a call to a
routine which synchronizes all the logical processors running under
the WRAPPER. Using a macro here preserves flexibility to insert a
specialized call in-line into application code. By default this
resolves to calling the procedure barrier.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/barrier.F].
The default setting for the _BARRIER macro is given in the
file CPP_EEMACROS.h [https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/CPP_EEMACROS.h].









	_GSUM This is a CPP macro that is expanded to a call to a
routine which sums up a floating point number over all the logical
processors running under the WRAPPER. Using a macro here provides
extra flexibility to insert a specialized call in-line into
application code. By default this resolves to calling the procedure
GLOBAL_SUM_R8() for 64-bit floating point operands or
GLOBAL_SUM_R4() for 32-bit floating point operand
(located in file global_sum.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/global_sum.F]). The default
setting for the _GSUM macro is given in the file
CPP_EEMACROS.h [https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/CPP_EEMACROS.h].
The _GSUM macro is a performance critical operation, especially for
large processor count, small tile size configurations. The custom
communication example discussed in Section 6.3.3.2 shows
how the macro is used to invoke a custom global sum routine for a
specific set of hardware.









	_EXCH The _EXCH CPP macro is used to update tile overlap
regions. It is qualified by a suffix indicating whether overlap
updates are for two-dimensional (_EXCH_XY) or three dimensional
(_EXCH_XYZ) physical fields and whether fields are 32-bit floating
point (_EXCH_XY_R4, _EXCH_XYZ_R4) or 64-bit floating point
(_EXCH_XY_R8, _EXCH_XYZ_R8). The macro mappings are defined in
the header file CPP_EEMACROS.h [https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/CPP_EEMACROS.h].
As with _GSUM, the _EXCH
operation plays a crucial role in scaling to small tile, large
logical and physical processor count configurations. The example in
Section 6.3.3.2 discusses defining an optimized and
specialized form on the _EXCH operation.

The _EXCH operation is also central to supporting grids such as the
cube-sphere grid. In this class of grid a rotation may be required
between tiles. Aligning the coordinate requiring rotation with the
tile decomposition allows the coordinate transformation to be
embedded within a custom form of the _EXCH primitive. In these cases
_EXCH is mapped to exch2 routines, as detailed in the exch2 package
documentation.









	Reverse Mode The communication primitives _EXCH and _GSUM both
employ hand-written adjoint forms (or reverse mode) forms. These
reverse mode forms can be found in the source code directory
pkg/autodiff [https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff]. For the global sum primitive the reverse mode form
calls are to GLOBAL_ADSUM_R4() and GLOBAL_ADSUM_R8() (located in
file global_sum_ad.F [https://github.com/MITgcm/MITgcm/blob/master/pkg/autodiff/global_sum_ad.F]). The reverse
mode form of the exchange primitives are found in routines prefixed
ADEXCH. The exchange routines make calls to the same low-level
communication primitives as the forward mode operations. However, the
routine argument theSimulationMode [http://mitgcm.org/lxr/ident/MITgcm?_i=theSimulationMode] is set to the value
REVERSE_SIMULATION. This signifies to the low-level routines that
the adjoint forms of the appropriate communication operation should
be performed.









	MAX_NO_THREADS The variable MAX_NO_THREADS [http://mitgcm.org/lxr/ident/MITgcm?_i=MAX_NO_THREADS] is used to
indicate the maximum number of OS threads that a code will use. This
value defaults to thirty-two and is set in the file
EEPARAMS.h [https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/EEPARAMS.h]. For
single threaded execution it can be reduced to one if required. The
value is largely private to the WRAPPER and application code will not
normally reference the value, except in the following scenario.

For certain physical parametrization schemes it is necessary to have
a substantial number of work arrays. Where these arrays are allocated
in heap storage (for example COMMON blocks) multi-threaded execution
will require multiple instances of the COMMON block data. This can be
achieved using a Fortran 90 module construct. However, if this
mechanism is unavailable then the work arrays can be extended with
dimensions using the tile dimensioning scheme of nSx [http://mitgcm.org/lxr/ident/MITgcm?_i=nSx] and nSy [http://mitgcm.org/lxr/ident/MITgcm?_i=nSy] (as
described in Section 6.3.1). However, if
the configuration being specified involves many more tiles than OS
threads then it can save memory resources to reduce the variable
MAX_NO_THREADS [http://mitgcm.org/lxr/ident/MITgcm?_i=MAX_NO_THREADS] to be equal to the actual number of threads that
will be used and to declare the physical parameterization work arrays
with a single MAX_NO_THREADS [http://mitgcm.org/lxr/ident/MITgcm?_i=MAX_NO_THREADS] extra dimension. An example of this
is given in the verification experiment verification/aim.5l_cs [https://github.com/MITgcm/MITgcm/blob/master/verification/aim.5l_cs]. Here the
default setting of MAX_NO_THREADS [http://mitgcm.org/lxr/ident/MITgcm?_i=MAX_NO_THREADS] is altered to

INTEGER MAX_NO_THREADS
PARAMETER ( MAX_NO_THREADS =    6 )





and several work arrays for storing intermediate calculations are
created with declarations of the form.

common /FORCIN/ sst1(ngp,MAX_NO_THREADS)





This declaration scheme is not used widely, because most global data
is used for permanent, not temporary, storage of state information. In
the case of permanent state information this approach cannot be used
because there has to be enough storage allocated for all tiles.
However, the technique can sometimes be a useful scheme for reducing
memory requirements in complex physical parameterizations.






6.3.3.1. Specializing the Communication Code

The isolation of performance critical communication primitives and the
subdivision of the simulation domain into tiles is a powerful tool.
Here we show how it can be used to improve application performance and
how it can be used to adapt to new gridding approaches.




6.3.3.2. JAM example

On some platforms a big performance boost can be obtained by binding the
communication routines _EXCH and _GSUM to specialized native
libraries (for example, the shmem library on CRAY T3E systems). The
LETS_MAKE_JAM CPP flag is used as an illustration of a specialized
communication configuration that substitutes for standard, portable
forms of _EXCH and _GSUM. It affects three source files
eeboot.F [https://github.com/MITgcm/MITgcm/blob/master/eesupp/src/eeboot.F], CPP_EEMACROS.h [https://github.com/MITgcm/MITgcm/blob/master/eesupp/inc/CPP_EEMACROS.h]
and cg2d.F [https://github.com/MITgcm/MITgcm/blob/master//model/src/cg2d.F]. When the flag is defined is
has the following effects.


	An extra phase is included at boot time to initialize the custom
communications library (see ini_jam.F).


	The _GSUM and _EXCH macro definitions are replaced with calls
to custom routines (see gsum_jam.F and exch_jam.F)


	a highly specialized form of the exchange operator (optimized for
overlap regions of width one) is substituted into the elliptic solver
routine cg2d.F [https://github.com/MITgcm/MITgcm/blob/master//model/src/cg2d.F].




Developing specialized code for other libraries follows a similar
pattern.




6.3.3.3. Cube sphere communication

Actual _EXCH routine code is generated automatically from a series of
template files, for example
exch2_rx1_cube.template [https://github.com/MITgcm/MITgcm/blob/master//pkg/exch2/exch2_rx1_cube.template].
This is done to allow a
large number of variations of the exchange process to be maintained. One
set of variations supports the cube sphere grid. Support for a cube
sphere grid in MITgcm is based on having each face of the cube as a
separate tile or tiles. The exchange routines are then able to absorb
much of the detailed rotation and reorientation required when moving
around the cube grid. The set of _EXCH routines that contain the word
cube in their name perform these transformations. They are invoked when
the run-time logical parameter useCubedSphereExchange [http://mitgcm.org/lxr/ident/MITgcm?_i=useCubedSphereExchange] is
set .TRUE.. To
facilitate the transformations on a staggered C-grid, exchange
operations are defined separately for both vector and scalar quantities
and for grid-centered and for grid-face and grid-corner quantities.
Three sets of exchange routines are defined. Routines with names of the
form exch2_rx are used to exchange cell centered scalar quantities.
Routines with names of the form exch2_uv_rx are used to exchange
vector quantities located at the C-grid velocity points. The vector
quantities exchanged by the exch_uv_rx routines can either be signed
(for example velocity components) or un-signed (for example grid-cell
separations). Routines with names of the form exch_z_rx are used to
exchange quantities at the C-grid vorticity point locations.








6.4. MITgcm execution under WRAPPER

Fitting together the WRAPPER elements, package elements and MITgcm core
equation elements of the source code produces the calling sequence shown below.


6.4.1. Annotated call tree for MITgcm and WRAPPER

WRAPPER layer.

MAIN
|
|--EEBOOT               :: WRAPPER initialization
|  |
|  |-- EEBOOT_MINMAL    :: Minimal startup. Just enough to
|  |                       allow basic I/O.
|  |-- EEINTRO_MSG      :: Write startup greeting.
|  |
|  |-- EESET_PARMS      :: Set WRAPPER parameters
|  |
|  |-- EEWRITE_EEENV    :: Print WRAPPER parameter settings
|  |
|  |-- INI_PROCS        :: Associate processes with grid regions.
|  |
|  |-- INI_THREADING_ENVIRONMENT   :: Associate threads with grid regions.
|       |
|       |--INI_COMMUNICATION_PATTERNS :: Initialize between tile
|                                     :: communication data structures
|
|
|--CHECK_THREADS    :: Validate multiple thread start up.
|
|--THE_MODEL_MAIN   :: Numerical code top-level driver routine





Core equations plus packages.

C
C Invocation from WRAPPER level...
C  :
C  :
C  |
C  |-THE_MODEL_MAIN :: Primary driver for the MITgcm algorithm
C    |              :: Called from WRAPPER level numerical
C    |              :: code invocation routine. On entry
C    |              :: to THE_MODEL_MAIN separate thread and
C    |              :: separate processes will have been established.
C    |              :: Each thread and process will have a unique ID
C    |              :: but as yet it will not be associated with a
C    |              :: specific region in decomposed discrete space.
C    |
C    |-INITIALISE_FIXED :: Set fixed model arrays such as topography,
C    | |                :: grid, solver matrices etc..
C    | |
C    | |-INI_PARMS :: Routine to set kernel model parameters.
C    | |           :: By default kernel parameters are read from file
C    | |           :: "data" in directory in which code executes.
C    | |
C    | |-MON_INIT :: Initializes monitor package ( see pkg/monitor )
C    | |
C    | |-INI_GRID :: Control grid array (vert. and hori.) initialization.
C    | | |        :: Grid arrays are held and described in GRID.h.
C    | | |
C    | | |-INI_VERTICAL_GRID        :: Initialize vertical grid arrays.
C    | | |
C    | | |-INI_CARTESIAN_GRID       :: Cartesian horiz. grid initialization
C    | | |                          :: (calculate grid from kernel parameters).
C    | | |
C    | | |-INI_SPHERICAL_POLAR_GRID :: Spherical polar horiz. grid
C    | | |                          :: initialization (calculate grid from
C    | | |                          :: kernel parameters).
C    | | |
C    | | |-INI_CURVILINEAR_GRID     :: General orthogonal, structured horiz.
C    | |                            :: grid initializations. ( input from raw
C    | |                            :: grid files, LONC.bin, DXF.bin etc... )
C    | |
C    | |-INI_DEPTHS    :: Read (from "bathyFile") or set bathymetry/orgography.
C    | |
C    | |-INI_MASKS_ETC :: Derive horizontal and vertical cell fractions and
C    | |               :: land masking for solid-fluid boundaries.
C    | |
C    | |-INI_LINEAR_PHSURF :: Set ref. surface Bo_surf
C    | |
C    | |-INI_CORI          :: Set coriolis term. zero, f-plane, beta-plane,
C    | |                   :: sphere options are coded.
C    | |
C    | |-PACAKGES_BOOT      :: Start up the optional package environment.
C    | |                    :: Runtime selection of active packages.
C    | |
C    | |-PACKAGES_READPARMS :: Call active package internal parameter load.
C    | | |
C    | | |-GMREDI_READPARMS    :: GM Package. see pkg/gmredi
C    | | |-KPP_READPARMS       :: KPP Package. see pkg/kpp
C    | | |-SHAP_FILT_READPARMS :: Shapiro filter package. see pkg/shap_filt
C    | | |-OBCS_READPARMS      :: Open bndy package. see pkg/obcs
C    | | |-AIM_READPARMS       :: Intermediate Atmos. pacakage. see pkg/aim
C    | | |-COST_READPARMS      :: Cost function package. see pkg/cost
C    | | |-CTRL_INIT           :: Control vector support package. see pkg/ctrl
C    | | |-OPTIM_READPARMS     :: Optimisation support package. see pkg/ctrl
C    | | |-GRDCHK_READPARMS    :: Gradient check package. see pkg/grdchk
C    | | |-ECCO_READPARMS      :: ECCO Support Package. see pkg/ecco
C    | | |-PTRACERS_READPARMS  :: multiple tracer package, see pkg/ptracers
C    | | |-GCHEM_READPARMS     :: tracer interface package, see pkg/gchem
C    | |
C    | |-PACKAGES_CHECK
C    | | |
C    | | |-KPP_CHECK           :: KPP Package. pkg/kpp
C    | | |-OBCS_CHECK          :: Open bndy Pacakge. pkg/obcs
C    | | |-GMREDI_CHECK        :: GM Package. pkg/gmredi
C    | |
C    | |-PACKAGES_INIT_FIXED
C    | | |-OBCS_INIT_FIXED     :: Open bndy Package. see pkg/obcs
C    | | |-FLT_INIT            :: Floats Package. see pkg/flt
C    | | |-GCHEM_INIT_FIXED    :: tracer interface pachage, see pkg/gchem
C    | |
C    | |-ZONAL_FILT_INIT       :: FFT filter Package. see pkg/zonal_filt
C    | |
C    | |-INI_CG2D              :: 2d con. grad solver initialization.
C    | |
C    | |-INI_CG3D              :: 3d con. grad solver initialization.
C    | |
C    | |-CONFIG_SUMMARY        :: Provide synopsis of kernel setup.
C    |                         :: Includes annotated table of kernel
C    |                         :: parameter settings.
C    |
C    |-CTRL_UNPACK :: Control vector support package. see pkg/ctrl
C    |
C    |-ADTHE_MAIN_LOOP :: Derivative evaluating form of main time stepping loop
C    !                 :: Auotmatically generated by TAMC/TAF.
C    |
C    |-CTRL_PACK   :: Control vector support package. see pkg/ctrl
C    |
C    |-GRDCHK_MAIN :: Gradient check package. see pkg/grdchk
C    |
C    |-THE_MAIN_LOOP :: Main timestepping loop routine.
C    | |
C    | |-INITIALISE_VARIA :: Set the initial conditions for time evolving
C    | | |                :: variables
C    | | |
C    | | |-INI_LINEAR_PHISURF :: Set ref. surface Bo_surf
C    | | |
C    | | |-INI_CORI     :: Set coriolis term. zero, f-plane, beta-plane,
C    | | |              :: sphere options are coded.
C    | | |
C    | | |-INI_CG2D     :: 2d con. grad solver initialization.
C    | | |-INI_CG3D     :: 3d con. grad solver initialization.
C    | | |-INI_MIXING   :: Initialize diapycnal diffusivity.
C    | | |-INI_DYNVARS  :: Initialize to zero all DYNVARS.h arrays (dynamical
C    | | |              :: fields).
C    | | |
C    | | |-INI_FIELDS   :: Control initializing model fields to non-zero
C    | | | |-INI_VEL    :: Initialize 3D flow field.
C    | | | |-INI_THETA  :: Set model initial temperature field.
C    | | | |-INI_SALT   :: Set model initial salinity field.
C    | | | |-INI_PSURF  :: Set model initial free-surface height/pressure.
C    | | | |-INI_PRESSURE :: Compute model initial hydrostatic pressure
C    | | | |-READ_CHECKPOINT :: Read the checkpoint
C    | | |
C    | | |-THE_CORRECTION_STEP :: Step forward to next time step.
C    | | | |                   :: Here applied to move restart conditions
C    | | | |                   :: (saved in mid timestep) to correct level in
C    | | | |                   :: time (only used for pre-c35).
C    | | | |
C    | | | |-CALC_GRAD_PHI_SURF :: Return DDx and DDy of surface pressure
C    | | | |-CORRECTION_STEP    :: Pressure correction to momentum
C    | | | |-CYCLE_TRACER       :: Move tracers forward in time.
C    | | | |-OBCS_APPLY         :: Open bndy package. see pkg/obcs
C    | | | |-SHAP_FILT_APPLY    :: Shapiro filter package. see pkg/shap_filt
C    | | | |-ZONAL_FILT_APPLY   :: FFT filter package. see pkg/zonal_filt
C    | | | |-CONVECTIVE_ADJUSTMENT :: Control static instability mixing.
C    | | | | |-FIND_RHO  :: Find adjacent densities.
C    | | | | |-CONVECT   :: Mix static instability.
C    | | | | |-TIMEAVE_CUMULATE :: Update convection statistics.
C    | | | |
C    | | | |-CALC_EXACT_ETA        :: Change SSH to flow divergence.
C    | | |
C    | | |-CONVECTIVE_ADJUSTMENT_INI :: Control static instability mixing
C    | | | |                         :: Extra time history interactions.
C    | | | |
C    | | | |-FIND_RHO  :: Find adjacent densities.
C    | | | |-CONVECT   :: Mix static instability.
C    | | | |-TIMEAVE_CUMULATE :: Update convection statistics.
C    | | |
C    | | |-PACKAGES_INIT_VARIABLES :: Does initialization of time evolving
C    | | | |                       :: package data.
C    | | | |
C    | | | |-GMREDI_INIT          :: GM package. ( see pkg/gmredi )
C    | | | |-KPP_INIT             :: KPP package. ( see pkg/kpp )
C    | | | |-KPP_OPEN_DIAGS
C    | | | |-OBCS_INIT_VARIABLES  :: Open bndy. package. ( see pkg/obcs )
C    | | | |-PTRACERS_INIT        :: multi. tracer package,(see pkg/ptracers)
C    | | | |-GCHEM_INIT           :: tracer interface pkg (see pkh/gchem)
C    | | | |-AIM_INIT             :: Interm. atmos package. ( see pkg/aim )
C    | | | |-CTRL_MAP_INI         :: Control vector package.( see pkg/ctrl )
C    | | | |-COST_INIT            :: Cost function package. ( see pkg/cost )
C    | | | |-ECCO_INIT            :: ECCO support package. ( see pkg/ecco )
C    | | | |-INI_FORCING          :: Set model initial forcing fields.
C    | | |   |                    :: Either set in-line or from file as shown.
C    | | |   |-READ_FLD_XY_RS(zonalWindFile)
C    | | |   |-READ_FLD_XY_RS(meridWindFile)
C    | | |   |-READ_FLD_XY_RS(surfQFile)
C    | | |   |-READ_FLD_XY_RS(EmPmRfile)
C    | | |   |-READ_FLD_XY_RS(thetaClimFile)
C    | | |   |-READ_FLD_XY_RS(saltClimFile)
C    | | |   |-READ_FLD_XY_RS(surfQswFile)
C    | | |
C    | | |-CALC_SURF_DR   :: Calculate the new surface level thickness.
C    | | |-UPDATE_SURF_DR :: Update the surface-level thickness fraction.
C    | | |-UPDATE_CG2D    :: Update 2d conjugate grad. for Free-Surf.
C    | | |-STATE_SUMMARY    :: Summarize model prognostic variables.
C    | | |-TIMEAVE_STATVARS :: Time averaging package ( see pkg/timeave ).
C    | |
C    | |-WRITE_STATE      :: Controlling routine for IO to dump model state.
C    | | |-WRITE_REC_XYZ_RL :: Single file I/O
C    | | |-WRITE_FLD_XYZ_RL :: Multi-file I/O
C    | |
C    | |-MONITOR          :: Monitor state ( see pkg/monitor )
C    | |-CTRL_MAP_FORCING :: Control vector support package. ( see pkg/ctrl )
C====|>|
C====|>| ****************************
C====|>| BEGIN MAIN TIMESTEPPING LOOP
C====|>| ****************************
C====|>|
C/\  | |-FORWARD_STEP     :: Step forward a time-step ( AT LAST !!! )
C/\  | | |
C/\  | | |-DUMMY_IN_STEPPING :: autodiff package ( pkg/autoduff ).
C/\  | | |-CALC_EXACT_ETA :: Change SSH to flow divergence.
C/\  | | |-CALC_SURF_DR   :: Calculate the new surface level thickness.
C/\  | | |-EXF_GETFORCING :: External forcing package. ( pkg/exf )
C/\  | | |-EXTERNAL_FIELDS_LOAD :: Control loading time dep. external data.
C/\  | | | |                    :: Simple interpolation between end-points
C/\  | | | |                    :: for forcing datasets.
C/\  | | | |
C/\  | | | |-EXCH :: Sync forcing. in overlap regions.
C/\  | | |-SEAICE_MODEL   :: Compute sea-ice terms. ( pkg/seaice )
C/\  | | |-FREEZE         :: Limit surface temperature.
C/\  | | |-GCHEM_FIELD_LOAD :: load tracer forcing fields (pkg/gchem)
C/\  | | |
C/\  | | |-THERMODYNAMICS :: theta, salt + tracer equations driver.
C/\  | | | |
C/\  | | | |-INTEGRATE_FOR_W :: Integrate for vertical velocity.
C/\  | | | |-OBCS_APPLY_W    :: Open bndy. package ( see pkg/obcs ).
C/\  | | | |-FIND_RHO        :: Calculates [rho(S,T,z)-RhoConst] of a slice
C/\  | | | |-GRAD_SIGMA      :: Calculate isoneutral gradients
C/\  | | | |-CALC_IVDC       :: Set Implicit Vertical Diffusivity for Convection
C/\  | | | |
C/\  | | | |-OBCS_CALC            :: Open bndy. package ( see pkg/obcs ).
C/\  | | | |-EXTERNAL_FORCING_SURF:: Accumulates appropriately dimensioned
C/\  | | | | |                    :: forcing terms.
C/\  | | | | |-PTRACERS_FORCING_SURF :: Tracer package ( see pkg/ptracers ).
C/\  | | | |
C/\  | | | |-GMREDI_CALC_TENSOR   :: GM package ( see pkg/gmredi ).
C/\  | | | |-GMREDI_CALC_TENSOR_DUMMY :: GM package ( see pkg/gmredi ).
C/\  | | | |-KPP_CALC             :: KPP package ( see pkg/kpp ).
C/\  | | | |-KPP_CALC_DUMMY       :: KPP package ( see pkg/kpp ).
C/\  | | | |-AIM_DO_ATMOS_PHYSICS :: Intermed. atmos package ( see pkg/aim ).
C/\  | | | |-GAD_ADVECTION        :: Generalised advection driver (multi-dim
C/\  | | | |                         advection case) (see pkg/gad).
C/\  | | | |-CALC_COMMON_FACTORS  :: Calculate common data (such as volume flux)
C/\  | | | |-CALC_DIFFUSIVITY     :: Calculate net vertical diffusivity
C/\  | | | | |
C/\  | | | | |-GMREDI_CALC_DIFF   :: GM package ( see pkg/gmredi ).
C/\  | | | | |-KPP_CALC_DIFF      :: KPP package ( see pkg/kpp ).
C/\  | | | |
C/\  | | | |-CALC_GT              :: Calculate the temperature tendency terms
C/\  | | | | |
C/\  | | | | |-GAD_CALC_RHS       :: Generalised advection package
C/\  | | | | | |                  :: ( see pkg/gad )
C/\  | | | | | |-KPP_TRANSPORT_T  :: KPP non-local transport ( see pkg/kpp ).
C/\  | | | | |
C/\  | | | | |-EXTERNAL_FORCING_T :: Problem specific forcing for temperature.
C/\  | | | | |-ADAMS_BASHFORTH2   :: Extrapolate tendencies forward in time.
C/\  | | | | |-FREESURF_RESCALE_G :: Re-scale Gt for free-surface height.
C/\  | | | |
C/\  | | | |-TIMESTEP_TRACER      :: Step tracer field forward in time
C/\  | | | |
C/\  | | | |-CALC_GS              :: Calculate the salinity tendency terms
C/\  | | | | |
C/\  | | | | |-GAD_CALC_RHS       :: Generalised advection package
C/\  | | | | | |                  :: ( see pkg/gad )
C/\  | | | | | |-KPP_TRANSPORT_S  :: KPP non-local transport ( see pkg/kpp ).
C/\  | | | | |
C/\  | | | | |-EXTERNAL_FORCING_S :: Problem specific forcing for salt.
C/\  | | | | |-ADAMS_BASHFORTH2   :: Extrapolate tendencies forward in time.
C/\  | | | | |-FREESURF_RESCALE_G :: Re-scale Gs for free-surface height.
C/\  | | | |
C/\  | | | |-TIMESTEP_TRACER      :: Step tracer field forward in time
C/\  | | | |
C/\  | | | |-TIMESTEP_TRACER      :: Step tracer field forward in time
C/\  | | | |
C/\  | | | |-PTRACERS_INTEGRATE   :: Integrate other tracer(s) (see pkg/ptracers).
C/\  | | | | |
C/\  | | | | |-GAD_CALC_RHS       :: Generalised advection package
C/\  | | | | | |                  :: ( see pkg/gad )
C/\  | | | | | |-KPP_TRANSPORT_PTR:: KPP non-local transport ( see pkg/kpp ).
C/\  | | | | |
C/\  | | | | |-PTRACERS_FORCING   :: Problem specific forcing for tracer.
C/\  | | | | |-GCHEM_FORCING_INT  :: tracer forcing for gchem pkg (if all
C/\  | | | | |                       tendancy terms calcualted together)
C/\  | | | | |-ADAMS_BASHFORTH2   :: Extrapolate tendencies forward in time.
C/\  | | | | |-FREESURF_RESCALE_G :: Re-scale Gs for free-surface height.
C/\  | | | | |-TIMESTEP_TRACER    :: Step tracer field forward in time
C/\  | | | |
C/\  | | | |-OBCS_APPLY_TS        :: Open bndy. package (see pkg/obcs ).
C/\  | | | |
C/\  | | | |-IMPLDIFF             :: Solve vertical implicit diffusion equation.
C/\  | | | |-OBCS_APPLY_TS        :: Open bndy. package (see pkg/obcs ).
C/\  | | | |
C/\  | | | |-AIM_AIM2DYN_EXCHANGES :: Inetermed. atmos (see pkg/aim).
C/\  | | | |-EXCH                 :: Update overlaps
C/\  | | |
C/\  | | |-DYNAMICS       :: Momentum equations driver.
C/\  | | | |
C/\  | | | |-CALC_GRAD_PHI_SURF :: Calculate the gradient of the surface
C/\  | | | |                       Potential anomaly.
C/\  | | | |-CALC_VISCOSITY     :: Calculate net vertical viscosity
C/\  | | | | |-KPP_CALC_VISC    :: KPP package ( see pkg/kpp ).
C/\  | | | |
C/\  | | | |-CALC_PHI_HYD       :: Integrate the hydrostatic relation.
C/\  | | | |-MOM_FLUXFORM       :: Flux form mom eqn. package ( see
C/\  | | | |                       pkg/mom_fluxform ).
C/\  | | | |-MOM_VECINV         :: Vector invariant form mom eqn. package ( see
C/\  | | | |                       pkg/mom_vecinv   ).
C/\  | | | |-TIMESTEP           :: Step momentum fields forward in time
C/\  | | | |-OBCS_APPLY_UV      :: Open bndy. package (see pkg/obcs ).
C/\  | | | |
C/\  | | | |-IMPLDIFF           :: Solve vertical implicit diffusion equation.
C/\  | | | |-OBCS_APPLY_UV      :: Open bndy. package (see pkg/obcs ).
C/\  | | | |
C/\  | | | |-TIMEAVE_CUMUL_1T   :: Time averaging package ( see pkg/timeave ).
C/\  | | | |-TIMEAVE_CUMUATE    :: Time averaging package ( see pkg/timeave ).
C/\  | | | |-DEBUG_STATS_RL     :: Quick debug package ( see pkg/debug ).
C/\  | | |
C/\  | | |-CALC_GW        :: vert. momentum tendency terms ( NH, QH only ).
C/\  | | |
C/\  | | |-UPDATE_SURF_DR :: Update the surface-level thickness fraction.
C/\  | | |
C/\  | | |-UPDATE_CG2D    :: Update 2d conjugate grad. for Free-Surf.
C/\  | | |
C/\  | | |-SOLVE_FOR_PRESSURE           :: Find surface pressure.
C/\  | | | |-CALC_DIV_GHAT     :: Form the RHS of the surface pressure eqn.
C/\  | | | |-CG2D              :: Two-dim pre-con. conjugate-gradient.
C/\  | | | |-CG3D              :: Three-dim pre-con. conjugate-gradient solver.
C/\  | | |
C/\  | | |-THE_CORRECTION_STEP          :: Step forward to next time step.
C/\  | | | |
C/\  | | | |-CALC_GRAD_PHI_SURF :: Return DDx and DDy of surface pressure
C/\  | | | |-CORRECTION_STEP    :: Pressure correction to momentum
C/\  | | | |-CYCLE_TRACER       :: Move tracers forward in time.
C/\  | | | |-OBCS_APPLY         :: Open bndy package. see pkg/obcs
C/\  | | | |-SHAP_FILT_APPLY    :: Shapiro filter package. see pkg/shap_filt
C/\  | | | |-ZONAL_FILT_APPLY   :: FFT filter package. see pkg/zonal_filt
C/\  | | | |-CONVECTIVE_ADJUSTMENT :: Control static instability mixing.
C/\  | | | | |-FIND_RHO  :: Find adjacent densities.
C/\  | | | | |-CONVECT   :: Mix static instability.
C/\  | | | | |-TIMEAVE_CUMULATE :: Update convection statistics.
C/\  | | | |
C/\  | | | |-CALC_EXACT_ETA        :: Change SSH to flow divergence.
C/\  | | |
C/\  | | |-DO_FIELDS_BLOCKING_EXCHANGES :: Sync up overlap regions.
C/\  | | | |-EXCH
C/\  | | |
C/\  | | |-GCHEM_FORCING_SEP :: tracer forcing for gchem pkg (if
C/\  | | |                      tracer dependent tendencies calculated
C/\  | | |                      separatly)
C/\  | | |
C/\  | | |-FLT_MAIN         :: Float package ( pkg/flt ).
C/\  | | |
C/\  | | |-MONITOR          :: Monitor package ( pkg/monitor ).
C/\  | | |
C/\  | | |-DO_THE_MODEL_IO  :: Standard diagnostic I/O.
C/\  | | | |-WRITE_STATE    :: Core state I/O
C/\  | | | |-TIMEAVE_STATV_WRITE :: Time averages. see pkg/timeave
C/\  | | | |-AIM_WRITE_DIAGS     :: Intermed. atmos diags. see pkg/aim
C/\  | | | |-GMREDI_DIAGS        :: GM diags. see pkg/gmredi
C/\  | | | |-KPP_DO_DIAGS        :: KPP diags. see pkg/kpp
C/\  | | | |-SBO_CALC            :: SBO diags. see pkg/sbo
C/\  | | | |-SBO_DIAGS           :: SBO diags. see pkg/sbo
C/\  | | | |-SEAICE_DO_DIAGS     :: SEAICE diags. see pkg/seaice
C/\  | | | |-GCHEM_DIAGS         :: gchem diags. see pkg/gchem
C/\  | | |
C/\  | | |-WRITE_CHECKPOINT :: Do I/O for restart files.
C/\  | |
C/\  | |-COST_TILE        :: Cost function package. ( see pkg/cost )
C<===|=|
C<===|=| **************************
C<===|=| END MAIN TIMESTEPPING LOOP
C<===|=| **************************
C<===|=|
C    | |-COST_FINAL       :: Cost function package. ( see pkg/cost )
C    |
C    |-WRITE_CHECKPOINT :: Final state storage, for restart.
C    |
C    |-TIMER_PRINTALL :: Computational timing summary
C    |
C    |-COMM_STATS     :: Summarise inter-proc and inter-thread communication
C                     :: events.
C








6.4.2. Measuring and Characterizing Performance

TO BE DONE (CNH)




6.4.3. Estimating Resource Requirements

TO BE DONE (CNH)


6.4.3.1. Atlantic 1/6 degree example




6.4.3.2. Dry Run testing




6.4.3.3. Adjoint Resource Requirements




6.4.3.4. State Estimation Environment Resources











          

      

      

    

  

    
      
          
            
  
7. Automatic Differentiation





          

      

      

    

  

    
      
          
            
  
8. Packages I - Physical Parameterizations

In this chapter and in the following chapter, the MITgcm ‘packages’ are
described. While you can carry out many experiments with MITgcm by starting
from case studies in section ref{sec:modelExamples}, configuring
a brand new experiment or making major changes to an experimental configuration
requires some knowledge of the packages
that make up the full MITgcm code. Packages are used in MITgcm to
help organize and layer various code building blocks that are assembled
and selected to perform a specific experiment. Each of the specific experiments
described in section ref{sec:modelExamples} uses a particular combination
of packages.

Figure 8.1 shows the full set of packages that
are available. As shown in the figure packages are classified into different
groupings that layer on top of each other. The top layer packages are
generally specialized to specific simulation types. In this layer there are
packages that deal with biogeochemical processes, ocean interior
and boundary layer processes, atmospheric processes, sea-ice, coupled
simulations and state estimation.
Below this layer are a set of general purpose
numerical and computational packages. The general purpose numerical packages
provide code for kernel numerical algorithms
that apply to
many different simulation types. Similarly, the general purpose computational
packages implement non-numerical algorithms that provide parallelism,
I/O and time-keeping functions that are used in many different scenarios.



[image: One model for atmospheric and oceanic simulations]Figure 8.1 Hierarchy of code layers that are assembled to make up an MITgcm simulation. Conceptually (and in terms of code organization) MITgcm consists of several layers. At the base is a layer of core software that provides a basic numerical and computational foundation for MITgcm simulations. This layer is shown marked Foundation Code at the bottom of the figure and corresponds to code in the italicised subdirectories on the figure. This layer is not organized into packages. All code above the foundation layer is organized as packages.  Much of the code in MITgcm is contained in packages which serve as a useful way of organizing and layering the different levels of functionality that make up the full MITgcm software distribution. The figure shows the different packages in MITgcm as boxes containing bold face upper case names.  Directly above the foundation layer are two layers of general purpose infrastructure software that consist of computational and numerical packages.  These general purpose packages can be applied to both online and offline simulations and are used in many different physical simulation types.  Above these layers are more specialized packages.






The following sections describe the packages shown in
Figure 8.1. Section ref{sec:pkg:using}
describes the general procedure for using any package in MITgcm.
Following that sections ref{sec:pkg:gad}-ref{sec:pkg:monitor}
layout the algorithms implemented in specific packages
and describe how to use the individual packages. A brief synopsis of the
function of each package is given in table ref{tab:package_summary_tab}.
Organizationally package code is assigned a
separate subdirectory in the MITgcm code distribution
(within the source code directory texttt{pkg}).
The name of this subdirectory is used as the package name in
table ref{tab:package_summary_tab}.


8.1. Overview
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8.1.1. Using MITgcm Packages

The set of packages that will be used within a partiucular model can be
configured using a combination of both “compile–time” and “run–time”
options. Compile–time options are those used to select which packages
will be “compiled in” or implemented within the program. Packages
excluded at compile time are completely absent from the executable
program(s) and thus cannot be later activated by any set of subsequent
run–time options.


8.1.1.1. Package Inclusion/Exclusion

There are numerous ways that one can specify compile–time package
inclusion or exclusion and they are all implemented by the genmake2
program which was previously described in Section [sec:buildingCode].
The options are as follows:


	Setting the genamake2 options –enable PKG and/or
–disable PKG specifies inclusion or exclusion. This method is
intended as a convenient way to perform a single (perhaps for a quick
test) compilation.


	By creating a text file with the name packages.conf in either the
local build directory or the -mods=DIR directory, one can specify
a list of packages (one package per line, with ’#’ as the
comment character) to be included. Since the packages.conf file
can be saved, this is the preferred method for setting and recording
(for future reference) the package configuration.


	For convenience, a list of “standard” package groups is contained in
the pkg/pkg_groups file. By selecting one of the package group
names in the packages.conf file, one automatically obtains all
packages in that group.


	By default (that is, if a packages.conf file is not found), the
genmake2 program will use the package group default
“default_pkg_list” as defined in pkg/pkg_groups file.


	To help prevent users from creating unusable package groups, the
genmake2 program will parse the contents of the
pkg/pkg_depend file to determine:


	whether any two requested packages cannot be simultaneously
included (eg. seaice and thsice are mutually exclusive),


	whether additional packages must be included in order to satisfy
package dependencies (eg. rw depends upon functionality within
the mdsio package), and


	whether the set of all requested packages is compatible with the
dependencies (and producing an error if they aren’t).




Thus, as a result of the dependencies, additional packages may be
added to those originally requested.








8.1.1.2. Package Activation

For run–time package control, MITgcm uses flags set through a
data.pkg file. While some packages (eg. debug, mnc,
exch2) may have their own usage conventions, most follow a simple
flag naming convention of the form:

usePackageName=.TRUE.





where the usePackageName variable can activate or disable the
package at runtime. As mentioned previously, packages must be included
in order to be activated. Generally, such mistakes will be detected and
reported as errors by the code. However, users should still be aware of
the dependency.




8.1.1.3. Package Coding Standards

The following sections describe how to modify and/or create new MITgcm
packages.


Packages are Not Libraries

To a beginner, the MITgcm packages may resemble libraries as used in
myriad software projects. While future versions are likely to implement
packages as libraries (perhaps using FORTRAN90/95 syntax) the current
packages (FORTRAN77) are not based upon any concept of libraries.




File Inclusion Rules

Instead, packages should be viewed only as directories containing “sets
of source files” that are built using some simple mechanisms provided by
genmake2. Conceptually, the build process adds files as they are
found and proceeds according to the following rules:


	genmake2 locates a “core” or main set of source files (the
-standarddirs option sets these locations and the default value
contains the directories eesupp and model).


	genmake2 then finds additional source files by inspecting the
contents of each of the package directories:


	As the new files are found, they are added to a list of source
files.


	If there is a file name “collision” (that is, if one of the files
in a package has the same name as one of the files previously
encountered) then the file within the newer (more recently
visited) package will superseed (or “hide”) any previous file(s)
with the same name.


	Packages are visited (and thus files discovered) in the order
that the packages are enabled within genmake2. Thus, the
files in PackB may superseed the files in PackA if
PackA is enabled before PackB. Thus, package ordering can
be significant! For this reason, genmake2 honors the order in
which packages are specified.








These rules were adopted since they provide a relatively simple means
for rapidly including (or “hiding”) existing files with modified
versions.




Conditional Compilation and PACKAGES_CONFIG.h

Given that packages are simply groups of files that may be added or
removed to form a whole, one may wonder how linking (that is, FORTRAN
symbol resolution) is handled. This is the second way that genmake2
supports the concept of packages. Basically, genmake2 creates a
Makefile that, in turn, is able to create a file called
PACKAGES_CONFIG.h that contains a set of C pre-processor (or “CPP”)
directives such as:

#undef  ALLOW_KPP
#undef  ALLOW_LAND
...
#define ALLOW_GENERIC_ADVDIFF
#define ALLOW_MDSIO
...





These CPP symbols are then used throughout the code to conditionally
isolate variable definitions, function calls, or any other code that
depends upon the presence or absence of any particular package.

An example illustrating the use of these defines is:

#ifdef ALLOW_GMREDI
      IF (useGMRedi) CALL GMREDI_CALC_DIFF(
     I        bi,bj,iMin,iMax,jMin,jMax,K,
     I        maskUp,
     O        KappaRT,KappaRS,
     I        myThid)
#endif





which is included from the file and shows how both the compile–time
ALLOW_GMREDI flag and the run–time useGMRedi are nested.

There are some benefits to using the technique described here. The first
is that code snippets or subroutines associated with packages can be
placed or called from almost anywhere else within the code. The second
benefit is related to memory footprint and performance. Since unused
code can be removed, there is no performance penalty due to unnecessary
memory allocation, unused function calls, or extra run-time IF (...)
conditions. The major problems with this approach are the potentially
difficult-to-read and difficult-to-debug code caused by an overuse of
CPP statements. So while it can be done, developers should exerecise
some discipline and avoid unnecesarily “smearing” their package
implementation details across numerous files.




Package Startup or Boot Sequence

Calls to package routines within the core code timestepping loop can
vary. However, all packages should follow a required “boot” sequence
outlined here:

1. S/R PACKAGES_BOOT()
        :
    CALL OPEN_COPY_DATA_FILE( 'data.pkg', 'PACKAGES_BOOT', ... )


2. S/R PACKAGES_READPARMS()
        :
    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_READPARMS( retCode )
    #endif

3. S/R PACKAGES_INIT_FIXED()
        :
    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_INIT_FIXED( retCode )
    #endif

4. S/R PACKAGES_CHECK()
        :
    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_CHECK( retCode )
    #else
      if ( use${Pkg} )
 &       CALL PACKAGES_CHECK_ERROR('${PKG}')
    #endif

5. S/R PACKAGES_INIT_VARIABLES()
        :
    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_INIT_VARIA( )
    #endif

 6. S/R DO_THE_MODEL_IO

    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_OUTPUT( )
    #endif

 7. S/R PACKAGES_WRITE_PICKUP()

    #ifdef ALLOW_${PKG}
      if ( use${Pkg} )
 &       CALL ${PKG}_WRITE_PICKUP( )
    #endif








Adding a package to PARAMS.h and packages_boot()

An MITgcm package directory contains all the code needed for that
package apart from one variable for each package. This variable is the
use${Pkg} * flag. This flag, which is of type logical, **must* be
declared in the shared header file PARAMS.h in the PARM_PACKAGES
block. This convention is used to support a single runtime control file
data.pkg which is read by the startup routine packages_boot() and
that sets a flag controlling the runtime use of a package. This routine
needs to be able to read the flags for packages that were not built at
compile time. Therefore when adding a new package, in addition to
creating the per-package directory in the pkg/ subdirectory a
developer should add a use${Pkg} * flag to *PARAMS.h and a use${Pkg}
* entry to the *packages_boot() PACKAGES namelist. The only other
package specific code that should appear outside the individual package
directory are calls to the specific package API.









          

      

      

    

  

    
      
          
            
  
8.2.1. Generic Advection/Diffusion

The generic_advdiff package contains high-level subroutines to solve
the advection-diffusion equation of any tracer, either active (potential
temperature, salinity or water vapor) or passive (see pkg/ptracers).
(see also sections [sec:tracer:sub:equations] to
[sec:tracer:sub:advectionschemes]).


8.2.1.1. Introduction

Package “generic_advdiff” provides a common set of routines for
calculating advective/diffusive fluxes for tracers (cell centered
quantities on a C-grid).

Many different advection schemes are available: the standard centered
second order, centered fourth order and upwind biased third order
schemes are known as linear methods and require some stable
time-stepping method such as Adams-Bashforth. Alternatives such as
flux-limited schemes are stable in the forward sense and are best
combined with the multi-dimensional method provided in gad_advection.




8.2.1.2. Key subroutines, parameters and files

There are two high-level routines:


	GAD_CALC_RHS calculates all fluxes at time level “n” and is used
for the standard linear schemes. This must be used in conjuction with
Adams–Bashforth time stepping. Diffusive and parameterized fluxes are
always calculated here.


	GAD_ADVECTION calculates just the advective fluxes using the
non-linear schemes and can not be used in conjuction with
Adams–Bashforth time stepping.







8.2.1.3. GAD Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
ADVr_TH | 15 |WM      LR      |degC.m^3/s      |Vertical   Advective Flux of Pot.Temperature
ADVx_TH | 15 |UU   087MR      |degC.m^3/s      |Zonal      Advective Flux of Pot.Temperature
ADVy_TH | 15 |VV   086MR      |degC.m^3/s      |Meridional Advective Flux of Pot.Temperature
DFrE_TH | 15 |WM      LR      |degC.m^3/s      |Vertical Diffusive Flux of Pot.Temperature (Explicit part)
DIFx_TH | 15 |UU   090MR      |degC.m^3/s      |Zonal      Diffusive Flux of Pot.Temperature
DIFy_TH | 15 |VV   089MR      |degC.m^3/s      |Meridional Diffusive Flux of Pot.Temperature
DFrI_TH | 15 |WM      LR      |degC.m^3/s      |Vertical Diffusive Flux of Pot.Temperature (Implicit part)
ADVr_SLT| 15 |WM      LR      |psu.m^3/s       |Vertical   Advective Flux of Salinity
ADVx_SLT| 15 |UU   094MR      |psu.m^3/s       |Zonal      Advective Flux of Salinity
ADVy_SLT| 15 |VV   093MR      |psu.m^3/s       |Meridional Advective Flux of Salinity
DFrE_SLT| 15 |WM      LR      |psu.m^3/s       |Vertical Diffusive Flux of Salinity    (Explicit part)
DIFx_SLT| 15 |UU   097MR      |psu.m^3/s       |Zonal      Diffusive Flux of Salinity
DIFy_SLT| 15 |VV   096MR      |psu.m^3/s       |Meridional Diffusive Flux of Salinity
DFrI_SLT| 15 |WM      LR      |psu.m^3/s       |Vertical Diffusive Flux of Salinity    (Implicit part)








8.2.1.4. Experiments and tutorials that use GAD


	Offline tutorial, in tutorial_offline verification directory,
described in section [sec:eg-offline]


	Baroclinic gyre experiment, in tutorial_baroclinic_gyre
verification directory, described in section [sec:eg-fourlayer]


	Tracer Sensitivity tutorial, in tutorial_tracer_adjsens
verification directory, described in section
[sec:eg-simple-tracer-adjoint]










          

      

      

    

  

    
      
          
            
  
8.2.2. Shapiro Filter

(in directory: pkg/shap_filt/)


8.2.2.1. Key subroutines, parameters and files

Implementation of filter is described in section [sec:shapiro-filter].




8.2.2.2. Experiments and tutorials that use shap filter


	Held Suarez tutorial, in tutorial_held_suarez_cs verification
directory, described in section [sec:eg-hs]


	other Held Suarez verification experiments (hs94.128x64x5, hs94.1x64x5, hs94.cs-32x32x5)


	AIM verification experiments (aim.5l_cs, aim.5l_Equatorial_Channel, aim.5l_LatLon)


	fizhi verification experiments (fizhi-cs-32x32x40, fizhi-cs-aqualev20, fizhi-gridalt-hs)










          

      

      

    

  

    
      
          
            
  
8.2.3. FFT Filtering Code

(in directory: pkg/zonal_filt/)


8.2.3.1. Key subroutines, parameters and files




8.2.3.2. Experiments and tutorials that use zonal filter


	Held Suarez verification experiment (hs94.128x64x5)


	AIM verification experiment (aim.5l_LatLon)










          

      

      

    

  

    
      
          
            
  
8.2.4. exch2: Extended Cubed Sphere Topology


8.2.4.1. Introduction

The exch2 package extends the original cubed sphere topology
configuration to allow more flexible domain decomposition and
parallelization.  Cube faces (also called subdomains) may be divided
into any number of tiles that divide evenly into the grid point
dimensions of the subdomain.  Furthermore, the tiles can run on
separate processors individually or in groups, which provides for
manual compile-time load balancing across a relatively arbitrary
number of processors.

The exchange parameters are declared in
\pkgexch2/W2\_EXCH2\_TOPOLOGY.h
and assigned in
pkg/exch2/w2\_e2setup.F. The
validity of the cube topology depends on the SIZE.h file as
detailed below.  The default files provided in the release configure a
cubed sphere topology of six tiles, one per subdomain, each with
32 \(\times\) 32 grid points, with all tiles running on a single processor.  Both
files are generated by Matlab scripts in
utils/exch2/matlab-topology-generator; see Section
ref{sec:topogen}
for details on creating alternate topologies.  Pregenerated examples
of these files with alternate topologies are provided under
utils/exch2/code-mods along with the appropriate SIZE.h
file for single-processor execution.




8.2.4.2. Invoking exch2

To use exch2 with the cubed sphere, the following conditions must be
met:



	The exch2 package is included when genmake2 is run.  The easiest way to do this is to add the line code{exch2} to the packages.conf file – see Section ref{sec:buildingCode} sectiontitle{Building the code} for general details.


	An example of W2\_EXCH2\_TOPOLOGY.h and w2\_e2setup.F must reside in a directory containing files symbolically linked by the genmake2 script.  The safest place to put these is the directory indicated in the -mods=DIR command line modifier (typically ../code), or the build directory.  The default versions of these files reside in pkg/exch2 and are linked automatically if no other versions exist elsewhere in the build path, but they should be left untouched to avoid breaking configurations other than the one you intend to modify.


	Files containing grid parameters, named tile00$n$.mitgrid where n=(1:6) (one per subdomain), must be in the working directory when the MITgcm executable is run.  These files are provided in the example experiments for cubed sphere configurations with 32 \(\times\) 32 cube sides – please contact MITgcm support if you want to generate files for other configurations.


	As always when compiling MITgcm, the file SIZE.h must be placed where genmake2 will find it.  In particular for exch2, the domain decomposition specified in SIZE.h must correspond with the particular configuration’s topology specified in W2\_EXCH2\_TOPOLOGY.h and w2\_e2setup.F.  Domain decomposition issues particular to exch2 are addressed in Section ref{sec:topogen} sectiontitle{Generating Topology Files for exch2} and ref{sec:exch2mpi} sectiontitle{exch2, SIZE.h, and Multiprocessing}; a more general background on the subject relevant to MITgcm is presented in Section ref{sec:specifying_a_decomposition} sectiontitle{Specifying a decomposition}.







At the time of this writing the following examples use exch2 and may
be used for guidance:



	verification/adjust_nlfs.cs-32x32x1


	verification/adjustment.cs-32x32x1


	verification/aim.5l_cs


	verification/global_ocean.cs32x15


	verification/hs94.cs-32x32x5










8.2.4.3. Generating Topology Files for exch2

Alternate cubed sphere topologies may be created using the Matlab
scripts in utils/exch2/matlab-topology-generator. Running the
m-file utils-exch2-matlab-topology-generator_driver.m
from the Matlab prompt (there are no parameters to pass) generates
exch2 topology files W2\_EXCH2\_TOPOLOGY.h and
w2\_e2setup.F in the working directory and displays a figure of
the topology via Matlab – figures ref{fig:6tile}, ref{fig:18tile},
and ref{fig:48tile} are examples of the generated diagrams.  The other
m-files in the directory are
subroutines called from driver.m and should not be run ‘’bare’’ except
for development purposes.

The parameters that determine the dimensions and topology of the
generated configuration are nr, nb, ng,
tnx and tny, and all are assigned early in the script.

The first three determine the height and width of the subdomains and
hence the size of the overall domain.  Each one determines the number
of grid points, and therefore the resolution, along the subdomain
sides in a ‘’great circle’’ around each the three spatial axes of the cube.  At the time
of this writing MITgcm requires these three parameters to be equal,
but they provide for future releases  to accomodate different
resolutions around the axes to allow subdomains with differing resolutions.

The parameters tnx and tny determine the width and height of
the tiles into which the subdomains are decomposed, and must evenly
divide the integer assigned to nr, nb and ng.
The result is a rectangular tiling of the subdomain.  Figure 8.2 shows one possible topology for a twenty-four-tile
cube, and Figure 8.4 shows one for six tiles.



[image: cube sphere topology]Figure 8.2 Plot of a cubed sphere topology with a 32 \(\times\) 192 domain divided into six 32 \(\times\) 32 subdomains, each of which is divided into eight tiles of width tnx=16 and height tny=8 for a total of forty-eight tiles. The colored borders of the subdomains represent the parameters nr (red), ng (green), and nb (blue). This tiling is used in the example verification/adjustment.cs-32x32x1/ with the option (blanklist.txt) to remove the land-only 4 tiles (11,12,13,14) which are filled in red on the plot.




[image: polar cap topology]Figure 8.3 Plot of a non-square cubed sphere topology with 6 subdomains of different size (nr=90,ng=360,nb=90), divided into one to four tiles each (tnx=90, tny=90), resulting in a total of 18 tiles.




[image: default cubed sphere topology]Figure 8.4 Plot of a cubed sphere topology with a 32 \(\times\) 192 domain divided into six 32 \(\times\) 32 subdomains with one tile each (tnx=32, tny=32).  This is the default configuration.






Tiles can be selected from the topology to be omitted from being
allocated memory and processors.  This tuning is useful in ocean
modeling for omitting tiles that fall entirely on land.  The tiles
omitted are specified in the file blanklist.txt by their tile number in the topology, separated by a newline.




8.2.4.4. exch2, SIZE.h, and Multiprocessing

Once the topology configuration files are created, each Fortran
PARAMETER  in SIZE.h must be configured to match.
Section ref{sec:specifying_a_decomposition} sectiontitle{Specifying a decomposition} provides a general description of domain
decomposition within MITgcm and its relation to file{SIZE.h}. The
current section specifies constraints that the exch2 package imposes
and describes how to enable parallel execution with MPI.

As in the general case, the parameters varlink{sNx}{sNx} and
varlink{sNy}{sNy} define the size of the individual tiles, and so
must be assigned the same respective values as code{tnx} and
code{tny} in file{driver.m}.

The halo width parameters varlink{OLx}{OLx} and varlink{OLy}{OLy}
have no special bearing on exch2 and may be assigned as in the general
case. The same holds for varlink{Nr}{Nr}, the number of vertical
levels in the model.

The parameters varlink{nSx}{nSx}, varlink{nSy}{nSy},
varlink{nPx}{nPx}, and varlink{nPy}{nPy} relate to the number of
tiles and how they are distributed on processors.  When using exch2,
the tiles are stored in the $x$ dimension, and so
code{varlink{nSy}{nSy}=1} in all cases.  Since the tiles as
configured by exch2 cannot be split up accross processors without
regenerating the topology, code{varlink{nPy}{nPy}=1} as well.

The number of tiles MITgcm allocates and how they are distributed
between processors depends on varlink{nPx}{nPx} and
varlink{nSx}{nSx}.  varlink{nSx}{nSx} is the number of tiles per
processor and varlink{nPx}{nPx} is the number of processors.  The
total number of tiles in the topology minus those listed in
file{blanklist.txt} must equal code{nSx*nPx}.  Note that in order to
obtain maximum usage from a given number of processors in some cases,
this restriction might entail sharing a processor with a tile that
would otherwise be excluded because it is topographically outside of
the domain and therefore in file{blanklist.txt}.  For example,
suppose you have five processors and a domain decomposition of
thirty-six tiles that allows you to exclude seven tiles.  To evenly
distribute the remaining twenty-nine tiles among five processors, you
would have to run one ‘’dummy’’ tile to make an even six tiles per
processor.  Such dummy tiles are emph{not} listed in
file{blanklist.txt}.

The following is an example of file{SIZE.h} for the six-tile
configuration illustrated in figure ref{fig:6tile}
running on one processor:

PARAMETER (
&           sNx =  32,
&           sNy =  32,
&           OLx =   2,
&           OLy =   2,
&           nSx =   6,
&           nSy =   1,
&           nPx =   1,
&           nPy =   1,
&           Nx  = sNx*nSx*nPx,
&           Ny  = sNy*nSy*nPy,
&           Nr  =   5)





The following is an example for the forty-eight-tile topology in
figure ref{fig:48tile} running on six processors:

PARAMETER (
&           sNx =  16,
&           sNy =   8,
&           OLx =   2,
&           OLy =   2,
&           nSx =   8,
&           nSy =   1,
&           nPx =   6,
&           nPy =   1,
&           Nx  = sNx*nSx*nPx,
&           Ny  = sNy*nSy*nPy,
&           Nr  =   5)








8.2.4.5. Key Variables

The descriptions of the variables are divided up into scalars,
one-dimensional arrays indexed to the tile number, and two and
three-dimensional arrays indexed to tile number and neighboring tile.
This division reflects the functionality of these variables: The
scalars are common to every part of the topology, the tile-indexed
arrays to individual tiles, and the arrays indexed by tile and
neighbor to relationships between tiles and their neighbors.

Scalars:

The number of tiles in a particular topology is set with the parameter
code{NTILES}, and the maximum number of neighbors of any tiles by
code{MAX_NEIGHBOURS}.  These parameters are used for defining the
size of the various one and two dimensional arrays that store tile
parameters indexed to the tile number and are assigned in the files
generated by file{driver.m}.

The scalar parameters varlink{exch2_domain_nxt}{exch2_domain_nxt}
and varlink{exch2_domain_nyt}{exch2_domain_nyt} express the number
of tiles in the $x$ and $y$ global indices.  For example, the default
setup of six tiles (Fig. ref{fig:6tile}) has
code{exch2_domain_nxt=6} and code{exch2_domain_nyt=1}.  A
topology of forty-eight tiles, eight per subdomain (as in figure
ref{fig:48tile}), will have code{exch2_domain_nxt=12} and
code{exch2_domain_nyt=4}.  Note that these parameters express the
tile layout in order to allow global data files that are tile-layout-neutral.
They have no bearing on the internal storage of the arrays.  The tiles
are stored internally in a range from code{varlink{bi}{bi}=(1:NTILES)} in the
$x$ axis, and the $y$ axis variable varlink{bj}{bj} is assumed to
equal code{1} throughout the package.

Arrays indexed to tile number:

The following arrays are of length code{NTILES} and are indexed to
the tile number, which is indicated in the diagrams with the notation
textsf{t}$n$.  The indices are omitted in the descriptions.

The arrays varlink{exch2_tnx}{exch2_tnx} and
varlink{exch2_tny}{exch2_tny} express the $x$ and $y$ dimensions of
each tile.  At present for each tile texttt{exch2_tnx=sNx} and
texttt{exch2_tny=sNy}, as assigned in file{SIZE.h} and described in
Section ref{sec:exch2mpi} sectiontitle{exch2, SIZE.h, and
Multiprocessing}.  Future releases of MITgcm may allow varying tile
sizes.

The arrays varlink{exch2_tbasex}{exch2_tbasex} and
varlink{exch2_tbasey}{exch2_tbasey} determine the tiles’
Cartesian origin within a subdomain
and locate the edges of different tiles relative to each other.  As
an example, in the default six-tile topology (Fig. ref{fig:6tile})
each index in these arrays is set to code{0} since a tile occupies
its entire subdomain.  The twenty-four-tile case discussed above will
have values of code{0} or code{16}, depending on the quadrant of the
tile within the subdomain.  The elements of the arrays
varlink{exch2_txglobalo}{exch2_txglobalo} and
varlink{exch2_txglobalo}{exch2_txglobalo} are similar to
varlink{exch2_tbasex}{exch2_tbasex} and
varlink{exch2_tbasey}{exch2_tbasey}, but locate the tile edges within the
global address space, similar to that used by global output and input
files.

The array varlink{exch2_myFace}{exch2_myFace} contains the number of
the subdomain of each tile, in a range code{(1:6)} in the case of the
standard cube topology and indicated by textbf{textsf{f}}$n$ in
figures ref{fig:6tile} and
ref{fig:48tile}. varlink{exch2_nNeighbours}{exch2_nNeighbours}
contains a count of the neighboring tiles each tile has, and sets
the bounds for looping over neighboring tiles.
varlink{exch2_tProc}{exch2_tProc} holds the process rank of each
tile, and is used in interprocess communication.

The arrays varlink{exch2_isWedge}{exch2_isWedge},
varlink{exch2_isEedge}{exch2_isEedge},
varlink{exch2_isSedge}{exch2_isSedge}, and
varlink{exch2_isNedge}{exch2_isNedge} are set to code{1} if the
indexed tile lies on the edge of its subdomain, code{0} if
not.  The values are used within the topology generator to determine
the orientation of neighboring tiles, and to indicate whether a tile
lies on the corner of a subdomain.  The latter case requires special
exchange and numerical handling for the singularities at the eight
corners of the cube.

Arrays Indexed to Tile Number and Neighbor:

The following arrays have vectors of length code{MAX_NEIGHBOURS} and
code{NTILES} and describe the orientations between the the tiles.

The array code{exch2_neighbourId(a,T)} holds the tile number
code{Tn} for each of the tile number code{T}’s neighboring tiles
code{a}.  The neighbor tiles are indexed
code{(1:exch2_nNeighbours(T))} in the order right to left on the
north then south edges, and then top to bottom on the east then west
edges.

The code{exch2_opposingSend_record(a,T)} array holds the
index code{b} of the element in texttt{exch2_neighbourId(b,Tn)}
that holds the tile number code{T}, given
code{Tn=exch2_neighborId(a,T)}.  In other words,

exch2_neighbourId( exch2_opposingSend_record(a,T),
                   exch2_neighbourId(a,T) ) = T





This provides a back-reference from the neighbor tiles.

The arrays varlink{exch2_pi}{exch2_pi} and
varlink{exch2_pj}{exch2_pj} specify the transformations of indices
in exchanges between the neighboring tiles.  These transformations are
necessary in exchanges between subdomains because a horizontal dimension
in one subdomain
may map to other horizonal dimension in an adjacent subdomain, and
may also have its indexing reversed. This swapping arises from the
‘’folding’’ of two-dimensional arrays into a three-dimensional
cube.

The dimensions of code{exch2_pi(t,N,T)} and code{exch2_pj(t,N,T)}
are the neighbor ID code{N} and the tile number code{T} as explained
above, plus a vector of length code{2} containing transformation
factors code{t}.  The first element of the transformation vector
holds the factor to multiply the index in the same dimension, and the
second element holds the the same for the orthogonal dimension.  To
clarify, code{exch2_pi(1,N,T)} holds the mapping of the $x$ axis
index of tile code{T} to the $x$ axis of tile code{T}’s neighbor
code{N}, and code{exch2_pi(2,N,T)} holds the mapping of code{T}’s
$x$ index to the neighbor code{N}’s $y$ index.

One of the two elements of code{exch2_pi} or code{exch2_pj} for a
given tile code{T} and neighbor code{N} will be code{0}, reflecting
the fact that the two axes are orthogonal.  The other element will be
code{1} or code{-1}, depending on whether the axes are indexed in
the same or opposite directions.  For example, the transform vector of
the arrays for all tile neighbors on the same subdomain will be
code{(1,0)}, since all tiles on the same subdomain are oriented
identically.  An axis that corresponds to the orthogonal dimension
with the same index direction in a particular tile-neighbor
orientation will have code{(0,1)}.  Those with the opposite index
direction will have code{(0,-1)} in order to reverse the ordering.

The arrays varlink{exch2_oi}{exch2_oi},
varlink{exch2_oj}{exch2_oj}, varlink{exch2_oi_f}{exch2_oi_f}, and
varlink{exch2_oj_f}{exch2_oj_f} are indexed to tile number and
neighbor and specify the relative offset within the subdomain of the
array index of a variable going from a neighboring tile code{N} to a
local tile code{T}.  Consider code{T=1} in the six-tile topology
(Fig. ref{fig:6tile}), where

exch2_oi(1,1)=33
exch2_oi(2,1)=0
exch2_oi(3,1)=32
exch2_oi(4,1)=-32





The simplest case is code{exch2_oi(2,1)}, the southern neighbor,
which is code{Tn=6}.  The axes of code{T} and code{Tn} have the
same orientation and their $x$ axes have the same origin, and so an
exchange between the two requires no changes to the $x$ index.  For
the western neighbor (code{Tn=5}), code{code_oi(3,1)=32} since the
code{x=0} vector on code{T} corresponds to the code{y=32} vector on
code{Tn}.  The eastern edge of code{T} shows the reverse case
(code{exch2_oi(4,1)=-32)}), where code{x=32} on code{T} exchanges
with code{x=0} on code{Tn=2}.

The most interesting case, where code{exch2_oi(1,1)=33} and
code{Tn=3}, involves a reversal of indices.  As in every case, the
offset code{exch2_oi} is added to the original $x$ index of code{T}
multiplied by the transformation factor code{exch2_pi(t,N,T)}.  Here
code{exch2_pi(1,1,1)=0} since the $x$ axis of code{T} is orthogonal
to the $x$ axis of code{Tn}.  code{exch2_pi(2,1,1)=-1} since the
$x$ axis of code{T} corresponds to the $y$ axis of code{Tn}, but the
index is reversed.  The result is that the index of the northern edge
of code{T}, which runs code{(1:32)}, is transformed to
code{(-1:-32)}. code{exch2_oi(1,1)} is then added to this range to
get back code{(32:1)} – the index of the $y$ axis of code{Tn}
relative to code{T}.  This transformation may seem overly convoluted
for the six-tile case, but it is necessary to provide a general
solution for various topologies.

Finally, varlink{exch2_itlo_c}{exch2_itlo_c},
varlink{exch2_ithi_c}{exch2_ithi_c},
varlink{exch2_jtlo_c}{exch2_jtlo_c} and
varlink{exch2_jthi_c}{exch2_jthi_c} hold the location and index
bounds of the edge segment of the neighbor tile code{N}’s subdomain
that gets exchanged with the local tile code{T}.  To take the example
of tile code{T=2} in the forty-eight-tile topology
(Fig. ref{fig:48tile}):

exch2_itlo_c(4,2)=17
exch2_ithi_c(4,2)=17
exch2_jtlo_c(4,2)=0
exch2_jthi_c(4,2)=33





Here code{N=4}, indicating the western neighbor, which is
code{Tn=1}.  code{Tn} resides on the same subdomain as code{T}, so
the tiles have the same orientation and the same $x$ and $y$ axes.
The $x$ axis is orthogonal to the western edge and the tile is 16
points wide, so code{exch2_itlo_c} and code{exch2_ithi_c}
indicate the column beyond code{Tn}’s eastern edge, in that tile’s
halo region. Since the border of the tiles extends through the entire
height of the subdomain, the $y$ axis bounds code{exch2_jtlo_c} to
code{exch2_jthi_c} cover the height of code{(1:32)}, plus 1 in
either direction to cover part of the halo.

For the north edge of the same tile code{T=2} where code{N=1} and
the neighbor tile is code{Tn=5}:

exch2_itlo_c(1,2)=0
exch2_ithi_c(1,2)=0
exch2_jtlo_c(1,2)=0
exch2_jthi_c(1,2)=17





code{T}’s northern edge is parallel to the $x$ axis, but since
code{Tn}’s $y$ axis corresponds to code{T}’s $x$ axis, code{T}’s
northern edge exchanges with code{Tn}’s western edge.  The western
edge of the tiles corresponds to the lower bound of the $x$ axis, so
code{exch2_itlo_c} and code{exch2_ithi_c} are code{0}, in the
western halo region of code{Tn}. The range of
code{exch2_jtlo_c} and code{exch2_jthi_c} correspond to the
width of code{T}’s northern edge, expanded by one into the halo.




8.2.4.6. Key Routines

Most of the subroutines particular to exch2 handle the exchanges
themselves and are of the same format as those described in
ref{sec:cube_sphere_communication} sectiontitle{Cube sphere
communication}.  Like the original routines, they are written as
templates which the local Makefile converts from code{RX} into
code{RL} and code{RS} forms.

The interfaces with the core model subroutines are
code{EXCH_UV_XY_RX}, code{EXCH_UV_XYZ_RX} and
code{EXCH_XY_RX}.  They override the standard exchange routines
when code{genmake2} is run with code{exch2} option.  They in turn
call the local exch2 subroutines code{EXCH2_UV_XY_RX} and
code{EXCH2_UV_XYZ_RX} for two and three-dimensional vector
quantities, and code{EXCH2_XY_RX} and code{EXCH2_XYZ_RX} for two
and three-dimensional scalar quantities.  These subroutines set the
dimensions of the area to be exchanged, call code{EXCH2_RX1_CUBE}
for scalars and code{EXCH2_RX2_CUBE} for vectors, and then handle
the singularities at the cube corners.

The separate scalar and vector forms of code{EXCH2_RX1_CUBE} and
code{EXCH2_RX2_CUBE} reflect that the vector-handling subroutine
needs to pass both the $u$ and $v$ components of the physical vectors.
This swapping arises from the topological folding discussed above, where the
$x$ and $y$ axes get swapped in some cases, and is not an
issue with the scalar case. These subroutines call
code{EXCH2_SEND_RX1} and code{EXCH2_SEND_RX2}, which do most of
the work using the variables discussed above.




8.2.4.7. Experiments and tutorials that use exch2



	Held Suarez tutorial, in tutorial_held_suarez_cs verification directory, described in section ref{sec:eg-hs}













          

      

      

    

  

    
      
          
            
  
8.2.5. Gridalt - Alternate Grid Package


8.2.5.1. Introduction

The gridalt package [Mol09] is designed to allow different components of MITgcm
to be run using horizontal and/or vertical grids which are different
from the main model grid. The gridalt routines handle the definition of
the all the various alternative grid(s) and the mappings between them
and the MITgcm grid. The implementation of the gridalt package which
allows the high end atmospheric physics (fizhi) to be run on a high
resolution and quasi terrain-following vertical grid is documented here.
The package has also (with some user modifications) been used for other
calculations within the GCM.

The rationale for implementing the atmospheric physics on a high
resolution vertical grid involves the fact that the MITgcm \(p^*\)
(or any pressure-type) coordinate cannot maintain the vertical
resolution near the surface as the bottom topography rises above sea
level. The vertical length scales near the ground are small and can vary
on small time scales, and the vertical grid must be adequate to resolve
them. Many studies with both regional and global atmospheric models have
demonstrated the improvements in the simulations when the vertical
resolution near the surface is increased (). Some of the benefit of
increased resolution near the surface is realized by employing the
higher resolution for the computation of the forcing due to turbulent
and convective processes in the atmosphere.

The parameterizations of atmospheric subgrid scale processes are all
essentially one-dimensional in nature, and the computation of the terms
in the equations of motion due to these processes can be performed for
the air column over one grid point at a time. The vertical grid on which
these computations take place can therefore be entirely independant of
the grid on which the equations of motion are integrated, and the
’tendency’ terms can be interpolated to the vertical grid on which the
equations of motion are integrated. A modified \(p^*\) coordinate,
which adjusts to the local terrain and adds additional levels between
the lower levels of the existing \(p^*\) grid (and perhaps between
the levels near the tropopause as well), is implemented. The vertical
discretization is different for each grid point, although it consist of
the same number of levels. Additional ’sponge’ levels aloft are added
when needed. The levels of the physics grid are constrained to fit
exactly into the existing \(p^*\) grid, simplifying the mapping
between the two vertical coordinates. This is illustrated as follows:



[image: vertical discretisation]Figure 8.5 Vertical discretization for MITgcm (dark grey lines) and for the atmospheric physics (light grey lines). In this implementation, all MITgcm level interfaces must coincide with atmospheric physics level interfaces.






The algorithm presented here retains the state variables on the high
resolution ’physics’ grid as well as on the coarser resolution
’dynamics‘ grid, and ensures that the two estimates of the state ’agree’
on the coarse resolution grid. It would have been possible to implement
a technique in which the tendencies due to atmospheric physics are
computed on the high resolution grid and the state variables are
retained at low resolution only. This, however, for the case of the
turbulence parameterization, would mean that the turbulent kinetic
energy source terms, and all the turbulence terms that are written in
terms of gradients of the mean flow, cannot really be computed making
use of the fine structure in the vertical.




8.2.5.2. Equations on Both Grids

In addition to computing the physical forcing terms of the momentum,
thermodynamic and humidity equations on the modified (higher resolution)
grid, the higher resolution structure of the atmosphere (the boundary
layer) is retained between physics calculations. This neccessitates a
second set of evolution equations for the atmospheric state variables on
the modified grid. If the equation for the evolution of \(U\) on
\(p^*\) can be expressed as:


\[\left . \frac{\partial U}{\partial t} \right |_{p^*}^{total} =
\left . \frac{\partial U}{\partial t} \right |_{p^*}^{dynamics} +
\left . \frac{\partial U}{\partial t} \right |_{p^*}^{physics}\]

where the physics forcing terms on \(p^*\) have been mapped from the
modified grid, then an additional equation to govern the evolution of
\(U\) (for example) on the modified grid is written:


\[\left . \frac{\partial U}{\partial t} \right |_{p^{*m}}^{total} =
\left . \frac{\partial U}{\partial t} \right |_{p^{*m}}^{dynamics} +
\left . \frac{\partial U}{\partial t} \right |_{p^{*m}}^{physics} +
\gamma ({\left . U \right |_{p^*}} - {\left . U \right |_{p^{*m}}})\]

where \(p^{*m}\) refers to the modified higher resolution grid, and
the dynamics forcing terms have been mapped from \(p^*\) space. The
last term on the RHS is a relaxation term, meant to constrain the state
variables on the modified vertical grid to ‘track’ the state variables
on the \(p^*\) grid on some time scale, governed by \(\gamma\).
In the present implementation, \(\gamma = 1\), requiring an
immediate agreement between the two ’states’.




8.2.5.3. Time stepping Sequence

If we write \(T_{phys}\) as the temperature (or any other state
variable) on the high resolution physics grid, and \(T_{dyn}\) as
the temperature on the coarse vertical resolution dynamics grid, then:


	Compute the tendency due to physics processes.


	Advance the physics state: \({{T^{n+1}}^{**}}_{phys}(l) = {T^n}_{phys}(l) + \delta T_{phys}\).


	Interpolate the physics tendency to the dynamics grid, and advance the dynamics state by physics and dynamics tendencies: \({T^{n+1}}_{dyn}(L) = {T^n}_{dyn}(L) + \delta T_{dyn}(L) + [\delta T _{phys}(l)](L)\).


	Interpolate the dynamics tendency to the physics grid, and update the physics grid due to dynamics tendencies: \({{T^{n+1}}^*}_{phys}(l)\) = \({{T^{n+1}}^{**}}_{phys}(l) + {\delta T_{dyn}(L)}(l)\).


	Apply correction term to physics state to account for divergence from dynamics state: \({T^{n+1}}_{phys}(l)\) = \({{T^{n+1}}^*}_{phys}(l) + \gamma \{  T_{dyn}(L) - [T_{phys}(l)](L) \}(l)\). Where \(\gamma=1\) here.







8.2.5.4. Interpolation

In order to minimize the correction terms for the state variables on
the alternative, higher resolution grid, the vertical interpolation
scheme must be constructed so that a dynamics-to-physics interpolation
can be exactly reversed with a physics-to-dynamics mapping. The simple
scheme employed to achieve this is:

Coarse to fine:For all physics layers l in dynamics layer L, \(T_{phys}(l) = \{T_{dyn}(L)\} = T_{dyn}(L)\).


Fine to coarse:For all physics layers l in dynamics layer L, \(T_{dyn}(L) = [T_{phys}(l)] = \int{T_{phys} dp }\).



Where \(\{\}\) is defined as the dynamics-to-physics operator and
\([ ]\) is the physics-to-dynamics operator, \(T\) stands for
any state variable, and the subscripts \(phys\) and \(dyn\)
stand for variables on the physics and dynamics grids, respectively.




8.2.5.5. Key subroutines, parameters and files

One of the central elements of the gridalt package is the routine which
is called from subroutine gridalt_initialise to define the grid to be
used for the high end physics calculations. Routine make_phys_grid
passes back the parameters which define the grid, ultimately stored in
the common block gridalt_mapping.

       subroutine make_phys_grid(drF,hfacC,im1,im2,jm1,jm2,Nr,
     . Nsx,Nsy,i1,i2,j1,j2,bi,bj,Nrphys,Lbot,dpphys,numlevphys,nlperdyn)
c***********************************************************************
c Purpose: Define the grid that the will be used to run the high-end
c          atmospheric physics.
c
c Algorithm: Fit additional levels of some (~) known thickness in
c          between existing levels of the grid used for the dynamics
c
c Need:    Information about the dynamics grid vertical spacing
c
c Input:   drF         - delta r (p*) edge-to-edge
c          hfacC       - fraction of grid box above topography
c          im1, im2    - beginning and ending i - dimensions
c          jm1, jm2    - beginning and ending j - dimensions
c          Nr          - number of levels in dynamics grid
c          Nsx,Nsy     - number of processes in x and y direction
c          i1, i2      - beginning and ending i - index to fill
c          j1, j2      - beginning and ending j - index to fill
c          bi, bj      - x-dir and y-dir index of process
c          Nrphys      - number of levels in physics grid
c
c Output:  dpphys      - delta r (p*) edge-to-edge of physics grid
c          numlevphys  - number of levels used in the physics
c          nlperdyn    - physics level number atop each dynamics layer
c
c NOTES: 1) Pressure levs are built up from bottom, using p0, ps and dp:
c              p(i,j,k)=p(i,j,k-1) + dp(k)*ps(i,j)/p0(i,j)
c        2) Output dp's are aligned to fit EXACTLY between existing
c           levels of the dynamics vertical grid
c        3) IMPORTANT! This routine assumes the levels are numbered
c           from the bottom up, ie, level 1 is the surface.
c           IT WILL NOT WORK OTHERWISE!!!
c        4) This routine does NOT work for surface pressures less
c           (ie, above in the atmosphere) than about 350 mb
c***********************************************************************





In the case of the grid used to compute the atmospheric physical forcing
(fizhi package), the locations of the grid points move in time with the
MITgcm \(p^*\) coordinate, and subroutine gridalt_update is called
during the run to update the locations of the grid points:

       subroutine gridalt_update(myThid)
c***********************************************************************
c Purpose: Update the pressure thicknesses of the layers of the
c          alternative vertical grid (used now for atmospheric physics).
c
c Calculate: dpphys    - new delta r (p*) edge-to-edge of physics grid
c                        using dpphys0 (initial value) and rstarfacC
c***********************************************************************





The gridalt package also supplies utility routines which perform the
mappings from one grid to the other. These routines are called from the
code which computes the fields on the alternative (fizhi) grid.

      subroutine dyn2phys(qdyn,pedyn,im1,im2,jm1,jm2,lmdyn,Nsx,Nsy,
     . idim1,idim2,jdim1,jdim2,bi,bj,windphy,pephy,Lbot,lmphy,nlperdyn,
     . flg,qphy)
C***********************************************************************
C Purpose:
C   To interpolate an arbitrary quantity from the 'dynamics' eta (pstar)
C               grid to the higher resolution physics grid
C Algorithm:
C   Routine works one layer (edge to edge pressure) at a time.
C   Dynamics -> Physics retains the dynamics layer mean value,
C   weights the field either with the profile of the physics grid
C   wind speed (for U and V fields), or uniformly (T and Q)
C
C Input:
C   qdyn..... [im,jm,lmdyn] Arbitrary Quantity on Input Grid
C   pedyn.... [im,jm,lmdyn+1] Pressures at bottom edges of input levels
C   im1,2 ... Limits for Longitude Dimension of Input
C   jm1,2 ... Limits for Latitude  Dimension of Input
C   lmdyn.... Vertical  Dimension of Input
C   Nsx...... Number of processes in x-direction
C   Nsy...... Number of processes in y-direction
C   idim1,2.. Beginning and ending i-values to calculate
C   jdim1,2.. Beginning and ending j-values to calculate
C   bi....... Index of process number in x-direction
C   bj....... Index of process number in x-direction
C   windphy.. [im,jm,lmphy] Magnitude of the wind on the output levels
C   pephy.... [im,jm,lmphy+1] Pressures at bottom edges of output levels
C   lmphy.... Vertical  Dimension of Output
C   nlperdyn. [im,jm,lmdyn] Highest Physics level in each dynamics level
C   flg...... Flag to indicate field type (0 for T or Q, 1 for U or V)
C
C Output:
C   qphy..... [im,jm,lmphy] Quantity at output grid (physics grid)
C
C Notes:
C   1) This algorithm assumes that the output (physics) grid levels
C      fit exactly into the input (dynamics) grid levels
C***********************************************************************





And similarly, gridalt contains subroutine phys2dyn.




8.2.5.6. Gridalt Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
DPPHYS  | 20 |SM      ML      |Pascal          |Pressure Thickness of Layers on Fizhi Grid








8.2.5.7. Dos and donts




8.2.5.8. Gridalt Reference




8.2.5.9. Experiments and tutorials that use gridalt


	Fizhi experiment, in fizhi-cs-32x32x10 verification directory










          

      

      

    

  

    
      
          
            
  
8.3.1. OBCS: Open boundary conditions for regional modeling

Authors:
Alistair Adcroft, Patrick Heimbach, Samar Katiwala, Martin Losch


8.3.1.1. Introduction

The OBCS-package is fundamental to regional ocean modelling with the
MITgcm, but there are so many details to be considered in
regional ocean modelling that this package cannot accomodate all
imaginable and possible options. Therefore, for a regional simulation
with very particular details, it is recommended to familiarize oneself
not only with the compile- and runtime-options of this package, but
also with the code itself. In many cases it will be necessary to adapt
the obcs-code (in particular code{S/R OBCS_CALC}) to the application
in question; in these cases the obcs-package (together with the
rbcs-package, section ref{sec:pkg:rbcs}) is a very
useful infrastructure for implementing special regional models.




8.3.1.2. OBCS configuration and compiling

As with all MITgcm packages, OBCS can be turned on or off
at compile time



	using the packages.conf file by adding obcs to it,


	or using genmake2 adding -enable=obcs or -disable=obcs switches


	Required packages and CPP options:


	Two alternatives are available for prescribing open boundary values, which differ in the way how OB’s are treated in time:


	A simple time-management (e.g. constant in time, or cyclic with fixed fequency) is provided through S/R obcs_external_fields_load.


	More sophisticated ‘real-time’ (i.e. calendar time) management is available through obcs_prescribe_read.






	The latter case requires packages cal and exf to be enabled.











(see also Section ref{sec:buildingCode}).

Parts of the OBCS code can be enabled or disabled at compile time
via CPP preprocessor flags. These options are set in
OBCS_OPTIONS.h. Table 8.1 summarizes these options.


Table 8.1 OBCS CPP options





	CPP option

	Description



	ALLOW_OBCS_NORTH

	enable Northern OB



	ALLOW_OBCS_SOUTH

	enable Southern OB



	ALLOW_OBCS_EAST

	enable Eastern OB



	ALLOW_OBCS_WEST

	enable Western OB



	
	


	ALLOW_OBCS_PRESCRIBE

	enable code for prescribing OB’s



	ALLOW_OBCS_SPONGE

	enable sponge layer code



	ALLOW_OBCS_BALANCE

	enable code for balancing transports through OB’s



	ALLOW_ORLANSKI

	enable Orlanski radiation conditions at OB’s



	ALLOW_OBCS_STEVENS

	enable Stevens (1990) boundary conditions at OB’s



	
	(currently only implemented for eastern and



	
	western boundaries and NOT for ptracers)









8.3.1.3. Run-time parameters

Run-time parameters are set in files
data.pkg, data.obcs, and data.exf
if 'real-time' prescription is requested
(i.e. package :code:`exf enabled).
These parameter files are read in S/R
packages_readparms.F, obcs_readparms.F, and
exf_readparms.F, respectively.
Run-time parameters may be broken into 3 categories:



	switching on/off the package at runtime,


	OBCS package flags and parameters,


	additional timing flags in data.exf, if selected.








Enabling the package

The OBCS package is switched on at runtime by setting
useOBCS = .TRUE. in data.pkg.




Package flags and parameters

Table 8.2 summarizes the
runtime flags that are set in data.obcs, and
their default values.


Table 8.2 pkg OBCS run-time parameters






	Flag/parameter

	default

	Description



	basic flags & parameters (OBCS_PARM01)

	
	


	OB_Jnorth

	0

	Nx-vector of J-indices (w.r.t. Ny) of Northern OB at each I-position (w.r.t. Nx)



	OB_Jsouth

	0

	Nx-vector of J-indices (w.r.t. Ny) of Southern OB at each I-position (w.r.t. Nx)



	OB_Ieast

	0

	Ny-vector of I-indices (w.r.t. Nx) of Eastern OB at each J-position (w.r.t. Ny)



	OB_Iwest

	0

	Ny-vector of I-indices (w.r.t. Nx) of Western OB at each J-position (w.r.t. Ny)



	useOBCSprescribe

	.FALSE.

	


	useOBCSsponge

	.FALSE.

	


	useOBCSbalance

	code{.FALSE.}

	


	OBCS_balanceFacN/S/E/W

	1

	factor(s) determining the details of the balaning code



	useOrlanskiNorth/South/EastWest

	.FALSE.

	turn on Orlanski boundary conditions for individual boundary



	useStevensNorth/South/EastWest

	.FALSE.

	turn on Stevens boundary conditions for individual boundary



	OBXyFile

	
	file name of OB field



	
	
	X: N(orth) S(outh) E(ast) W(est)



	
	
	y: t(emperature) s(salinity) u(-velocity) v(-velocity)



	
	
	w(-velocity) eta (sea surface height)



	
	
	a (sea ice area) h (sea ice thickness) sn (snow thickness) sl (sea ice salinity)



	
	
	


	Orlanski parameters (OBCS_PARM02)

	
	


	cvelTimeScale

	2000 sec

	averaging period for phase speed



	CMAX

	0.45 m/s

	maximum allowable phase speed-CFL for AB-II



	CFIX

	0.8 m/s

	fixed boundary phase speed



	useFixedCEast

	.FALSE.

	


	useFixedCWest

	.FALSE.

	


	
	
	


	Sponge-layer parameters (OBCS_PARM03)

	
	


	spongeThickness

	0

	sponge layer thickness (in grid points)



	Urelaxobcsinner

	0 sec

	relaxation time scale at the innermost sponge layer point of a meridional OB



	Vrelaxobcsinner

	0 sec

	relaxation time scale at the innermost sponge layer point of a zonal OB



	Urelaxobcsbound

	0 sec

	relaxation time scale at the outermost sponge layer point of a meridional OB



	Vrelaxobcsbound

	0 sec

	relaxation time scale at the outermost sponge layer point of a zonal OB



	
	
	


	Stevens parameters (OBCS_PARM04)

	
	


	T/SrelaxStevens

	0 sec

	relaxation time scale for temperature/salinity



	useStevensPhaseVel

	code{.TRUE.}

	


	useStevensAdvection

	code{.TRUE.}

	










8.3.1.4. Defining open boundary positions

There are four open boundaries (OBs), a Northern, Southern, Eastern, and
Western. All OB locations are specified by their absolute meridional
(Northern/Southern) or zonal (Eastern/Western) indices. Thus, for each
zonal position \(i=1,\ldots,N_x\) a meridional index \(j\)
specifies the Northern/Southern OB position, and for each meridional
position \(j=1,\ldots,N_y\), a zonal index \(i\) specifies the
Eastern/Western OB position. For Northern/Southern OB this defines an
\(N_x\)-dimensional “row” array \(\tt OB\_Jnorth(Nx)\) /
\(\tt OB\_Jsouth(Nx)\), and an \(N_y\)-dimenisonal “column”
array \(\tt OB\_Ieast(Ny)\) / \(\tt OB\_Iwest(Ny)\). Positions
determined in this way allows Northern/Southern OBs to be at variable
\(j\) (or \(y\)) positions, and Eastern/Western OBs at variable
\(i\) (or \(x\)) positions. Here, indices refer to tracer points
on the C-grid. A zero (0) element in \(\tt OB\_I\ldots\),
\(\tt OB\_J\ldots\) means there is no corresponding OB in that
column/row. For a Northern/Southern OB, the OB V point is to the
South/North. For an Eastern/Western OB, the OB U point is to the
West/East. For example,

OB\_Jnorth(3)=34  means that:
T(3,34)  is a an OB point
U(3,34)  is a an OB point
V(3,34)  is a an OB point
OB\_Jsouth(3)=1  means that:
T(3,1)  is a an OB point
U(3,1)  is a an OB point
V(3,2)  is a an OB point
OB\_Ieast(10)=69   means that:
T(69,10)  is a an OB point
U(69,10)  is a an OB point
V(69,10)  is a an OB point
OB\_Iwest(10)=1   means that:
T(1,10)  is a an OB point
U(2,10)  is a an OB point
V(1,10)  is a an OB point

For convenience, negative values for Jnorth/Ieast refer to
points relative to the Northern/Eastern edges of the model
eg. \(\tt OB\_Jnorth(3)=-1\)
means that the point \(\tt (3,Ny)\) is a northern OB.

Simple examples: For a model grid with :math:` N_{x}times
N_{y} = 120times144` horizontal grid points with four open boundaries
along the four egdes of the domain, the simplest way of specifying the
boundary points in is:

  OB_Ieast = 144*-1,
# or OB_Ieast = 144*120,
  OB_Iwest = 144*1,
  OB_Jnorth = 120*-1,
# or OB_Jnorth = 120*144,
  OB_Jsouth = 120*1,





If only the first \(50\) grid points of the southern boundary are
boundary points:

OB_Jsouth(1:50) = 50*1,








8.3.1.5. Equations and key routines


OBCS_READPARMS:

Set OB positions through arrays OB_Jnorth(Nx), OB_Jsouth(Nx),
OB_Ieast(Ny), OB_Iwest(Ny), and runtime flags (see Table
[tab:pkg:obcs:runtime:sub:flags]).




OBCS_CALC:

Top-level routine for filling values to be applied at OB for
\(T,S,U,V,\eta\) into corresponding “slice” arrays \((x,z)\),
\((y,z)\) for each OB: \(\tt OB[N/S/E/W][t/s/u/v]\); e.g. for
salinity array at Southern OB, array name is \(\tt OBSt\). Values
filled are either


	constant vertical \(T,S\) profiles as specified in file data
(tRef(Nr), sRef(Nr)) with zero velocities \(U,V\),


	\(T,S,U,V\) values determined via Orlanski radiation conditions
(see below),


	prescribed time-constant or time-varying fields (see below).


	use prescribed boundary fields to compute Stevens boundary
conditions.







ORLANSKI:

Orlanski radiation conditions [Orl76], examples can be found in
verification/dome and
verification/tutorial\_plume\_on\_slope

(ref{sec:eg-gravityplume}).




OBCS_PRESCRIBE_READ:

When useOBCSprescribe = .TRUE. the model tries to read
temperature, salinity, u- and v-velocities from files specified in the
runtime parameters OB[N/S/E/W][t/s/u/v]File. These files are
the usual IEEE, big-endian files with dimensions of a section along an
open boundary:


	For North/South boundary files the dimensions are
\((N_x\times N_r\times\mbox{time levels})\), for East/West
boundary files the dimensions are
\((N_y\times N_r\times\mbox{time levels})\).


	If a non-linear free surface is used
(ref{sec:nonlinear-freesurface}), additional files
OB[N/S/E/W]etaFile for the sea surface height $eta$ with
dimension \((N_{x/y}\times\mbox{time levels})\) may be specified.


	If non-hydrostatic dynamics are used
(ref{sec:non-hydrostatic}), additional files
OB[N/S/E/W]wFile for the vertical velocity $w$ with
dimensions \((N_{x/y}\times N_r\times\mbox{time levels})\) can be
specified.


	If useSEAICE=.TRUE. then additional files
OB[N/S/E/W][a,h,sl,sn,uice,vice] for sea ice area, thickness
(HEFF), seaice salinity, snow and ice velocities
\((N_{x/y}\times\mbox{time levels})\) can be specified.




As in S/R external\_fields\_load or the exf-package, the
code reads two time levels for each variable, e.g.OBNu0 and
OBNu1, and interpolates linearly between these time levels to
obtain the value OBNu at the current model time (step). When the
exf-package is used, the time levels are controlled for each
boundary separately in the same way as the exf-fields in
data.exf, namelist EXF\_NML\_OBCS. The runtime flags
follow the above naming conventions, e.g. for the western boundary the
corresponding flags are OBCWstartdate1/2 and
OBCWperiod. Sea-ice boundary values are controlled separately
with siobWstartdate1/2 and siobWperiod.  When the
exf-package is not used, the time levels are controlled by the
runtime flags externForcingPeriod and externForcingCycle
in data, see verification/exp4 for an example.




OBCS_CALC_STEVENS:

(THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT
COMPLETE. PASSIVE TRACERS, SEA ICE AND NON-LINEAR FREE SURFACE ARE NOT
SUPPORTED PROPERLY.)

The boundary conditions following [Ste90] require the
vertically averaged normal velocity (originally specified as a stream
function along the open boundary) \(\bar{u}_{ob}\) and the tracer fields
\(\chi_{ob}\) (note: passive tracers are currently not implemented and
the code stops when package code{ptracers} is used together with this
option). Currently, the code vertically averages the normal velocity
as specified in code{OB[E,W]u} or code{OB[N,S]v}. From these
prescribed values the code computes the boundary values for the next
timestep \(n+1\) as follows (as an example, we use the notation for an
eastern or western boundary):


	\(u^{n+1}(y,z) = \bar{u}_{ob}(y) + (u')^{n}(y,z)\), where
\((u')^{n}\) is the deviation from the vertically averaged
velocity at timestep \(n\) on the boundary. \((u')^{n}\) is
computed in the previous time step \(n\) from the intermediate
velocity \(u^*\) prior to the correction step (see section
[sec:time:sub:stepping], e.g.,
eq.([eq:ustar-backward-free-surface])). (This velocity is not
available at the beginning of the next time step \(n+1\), when
S/R OBCS_CALC/OBCS_CALC_STEVENS are called, therefore it needs to
be saved in S/R DYNAMICS by calling S/R OBCS_SAVE_UV_N and also
stored in a separate restart files
pickup_stevens[N/S/E/W].${iteration}.data)


	If \(u^{n+1}\) is directed into the model domain, the boudary
value for tracer \(\chi\) is restored to the prescribed values:


\[\chi^{n+1} =   \chi^{n} + \frac{\Delta{t}}{\tau_\chi} (\chi_{ob} -
  \chi^{n}),\]

where \(\tau_\chi\) is the relaxation time scale
T/SrelaxStevens. The new \(\chi^{n+1}\) is then subject to
the advection by \(u^{n+1}\).



	If \(u^{n+1}\) is directed out of the model domain, the tracer
\(\chi^{n+1}\) on the boundary at timestep \(n+1\) is
estimated from advection out of the domain with \(u^{n+1}+c\),
where \(c\) is a phase velocity estimated as
\(\frac{1}{2}\frac{\partial\chi}{\partial{t}}/\frac{\partial\chi}{\partial{x}}\).
The numerical scheme is (as an example for an eastern boundary):


\[\chi_{i_{b},j,k}^{n+1} =   \chi_{i_{b},j,k}^{n} + \Delta{t}
  (u^{n+1}+c)_{i_{b},j,k}\frac{\chi_{i_{b},j,k}^{n}
    - \chi_{i_{b}-1,j,k}^{n}}{\Delta{x}_{i_{b},j}^{C}}\mbox{, if }u_{i_{b},j,k}^{n+1}>0,\]

where \(i_{b}\) is the boundary index.
For test purposes, the phase velocity contribution or the entire
advection can be turned off by setting the corresponding parameters
useStevensPhaseVel and useStevensAdvection to .FALSE..





See [Ste90] for details. With this boundary condition
specifying the exact net transport across the open boundary is simple,
so that balancing the flow with (S/R~OBCS_BALANCE_FLOW, see next
paragraph) is usually not necessary.




OBCS_BALANCE_FLOW:

When turned on (ALLOW\_OBCS\_BALANCE
defined in OBCS\_OPTIONS.h and useOBCSbalance=.true. in
data.obcs/OBCS\_PARM01), this routine balances the net flow
across the open boundaries. By default the net flow across the
boundaries is computed and all normal velocities on boundaries are
adjusted to obtain zero net inflow.

This behavior can be controlled with the runtime flags
OBCS\_balanceFacN/S/E/W. The values of these flags determine
how the net inflow is redistributed as small correction velocities
between the individual sections. A value -1 balances an
individual boundary, values \(>0\) determine the relative size of the
correction. For example, the values

OBCS\_balanceFacE = 1.,
OBCS\_balanceFacW = -1.,
OBCS\_balanceFacN = 2.,
OBCS\_balanceFacS = 0.,

make the model


	correct Western OBWu by substracting a uniform velocity to ensure zero net
transport through the Western open boundary;


	correct Eastern and Northern normal flow, with the Northern velocity
correction two times larger than the Eastern correction, but not
the Southern normal flow, to ensure that the total inflow through
East, Northern, and Southern open boundary is balanced.




The old method of balancing the net flow for all sections individually
can be recovered by setting all flags to -1. Then the normal velocities
across each of the four boundaries are modified separately, so that the
net volume transport across each boundary is zero. For example, for
the western boundary at \(i=i_{b}\), the modified velocity is:


\[u(y,z) - \int_{\mbox{western boundary}}u\,dy\,dz \approx OBNu(j,k) - \sum_{j,k}
OBNu(j,k) h_{w}(i_{b},j,k)\Delta{y_G(i_{b},j)}\Delta{z(k)}.\]

This also ensures a net total inflow of zero through all boundaries, but
this combination of flags is not useful if you want to simulate, say,
a sector of the Southern Ocean with a strong ACC entering through the
western and leaving through the eastern boundary, because the value of
‘’-1’’ for these flags will make sure that the strong inflow is removed.
Clearly, gobal balancing with OBCS_balanceFacE/W/N/S \(\ge 0\) is the preferred method.




OBCS_APPLY_*:




OBCS_SPONGE:

The sponge layer code (turned on with ALLOW\_OBCS\_SPONGE and
useOBCSsponge) adds a relaxation term to the right-hand-side of
the momentum and tracer equations. The variables are relaxed towards
the boundary values with a relaxation time scale that increases
linearly with distance from the boundary


\[G_{\chi}^{\mbox{(sponge)}} =
- \frac{\chi - [( L - \delta{L} ) \chi_{BC} + \delta{L}\chi]/L}
{[(L-\delta{L})\tau_{b}+\delta{L}\tau_{i}]/L}
= - \frac{\chi - [( 1 - l ) \chi_{BC} + l\chi]}
{[(1-l)\tau_{b}+l\tau_{i}]}\]

where \(\chi\) is the model variable (U/V/T/S) in the interior,
\(\chi_{BC}\) the boundary value, \(L\) the thickness of the
sponge layer (runtime parameter spongeThickness in number of grid points),
\(\delta{L}\in[0,L]\) (\(\frac{\delta{L}}{L}=l\in[0,1]\)) the
distance from the boundary (also in grid points), and \(\tau_{b}\)
(runtime parameters Urelaxobcsbound and Vrelaxobcsbound) and \(\tau_{i}\) (runtime parameters Urelaxobcsinner and Vrelaxobcsinner)
the relaxation time scales on the boundary and at the interior
termination of the sponge layer. The parameters Urelaxobcsbound/inner`set the relaxation time
scales for the Eastern and Western boundaries, :code:`Vrelaxobcsbound/inner for the Northern and
Southern boundaries.




OB’s with nonlinear free surface






8.3.1.6. Flow chart

C     !CALLING SEQUENCE:
c ...








8.3.1.7. OBCS diagnostics

Diagnostics output is available via the diagnostics package (see Section
[sec:pkg:diagnostics]). Available output fields are summarized in Table
[tab:pkg:obcs:diagnostics].

[tab:pkg:obcs:diagnostics]

------------------------------------------------------
 <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------








8.3.1.8. Reference experiments

In the directory verifcation, the following experiments use
obcs:


	exp4: box with 4 open boundaries, simulating flow over a Gaussian bump
based on , also tests Stevens-boundary conditions;


	dome: based on the project “Dynamics of Overflow Mixing and Entrainment”
(http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html), uses
Orlanski-BCs;


	internal_wave: uses a heavily modified S/R~OBCS\_CALC


	:code:seaice_obcs`: simple example who to use the sea-ice related code, based on lab_sea;


	tutorial_plume_on_slope: uses Orlanski-BCs, see also section [sec:eg-gravityplume].







8.3.1.9. References




8.3.1.10. Experiments and tutorials that use obcs


	tutorial\_plume\_on\_slope (section~ref{sec:eg-gravityplume})










          

      

      

    

  

    
      
          
            
  
8.3.2. RBCS Package


8.3.2.1. Introduction

A package which provides the flexibility to relax fields (temperature,
salinity, ptracers) in any 3-D location: so could be used as a sponge
layer, or as a “source” anywhere in the domain.

For a tracer (\(T\)) at every grid point the tendency is modified so
that:


\[\frac{dT}{dt}=\frac{dT}{dt} - \frac{M_{rbc}}{\tau_T} (T-T_{rbc})\]

where \(M_{rbc}\) is a 3-D mask (no time dependence) with values
between 0 and 1. Where \(M_{rbc}\) is 1, relaxing timescale is
\(1/\tau_T\). Where it is 0 there is no relaxing. The value relaxed
to is a 3-D (potentially varying in time) field given by
\(T_{rbc}\).

A seperate mask can be used for T,S and ptracers and each of these can
be relaxed or not and can have its own timescale \(\tau_T\). These
are set in data.rbcs (see below).




8.3.2.2. Key subroutines and parameters

The only compile-time parameter you are likely to have to change is in
RBCS.h, the number of masks, PARAMETER(maskLEN = 3 ), see below.

The runtime parameters are set in data.rbcs:

Set in RBCS_PARM01:
- rbcsForcingPeriod: time interval between forcing fields (in seconds), zero means constant-in-time forcing.
- rbcsForcingCycle: repeat cycle of forcing fields (in seconds), zero means non-cyclic forcing.
- rbcsForcingOffset: time offset of forcing fields (in seconds, default 0); this is relative to time averages starting at \(t=0\), i.e., the first forcing record/file is placed at \({\rm rbcsForcingOffset+rbcsForcingPeriod}/2\); see below for examples.
- rbcsSingleTimeFiles: true or false (default false), if true, forcing fields are given 1 file per rbcsForcingPeriod.
- deltaTrbcs: time step used to compute the iteration numbers for rbcsSingleTimeFiles=T.
- rbcsIter0: shift in iteration numbers used to label files if rbcsSingleTimeFiles=T (default 0, see below for examples).
- useRBCtemp: true or false (default false)
- useRBCsalt: true or false (default false)
- useRBCptracers: true or false (default false), must be using ptracers to set true
- tauRelaxT: timescale in seconds of relaxing in temperature (\(\tau_T\) in equation above). Where mask is 1, relax rate will be 1/tauRelaxT. Default is 1.
- tauRelaxS: same for salinity.
- relaxMaskFile(irbc): filename of 3-D file with mask (\(M_{rbc}\) in equation above. Need a file for each irbc. 1=temperature, 2=salinity, 3=ptracer01, 4=ptracer02 etc. If the mask numbers end (see maskLEN) are less than the number tracers, then relaxMaskFile(maskLEN) is used for all remaining ptracers.
- relaxTFile: name of file where temperatures that need to be relaxed to (\(T_{rbc}\) in equation above) are stored. The file must contain 3-D records to match the model domain. If rbcsSingleTimeFiles=F, it must have one record for each forcing period. If T, there must be a separate file for each period and a 10-digit iteration number is appended to the file name (see Table [tab:pkg:rbcs:timing] and examples below).
- relaxSFile: same for salinity.

Set in RBCS_PARM02 for each of the ptracers (iTrc):
- useRBCptrnum(iTrc): true or false (default is false).
- tauRelaxPTR(iTrc): relax timescale.
- relaxPtracerFile(iTrc): file with relax fields.




8.3.2.3. Timing of relaxation forcing fields

For constant-in-time relaxation, set rbcsForcingPeriod=0. For
time-varying relaxation, Table [tab:pkg:rbcs:timing] illustrates the
relation between model time and forcing fields (either records in one
big file or, for rbcsSingleTimeFiles=T, individual files labeled with an
iteration number). With rbcsSingleTimeFiles=T, this is the same as in
the offline package, except that the forcing offset is in seconds.


Table 8.3 Timing of RBCS relaxation fields







	
	rbcsSingleTimeFiles = T

	F



	
	\(c=0\)

	\(c\ne0\)

	\(c\ne0\)





	model time

	file number

	file number

	record



	\(t_0 - p/2\)

	\(i_0\)

	\(i_0 + c/{\Delta t_{\text{rbcs}}}\)

	\(c/p\)



	\(t_0 + p/2\)

	\(i_0 + p/{\Delta t_{\text{rbcs}}}\)

	\(i_0 + p/{\Delta t_{\text{rbcs}}}\)

	\(1\)



	\(t_0+p+p/2\)

	\(i_0 + 2p/{\Delta t_{\text{rbcs}}}\)

	\(i_0 + 2p/{\Delta t_{\text{rbcs}}}\)

	\(2\)



	…

	…

	…

	…



	\(t_0+c-p/2\)

	…

	\(i_0 + c/{\Delta t_{\text{rbcs}}}\)

	\(c/p\)



	…

	…

	…

	…






where

\(p\) = rbcsForcingPeriod

\(c\) = rbcsForcingCycle

\(t_0\) = rbcsForcingOffset

\(i_0\) = rbcsIter0

\({\Delta t_{\text{rbcs}}}\) = deltaTrbcs




8.3.2.4. Example 1: forcing with time averages starting at \(t=0\)


Cyclic data in a single file

Set rbcsSingleTimeFiles=F and rbcsForcingOffset=0, and the model will
start by interpolating the last and first records of rbcs data, placed
at \(-p/2\) and \(p/2\), resp., as appropriate for fields
averaged over the time intervals \([-p, 0]\) and \([0, p]\).




Non-cyclic data, multiple files

Set rbcsForcingCycle=0 and rbcsSingleTimeFiles=T. With
rbcsForcingOffset=0, rbcsIter0=0 and deltaTrbcs=rbcsForcingPeriod, the
model would then start by interpolating data from files
relax*File.0000000000.data and relax*File.0000000001.data, … , again
placed at \(-p/2\) and \(p/2\).






8.3.2.5. Example 2: forcing with snapshots starting at \(t=0\)


Cyclic data in a single file

Set rbcsSingleTimeFiles=F and rbcsForcingOffset=\(-p/2\), and the
model will start forcing with the first record at \(t=0\).




Non-cyclic data, multiple files

Set rbcsForcingCycle=0 and rbcsSingleTimeFiles=T. In this case, it is
more natural to set rbcsForcingOffset=\(+p/2\). With rbcsIter0=0
and deltaTrbcs=rbcsForcingPeriod, the model would then start with data
from files relax*File.0000000000.data at \(t=0\). It would then
proceed to interpolate between this file and files
relax*File.0000000001.data at \(t={}\)rbcsForcingPeriod.






8.3.2.6. Do’s and Don’ts




8.3.2.7. Reference Material




8.3.2.8. Experiments and tutorials that use rbcs

In the directory , the following experiments use rbcs:


	exp4 : box with 4 open boundaries, simulating flow over a Gaussian bump
based on [AHM97]










          

      

      

    

  

    
      
          
            
  
8.3.3. PTRACERS Package


8.3.3.1. Introduction

This is a ‘’passive’’ tracer package. Passive here means that the tracers
don’t affect the density of the water (as opposed to temperature and
salinity) so no not actively affect the physics of the ocean. Tracers
are initialized, advected, diffused and various outputs are taken care
of in this package. For methods to add additional sources and sinks of
tracers use the pkg/gchem (section [sec:pkg:gchem]).

Can use up tp 3843 tracers. But can not use pkg/diagnostics with more
than about 90 tracers. Use utils/matlab/ioLb2num.m and num2ioLb.m to
find correspondence between tracer number and tracer designation in the
code for more than 99 tracers (since tracers only have two digit
designations).




8.3.3.2. Equations




8.3.3.3. Key subroutines and parameters

The only code you should have to modify is: PTRACERS_SIZE.h where
you need to set in the number of tracers to be used in the experiment:
PTRACERS_num.

Run time parameters set in data.ptracers:


	PTRACERS_Iter0 which is the integer timestep when the tracer experiment is initialized. If nIter0 \(=\) PTRACERS_Iter0 then the tracers are initialized to zero or from initial files. If nIter0 \(>\) PTRACERS_Iter0 then tracers (and previous timestep tendency terms) are read in from a the ptracers pickup file. Note that tracers of zeros will be carried around if nIter0 \(<\) PTRACERS_Iter0.


	PTRACERS_numInUse: number of tracers to be used in the run (needs to be \(<=\) PTRACERS_num set in PTRACERS_SIZE.h)


	PTRACERS_dumpFreq: defaults to dumpFreq (set in data)


	PTRACERS_taveFreq: defaults to taveFreq (set in data)


	PTRACERS_monitorFreq: defaults to monitorFreq (set in data)


	PTRACERS_timeave_mnc: needs useMNC, timeave_mnc, default to false


	PTRACERS_snapshot_mnc: needs useMNC, snapshot_mnc, default to false


	PTRACERS_monitor_mnc: needs useMNC, monitor_mnc, default to false


	PTRACERS_pickup_write_mnc: needs useMNC, pickup_write_mnc, default to false


	PTRACERS_pickup_read_mnc: needs useMNC, pickup_read_mnc, default to false


	PTRACERS_useRecords: defaults to false. If true, will write all tracers in a single file, otherwise each tracer in a seperate file.




The following can be set for each tracer (tracer number iTrc):


	PTRACERS_advScheme(iTrc) will default to saltAdvScheme (set in data). For other options see Table [tab:advectionShemes:sub:summary].


	PTRACERS_ImplVertAdv(iTrc): implicit vertical advection flag, default to .FALSE.


	PTRACERS_diffKh(iTrc): horizontal Laplacian Diffusivity, dafaults to diffKhS (set in data).


	PTRACERS_diffK4(iTrc): Biharmonic Diffusivity, defaults to diffK4S (set in data).


	PTRACERS_diffKr(iTrc): vertical diffusion, defaults to un-set.


	PTRACERS_diffKrNr(k,iTrc): level specific vertical diffusion, defaults to diffKrNrS. Will be set to PTRACERS_diffKr if this is set.


	PTRACERS_ref(k,iTrc): reference tracer value for each level k, defaults to 0. Currently only used for dilution/concentration of tracers at surface if PTRACERS_EvPrRn(iTrc) is set and convertFW2Salt (set in data) is set to something other than -1 (note default is convertFW2Salt=35).


	PTRACERS_EvPrRn(iTrc): tracer concentration in freshwater. Needed for calculation of dilution/concentration in surface layer due to freshwater addition/evaporation. Defaults to un-set in which case no dilution/concentration occurs.


	PTRACERS_useGMRedi(iTrc): apply GM or not. Defaults to useGMREdi.


	PTRACERS_useKPP(iTrc): apply KPP or not. Defaults to useKPP.


	PTRACERS_initialFile(iTrc): file with initial tracer concentration. Will be used if PTRACERS_Iter0 \(=\) nIter0. Default is no name, in which case tracer is initialised as zero. If PTRACERS_Iter0 \(<\) nIter0, then tracer concentration will come from pickup_ptracer.


	PTRACERS_names(iTrc): tracer name. Needed for netcdf. Defaults to nothing.


	PTRACERS_long_names(iTrc): optional name in long form of tracer.


	PTRACERS_units(iTrc): optional units of tracer.







8.3.3.4. PTRACERS Diagnostics

Note that these will only work for 90 or less tracers (some problems
with the numbering/designation over this number)

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
TRAC01  | 15 |SM P    MR      |mol C/m         |Mass-Weighted Dissolved Inorganic Carbon
UTRAC01 | 15 |UU   171MR      |mol C/m.m/s     |Zonal Mass-Weighted Transp of Dissolved Inorganic Carbon
VTRAC01 | 15 |VV   170MR      |mol C/m.m/s     |Merid Mass-Weighted Transp of Dissolved Inorganic Carbon
WTRAC01 | 15 |WM      MR      |mol C/m.m/s     |Vert  Mass-Weighted Transp of Dissolved Inorganic Carbon
ADVrTr01| 15 |WM      LR      |mol C/m.m^3/s   |Vertical   Advective Flux of Dissolved Inorganic Carbon
ADVxTr01| 15 |UU   175MR      |mol C/m.m^3/s   |Zonal      Advective Flux of Dissolved Inorganic Carbon
ADVyTr01| 15 |VV   174MR      |mol C/m.m^3/s   |Meridional Advective Flux of Dissolved Inorganic Carbon
DFrETr01| 15 |WM      LR      |mol C/m.m^3/s   |Vertical Diffusive Flux of Dissolved Inorganic Carbon (Explicit part)
DIFxTr01| 15 |UU   178MR      |mol C/m.m^3/s   |Zonal      Diffusive Flux of Dissolved Inorganic Carbon
DIFyTr01| 15 |VV   177MR      |mol C/m.m^3/s   |Meridional Diffusive Flux of Dissolved Inorganic Carbon
DFrITr01| 15 |WM      LR      |mol C/m.m^3/s   |Vertical Diffusive Flux of Dissolved Inorganic Carbon (Implicit part)
TRAC02  | 15 |SM P    MR      |mol eq/         |Mass-Weighted Alkalinity
UTRAC02 | 15 |UU   182MR      |mol eq/.m/s     |Zonal Mass-Weighted Transp of Alkalinity
VTRAC02 | 15 |VV   181MR      |mol eq/.m/s     |Merid Mass-Weighted Transp of Alkalinity
WTRAC02 | 15 |WM      MR      |mol eq/.m/s     |Vert  Mass-Weighted Transp of Alkalinity
ADVrTr02| 15 |WM      LR      |mol eq/.m^3/s   |Vertical   Advective Flux of Alkalinity
ADVxTr02| 15 |UU   186MR      |mol eq/.m^3/s   |Zonal      Advective Flux of Alkalinity
ADVyTr02| 15 |VV   185MR      |mol eq/.m^3/s   |Meridional Advective Flux of Alkalinity
DFrETr02| 15 |WM      LR      |mol eq/.m^3/s   |Vertical Diffusive Flux of Alkalinity (Explicit part)
DIFxTr02| 15 |UU   189MR      |mol eq/.m^3/s   |Zonal      Diffusive Flux of Alkalinity
DIFyTr02| 15 |VV   188MR      |mol eq/.m^3/s   |Meridional Diffusive Flux of Alkalinity
DFrITr02| 15 |WM      LR      |mol eq/.m^3/s   |Vertical Diffusive Flux of Alkalinity (Implicit part)
TRAC03  | 15 |SM P    MR      |mol P/m         |Mass-Weighted Phosphate
UTRAC03 | 15 |UU   193MR      |mol P/m.m/s     |Zonal Mass-Weighted Transp of Phosphate
VTRAC03 | 15 |VV   192MR      |mol P/m.m/s     |Merid Mass-Weighted Transp of Phosphate
WTRAC03 | 15 |WM      MR      |mol P/m.m/s     |Vert  Mass-Weighted Transp of Phosphate
ADVrTr03| 15 |WM      LR      |mol P/m.m^3/s   |Vertical   Advective Flux of Phosphate
ADVxTr03| 15 |UU   197MR      |mol P/m.m^3/s   |Zonal      Advective Flux of Phosphate
ADVyTr03| 15 |VV   196MR      |mol P/m.m^3/s   |Meridional Advective Flux of Phosphate
DFrETr03| 15 |WM      LR      |mol P/m.m^3/s   |Vertical Diffusive Flux of Phosphate (Explicit part)
DIFxTr03| 15 |UU   200MR      |mol P/m.m^3/s   |Zonal      Diffusive Flux of Phosphate
------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
DIFyTr03| 15 |VV   199MR      |mol P/m.m^3/s   |Meridional Diffusive Flux of Phosphate
DFrITr03| 15 |WM      LR      |mol P/m.m^3/s   |Vertical Diffusive Flux of Phosphate (Implicit part)
TRAC04  | 15 |SM P    MR      |mol P/m         |Mass-Weighted Dissolved Organic Phosphorus
UTRAC04 | 15 |UU   204MR      |mol P/m.m/s     |Zonal Mass-Weighted Transp of Dissolved Organic Phosphorus
VTRAC04 | 15 |VV   203MR      |mol P/m.m/s     |Merid Mass-Weighted Transp of Dissolved Organic Phosphorus
WTRAC04 | 15 |WM      MR      |mol P/m.m/s     |Vert  Mass-Weighted Transp of Dissolved Organic Phosphorus
ADVrTr04| 15 |WM      LR      |mol P/m.m^3/s   |Vertical   Advective Flux of Dissolved Organic Phosphorus
ADVxTr04| 15 |UU   208MR      |mol P/m.m^3/s   |Zonal      Advective Flux of Dissolved Organic Phosphorus
ADVyTr04| 15 |VV   207MR      |mol P/m.m^3/s   |Meridional Advective Flux of Dissolved Organic Phosphorus
DFrETr04| 15 |WM      LR      |mol P/m.m^3/s   |Vertical Diffusive Flux of Dissolved Organic Phosphorus (Explicit part)
DIFxTr04| 15 |UU   211MR      |mol P/m.m^3/s   |Zonal      Diffusive Flux of Dissolved Organic Phosphorus
DIFyTr04| 15 |VV   210MR      |mol P/m.m^3/s   |Meridional Diffusive Flux of Dissolved Organic Phosphorus
DFrITr04| 15 |WM      LR      |mol P/m.m^3/s   |Vertical Diffusive Flux of Dissolved Organic Phosphorus (Implicit part)
TRAC05  | 15 |SM P    MR      |mol O/m         |Mass-Weighted Dissolved Oxygen
UTRAC05 | 15 |UU   215MR      |mol O/m.m/s     |Zonal Mass-Weighted Transp of Dissolved Oxygen
VTRAC05 | 15 |VV   214MR      |mol O/m.m/s     |Merid Mass-Weighted Transp of Dissolved Oxygen
WTRAC05 | 15 |WM      MR      |mol O/m.m/s     |Vert  Mass-Weighted Transp of Dissolved Oxygen
ADVrTr05| 15 |WM      LR      |mol O/m.m^3/s   |Vertical   Advective Flux of Dissolved Oxygen
ADVxTr05| 15 |UU   219MR      |mol O/m.m^3/s   |Zonal      Advective Flux of Dissolved Oxygen
ADVyTr05| 15 |VV   218MR      |mol O/m.m^3/s   |Meridional Advective Flux of Dissolved Oxygen
DFrETr05| 15 |WM      LR      |mol O/m.m^3/s   |Vertical Diffusive Flux of Dissolved Oxygen (Explicit part)
DIFxTr05| 15 |UU   222MR      |mol O/m.m^3/s   |Zonal      Diffusive Flux of Dissolved Oxygen
DIFyTr05| 15 |VV   221MR      |mol O/m.m^3/s   |Meridional Diffusive Flux of Dissolved Oxygen
DFrITr05| 15 |WM      LR      |mol O/m.m^3/s   |Vertical Diffusive Flux of Dissolved Oxygen (Implicit part)








8.3.3.5. Do’s and Don’ts




8.3.3.6. Reference Material







          

      

      

    

  

    
      
          
            
  
8.4.1. GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization

There are two parts to the Redi/GM parameterization of geostrophic
eddies. The first, the Redi scheme [Red82], aims to mix tracer properties along
isentropes (neutral surfaces) by means of a diffusion operator oriented
along the local isentropic surface. The second part, GM [GM90][GWMM95] , adiabatically
re-arranges tracers through an advective flux where the advecting flow
is a function of slope of the isentropic surfaces.

The first GCM implementation of the Redi scheme was by [Cox87] in the GFDL ocean
circulation model. The original approach failed to distinguish between
isopycnals and surfaces of locally referenced potential density (now
called neutral surfaces) which are proper isentropes for the ocean. As
will be discussed later, it also appears that the Cox implementation is
susceptible to a computational mode. Due to this mode, the Cox scheme
requires a background lateral diffusion to be present to conserve the
integrity of the model fields.

The GM parameterization was then added to the GFDL code in the form of a
non-divergent bolus velocity. The method defines two stream-functions
expressed in terms of the isoneutral slopes subject to the boundary
condition of zero value on upper and lower boundaries. The horizontal
bolus velocities are then the vertical derivative of these functions.
Here in lies a problem highlighted by [GGP+98]: the bolus velocities involve
multiple derivatives on the potential density field, which can
consequently give rise to noise. Griffies et al. point out that the GM
bolus fluxes can be identically written as a skew flux which involves
fewer differential operators. Further, combining the skew flux
formulation and Redi scheme, substantial cancellations take place to the
point that the horizontal fluxes are unmodified from the lateral
diffusion parameterization.


8.4.1.1. Redi scheme: Isopycnal diffusion

The Redi scheme diffuses tracers along isopycnals and introduces a term
in the tendency (rhs) of such a tracer (here \(\tau\)) of the form:


\[\bf{\nabla} \cdot \kappa_\rho \bf{K}_{Redi}  \bf{\nabla} \tau\]

where \(\kappa_\rho\) is the along isopycnal diffusivity and
\(\bf{K}_{Redi}\) is a rank 2 tensor that projects the gradient of
\(\tau\) onto the isopycnal surface. The unapproximated projection
tensor is:


\[\begin{split}\bf{K}_{Redi} = \frac{1}{1 + |S|^2} \left(
\begin{array}{ccc}
1 + S_y^2& -S_x S_y & S_x \\
-S_x S_y  & 1 + S_x^2 & S_y \\
S_x & S_y & |S|^2 \\
\end{array}
\right)\end{split}\]

Here, \(S_x = -\partial_x \sigma / \partial_z \sigma\) and
\(S_y =
-\partial_y \sigma / \partial_z \sigma\) are the components of the
isoneutral slope.

The first point to note is that a typical slope in the ocean interior is
small, say of the order \(10^{-4}\). A maximum slope might be of
order \(10^{-2}\) and only exceeds such in unstratified regions
where the slope is ill defined. It is therefore justifiable, and
customary, to make the small slope approximation, \(|S| << 1\). The
Redi projection tensor then becomes:


\[\begin{split}\bf{K}_{Redi} = \left(
\begin{array}{ccc}
1 & 0 & S_x \\
0 & 1 & S_y \\
S_x & S_y & |S|^2 \\
\end{array}
\right)\end{split}\]




8.4.1.2. GM parameterization

The GM parameterization aims to represent the “advective” or “transport”
effect of geostrophic eddies by means of a “bolus” velocity,
\(\bf{u}^\star\). The divergence of this advective flux is added to
the tracer tendency equation (on the rhs):


\[- \bf{\nabla} \cdot \tau \bf{u}^\star\]

The bolus velocity \(\bf{u}^\star\) is defined as the rotational of
a streamfunction
\(\bf{F}^\star\)=\((F_x^\star,F_y^\star,0)\):


\[\begin{split}\bf{u}^\star = \nabla \times \bf{F}^\star =
\left( \begin{array}{c}
- \partial_z  F_y^\star \\
+ \partial_z  F_x^\star \\
\partial_x F_y^\star - \partial_y F_x^\star
\end{array} \right),\end{split}\]

and thus is automatically non-divergent. In the GM parameterization, the
streamfunction is specified in terms of the isoneutral slopes
\(S_x\) and \(S_y\):


\[\begin{split}\begin{aligned}
F_x^\star & = & -\kappa_{GM} S_y \\
F_y^\star & = &  \kappa_{GM} S_x\end{aligned}\end{split}\]

with boundary conditions \(F_x^\star=F_y^\star=0\) on upper and
lower boundaries. In the end, the bolus transport in the GM
parameterization is given by:


\[\begin{split}\bf{u}^\star = \left(
\begin{array}{c}
u^\star \\
v^\star \\
w^\star
\end{array}
\right) = \left(
\begin{array}{c}
- \partial_z (\kappa_{GM} S_x) \\
- \partial_z (\kappa_{GM} S_y) \\
\partial_x  (\kappa_{GM} S_x) + \partial_y (\kappa_{GM} S_y)
\end{array}
\right)\end{split}\]

This is the form of the GM parameterization as applied by Donabasaglu,
1997, in MOM versions 1 and 2.

Note that in the MITgcm, the variables containing the GM bolus
streamfunction are:


\[\begin{split}\left(
\begin{array}{c}
GM\_PsiX \\
GM\_PsiY
\end{array}
\right) = \left(
\begin{array}{c}
\kappa_{GM} S_x \\
\kappa_{GM} S_y
\end{array}
\right)= \left(
\begin{array}{c}
F_y^\star \\
-F_x^\star
\end{array}
\right).\end{split}\]




8.4.1.3. Griffies Skew Flux

[Gri98] notes that the discretisation of bolus velocities involves multiple
layers of differencing and interpolation that potentially lead to noisy
fields and computational modes. He pointed out that the bolus flux can
be re-written in terms of a non-divergent flux and a skew-flux:


\[\begin{split}\begin{aligned}
\bf{u}^\star \tau
& = &
\left( \begin{array}{c}
- \partial_z ( \kappa_{GM} S_x ) \tau \\
- \partial_z ( \kappa_{GM} S_y ) \tau \\
(\partial_x \kappa_{GM} S_x + \partial_y \kappa_{GM} S_y)\tau
\end{array} \right)
\\
& = &
\left( \begin{array}{c}
- \partial_z ( \kappa_{GM} S_x \tau) \\
- \partial_z ( \kappa_{GM} S_y \tau) \\
\partial_x ( \kappa_{GM} S_x \tau) + \partial_y ( \kappa_{GM} S_y \tau)
\end{array} \right)
+ \left( \begin{array}{c}
 \kappa_{GM} S_x \partial_z \tau \\
 \kappa_{GM} S_y \partial_z \tau \\
- \kappa_{GM} S_x \partial_x \tau - \kappa_{GM} S_y \partial_y \tau
\end{array} \right)\end{aligned}\end{split}\]

The first vector is non-divergent and thus has no effect on the tracer
field and can be dropped. The remaining flux can be written:


\[\bf{u}^\star \tau = - \kappa_{GM} \bf{K}_{GM} \bf{\nabla} \tau\]

where


\[\begin{split}\bf{K}_{GM} =
\left(
\begin{array}{ccc}
0 & 0 & -S_x \\
0 & 0 & -S_y \\
S_x & S_y & 0
\end{array}
\right)\end{split}\]

is an anti-symmetric tensor.

This formulation of the GM parameterization involves fewer derivatives
than the original and also involves only terms that already appear in
the Redi mixing scheme. Indeed, a somewhat fortunate cancellation
becomes apparent when we use the GM parameterization in conjunction with
the Redi isoneutral mixing scheme:


\[\kappa_\rho \bf{K}_{Redi} \bf{\nabla} \tau
- u^\star \tau =
( \kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} ) \bf{\nabla} \tau\]

In the instance that \(\kappa_{GM} = \kappa_{\rho}\) then


\[\begin{split}\kappa_\rho \bf{K}_{Redi} + \kappa_{GM} \bf{K}_{GM} =
\kappa_\rho
\left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 S_x & 2 S_y & |S|^2
\end{array}
\right)\end{split}\]

which differs from the variable Laplacian diffusion tensor by only two
non-zero elements in the \(z\)-row.


Subroutine

S/R GMREDI_CALC_TENSOR (pkg/gmredi/gmredi_calc_tensor.F)

\(\sigma_x\): SlopeX (argument on entry)

\(\sigma_y\): SlopeY (argument on entry)

\(\sigma_z\): SlopeY (argument)

\(S_x\): SlopeX (argument on exit)

\(S_y\): SlopeY (argument on exit)






8.4.1.4. Variable \(\kappa_{GM}\)

[VMHS97] suggest making the eddy coefficient, \(\kappa_{GM}\), a function of
the Eady growth rate, \(|f|/\sqrt{Ri}\). The formula involves a
non-dimensional constant, \(\alpha\), and a length-scale \(L\):


\[\kappa_{GM} = \alpha L^2 \overline{ \frac{|f|}{\sqrt{Ri}} }^z\]

where the Eady growth rate has been depth averaged (indicated by the
over-line). A local Richardson number is defined
\(Ri = N^2 / (\partial
u/\partial z)^2\) which, when combined with thermal wind gives:


\[\frac{1}{Ri} = \frac{(\frac{\partial u}{\partial z})^2}{N^2} =
\frac{ ( \frac{g}{f \rho_o} | {\bf \nabla} \sigma | )^2 }{N^2} =
\frac{ M^4 }{ |f|^2 N^2 }\]

where \(M^2\) is defined
\(M^2 = \frac{g}{\rho_o} |{\bf \nabla} \sigma|\). Substituting into
the formula for \(\kappa_{GM}\) gives:


\[\kappa_{GM} = \alpha L^2 \overline{ \frac{M^2}{N} }^z =
\alpha L^2 \overline{ \frac{M^2}{N^2} N }^z =
\alpha L^2 \overline{ |S| N }^z\]




8.4.1.5. Tapering and stability

Experience with the GFDL model showed that the GM scheme has to be
matched to the convective parameterization. This was originally
expressed in connection with the introduction of the KPP boundary layer
scheme [LMD94] but in fact, as subsequent experience with the MIT model has
found, is necessary for any convective parameterization.


Subroutine

S/R GMREDI_SLOPE_LIMIT (pkg/gmredi/gmredi_slope_limit.F)

\(\sigma_x, s_x\): SlopeX (argument)

\(\sigma_y, s_y\): SlopeY (argument)

\(\sigma_z\): dSigmadRReal (argument)

\(z_\sigma^{*}\): dRdSigmaLtd (argument)




[image: Tapering for GM scheme]Figure 8.6 Taper functions used in GKW91 and DM95.




[image: Tapering for GM scheme]Figure 8.7 Effective slope as a function of ‘true’ slope using Cox slope clipping, GKW91 limiting and DM95 limiting.






8.4.1.6. Slope clipping

Deep convection sites and the mixed layer are indicated by homogenized,
unstable or nearly unstable stratification. The slopes in such regions
can be either infinite, very large with a sign reversal or simply very
large. From a numerical point of view, large slopes lead to large
variations in the tensor elements (implying large bolus flow) and can be
numerically unstable. This was first recognized by [Cox87] who implemented
“slope clipping” in the isopycnal mixing tensor. Here, the slope
magnitude is simply restricted by an upper limit:


\[\begin{split}\begin{aligned}
|\nabla \sigma| & = & \sqrt{ \sigma_x^2 + \sigma_y^2 } \\
S_{lim} & = & - \frac{|\nabla \sigma|}{ S_{max} }
\;\;\;\;\;\;\;\; \mbox{where $S_{max}$ is a parameter} \\
\sigma_z^\star & = & \min( \sigma_z , S_{lim} ) \\
{[s_x,s_y]} & = & - \frac{ [\sigma_x,\sigma_y] }{\sigma_z^\star}\end{aligned}\end{split}\]

Notice that this algorithm assumes stable stratification through the
“min” function. In the case where the fluid is well stratified
(\(\sigma_z < S_{lim}\)) then the slopes evaluate to:


\[{[s_x,s_y]} = - \frac{ [\sigma_x,\sigma_y] }{\sigma_z}\]

while in the limited regions (\(\sigma_z > S_{lim}\)) the slopes
become:


\[{[s_x,s_y]} = \frac{ [\sigma_x,\sigma_y] }{|\nabla \sigma|/S_{max}}\]

so that the slope magnitude is limited \(\sqrt{s_x^2 + s_y^2} =
S_{max}\).

The slope clipping scheme is activated in the model by setting
GM_taper_scheme = ’clipping’ in data.gmredi.

Even using slope clipping, it is normally the case that the vertical
diffusion term (with coefficient \(\kappa_\rho{\bf K}_{33} =
\kappa_\rho S_{max}^2\)) is large and must be time-stepped using an
implicit procedure (see section on discretisation and code later). Fig.
[fig-mixedlayer] shows the mixed layer depth resulting from a) using the
GM scheme with clipping and b) no GM scheme (horizontal diffusion). The
classic result of dramatically reduced mixed layers is evident. Indeed,
the deep convection sites to just one or two points each and are much
shallower than we might prefer. This, it turns out, is due to the over
zealous re-stratification due to the bolus transport parameterization.
Limiting the slopes also breaks the adiabatic nature of the GM/Redi
parameterization, re-introducing diabatic fluxes in regions where the
limiting is in effect.




8.4.1.7. Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991

The tapering scheme used in [GKW91] addressed two issues with the clipping
method: the introduction of large vertical fluxes in addition to
convective adjustment fluxes is avoided by tapering the GM/Redi slopes
back to zero in low-stratification regions; the adjustment of slopes is
replaced by a tapering of the entire GM/Redi tensor. This means the
direction of fluxes is unaffected as the amplitude is scaled.

The scheme inserts a tapering function, \(f_1(S)\), in front of the
GM/Redi tensor:


\[f_1(S) = \min \left[ 1, \left( \frac{S_{max}}{|S|}\right)^2 \right]\]

where \(S_{max}\) is the maximum slope you want allowed. Where the
slopes, \(|S|<S_{max}\) then \(f_1(S) = 1\) and the tensor is
un-tapered but where \(|S| \ge S_{max}\) then \(f_1(S)\) scales
down the tensor so that the effective vertical diffusivity term
\(\kappa f_1(S) |S|^2 =
\kappa S_{max}^2\).

The GKW91 tapering scheme is activated in the model by setting
GM_taper_scheme = ’gkw91’ in data.gmredi.




8.4.1.8. Tapering: Danabasoglu and McWilliams, J. Clim. 1995

The tapering scheme used by followed a similar procedure but used a
different tapering function, \(f_1(S)\):


\[f_1(S) = \frac{1}{2} \left( 1+\tanh \left[ \frac{S_c - |S|}{S_d} \right] \right)\]

where \(S_c = 0.004\) is a cut-off slope and \(S_d=0.001\) is a
scale over which the slopes are smoothly tapered. Functionally, the
operates in the same way as the GKW91 scheme but has a substantially
lower cut-off, turning off the GM/Redi SGS parameterization for weaker
slopes.

The DM95 tapering scheme is activated in the model by setting
GM_taper_scheme = ’dm95’ in data.gmredi.




8.4.1.9. Tapering: Large, Danabasoglu and Doney, JPO 1997

The tapering used in [LDDM97] is based on the DM95 tapering scheme, but also
tapers the scheme with an additional function of height, \(f_2(z)\),
so that the GM/Redi SGS fluxes are reduced near the surface:


\[f_2(z) = \frac{1}{2} \left( 1 + \sin(\pi \frac{z}{D} - \frac{\pi}{2})\right)\]

where \(D = L_\rho |S|\) is a depth-scale and \(L_\rho=c/f\)
with \(c=2\) m s:math:^{-1}. This tapering with height was
introduced to fix some spurious interaction with the mixed-layer KPP
parameterization.

The LDD97 tapering scheme is activated in the model by setting
GM_taper_scheme = ’ldd97’ in data.gmredi.




8.4.1.10. Package Reference

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
GM_VisbK|  1 |SM P    M1      |m^2/s           |Mixing coefficient from Visbeck etal parameterization
GM_Kux  | 15 |UU P 177MR      |m^2/s           |K_11 element (U.point, X.dir) of GM-Redi tensor
GM_Kvy  | 15 |VV P 176MR      |m^2/s           |K_22 element (V.point, Y.dir) of GM-Redi tensor
GM_Kuz  | 15 |UU   179MR      |m^2/s           |K_13 element (U.point, Z.dir) of GM-Redi tensor
GM_Kvz  | 15 |VV   178MR      |m^2/s           |K_23 element (V.point, Z.dir) of GM-Redi tensor
GM_Kwx  | 15 |UM   181LR      |m^2/s           |K_31 element (W.point, X.dir) of GM-Redi tensor
GM_Kwy  | 15 |VM   180LR      |m^2/s           |K_32 element (W.point, Y.dir) of GM-Redi tensor
GM_Kwz  | 15 |WM P    LR      |m^2/s           |K_33 element (W.point, Z.dir) of GM-Redi tensor
GM_PsiX | 15 |UU   184LR      |m^2/s           |GM Bolus transport stream-function : X component
GM_PsiY | 15 |VV   183LR      |m^2/s           |GM Bolus transport stream-function : Y component
GM_KuzTz| 15 |UU   186MR      |degC.m^3/s      |Redi Off-diagonal Tempetature flux: X component
GM_KvzTz| 15 |VV   185MR      |degC.m^3/s      |Redi Off-diagonal Tempetature flux: Y component








8.4.1.11. Experiments and tutorials that use gmredi


	Global Ocean tutorial, in tutorial_global_oce_latlon verification
directory, described in section [sec:eg-global]


	Front Relax experiment, in front_relax verification directory.


	Ideal 2D Ocean experiment, in ideal_2D_oce verification directory.










          

      

      

    

  

    
      
          
            
  
8.4.2. KPP: Nonlocal K-Profile Parameterization for Vertical Mixing

Authors: Dimitris Menemenlis and Patrick Heimbach


8.4.2.1. Introduction

The nonlocal K-Profile Parameterization (KPP) scheme of [LMD94] unifies the
treatment of a variety of unresolved processes involved in vertical
mixing. To consider it as one mixing scheme is, in the view of the
authors, somewhat misleading since it consists of several entities to
deal with distinct mixing processes in the ocean’s surface boundary
layer, and the interior:


	mixing in the interior is goverened by shear instability (modeled as
function of the local gradient Richardson number), internal wave
activity (assumed constant), and double-diffusion (not implemented
here).


	a boundary layer depth \(h\) or hbl is determined at each
grid point, based on a critical value of turbulent processes
parameterized by a bulk Richardson number;


	mixing is strongly enhanced in the boundary layer under the
stabilizing or destabilizing influence of surface forcing (buoyancy
and momentum) enabling boundary layer properties to penetrate well
into the thermocline; mixing is represented through a polynomial
profile whose coefficients are determined subject to several
contraints;


	the boundary-layer profile is made to agree with similarity theory of
turbulence and is matched, in the asymptotic sense (function and
derivative agree at the boundary), to the interior thus fixing the
polynomial coefficients; matching allows for some fraction of the
boundary layer mixing to affect the interior, and vice versa;


	a “non-local” term \(\hat{\gamma}\) or ghat which is
independent of the vertical property gradient further enhances mixing
where the water column is unstable




The scheme has been extensively compared to observations (see e.g. [LDDM97]) and
is now common in many ocean models.

The current code originates in the NCAR NCOM 1-D code and was kindly
provided by Bill Large and Jan Morzel. It has been adapted first to the
MITgcm vector code and subsequently to the current parallel code.
Adjustment were mainly in conjunction with WRAPPER requirements (domain
decomposition and threading capability), to enable automatic
differentiation of tangent linear and adjoint code via TAMC.

The following sections will describe the KPP package configuration and
compiling ([sec:pkg:kpp:comp]), the settings and choices of runtime
parameters ([sec:pkg:kpp:runtime]), more detailed description of
equations to which these parameters relate ([sec:pkg:kpp:equations]),
and key subroutines where they are used ([sec:pkg:kpp:flowchart]), and
diagnostics output of KPP-derived diffusivities, viscosities and
boundary-layer/mixed-layer depths ([sec:pkg:kpp:diagnostics]).




8.4.2.2. KPP configuration and compiling

As with all MITgcm packages, KPP can be turned on or off at compile time


	using the packages.conf file by adding kpp to it,


	or using genmake2 adding -enable=kpp or -disable=kpp
switches


	Required packages and CPP options:
No additional packages are required, but the MITgcm kernel flag
enabling the penetration of shortwave radiation below the surface
layer needs to be set in CPP_OPTIONS.h as follows:
#define SHORTWAVE_HEATING




(see Section [sec:buildingCode]).

Parts of the KPP code can be enabled or disabled at compile time via CPP
preprocessor flags. These options are set in KPP_OPTIONS.h. Table
Table 8.4 summarizes them.


Table 8.4 CPP flags for KPP





	CPP option

	Description





	_KPP_RL

	


	FRUGAL_KPP

	


	KPP_SMOOTH_SHSQ

	


	KPP_SMOOTH_DVSQ

	


	KPP_SMOOTH_DENS

	


	KPP_SMOOTH_VISC

	


	KPP_SMOOTH_DIFF

	


	KPP_ESTIMATE_UREF

	


	INCLUDE_DIAGNOSTICS_INTERFACE_CODE

	


	KPP_GHAT

	


	EXCLUDE_KPP_SHEAR_MIX

	








8.4.2.3. Run-time parameters

Run-time parameters are set in files data.pkg and data.kpp which
are read in kpp_readparms.F. Run-time parameters may be broken into
3 categories: (i) switching on/off the package at runtime, (ii) required
MITgcm flags, (iii) package flags and parameters.


Enabling the package

The KPP package is switched on at runtime by setting useKPP = .TRUE. in data.pkg.




Required MITgcm flags

The following flags/parameters of the MITgcm dynamical kernel need to
be set in conjunction with KPP:







	implicitViscosity = .TRUE.

	enable implicit vertical viscosity



	implicitDiffusion = .TRUE.

	enable implicit vertical diffusion









Package flags and parameters

Table 8.5 summarizes the runtime flags
that are set in data.pkg, and their default values.


Table 8.5 Runtime flags for KPP






	Flag/parameter

	default

	Description





	I/O related parameters



	kpp_freq

	deltaTClock

	Recomputation frequency for KPP fields



	kpp_dumpFreq

	dumpFreq

	Dump frequency of KPP field snapshots



	kpp_taveFreq

	taveFreq

	Averaging and dump frequency of KPP fields



	KPPmixingMaps

	.FALSE.

	include KPP diagnostic maps in STDOUT



	KPPwriteState

	.FALSE.

	write KPP state to file



	KPP_ghatUseTotalDiffus

	.FALSE.

	if .T. compute non-local term using



	
	
	total vertical diffusivity



	
	
	if .F. use KPP vertical diffusivity



	General KPP parameters



	minKPPhbl

	delRc(1)

	Minimum boundary layer depth



	epsilon

	0.1

	nondimensional extent of the surface layer



	vonk

	0.4

	von Karman constant



	dB_dz

	5.2E-5 s–2

	maximum dB/dz in mixed layer hMix



	concs

	98.96

	


	concv

	1.8

	


	Boundary layer parameters (S/R bldepth)



	Ricr

	0.3

	critical bulk Richardson number



	cekman

	0.7

	coefficient for Ekman depth



	cmonob

	1.0

	coefficient for Monin-Obukhov depth



	concv

	1.8

	ratio of interior to entrainment depth
buoyancy frequency



	hbf

	1.0

	fraction of depth to which absorbed solar
radiation contributes
to surface buoyancy forcing



	Vtc

	
	non-dim. coeff. for velocity scale of
turbulant velocity shear ( = function
of concv,concs,epsilon,vonk,Ricr)



	Boundary layer mixing parameters (S/R blmix)



	cstar

	
	




	proportionality coefficient for nonlocal
transport



	cg

	
	non-dimensional coefficient for counter-gradient
term
( = function of cstar,vonk,concs,epsilon)



	Interior mixing parameters (S/R Ri_iwmix)



	Riinfty

	0.7

	gradient Richardson number limit for shear
instability



	BVDQcon

	-0.2E-4 s–2

	Brunt-Väisalä squared



	difm0

	0.005 m2 s–1

	viscosity max. due to shear instability



	difs0

	0.005 m\(^2\)/s

	tracer diffusivity max. due to shear instability



	dift0

	0.005 m\(^2\)/s

	heat diffusivity max. due to shear instability



	difmcon

	0.1

	viscosity due to convective instability



	difscon

	0.1

	tracer diffusivity due to convective instability



	diftcon

	0.1

	heat diffusivity due to convective instability



	Rrho0

	not used

	limit for double diffusive density ratio



	dsfmax

	not used

	maximum diffusivity in case of salt fingering











8.4.2.4. Equations and key routines

We restrict ourselves to writing out only the essential equations that
relate to main processes and parameters mentioned above. We closely
follow the notation of [LMD94].


KPP_CALC:

Top-level routine.




KPP_MIX:

Intermediate-level routine




BLMIX: Mixing in the boundary layer

The vertical fluxes \(\overline{wx}\) of momentum and tracer
properties \(X\) is composed of a gradient-flux term (proportional
to the vertical property divergence \(\partial_z X\)), and a
“nonlocal” term \(\gamma_x\) that enhances the gradient-flux mixing
coefficient \(K_x\)


\[\overline{wx}(d) \, = \, -K_x \left(
\frac{\partial X}{\partial z} \, - \, \gamma_x \right)\]


	Boundary layer mixing profile
It is expressed as the product of the boundary layer depth
\(h\), a depth-dependent turbulent velocity scale
\(w_x(\sigma)\) and a non-dimensional shape function
\(G(\sigma)\)


\[K_x(\sigma) \, = \, h \, w_x(\sigma) \, G(\sigma)\]

with dimensionless vertical coordinate \(\sigma = d/h\). For
details of :math:` w_x(sigma)` and \(G(\sigma)\) we refer to .



	Nonlocal mixing term
The nonlocal transport term \(\gamma\) is nonzero only for
tracers in unstable (convective) forcing conditions. Thus, depending
on the stability parameter \(\zeta = d/L\) (with depth \(d\),
Monin-Obukhov length scale \(L\)) it has the following form:


\[\begin{split}\begin{aligned}
\begin{array}{cl}
\gamma_x \, = \, 0 & \zeta \, \ge \, 0 \\
~ & ~ \\
\left.
\begin{array}{c}
\gamma_m \, = \, 0 \\
 ~ \\
\gamma_s \, = \, C_s
\frac{\overline{w s_0}}{w_s(\sigma) h} \\
 ~ \\
\gamma_{\theta} \, = \, C_s
\frac{\overline{w \theta_0}+\overline{w \theta_R}}{w_s(\sigma) h} \\
\end{array}
\right\}
&
\zeta \, < \, 0 \\
\end{array}\end{aligned}\end{split}\]





In practice, the routine peforms the following tasks:


	compute velocity scales at hbl


	find the interior viscosities and derivatives at hbl


	compute turbulent velocity scales on the interfaces


	compute the dimensionless shape functions at the interfaces


	compute boundary layer diffusivities at the interfaces


	compute nonlocal transport term


	find diffusivities at kbl-1 grid level







RI_IWMIX: Mixing in the interior

Compute interior viscosity and diffusivity coefficients due to


	shear instability (dependent on a local gradient Richardson number),


	to background internal wave activity, and


	to static instability (local Richardson number \(<\) 0).




TO BE CONTINUED.




BLDEPTH: Boundary layer depth calculation:

The oceanic planetary boundary layer depth, hbl, is determined as
the shallowest depth where the bulk Richardson number is equal to the
critical value, Ricr.

Bulk Richardson numbers are evaluated by computing velocity and buoyancy
differences between values at zgrid(kl) < 0 and surface reference
values. In this configuration, the reference values are equal to the
values in the surface layer. When using a very fine vertical grid, these
values should be computed as the vertical average of velocity and
buoyancy from the surface down to epsilon*zgrid(kl).

When the bulk Richardson number at k exceeds Ricr, hbl is linearly
interpolated between grid levels zgrid(k) and zgrid(k-1).

The water column and the surface forcing are diagnosed for
stable/ustable forcing conditions, and where hbl is relative to grid
points (caseA), so that conditional branches can be avoided in later
subroutines.

TO BE CONTINUED.




KPP_CALC_DIFF_T/_S, KPP_CALC_VISC:

Add contribution to net diffusivity/viscosity from KPP
diffusivity/viscosity.

TO BE CONTINUED.




KPP_TRANSPORT_T/_S/_PTR:

Add non local KPP transport term (ghat) to diffusive
temperature/salinity/passive tracer flux. The nonlocal transport term is
nonzero only for scalars in unstable (convective) forcing conditions.

TO BE CONTINUED.




Implicit time integration

TO BE CONTINUED.




Penetration of shortwave radiation

TO BE CONTINUED.






8.4.2.5. Flow chart

C     !CALLING SEQUENCE:
c ...
c  kpp_calc (TOP LEVEL ROUTINE)
c  |
c  |-- statekpp: o compute all EOS/density-related arrays
c  |             o uses S/R FIND_ALPHA, FIND_BETA, FIND_RHO
c  |
c  |-- kppmix
c  |   |--- ri_iwmix (compute interior mixing coefficients due to constant
c  |   |              internal wave activity, static instability,
c  |   |              and local shear instability).
c  |   |
c  |   |--- bldepth (diagnose boundary layer depth)
c  |   |
c  |   |--- blmix (compute boundary layer diffusivities)
c  |   |
c  |   |--- enhance (enhance diffusivity at interface kbl - 1)
c  |   o
c  |
c  |-- swfrac
c  o








8.4.2.6. KPP diagnostics

Diagnostics output is available via the diagnostics package (see Section
[sec:pkg:diagnostics]). Available output fields are summarized here:

------------------------------------------------------
 <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------
 KPPviscA| 23 |SM  |m^2/s           |KPP vertical eddy viscosity coefficient
 KPPdiffS| 23 |SM  |m^2/s           |Vertical diffusion coefficient for salt & tracers
 KPPdiffT| 23 |SM  |m^2/s           |Vertical diffusion coefficient for heat
 KPPghat | 23 |SM  |s/m^2           |Nonlocal transport coefficient
 KPPhbl  |  1 |SM  |m               |KPP boundary layer depth, bulk Ri criterion
 KPPmld  |  1 |SM  |m               |Mixed layer depth, dT=.8degC density criterion
 KPPfrac |  1 |SM  |                |Short-wave flux fraction penetrating mixing layer








8.4.2.7. Reference experiments

lab_sea:

natl_box:




8.4.2.8. References




8.4.2.9. Experiments and tutorials that use kpp


	Labrador Sea experiment, in lab_sea verification directory










          

      

      

    

  

    
      
          
            
  
8.4.3. GGL90: a TKE vertical mixing scheme

(in directory: pkg/ggl90/)


8.4.3.1. Key subroutines, parameters and files

see [GGL90]




8.4.3.2. Experiments and tutorials that use GGL90


	Vertical mixing verification experiment (vermix/input.ggl90)










          

      

      

    

  

    
      
          
            
  
8.4.4. OPPS: Ocean Penetrative Plume Scheme

(in directory: pkg/opps/)


8.4.4.1. Key subroutines, parameters and files

See [PR97]




8.4.4.2. Experiments and tutorials that use OPPS


	Vertical mixing verification experiment (vermix/input.opps)










          

      

      

    

  

    
      
          
            
  
8.4.5. KL10: Vertical Mixing Due to Breaking Internal Waves

(in directory: pkg/kl10/)

Authors: Jody M. Klymak


8.4.5.1. Introduction

The [KL10] parameterization for breaking internal waves is meant to represent
mixing in the ocean “interior” due to convective instability. Many
mixing schemes in the presence of unstable stratification simply turn on
an arbitrarily large diffusivity and viscosity in the overturning
region. This assumes the fluid completely mixes, which is probably not a
terrible assumption, but it also makes estimating the turbulence
dissipation rate in the overturning region meaningless.

The KL10 scheme overcomes this limitation by estimating the viscosity
and diffusivity from a combination of the Ozmidov relation and the
Osborn relation, assuming a turbulent Prandtl number of one. The Ozmidov
relation says that outer scale of turbulence in an overturn will scale
with the strength of the turbulence \(\epsilon\), and the
stratification \(N\), as


(8.1)\[L_O^2 \approx \epsilon N^{-3}.\]

The Osborn relation relates the strength of the dissipation to the
vertical diffusivity as


\[K_{v}=\Gamma \epsilon N^{-2},\]

where \(\Gamma\approx 0.2\) is the mixing ratio of buoyancy flux to
thermal dissipation due to the turbulence. Combining the two gives us


\[K_{v} \approx \Gamma L_O^2 N.\]

The ocean turbulence community often approximates the Ozmidov scale by
the root-mean-square of the Thorpe displacement, \(\delta_z\), in an
overturn [Tho77]. The Thorpe displacement is the distance one would have to
move a water parcel for the water column to be stable, and is readily
measured in a measured profile by sorting the profile and tracking how
far each parcel moves during the sorting procedure. This method gives an
imperfect estimate of the turbulence, but it has been found to agree on
average over a large range of overturns [WG94][SG94][Mou96].

The algorithm coded here is a slight simplification of the usual Thorpe
method for estimating turbulence in overturning regions. Usually,
overturns are identified and \(N\) is averaged over the overturn.
Here, instead we estimate


\[K_{v}(z) \approx \Gamma \delta_z^2\, N_s(z).\]

where \(N_s(z)\) is the local sorted stratification. This saves
complexity in the code and adds a slight inaccuracy, but we don’t
believe is biased.

We assume a turbulent Prandtl number of 1, so \(A_v=K_{v}\).

We also calculate and output a turbulent dissipation from this scheme.
We do not simply evaluate the overturns for \(\epsilon\) using
([eq:pkg:kl10:Lo]). Instead we compute the vertical shear terms that the
viscosity is acting on:


\[\epsilon_v = A_v \left(\left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 \right).\]

There are straightforward caveats to this approach, covered in [KL10].


	If your resolution is too low to resolve the breaking internal waves,
you won’t have any turbulence.


	If the model resolution is too high, the estimates of
\(\epsilon_v\) will start to be exaggerated, particularly if the
run in non-hydrostatic. That is because there will be significant
shear at small scales that represents the turbulence being
parameterized in the scheme. At very high resolutions direct
numerical simulation or more sophisticated large-eddy schemes should
be used.


	We find that grid cells of approximately 10 to 1 aspect ratio are a
good rule of thumb for achieving good results are usual oceanic
scales. For a site like the Hawaiian Ridge, and Luzon Strait, this
means 10-m vertical resolusion and approximately 100-m horizontal.
The 10-m resolution can be relaxed if the stratification drops, and
we often WKB-stretch the grid spacing with depth.


	The dissipation estimate is useful for pinpoiting the location of
turbulence, but again, is grid size dependent to some extent, and
should be treated with a grain of salt. It will also not include any
numerical dissipation such as you may find with higher order
advection schemes.







8.4.5.2. KL10 configuration and compiling

As with all MITgcm packages, KL10 can be turned on or off at compile
time


	using the packages.conf file by adding kl10 to it,


	or using genmake2 adding -enable=kl10 or -disable=kl10
switches


	Required packages and CPP options:
No additional packages are required.




(see Section [sec:buildingCode]).

KL10 has no compile-time options (KL10_OPTIONS.h is empty).




8.4.5.3. Run-time parameters

Run-time parameters are set in files data.pkg and data.kl10
which are read in kl10_readparms.F. Run-time parameters may be
broken into 3 categories: (i) switching on/off the package at runtime,
(ii) required MITgcm flags, (iii) package flags and parameters.


Enabling the package

The KL10 package is switched on at runtime by setting
useKL10 = .TRUE. in data.pkg.




Required MITgcm flags

The following flags/parameters of the MITgcm dynamical kernel need to
be set in conjunction with KL10:







	implicitViscosity = .TRUE.

	enable implicit vertical viscosity



	implicitDiffusion = .TRUE.

	enable implicit vertical diffusion









Package flags and parameters

Table 8.6 summarizes the runtime
flags that are set in data.kl10, and their default values.


Table 8.6 KL10 runtime parameters.






	Flag/parameter

	default

	Description





	KLviscMax

	300 m2 s–1

	Maximum viscosity the scheme will ever give
(useful for stability)



	KLdumpFreq

	dumpFreq

	Dump frequency of KL10 field snapshots



	KLtaveFreq

	taveFreq

	Averaging and dump frequency of KL10 fields



	KLwriteState

	.FALSE.

	write KL10 state to file











8.4.5.4. Equations and key routines


KL10_CALC:

Top-level routine. Calculates viscosity and diffusivity on the grid cell
centers. Note that the runtime parameters viscAz and diffKzT act
as minimum viscosity and diffusivities. So if there are no overturns (or
they are weak) then these will be returned.




KL10_CALC_VISC:

Calculates viscosity on the W and S grid faces for U and V respectively.




KL10_CALC_DIFF:

Calculates the added diffusion from KL10.






8.4.5.5. KL10 diagnostics

Diagnostics output is available via the diagnostics package (see Section
[sec:pkg:diagnostics]). Available output fields are summarized here:

------------------------------------------------------
 <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------
 KLviscAr| Nr |SM  |m^2/s           |KL10 vertical eddy viscosity coefficient
 KLdiffKr| Nr |SM  |m^2/s           |Vertical diffusion coefficient for salt, temperature, & tracers
 KLeps   | Nr |SM  |m^3/s^3         |Turbulence dissipation estimate.








8.4.5.6. References

Klymak and Legg, 2010, Oc. Modell..




8.4.5.7. Experiments and tutorials that use KL10


	Modified Internal Wave experiment, in internal_wave verification
directory










          

      

      

    

  

    
      
          
            
  
8.4.6. BULK_FORCE: Bulk Formula Package

author: Stephanie Dutkiewicz

Instead of forcing the model with heat and fresh water flux data, this
package calculates these fluxes using the changing sea surface
temperature. We need to read in some atmospheric data: air
temperature, air humidity, down shortwave radiation, down longwave
radiation, precipitation, wind speed. The current setup also reads in
wind stress, but this can be changed so that the stresses are
calculated from the wind speed.

The current setup requires that there is the thermodynamic-seaice
package (pkg/thsice, also refered below as seaice) is also used. It
would be useful though to have it also setup to run with some very
simple parametrization of the sea ice.

The heat and fresh water fluxes are calculated in bulkf_forcing.F
called from forward_step.F. These fluxes are used over open water,
fluxes over seaice are recalculated in the sea-ice package. Before the
call to bulkf_forcing.F we call bulkf_fields_load.F to find the
current atmospheric conditions. The only other changes to the model code
come from the initializing and writing diagnostics of these fluxes.


8.4.6.1. subroutine BULKF_FIELDS_LOAD

Here we find the atmospheric data needed for the bulk formula
calculations. These are read in at periodic intervals and values are
interpolated to the current time. The data file names come from
data.blk. The values that can be read in are: air temperature, air
humidity, precipitation, down solar radiation, down long wave radiation,
zonal and meridional wind speeds, total wind speed, net heat flux, net
freshwater forcing, cloud cover, snow fall, zonal and meridional wind
stresses, and SST and SSS used for relaxation terms. Not all these files
are necessary or used. For instance cloud cover and snow fall are not
used in the current bulk formula calculation. If total wind speed is not
supplied, wind speed is calculate from the zonal and meridional
components. If wind stresses are not read in, then the stresses are
calculated from the wind speed. Net heat flux and net freshwater can be
read in and used over open ocean instead of the bulk formula
calculations (but over seaice the bulkf formula is always used). This is
“hardwired” into bulkf_forcing and the “ch” in the variable names
suggests that this is “cheating”. SST and SSS need to be read in if
there is any relaxation used.




8.4.6.2. subroutine BULKF_FORCING

In bulkf_forcing.F, we calculate heat and fresh water fluxes (and
wind stress, if necessary) for each grid cell. First we determine if the
grid cell is open water or seaice and this information is carried by
iceornot. There is a provision here for a different designation if
there is snow cover (but currently this does not make any difference).
We then call bulkf_formula_lanl.F which provides values for: up long
wave radiation, latent and sensible heat fluxes, the derivative of these
three with respect to surface temperature, wind stress, evaporation. Net
long wave radiation is calculated from the combination of the down long
wave read in and the up long wave calculated.

We then find the albedo of the surface - with a call to sfc_albedo if
there is sea-ice (see the seaice package for information on the
subroutine). If the grid cell is open ocean the albedo is set as 0.1.
Note that this is a parameter that can be used to tune the results. The
net short wave radiation is then the down shortwave radiation minus the
amount reflected.

If the wind stress needed to be calculated in bulkf_formula_lanl.F,
it was calculated to grid cell center points, so in bulkf_forcing.F
we regrid to u and v points. We let the model know if it has
read in stresses or calculated stresses by the switch readwindstress
which is can be set in data.blk, and defaults to .TRUE..

We then calculate Qnet and EmPmR that will be used as the fluxes
over the open ocean. There is a provision for using runoff. If we are
“cheating” and using observed fluxes over the open ocean, then there is
a provision here to use read in Qnet and EmPmR.

The final call is to calculate averages of the terms found in this
subroutine.




8.4.6.3. subroutine BULKF_FORMULA_LANL

This is the main program of the package where the heat fluxes and
freshwater fluxes over ice and open water are calculated. Note that this
subroutine is also called from the seaice package during the iterations
to find the ice surface temperature.

Latent heat (\(L\)) used in this subroutine depends on the state of
the surface: vaporization for open water, fusion and vaporization for
ice surfaces. Air temperature is converted from Celsius to Kelvin. If
there is no wind speed (\(u_s\)) given, then the wind speed is
calculated from the zonal and meridional components.

We calculate the virtual temperature:


\[T_o = T_{air} (1+\gamma q_{air})\]

where \(T_{air}\) is the air temperature at \(h_T\),
\(q_{air}\) is humidity at \(h_q\) and \(\gamma\) is a
constant.

The saturated vapor pressure is calculate (QQ ref):


\[q_{sat} = \frac{a}{p_o} e^{L (b-\frac{c}{T_{srf}})}\]

where \(a,b,c\) are constants, \(T_{srf}\) is surface
temperature and \(p_o\) is the surface pressure.

The two values crucial for the bulk formula calculations are the
difference between air at sea surface and sea surface temperature:


\[\Delta T = T_{air} - T_{srf} +\alpha h_T\]

where \(\alpha\) is adiabatic lapse rate and \(h_T\) is the
height where the air temperature was taken; and the difference between
the air humidity and the saturated humidity


\[\Delta q = q_{air} - q_{sat}.\]

We then calculate the turbulent exchange coefficients following Bryan et
al (1996) and the numerical scheme of Hunke and Lipscombe (1998). We
estimate initial values for the exchange coefficients, \(c_u\),
\(c_T\) and \(c_q\) as


\[\frac{\kappa}{ln(z_{ref}/z_{rou})}\]

where \(\kappa\) is the Von Karman constant, \(z_{ref}\) is a
reference height and \(z_{rou}\) is a roughness length scale which
could be a function of type of surface, but is here set as a constant.
Turbulent scales are:


\[\begin{split}\begin{aligned}
u^* & = & c_u u_s \nonumber\\
T^* & = & c_T \Delta T \nonumber\\
q^* & = & c_q \Delta q \nonumber\end{aligned}\end{split}\]

We find the “integrated flux profile” for momentum and stability if
there are stable QQ conditions (\(\Upsilon>0\)) :


\[\psi_m = \psi_s = -5 \Upsilon\]

and for unstable QQ conditions (\(\Upsilon<0\)):


\[\begin{split}\begin{aligned}
\psi_m & = & 2 ln(0.5(1+\chi)) + ln(0.5(1+\chi^2)) - 2 \tan^{-1} \chi + \pi/2
\nonumber \\
\psi_s & = & 2 ln(0.5(1+\chi^2)) \nonumber\end{aligned}\end{split}\]

where


\[\Upsilon = \frac{\kappa g z_{ref}}{u^{*2}} (\frac{T^*}{T_o} +
\frac{q^*}{1/\gamma + q_a})\]

and \(\chi=(1-16\Upsilon)^{1/2}\).

The coefficients are updated through 5 iterations as:


\[\begin{split}\begin{aligned}
c_u & = & \frac {\hat{c_u}}{1+\hat{c_u}(\lambda - \psi_m)/\kappa} \nonumber \\
c_T & = & \frac {\hat{c_T}}{1+\hat{c_T}(\lambda - \psi_s)/\kappa} \nonumber \\
c_q & = & c'_T\end{aligned}\end{split}\]

where \(\lambda =ln(h_T/z_{ref})\).

We can then find the bulk formula heat fluxes:

Sensible heat flux:


\[Q_s=\rho_{air} c_{p_{air}} u_s c_u c_T \Delta T\]

Latent heat flux:


\[Q_l=\rho_{air} L u_s c_u c_q \Delta q\]

Up long wave radiation


\[Q_{lw}^{up}=\epsilon \sigma T_{srf}^4\]

where \(\epsilon\) is emissivity (which can be different for open
ocean, ice and snow), \(\sigma\) is Stefan-Boltzman constant.

We calculate the derivatives of the three above functions with respect
to surface temperature


\[\begin{split}\begin{aligned}
\frac{dQ_s}{d_T} & = & \rho_{air} c_{p_{air}} u_s c_u c_T \nonumber \\
\frac{dQ_l}{d_T} & = & \frac{\rho_{air} L^2 u_s c_u c_q c}{T_{srf}^2} \nonumber \\
\frac{dQ_{]lw}^{up}}{d_T} & = &  4 \epsilon \sigma t_{srf}^3 \nonumber\end{aligned}\end{split}\]

And total derivative \(\frac{dQ_o}{dT}= \frac{dQ_s}{dT} +
\frac{dQ_l}{dT} + \frac{dQ_{lw}^{up}}{dT}\).

If we do not read in the wind stress, it is calculated here.




8.4.6.4. Initializing subroutines

bulkf_init.F: Set bulkf variables to zero.

bulkf_readparms.F: Reads data.blk




8.4.6.5. Diagnostic subroutines

bulkf_ave.F: Keeps track of means of the bulkf variables

bulkf_diags.F: Finds averages and writes out diagnostics




8.4.6.6. Common Blocks

BULKF.h: BULKF Variables, data file names, and logicals readwindstress and
readsurface

BULKF_DIAGS.h: matrices for diagnostics: averages of fields from bulkf_diags.F

BULKF_ICE_CONSTANTS.h: all the parameters needed by the ice model and in the bulkf formula
calculations.




8.4.6.7. Input file DATA.ICE

We read in the file names of atmospheric data used in the bulk formula
calculations. Here we can also set the logicals: readwindstress if
we read in the wind stress rather than calculate it from the wind speed;
and readsurface to read in the surface temperature and salinity if
these will be used as part of a relaxing term.




8.4.6.8. Important Notes


	heat fluxes have different signs in the ocean and ice models.


	StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).







8.4.6.9. References

Bryan F.O., B.G Kauffman, W.G. Large, P.R. Gent, 1996: The NCAR CSM flux
coupler. Technical note TN-425+STR, NCAR.

Hunke, E.C and W.H. Lipscomb, circa 2001: CICE: the Los Alamos Sea Ice
Model Documentation and Software User’s Manual. LACC-98-16v.2.
(note: this documentation is no longer available as CICE has
progressed to a very different version 3)




8.4.6.10. Experiments and tutorials that use bulk_force


	Global ocean experiment in global_ocean.cs32x15 verification
directory, input from input.thsice directory.










          

      

      

    

  

    
      
          
            
  
8.4.7. EXF: The external forcing package

Authors: Patrick Heimbach and Dimitris Menemenlis


8.4.7.1. Introduction

The external forcing package, in conjunction with the calendar package
(cal), enables the handling of real-time (or “model-time”) forcing
fields of differing temporal forcing patterns. It comprises
climatological restoring and relaxation. Bulk formulae are implemented
to convert atmospheric fields to surface fluxes. An interpolation
routine provides on-the-fly interpolation of forcing fields an arbitrary
grid onto the model grid.

CPP options enable or disable different aspects of the package (Section
[sec:pkg:exf:config]). Runtime options, flags, filenames and
field-related dates/times are set in data.exf (Section
[sec:pkg:exf:runtime]). A description of key subroutines is given in
Section [sec:pkg:exf:subroutines]. Input fields, units and sign
conventions are summarized in Section
[sec:pkg:exf:fields:sub:units], and available diagnostics output is
listed in Section [sec:pkg:exf:diagnostics].




8.4.7.2. EXF configuration, compiling & running


Compile-time options

As with all MITgcm packages, EXF can be turned on or off at compile time


	using the packages.conf file by adding exf to it,


	or using genmake2 adding -enable=exf or -disable=exf
switches


	required packages and CPP options:
EXF requires the calendar package cal to be enabled; no
additional CPP options are required.




(see Section [sec:buildingCode]).

Parts of the EXF code can be enabled or disabled at compile time via CPP
preprocessor flags. These options are set in either EXF_OPTIONS.h or
in ECCO_CPPOPTIONS.h. Table 8.7 summarizes these
options.


Table 8.7 EXF CPP options





	CPP option

	Description





	EXF_VERBOSE

	verbose mode (recommended only for testing)



	ALLOW_ATM_TEMP

	compute heat/freshwater fluxes from atmos. state input



	ALLOW_ATM_WIND

	compute wind stress from wind speed input



	ALLOW_BULKFORMULAE

	is used if ALLOW_ATM_TEMP or
ALLOW_ATM_WIND is enabled



	EXF_READ_EVAP

	read evaporation instead of computing it



	ALLOW_RUNOFF

	read time-constant river/glacier run-off field



	ALLOW_DOWNWARD_RADIATION

	compute net from downward or downward from net radiation



	USE_EXF_INTERPOLATION

	enable on-the-fly bilinear or bicubic
interpolation of input fields



	used in conjunction with relaxation to prescribed (climatological) fields



	ALLOW_CLIMSST_RELAXATION

	relaxation to 2-D SST climatology



	ALLOW_CLIMSSS_RELAXATION

	relaxation to 2-D SSS climatology



	these are set outside of EXF in CPP_OPTIONS.h



	SHORTWAVE_HEATING

	enable shortwave radiation



	ATMOSPHERIC_LOADING

	enable surface pressure forcing











8.4.7.3. Run-time parameters

Run-time parameters are set in files data.pkg and data.exf which
is read in exf_readparms.F. Run-time parameters may be broken into 3
categories: (i) switching on/off the package at runtime, (ii) general
flags and parameters, and (iii) attributes for each forcing and
climatological field.


Enabling the package

A package is switched on/off at runtime by setting (e.g. for EXF)
useEXF = .TRUE. in data.pkg.




General flags and parameters


Table 8.8 EXF runtime options






	Flag/parameter

	default

	Description





	useExfCheckRange

	.TRUE.

	check range of input fields and stop if out of range



	useExfYearlyFields

	.FALSE.

	append current year postfix of form _YYYY on filename



	twoDigitYear

	.FALSE.

	instead of appending _YYYY append  YY



	repeatPeriod

	0.0

	> 0: cycle through all input fields at the same period (in seconds)



	= 0: use period assigned to each field



	exf_offset_atemp

	0.0

	set to 273.16 to convert from deg. Kelvin (assumed input) to Celsius



	windstressmax

	2.0

	max. allowed wind stress N m–2



	exf_albedo

	0.1

	surface albedo used to compute downward vs. net radiative fluxes



	climtempfreeze

	-1.9

	???



	ocean_emissivity

	
	longwave ocean-surface emissivity



	ice_emissivity

	
	longwave seaice emissivity



	snow_emissivity

	
	longwave  snow  emissivity



	exf_iceCd

	1.63E-3

	drag coefficient over sea-ice



	exf_iceCe

	1.63E-3

	evaporation transfer coeff. over sea-ice



	exf_iceCh

	1.63E-3

	sensible heat transfer coeff. over sea-ice



	exf_scal_BulkCdn

	1.0

	overall scaling of neutral drag coeff.



	useStabilityFct_overIce

	.FALSE.

	compute turbulent transfer coeff. over sea-ice



	readStressOnAgrid

	.FALSE.

	read wind-streess located on model-grid, A-grid point



	readStressOnCgrid

	.FALSE.

	read wind-streess located on model-grid, C-grid point



	useRelativeWind

	.FALSE.

	subtract [U/V]VEL or [U/VICE from U/V]WIND before
computing [U/V]STRESS



	zref

	10.0

	reference height



	hu

	10.0

	height of mean wind



	ht

	2.0

	height of mean temperature and rel. humidity



	umin

	0.5

	minimum absolute wind speed for computing Cd



	atmrho

	1.2

	mean atmospheric density [kg/m^3]



	atmcp

	1005.0

	mean atmospheric specific heat [J/kg/K]



	cdrag_[n]

	???

	n = 1,2,3; parameters for drag coeff. function



	cstanton_[n]

	???

	n = 1,2; parameters for Stanton number function



	cdalton

	???

	parameter for Dalton number function



	flamb

	2500000.0

	latent heat of evaporation [J/kg]



	flami

	334000.0

	latent heat of melting of pure ice [J/kg]



	zolmin

	-100.0

	minimum stability parameter



	cvapor_fac

	640380.0

	


	cvapor_exp

	5107.4

	


	cvapor_fac_ice

	11637800.0

	


	cvapor_fac_ice

	5897.8

	


	humid_fac

	0.606

	parameter for virtual temperature calculation



	gamma_blk

	0.010

	adiabatic lapse rate



	saltsat

	0.980

	reduction of saturation vapor pressure over salt-water



	psim_fac

	5.0

	


	exf_monFreq

	monitorFreq

	output frequency [s]



	exf_iprec

	32

	precision of input fields (32-bit or 64-bit)



	exf_yftype

	‘RL’

	precision of arrays (‘RL’ vs. ‘RS’)









Field attributes

All EXF fields are listed in Section
[sec:pkg:exf:fields:sub:units]. Each field has a number of
attributes which can be customized. They are summarized in Table
[tab:pkg:exf:runtime:sub:attributes]. To obtain an attribute for a
specific field, e.g. uwind prepend the field name to the listed
attribute, e.g. for attribute period this yields uwindperiod:


\[\begin{split}\begin{aligned}
  \begin{array}{cccccc}
    ~ & \texttt{field} & \& & \texttt{attribute} & \longrightarrow & \texttt{parameter} \\
    \text{e.g.} & \text{uwind} & \& & \text{period} & \longrightarrow & \text{uwindperiod} \\
  \end{array}\end{aligned}\end{split}\]


Table 8.9 EXF runtime attributes
       Note there is one exception for the default of atempconst = celsius2K = 273.16






	attribute

	Default

	Description





	field file

	‘ ‘

	filename; if left empty no file will be read; const will be used instead



	field const

	0.0

	constant that will be used if no file is read



	field startdate1

	0.0

	format: YYYYMMDD; start year (YYYY), month (MM), day (YY)



	
	
	of field to determine record number



	field startdate2

	0.0

	format: HHMMSS; start hour (HH), minute (MM), second(SS)



	
	
	of field to determine record number



	field period

	0.0

	interval in seconds between two records



	exf_inscal_field

	
	optional rescaling of input fields to comply with EXF units



	exf_outscal_field

	
	optional rescaling of EXF fields when mapped onto MITgcm fields



	used in conjunction with EXF_USE_INTERPOLATION



	field _lon0

	xgOrigin+delX/2

	starting longitude of input



	field _lon_inc

	delX

	increment in longitude of input



	field _lat0

	ygOrigin+delY/2

	starting latitude of input



	field _lat_inc

	delY

	increment in latitude of input



	field _nlon

	Nx

	number of grid points in longitude of input



	field _nlat

	Ny

	number of grid points in longitude of input









Example configuration

The following block is taken from the data.exf file of the
verification experiment global_with_exf/. It defines attributes for
the heat flux variable hflux:

hfluxfile       = 'ncep_qnet.bin',
hfluxstartdate1 = 19920101,
hfluxstartdate2 = 000000,
hfluxperiod     = 2592000.0,
hflux_lon0      = 2
hflux_lon_inc   = 4
hflux_lat0      = -78
hflux_lat_inc   = 39*4
hflux_nlon      = 90
hflux_nlat      = 40





EXF will read a file of name ’ncep_qnet.bin’. Its first record
represents January 1st, 1992 at 00:00 UTC. Next record is 2592000
seconds (or 30 days) later. Note that the first record read and used by
the EXF package corresponds to the value ’startDate1’ set in data.cal.
Therefore if you want to start the EXF forcing from later in the
’ncep_qnet.bin’ file, it suffices to specify startDate1 in data.cal as
a date later than 19920101 (for example, startDate1 = 19940101, for
starting January 1st, 1994). For this to work, ’ncep_qnet.bin’ must
have at least 2 years of data because in this configuration EXF will
read 2 years into the file to find the 1994 starting value.
Interpolation on-the-fly is used (in the present case trivially on the
same grid, but included nevertheless for illustration), and input field
grid starting coordinates and increments are supplied as well.






8.4.7.4. EXF bulk formulae

T.B.D. (cross-ref. to parameter list table)




8.4.7.5. EXF input fields and units

The following list is taken from the header file EXF_FIELDS.h. It
comprises all EXF input fields.

Output fields which EXF provides to the MITgcm are fields fu,
fv, Qnet, Qsw, EmPmR, and pload. They are defined in
FFIELDS.h.

c----------------------------------------------------------------------
c               |
c     field     :: Description
c               |
c----------------------------------------------------------------------
c     ustress   :: Zonal surface wind stress in N/m^2
c               |  > 0 for increase in uVel, which is west to
c               |      east for cartesian and spherical polar grids
c               |  Typical range: -0.5 < ustress < 0.5
c               |  Southwest C-grid U point
c               |  Input field
c----------------------------------------------------------------------
c     vstress   :: Meridional surface wind stress in N/m^2
c               |  > 0 for increase in vVel, which is south to
c               |      north for cartesian and spherical polar grids
c               |  Typical range: -0.5 < vstress < 0.5
c               |  Southwest C-grid V point
c               |  Input field
c----------------------------------------------------------------------
c     hs        :: sensible heat flux into ocean in W/m^2
c               |  > 0 for increase in theta (ocean warming)
c----------------------------------------------------------------------
c     hl        :: latent   heat flux into ocean in W/m^2
c               |  > 0 for increase in theta (ocean warming)
c----------------------------------------------------------------------
c     hflux     :: Net upward surface heat flux in W/m^2
c               |  (including shortwave)
c               |  hflux = latent + sensible + lwflux + swflux
c               |  > 0 for decrease in theta (ocean cooling)
c               |  Typical range: -250 < hflux < 600
c               |  Southwest C-grid tracer point
c               |  Input field
c----------------------------------------------------------------------
c     sflux     :: Net upward freshwater flux in m/s
c               |  sflux = evap - precip - runoff
c               |  > 0 for increase in salt (ocean salinity)
c               |  Typical range: -1e-7 < sflux < 1e-7
c               |  Southwest C-grid tracer point
c               |  Input field
c----------------------------------------------------------------------
c     swflux    :: Net upward shortwave radiation in W/m^2
c               |  swflux = - ( swdown - ice and snow absorption - reflected )
c               |  > 0 for decrease in theta (ocean cooling)
c               |  Typical range: -350 < swflux < 0
c               |  Southwest C-grid tracer point
c               |  Input field
c----------------------------------------------------------------------
c     uwind     :: Surface (10-m) zonal wind velocity in m/s
c               |  > 0 for increase in uVel, which is west to
c               |      east for cartesian and spherical polar grids
c               |  Typical range: -10 < uwind < 10
c               |  Southwest C-grid U point
c               |  Input or input/output field
c----------------------------------------------------------------------
c     vwind     :: Surface (10-m) meridional wind velocity in m/s
c               |  > 0 for increase in vVel, which is south to
c               |      north for cartesian and spherical polar grids
c               |  Typical range: -10 < vwind < 10
c               |  Southwest C-grid V point
c               |  Input or input/output field
c----------------------------------------------------------------------
c     wspeed    :: Surface (10-m) wind speed in m/s
c               |  >= 0 sqrt(u^2+v^2)
c               |  Typical range: 0 < wspeed < 10
c               |  Input or input/output field
c----------------------------------------------------------------------
c     atemp     :: Surface (2-m) air temperature in deg K
c               |  Typical range: 200 < atemp < 300
c               |  Southwest C-grid tracer point
c               |  Input or input/output field
c----------------------------------------------------------------------
c     aqh       :: Surface (2m) specific humidity in kg/kg
c               |  Typical range: 0 < aqh < 0.02
c               |  Southwest C-grid tracer point
c               |  Input or input/output field
c----------------------------------------------------------------------
c     lwflux    :: Net upward longwave radiation in W/m^2
c               |  lwflux = - ( lwdown - ice and snow absorption - emitted )
c               |  > 0 for decrease in theta (ocean cooling)
c               |  Typical range: -20 < lwflux < 170
c               |  Southwest C-grid tracer point
c               |  Input field
c----------------------------------------------------------------------
c     evap      :: Evaporation in m/s
c               |  > 0 for increase in salt (ocean salinity)
c               |  Typical range: 0 < evap < 2.5e-7
c               |  Southwest C-grid tracer point
c               |  Input, input/output, or output field
c----------------------------------------------------------------------
c     precip    :: Precipitation in m/s
c               |  > 0 for decrease in salt (ocean salinity)
c               |  Typical range: 0 < precip < 5e-7
c               |  Southwest C-grid tracer point
c               |  Input or input/output field
c----------------------------------------------------------------------
c    snowprecip :: snow in m/s
c               |  > 0 for decrease in salt (ocean salinity)
c               |  Typical range: 0 < precip < 5e-7
c               |  Input or input/output field
c----------------------------------------------------------------------
c     runoff    :: River and glacier runoff in m/s
c               |  > 0 for decrease in salt (ocean salinity)
c               |  Typical range: 0 < runoff < ????
c               |  Southwest C-grid tracer point
c               |  Input or input/output field
c               |  !!! WATCH OUT: Default exf_inscal_runoff !!!
c               |  !!! in exf_readparms.F is not 1.0        !!!
c----------------------------------------------------------------------
c     swdown    :: Downward shortwave radiation in W/m^2
c               |  > 0 for increase in theta (ocean warming)
c               |  Typical range: 0 < swdown < 450
c               |  Southwest C-grid tracer point
c               |  Input/output field
c----------------------------------------------------------------------
c     lwdown    :: Downward longwave radiation in W/m^2
c               |  > 0 for increase in theta (ocean warming)
c               |  Typical range: 50 < lwdown < 450
c               |  Southwest C-grid tracer point
c               |  Input/output field
c----------------------------------------------------------------------
c     apressure :: Atmospheric pressure field in N/m^2
c               |  > 0 for ????
c               |  Typical range: ???? < apressure < ????
c               |  Southwest C-grid tracer point
c               |  Input field
c----------------------------------------------------------------------








8.4.7.6. Key subroutines

Top-level routine: exf_getforcing.F

C     !CALLING SEQUENCE:
c ...
c  exf_getforcing (TOP LEVEL ROUTINE)
c  |
c  |-- exf_getclim (get climatological fields used e.g. for relax.)
c  |   |--- exf_set_climsst  (relax. to 2-D SST field)
c  |   |--- exf_set_climsss  (relax. to 2-D SSS field)
c  |   o
c  |
c  |-- exf_getffields <- this one does almost everything
c  |   |   1. reads in fields, either flux or atmos. state,
c  |   |      depending on CPP options (for each variable two fields
c  |   |      consecutive in time are read in and interpolated onto
c  |   |      current time step).
c  |   |   2. If forcing is atmos. state and control is atmos. state,
c  |   |      then the control variable anomalies are read here via ctrl_get_gen
c  |   |      (atemp, aqh, precip, swflux, swdown, uwind, vwind).
c  |   |      If forcing and control are fluxes, then
c  |   |      controls are added later.
c  |   o
c  |
c  |-- exf_radiation
c  |   |    Compute net or downwelling radiative fluxes via
c  |   |    Stefan-Boltzmann law in case only one is known.
c  |   o
c  |-- exf_wind
c  |   |   Computes wind speed and stresses, if required.
c  |   o
c  |
c  |-- exf_bulkformulae
c  |   |   Compute air-sea buoyancy fluxes from
c  |   |   atmospheric state following Large and Pond, JPO, 1981/82
c  |   o
c  |
c  |-- < hflux is sum of sensible, latent, longwave rad. >
c  |-- < sflux is sum of evap. minus precip. minus runoff  >
c  |
c  |-- exf_getsurfacefluxes
c  |   If forcing and control is flux, then the
c  |   control vector anomalies are read here via ctrl_get_gen
c  |   (hflux, sflux, ustress, vstress)
c  |
c  |-- < update tile edges here >
c  |
c  |-- exf_check_range
c  |   |   Check whether read fields are within assumed range
c  |   |   (may capture mismatches in units)
c  |   o
c  |
c  |-- < add shortwave to hflux for diagnostics >
c  |
c  |-- exf_diagnostics_fill
c  |   |   Do EXF-related diagnostics output here.
c  |   o
c  |
c  |-- exf_mapfields
c  |   |   Forcing fields from exf package are mapped onto
c  |   |   mitgcm forcing arrays.
c  |   |   Mapping enables a runtime rescaling of fields
c  |   o
C  o





Radiation calculation: exf_radiation.F

Wind speed and stress calculation: exf_wind.F

Bulk formula: exf_bulkformulae.F

Generic I/O: exf_set_gen.F

Interpolation: exf_interp.F

Header routines




8.4.7.7. EXF diagnostics

Diagnostics output is available via the diagnostics package (see Section
[sec:pkg:diagnostics]). Available output fields are summarized below.

---------+----+----+----------------+-----------------
 <-Name->|Levs|grid|<--  Units   -->|<- Tile (max=80c)
---------+----+----+----------------+-----------------
 EXFhs   |  1 | SM | W/m^2          | Sensible heat flux into ocean, >0 increases theta
 EXFhl   |  1 | SM | W/m^2          | Latent heat flux into ocean, >0 increases theta
 EXFlwnet|  1 | SM | W/m^2          | Net upward longwave radiation, >0 decreases theta
 EXFswnet|  1 | SM | W/m^2          | Net upward shortwave radiation, >0 decreases theta
 EXFlwdn |  1 | SM | W/m^2          | Downward longwave radiation, >0 increases theta
 EXFswdn |  1 | SM | W/m^2          | Downward shortwave radiation, >0 increases theta
 EXFqnet |  1 | SM | W/m^2          | Net upward heat flux (turb+rad), >0 decreases theta
 EXFtaux |  1 | SU | N/m^2          | zonal surface wind stress, >0 increases uVel
 EXFtauy |  1 | SV | N/m^2          | meridional surface wind stress, >0 increases vVel
 EXFuwind|  1 | SM | m/s            | zonal 10-m wind speed, >0 increases uVel
 EXFvwind|  1 | SM | m/s            | meridional 10-m wind speed, >0 increases uVel
 EXFwspee|  1 | SM | m/s            | 10-m wind speed modulus ( >= 0 )
 EXFatemp|  1 | SM | degK           | surface (2-m) air temperature
 EXFaqh  |  1 | SM | kg/kg          | surface (2-m) specific humidity
 EXFevap |  1 | SM | m/s            | evaporation, > 0 increases salinity
 EXFpreci|  1 | SM | m/s            | evaporation, > 0 decreases salinity
 EXFsnow |  1 | SM | m/s            | snow precipitation, > 0 decreases salinity
 EXFempmr|  1 | SM | m/s            | net upward freshwater flux, > 0 increases salinity
 EXFpress|  1 | SM | N/m^2          | atmospheric pressure field








8.4.7.8. References




8.4.7.9. Experiments and tutorials that use exf


	Global Ocean experiment, in global_with_exf verification directory


	Labrador Sea experiment, in lab_sea verification directory










          

      

      

    

  

    
      
          
            
  
8.4.8. CAL: The calendar package

Authors: Christian Eckert and Patrick Heimbach

This calendar tool was originally intended to enable the use of absolute
dates (Gregorian Calendar dates) in MITgcm. There is, however, a fair
number of routines that can be used independently of the main MITgcm
executable. After some minor modifications the whole package can be used
either as a stand-alone calendar or in connection with any dynamical
model that needs calendar dates. Some straightforward extensions are
still pending e.g. the availability of the Julian Calendar, to be able
to resolve fractions of a second, and to have a time- step that is
longer than one day.


8.4.8.1. Basic assumptions for the calendar tool

It is assumed that the SMALLEST TIME INTERVAL to be resolved is ONE
SECOND.

Further assumptions are that there is an INTEGER NUMBER OF MODEL STEPS
EACH DAY, and that AT LEAST ONE STEP EACH DAY is made.

Not each individual routine depends on these assumptions; there are only
a few places where they enter.




8.4.8.2. Format of calendar dates

In this calendar tool a complete date specification is defined as the
following integer array:

c           integer date(4)
c
c           ( yyyymmdd, hhmmss, leap_year, dayofweek )
c
c             date(1) = yyyymmdd    <-- Year-Month-Day
c             date(2) =   hhmmss    <-- Hours-Minutes-Seconds
c             date(3) = leap_year   <-- Leap Year/No Leap Year
c             date(4) = dayofweek   <-- Day of the Week
c
c             leap_year is either equal to 1 (normal year)
c                              or equal to 2 (leap year)
c
c             dayofweek has a range of 1 to 7.





In case the Gregorian Calendar is used, the first day of the week is
Friday, since day of the Gregorian Calendar was Friday, 15 Oct. 1582. As
a date array this date would be specified as

c               refdate(1) = 15821015
c               refdate(2) =        0
c               refdate(3) =        1
c               refdate(4) =        1








8.4.8.3. Calendar dates and time intervals

Subtracting calendar dates yields time intervals. Time intervals have
the following format:

c         integer datediff(4)
c
c           datediff(1) = # Days
c           datediff(2) = hhmmss
c           datediff(3) =      0
c           datediff(4) =     -1





Such time intervals can be added to or can be subtracted from calendar
dates. Time intervals can be added to and be subtracted from each other.




8.4.8.4. Using the calendar together with MITgcm

Each routine has as an argument the thread number that it is belonging
to, even if this number is not used in the routine itself.

In order to include the calendar tool into the MITgcm setup the MITgcm
subroutine “initialise.F” or the routine “initilise_fixed.F”, depending
on the MITgcm release, has to be modified in the following way:

c         #ifdef ALLOW_CALENDAR
c         C--   Initialise the calendar package.
c         #ifdef USE_CAL_NENDITER
c               CALL cal_Init(
c              I               startTime,
c              I               endTime,
c              I               deltaTclock,
c              I               nIter0,
c              I               nEndIter,
c              I               nTimeSteps,
c              I               myThid
c              &             )
c         #else
c               CALL cal_Init(
c              I               startTime,
c              I               endTime,
c              I               deltaTclock,
c              I               nIter0,
c              I               nTimeSteps,
c              I               myThid
c              &             )
c         #endif
c               _BARRIER
c         #endif





It is useful to have the CPP flag ALLOW_CALENDAR in order to switch
from the usual MITgcm setup to the one that includes the calendar tool.
The CPP flag USE_CAL_NENDITER has been introduced in order to enable
the use of the calendar for MITgcm releases earlier than checkpoint 25
which do not have the global variable *nEndIter*.




8.4.8.5. The individual calendars

Simple model calendar:

This calendar can be used by defining

c                  TheCalendar='model'





in the calendar’s data file “data.cal”.

In this case a year is assumed to have 360 days. The model year is
divided into 12 months with 30 days each.

Gregorian Calendar:

This calendar can be used by defining

c                  TheCalendar='gregorian'





in the calendar’s data file “data.cal”.




8.4.8.6. Short routine description

c      o  cal_Init          - Initialise the calendar. This is the interface
c                             to MITgcm.
c
c      o  cal_Set           - Sets the calendar according to the user
c                             specifications.
c
c      o  cal_GetDate       - Given the model's current timestep or the
c                             model's current time return the corresponding
c                             calendar date.
c
c      o  cal_FullDate      - Complete a date specification (leap year and
c                             day of the week).
c
c      o  cal_IsLeap        - Determine whether a given year is a leap year.
c
c      o  cal_TimePassed    - Determine the time passed between two dates.
c
c      o  cal_AddTime       - Add a time interval either to a time interval
c                             or to a date.
c
c      o  cal_TimeInterval  - Given a time interval return the corresponding
c                             date array.
c
c      o  cal_SubDates      - Determine the time interval between two dates
c                             or between two time intervals.
c
c      o  cal_ConvDate      - Decompose a date array or a time interval
c                             array into its components.
c
c      o  cal_CopyDate      - Copy a date array or a time interval array to
c                             another array.
c
c      o  cal_CompDates     - Compare two calendar dates or time intervals.
c
c      o  cal_ToSeconds     - Given a time interval array return the number
c                             of seconds.
c
c      o  cal_WeekDay       - Return the weekday as a string given the
c                             calendar date.
c
c      o  cal_NumInts       - Return the number of time intervals between two
c                             given dates.
c
c      o  cal_StepsPerDay   - Given an iteration number or the current
c                             integration time return the number of time
c                             steps to integrate in the current calendar day.
c
c      o  cal_DaysPerMonth  - Given an iteration number or the current
c                             integration time return the number of days
c                             to integrate in this calendar month.
c
c      o  cal_MonthsPerYear - Given an iteration number or the current
c                             integration time return the number of months
c                             to integrate in the current calendar year.
c
c      o  cal_StepsForDay   - Given the integration day return the number
c                             of steps to be integrated, the first step,
c                             and the last step in the day specified. The
c                             first and the last step refer to the total
c                             number of steps (1, ... , cal_IntSteps).
c
c      o  cal_DaysForMonth  - Given the integration month return the number
c                             of days to be integrated, the first day,
c                             and the last day in the month specified. The
c                             first and the last day refer to the total
c                             number of steps (1, ... , cal_IntDays).
c
c      o  cal_MonthsForYear - Given the integration year return the number
c                             of months to be integrated, the first month,
c                             and the last month in the year specified. The
c                             first and the last step refer to the total
c                             number of steps (1, ... , cal_IntMonths).
c
c      o  cal_Intsteps      - Return the number of calendar years that are
c                             affected by the current integration.
c
c      o  cal_IntDays       - Return the number of calendar days that are
c                             affected by the current integration.
c
c      o  cal_IntMonths     - Return the number of calendar months that are
c                             affected by the current integration.
c
c      o  cal_IntYears      - Return the number of calendar years that are
c                             affected by the current integration.
c
c      o  cal_nStepDay      - Return the number of time steps that can be
c                             performed during one calendar day.
c
c      o  cal_CheckDate     - Do some simple checks on a date array or on a
c                             time interval array.
c
c      o  cal_PrintError    - Print error messages according to the flags
c                             raised by the calendar routines.
c
c      o  cal_PrintDate     - Print a date array in some format suitable for
c                             MITgcm's protocol output.
c
c      o  cal_TimeStamp     - Given the time and the iteration number return
c                             the date and print all the above numbers.
c
c      o  cal_Summary       - List all the setttings of the calendar tool.








8.4.8.7. Experiments and tutorials that use cal


	Global ocean experiment in global_with_exf verification directory.


	Labrador Sea experiment in lab_sea verification directory.










          

      

      

    

  

    
      
          
            
  
8.5.1. Atmospheric Intermediate Physics: AIM

Note: The folowing document below describes the aim_v23 package that
is based on the version v23 of the SPEEDY code ().


8.5.1.1. Key subroutines, parameters and files




8.5.1.2. AIM Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
DIABT   |  5 |SM      ML      |K/s             |Pot. Temp.  Tendency (Mass-Weighted) from Diabatic Processes
DIABQ   |  5 |SM      ML      |g/kg/s          |Spec.Humid. Tendency (Mass-Weighted) from Diabatic Processes
RADSW   |  5 |SM      ML      |K/s             |Temperature Tendency due to Shortwave Radiation (TT_RSW)
RADLW   |  5 |SM      ML      |K/s             |Temperature Tendency due to Longwave  Radiation (TT_RLW)
DTCONV  |  5 |SM      MR      |K/s             |Temperature Tendency due to Convection (TT_CNV)
TURBT   |  5 |SM      ML      |K/s             |Temperature Tendency due to Turbulence in PBL (TT_PBL)
DTLS    |  5 |SM      ML      |K/s             |Temperature Tendency due to Large-scale condens. (TT_LSC)
DQCONV  |  5 |SM      MR      |g/kg/s          |Spec. Humidity Tendency due to Convection (QT_CNV)
TURBQ   |  5 |SM      ML      |g/kg/s          |Spec. Humidity Tendency due to Turbulence in PBL (QT_PBL)
DQLS    |  5 |SM      ML      |g/kg/s          |Spec. Humidity Tendency due to Large-Scale Condens. (QT_LSC)
TSR     |  1 |SM P    U1      |W/m^2           |Top-of-atm. net Shortwave Radiation (+=dw)
OLR     |  1 |SM P    U1      |W/m^2           |Outgoing Longwave  Radiation (+=up)
RADSWG  |  1 |SM P    L1      |W/m^2           |Net Shortwave Radiation at the Ground (+=dw)
RADLWG  |  1 |SM      L1      |W/m^2           |Net Longwave  Radiation at the Ground (+=up)
HFLUX   |  1 |SM      L1      |W/m^2           |Sensible Heat Flux (+=up)
EVAP    |  1 |SM      L1      |g/m^2/s         |Surface Evaporation (g/m2/s)
PRECON  |  1 |SM P    L1      |g/m^2/s         |Convective  Precipitation (g/m2/s)
PRECLS  |  1 |SM      M1      |g/m^2/s         |Large Scale Precipitation (g/m2/s)
CLDFRC  |  1 |SM P    M1      |0-1             |Total Cloud Fraction (0-1)
CLDPRS  |  1 |SM PC167M1      |0-1             |Cloud Top Pressure (normalized)
CLDMAS  |  5 |SM P    LL      |kg/m^2/s        |Cloud-base Mass Flux  (kg/m^2/s)
DRAG    |  5 |SM P    LL      |kg/m^2/s        |Surface Drag Coefficient (kg/m^2/s)
WINDS   |  1 |SM P    L1      |m/s             |Surface Wind Speed  (m/s)
TS      |  1 |SM      L1      |K               |near Surface Air Temperature  (K)
QS      |  1 |SM P    L1      |g/kg            |near Surface Specific Humidity  (g/kg)
ENPREC  |  1 |SM      M1      |W/m^2           |Energy flux associated with precip. (snow, rain Temp)
ALBVISDF|  1 |SM P    L1      |0-1             |Surface Albedo (Visible band) (0-1)
DWNLWG  |  1 |SM P    L1      |W/m^2           |Downward Component of Longwave Flux at the Ground (+=dw)
SWCLR   |  5 |SM      ML      |K/s             |Clear Sky Temp. Tendency due to Shortwave Radiation
LWCLR   |  5 |SM      ML      |K/s             |Clear Sky Temp. Tendency due to Longwave  Radiation
TSRCLR  |  1 |SM P    U1      |W/m^2           |Clear Sky Top-of-atm. net Shortwave Radiation (+=dw)
OLRCLR  |  1 |SM P    U1      |W/m^2           |Clear Sky Outgoing Longwave  Radiation  (+=up)
SWGCLR  |  1 |SM P    L1      |W/m^2           |Clear Sky Net Shortwave Radiation at the Ground (+=dw)
LWGCLR  |  1 |SM      L1      |W/m^2           |Clear Sky Net Longwave  Radiation at the Ground (+=up)
UFLUX   |  1 |UM   184L1      |N/m^2           |Zonal Wind Surface Stress  (N/m^2)
VFLUX   |  1 |VM   183L1      |N/m^2           |Meridional Wind Surface Stress  (N/m^2)
DTSIMPL |  1 |SM P    L1      |K               |Surf. Temp Change after 1 implicit time step








8.5.1.3. Experiments and tutorials that use aim


	Global atmosphere experiment in aim.5l_cs verification directory.










          

      

      

    

  

    
      
          
            
  
8.5.2. Land package


8.5.2.1. Introduction

This package provides a simple land model based on Rong Zhang
[e-mail:roz@gfdl.noaa.gov] 2 layers model (see documentation below).

It is primarily implemented for AIM (_v23) atmospheric physics but
could be adapted to work with a different atmospheric physics. Two
subroutines (aim_aim2land.F aim_land2aim.F in pkg/aim_v23) are
used as interface with AIM physics.

Number of layers is a parameter (land_nLev in LAND_SIZE.h) and can
be changed.

Note on Land Model
date: June 1999
author: Rong Zhang




8.5.2.2. Equations and Key Parameters

This is a simple 2-layer land model. The top layer depth
\(z1=0.1m\), the second layer depth \(z2=4m\).

Let \(T_{g1},T_{g2}\) be the temperature of each layer,
\(W_{1,}W_{2}\) be the soil moisture of each layer. The field
capacity \(f_{1,}\) \(f_{2}\) are the maximum water amount in
each layer, so \(W_{i}\) is the ratio of available water to field
capacity. \(f_{i}=\gamma z_{i},\gamma =0.24\) is the field capapcity
per meter soil\(,\) so \(f_{1}=0.024m,\) \(f_{2}=0.96m.\)

The land temperature is determined by total surface downward heat flux
\(F,\)


\[z_{1}C_{1}\frac{dT_{g1}}{dt}=F-\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}\]


\[z_{2}C_{2}\frac{dT_{g2}}{dt}=\lambda \frac{T_{g1}-T_{g2}}{(z_{1}+z_{2})/2}\]

here \(C_{1},C_{2}\) are the heat capacity of each layer ,
\(\lambda ` is the thermal conductivity,
:math:\)lambda =0.42Wm^{-1}K^{-1}.`


\[C_{1}=C_{w}W_{1}\gamma +C_{s}\]


\[C_{2}=C_{w}W_{2}\gamma +C_{s}\]

\(C_{w},C_{s}\) are the heat capacity of water and dry soil
respectively. \(%
C_{w}=4.2\times 10^{6}Jm^{-3}K^{-1},C_{s}=1.13\times 10^{6}Jm^{-3}K^{-1}.\)

The soil moisture is determined by precipitation \(P(m/s)\),surface
evaporation \(E(m/s)\) and runoff \(R(m/s).\)


\[\frac{dW_{1}}{dt}=\frac{P-E-R}{f_{1}}+\frac{W_{2}-W_{1}}{\tau }\]

\(\tau =2\) \(days\) is the time constant for diffusion of
moisture between layers.


\[\frac{dW_{2}}{dt}=\frac{f_{1}}{f_{2}}\frac{W_{1}-W_{2}}{\tau }\]

In the code, \(R=0\) gives better result, \(W_{1},W_{2}\) are
set to be within [0, 1]. If \(W_{1}\) is greater than 1, then let
\(\delta W_{1}=W_{1}-1,W_{1}=1\) and
\(W_{2}=W_{2}+p\delta W_{1}\frac{f_{1}}{f_{2}}\), i.e. the runoff of
top layer is put into second layer. \(p=0.5\) is the fraction of top
layer runoff that is put into second layer.

The time step is 1 hour, it takes several years to reach equalibrium
offline.




8.5.2.3. Land diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
GrdSurfT|  1 |SM      Lg      |degC            |Surface Temperature over land
GrdTemp |  2 |SM      MG      |degC            |Ground Temperature at each level
GrdEnth |  2 |SM      MG      |J/m3            |Ground Enthalpy at each level
GrdWater|  2 |SM P    MG      |0-1             |Ground Water (vs Field Capacity) Fraction at each level
LdSnowH |  1 |SM P    Lg      |m               |Snow Thickness over land
LdSnwAge|  1 |SM P    Lg      |s               |Snow Age over land
RUNOFF  |  1 |SM      L1      |m/s             |Run-Off per surface unit
EnRunOff|  1 |SM      L1      |W/m^2           |Energy flux associated with run-Off
landHFlx|  1 |SM      Lg      |W/m^2           |net surface downward Heat flux over land
landPmE |  1 |SM      Lg      |kg/m^2/s        |Precipitation minus Evaporation over land
ldEnFxPr|  1 |SM      Lg      |W/m^2           |Energy flux (over land) associated with Precip (snow,rain)








8.5.2.4. References

Hansen J. et al. Efficient three-dimensional global models for climate
studies: models I and II. Monthly Weather Review, vol.111, no.4, pp.
609-62, 1983




8.5.2.5. Experiments and tutorials that use land


	Global atmosphere experiment in aim.5l_cs verification directory.










          

      

      

    

  

    
      
          
            
  \(\newcommand{\p}[1]{\frac{\partial }{\partial #1}}\)
\(\newcommand{\pp}[2]{\frac{\partial #1}{\partial #2}}\)
\(\newcommand{\dd}[2]{\frac{d #1}{d #2}}\)
\(\newcommand{\h}{\frac{1}{2}}\)


8.5.3. Fizhi: High-end Atmospheric Physics


8.5.3.1. Introduction

The fizhi (high-end atmospheric physics) package includes a collection
of state-of-the-art physical parameterizations for atmospheric
radiation, cumulus convection, atmospheric boundary layer turbulence,
and land surface processes. The collection of atmospheric physics
parameterizations were originally used together as part of the GEOS-3
(Goddard Earth Observing System-3) GCM developed at the NASA/Goddard
Global Modelling and Assimilation Office (GMAO).




8.5.3.2. Equations

Moist Convective Processes:


Sub-grid and Large-scale Convection

Sub-grid scale cumulus convection is parameterized using the Relaxed
Arakawa Schubert (RAS) scheme of [MS92], which is a linearized Arakawa
Schubert type scheme. RAS predicts the mass flux from an ensemble of
clouds. Each subensemble is identified by its entrainment rate and level
of neutral bouyancy which are determined by the grid-scale properties.

The thermodynamic variables that are used in RAS to describe the grid
scale vertical profile are the dry static energy, \(s=c_pT +gz\),
and the moist static energy, \(h=c_p T + gz + Lq\). The conceptual
model behind RAS depicts each subensemble as a rising plume cloud,
entraining mass from the environment during ascent, and detraining all
cloud air at the level of neutral buoyancy. RAS assumes that the
normalized cloud mass flux, \(\eta\), normalized by the cloud base
mass flux, is a linear function of height, expressed as:


\[\pp{\eta(z)}{z} = \lambda \hspace{0.4cm}or\hspace{0.4cm} \pp{\eta(P^{\kappa})}{P^{\kappa}} =
-\frac{c_p}{g}\theta\lambda\]

where we have used the hydrostatic equation written in the form:


\[\pp{z}{P^{\kappa}} = -\frac{c_p}{g}\theta\]

The entrainment parameter, \(\lambda\), characterizes a particular
subensemble based on its detrainment level, and is obtained by assuming
that the level of detrainment is the level of neutral buoyancy, ie., the
level at which the moist static energy of the cloud, \(h_c\), is
equal to the saturation moist static energy of the environment,
\(h^*\). Following [MS92], \(\lambda\) may be written as


\[\lambda = \frac{h_B - h^*_D}{ \frac{c_p}{g} \int_{P_D}^{P_B}\theta(h^*_D-h)dP^{\kappa}},\]

where the subscript \(B\) refers to cloud base, and the subscript
\(D\) refers to the detrainment level.

The convective instability is measured in terms of the cloud work
function \(A\), defined as the rate of change of cumulus kinetic
energy. The cloud work function is related to the buoyancy, or the
difference between the moist static energy in the cloud and in the
environment:


\[A = \int_{P_D}^{P_B} \frac{\eta}{1 + \gamma}
\left[ \frac{h_c-h^*}{P^{\kappa}} \right] dP^{\kappa}\]

where \(\gamma\) is \(\frac{L}{c_p}\pp{q^*}{T}\) obtained from
the Claussius Clapeyron equation, and the subscript \(c\) refers to
the value inside the cloud.

To determine the cloud base mass flux, the rate of change of \(A\)
in time due to dissipation by the clouds is assumed to approximately
balance the rate of change of \(A\) due to the generation by the
large scale. This is the quasi-equilibrium assumption, and results in
an expression for \(m_B\):


\[m_B = \frac{- \left. \frac{dA}{dt} \right|_{ls}}{K}\]

where \(K\) is the cloud kernel, defined as the rate of change of
the cloud work function per unit cloud base mass flux, and is currently
obtained by analytically differentiating the expression for \(A\) in
time. The rate of change of \(A\) due to the generation by the large
scale can be written as the difference between the current
\(A(t+\Delta t)\) and its equillibrated value after the previous
convective time step \(A(t)\), divided by the time step.
\(A(t)\) is approximated as some critical \(A_{crit}\), computed
by Lord (1982) from \(in situ\) observations.

The predicted convective mass fluxes are used to solve grid-scale
temperature and moisture budget equations to determine the impact of
convection on the large scale fields of temperature (through latent
heating and compensating subsidence) and moisture (through precipitation
and detrainment):


\[\left.{\pp{\theta}{t}}\right|_{c} = \alpha \frac{ m_B}{c_p P^{\kappa}} \eta \pp{s}{p}\]

and


\[\left.{\pp{q}{t}}\right|_{c} = \alpha \frac{ m_B}{L} \eta (\pp{h}{p}-\pp{s}{p})\]

where \(\theta = \frac{T}{P^{\kappa}}\), \(P = (p/p_0)\), and
\(\alpha\) is the relaxation parameter.

As an approximation to a full interaction between the different
allowable subensembles, many clouds are simulated frequently, each
modifying the large scale environment some fraction \(\alpha\) of
the total adjustment. The parameterization thereby “relaxes” the large
scale environment towards equillibrium.

In addition to the RAS cumulus convection scheme, the fizhi package
employs a Kessler-type scheme for the re-evaporation of falling rain [SM88],
which correspondingly adjusts the temperature assuming \(h\) is
conserved. RAS in its current formulation assumes that all cloud water
is deposited into the detrainment level as rain. All of the rain is
available for re-evaporation, which begins in the level below
detrainment. The scheme accounts for some microphysics such as the
rainfall intensity, the drop size distribution, as well as the
temperature, pressure and relative humidity of the surrounding air. The
fraction of the moisture deficit in any model layer into which the rain
may re-evaporate is controlled by a free parameter, which allows for a
relatively efficient re-evaporation of liquid precipitate and larger
rainout for frozen precipitation.

Due to the increased vertical resolution near the surface, the lowest
model layers are averaged to provide a 50 mb thick sub-cloud layer for
RAS. Each time RAS is invoked (every ten simulated minutes), a number of
randomly chosen subensembles are checked for the possibility of
convection, from just above cloud base to 10 mb.

Supersaturation or large-scale precipitation is initiated in the fizhi
package whenever the relative humidity in any grid-box exceeds a
critical value, currently 100 %. The large-scale precipitation
re-evaporates during descent to partially saturate lower layers in a
process identical to the re-evaporation of convective rain.




Cloud Formation

Convective and large-scale cloud fractons which are used for
cloud-radiative interactions are determined diagnostically as part of
the cumulus and large-scale parameterizations. Convective cloud
fractions produced by RAS are proportional to the detrained liquid water
amount given by


\[F_{RAS} = \min\left[ \frac{l_{RAS}}{l_c}, 1.0 \right]\]

where \(l_c\) is an assigned critical value equal to \(1.25\)
g/kg. A memory is associated with convective clouds defined by:


\[F_{RAS}^n = \min\left[ F_{RAS} + (1-\frac{\Delta t_{RAS}}{\tau})F_{RAS}^{n-1}, 1.0 \right]\]

where \(F_{RAS}\) is the instantanious cloud fraction and
\(F_{RAS}^{n-1}\) is the cloud fraction from the previous RAS
timestep. The memory coefficient is computed using a RAS cloud
timescale, \(\tau\), equal to 1 hour. RAS cloud fractions are
cleared when they fall below 5 %.

Large-scale cloudiness is defined, following Slingo and Ritter (1985),
as a function of relative humidity:


\[F_{LS} = \min\left[ { \left( \frac{RH-RH_c}{1-RH_c} \right) }^2, 1.0 \right]\]

where

RHc & = & 1-s(1-s)(2-+2 s)r
s & = & p/psurf
r & = & ( )
RHmin & = & 0.75
& = & 0.573285 .

These cloud fractions are suppressed, however, in regions where the
convective sub-cloud layer is conditionally unstable. The functional
form of \(RH_c\) is shown in Figure 8.8



[image: critical relative humidity for clouds]Figure 8.8 Critical Relative Humidity for Clouds.






The total cloud fraction in a grid box is determined by the larger of
the two cloud fractions:


\[F_{CLD} = \max \left[ F_{RAS},F_{LS} \right] .\]

Finally, cloud fractions are time-averaged between calls to the
radiation packages.

Radiation:

The parameterization of radiative heating in the fizhi package includes
effects from both shortwave and longwave processes. Radiative fluxes are
calculated at each model edge-level in both up and down directions. The
heating rates/cooling rates are then obtained from the vertical
divergence of the net radiative fluxes.

The net flux is


\[F = F^\uparrow - F^\downarrow\]

where \(F\) is the net flux, \(F^\uparrow\) is the upward flux
and \(F^\downarrow\) is the downward flux.

The heating rate due to the divergence of the radiative flux is given by


\[\pp{\rho c_p T}{t} = - \pp{F}{z}\]

or


\[\pp{T}{t} = \frac{g}{c_p \pi} \pp{F}{\sigma}\]

where \(g\) is the accelation due to gravity and \(c_p\) is the
heat capacity of air at constant pressure.

The time tendency for Longwave Radiation is updated every 3 hours. The
time tendency for Shortwave Radiation is updated once every three hours
assuming a normalized incident solar radiation, and subsequently
modified at every model time step by the true incident radiation. The
solar constant value used in the package is equal to 1365 \(W/m^2\)
and a \(CO_2\) mixing ratio of 330 ppm. For the ozone mixing ratio,
monthly mean zonally averaged climatological values specified as a
function of latitude and height [RSG87] are linearly interpolated to the
current time.




Shortwave Radiation

The shortwave radiation package used in the package computes solar
radiative heating due to the absoption by water vapor, ozone, carbon
dioxide, oxygen, clouds, and aerosols and due to the scattering by
clouds, aerosols, and gases. The shortwave radiative processes are
described by [Cho90][Cho92]. This shortwave package uses the Delta-Eddington
approximation to compute the bulk scattering properties of a single
layer following King and Harshvardhan (JAS, 1986). The transmittance and
reflectance of diffuse radiation follow the procedures of Sagan and
Pollock (JGR, 1967) and [LH74].

Highly accurate heating rate calculations are obtained through the use
of an optimal grouping strategy of spectral bands. By grouping the UV
and visible regions as indicated in Table 8.10, the
Rayleigh scattering and the ozone absorption of solar radiation can be
accurately computed in the ultraviolet region and the photosynthetically
active radiation (PAR) region. The computation of solar flux in the
infrared region is performed with a broadband parameterization using the
spectrum regions shown in Table 8.11. The solar radiation
algorithm used in the fizhi package can be applied not only for climate
studies but also for studies on the photolysis in the upper atmosphere
and the photosynthesis in the biosphere.


Table 8.10 UV and Visible Spectral Regions used in shortwave radiation package.






	UV and Visible Spectral Regions



	Region

	Band

	Wavelength (micron)





	UV-C

	
	




	.175 - .225



	
	
	




	.225 - .245



	
	
	.260 - .280



	
	
	




	.245 - .260



	UV-B

	
	




	.280 - .295



	
	
	




	.295 - .310



	
	
	




	.310 - .320



	UV-A

	
	




	.320 - .400



	PAR

	
	




	.400 - .700







Table 8.11 Infrared Spectral Regions used in shortwave radiation package.






	Infrared Spectral Regions



	Band

	Wavenumber (cm–1)

	Wavelength (micron)





	1

	1000-4400

	2.27-10.0



	2

	4400-8200

	1.22-2.27



	3

	8200-14300

	0.70-1.22






Within the shortwave radiation package, both ice and liquid cloud
particles are allowed to co-exist in any of the model layers. Two sets
of cloud parameters are used, one for ice paticles and the other for
liquid particles. Cloud parameters are defined as the cloud optical
thickness and the effective cloud particle size. In the fizhi package,
the effective radius for water droplets is given as 10 microns, while 65
microns is used for ice particles. The absorption due to aerosols is
currently set to zero.

To simplify calculations in a cloudy atmosphere, clouds are grouped into
low (\(p>700\) mb), middle (700 mb \(\ge p > 400\) mb), and high
(\(p < 400\) mb) cloud regions. Within each of the three regions,
clouds are assumed maximally overlapped, and the cloud cover of the
group is the maximum cloud cover of all the layers in the group. The
optical thickness of a given layer is then scaled for both the direct
(as a function of the solar zenith angle) and diffuse beam radiation so
that the grouped layer reflectance is the same as the original
reflectance. The solar flux is computed for each of eight cloud
realizations possible within this low/middle/high classification, and
appropriately averaged to produce the net solar flux.




Longwave Radiation

The longwave radiation package used in the fizhi package is thoroughly
described by . As described in that document, IR fluxes are computed due
to absorption by water vapor, carbon dioxide, and ozone. The spectral
bands together with their absorbers and parameterization methods,
configured for the fizhi package, are shown in Table 8.12.


Table 8.12 IR Spectral Bands, Absorbers, and Parameterization Method (from [CS94])







	IR Spectral Bands



	Band

	Spectral Range (cm–1)

	Absorber

	Method





	1

	0-340

	H\(_2\)O line

	T



	2

	340-540

	H\(_2\)O line

	T



	3a

	540-620

	H\(_2\)O line

	K



	3b

	620-720

	H\(_2\)O continuum

	S



	3b

	720-800

	CO\(_2\)

	T



	4

	800-980

	H\(_2\)O line

	K



	
	
	H\(_2\)O continuum

	S



	
	
	H\(_2\)O line

	K



	5

	980-1100

	H\(_2\)O continuum

	S



	
	
	O\(_3\)

	T



	6

	1100-1380

	H\(_2\)O line

	K



	
	
	H\(_2\)O continuum

	S



	7

	1380-1900

	H\(_2\)O line

	T



	8

	1900-3000

	H\(_2\)O line

	K



	K: \(k\)-distribution method with linear pressure scaling



	T: Table look-up with temperature and pressure scaling



	S: One-parameter temperature scaling






The longwave radiation package accurately computes cooling rates for the
middle and lower atmosphere from 0.01 mb to the surface. Errors are
\(<\) 0.4 C day\(^{-1}\) in cooling rates and \(<\) 1% in
fluxes. From Chou and Suarez, it is estimated that the total effect of
neglecting all minor absorption bands and the effects of minor infrared
absorbers such as nitrous oxide (N:math:_2O), methane
(CH:math:_4), and the chlorofluorocarbons (CFCs), is an underestimate
of \(\approx\) 5 W/m\(^2\) in the downward flux at the surface
and an overestimate of \(\approx\) 3 W/m\(^2\) in the upward
flux at the top of the atmosphere.

Similar to the procedure used in the shortwave radiation package, clouds
are grouped into three regions catagorized as low/middle/high. The net
clear line-of-site probability \((P)\) between any two levels,
\(p_1\) and \(p_2 \quad (p_2 > p_1)\), assuming randomly
overlapped cloud groups, is simply the product of the probabilities
within each group:


\[P_{net} = P_{low} \times P_{mid} \times P_{hi} .\]

Since all clouds within a group are assumed maximally overlapped, the
clear line-of-site probability within a group is given by:


\[P_{group} = 1 - F_{max} ,\]

where \(F_{max}\) is the maximum cloud fraction encountered between
\(p_1\) and \(p_2\) within that group. For groups and/or levels
outside the range of \(p_1\) and \(p_2\), a clear line-of-site
probability equal to 1 is assigned.




Cloud-Radiation Interaction

The cloud fractions and diagnosed cloud liquid water produced by moist
processes within the fizhi package are used in the radiation packages to
produce cloud-radiative forcing. The cloud optical thickness associated
with large-scale cloudiness is made proportional to the diagnosed
large-scale liquid water, \(\ell\), detrained due to
super-saturation. Two values are used corresponding to cloud ice
particles and water droplets. The range of optical thickness for these
clouds is given as


\[0.0002 \le \tau_{ice} (mb^{-1}) \le 0.002  \quad\mbox{for}\quad  0 \le \ell \le 2 \quad\mbox{mg/kg} ,\]


\[0.02 \le \tau_{h_2o} (mb^{-1}) \le 0.2  \quad\mbox{for}\quad  0 \le \ell \le 10 \quad\mbox{mg/kg} .\]

The partitioning, \(\alpha\), between ice particles and water
droplets is achieved through a linear scaling in temperature:


\[0 \le \alpha \le 1 \quad\mbox{for}\quad  233.15 \le T \le 253.15 .\]

The resulting optical depth associated with large-scale cloudiness is
given as


\[\tau_{LS} = \alpha \tau_{h_2o} + (1-\alpha)\tau_{ice} .\]

The optical thickness associated with sub-grid scale convective clouds
produced by RAS is given as


\[\tau_{RAS} = 0.16 \quad mb^{-1} .\]

The total optical depth in a given model layer is computed as a weighted
average between the large-scale and sub-grid scale optical depths,
normalized by the total cloud fraction in the layer:


\[\tau = \left( \frac{F_{RAS} \,\,\, \tau_{RAS} + F_{LS} \,\,\, \tau_{LS} }{ F_{RAS}+F_{LS} } \right) \Delta p,\]

where \(F_{RAS}\) and \(F_{LS}\) are the time-averaged cloud
fractions associated with RAS and large-scale processes described in
Section [sec:fizhi:clouds]. The optical thickness for the longwave
radiative feedback is assumed to be 75 \(\%\) of these values.

The entire Moist Convective Processes Module is called with a frequency
of 10 minutes. The cloud fraction values are time-averaged over the
period between Radiation calls (every 3 hours). Therefore, in a
time-averaged sense, both convective and large-scale cloudiness can
exist in a given grid-box.




Turbulence

Turbulence is parameterized in the fizhi package to account for its
contribution to the vertical exchange of heat, moisture, and momentum.
The turbulence scheme is invoked every 30 minutes, and employs a
backward-implicit iterative time scheme with an internal time step of 5
minutes. The tendencies of atmospheric state variables due to turbulent
diffusion are calculated using the diffusion equations:


\[{\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
 = {\pp{}{z} }{(K_m \pp{u}{z})}\]


\[{\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
 = {\pp{}{z} }{(K_m \pp{v}{z})}\]


\[{\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}\]


\[{\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
 = {\pp{}{z} }{(K_h \pp{q}{z})}\]

Within the atmosphere, the time evolution of second turbulent moments is
explicitly modeled by representing the third moments in terms of the
first and second moments. This approach is known as a second-order
closure modeling. To simplify and streamline the computation of the
second moments, the level 2.5 assumption of Mellor and Yamada (1974) and [Yam77]
is employed, in which only the turbulent kinetic energy (TKE),


\[{\h}{q^2}={\overline{{u^{\prime}}^2}}+{\overline{{v^{\prime}}^2}}+{\overline{{w^{\prime}}^2}},\]

is solved prognostically and the other second moments are solved
diagnostically. The prognostic equation for TKE allows the scheme to
simulate some of the transient and diffusive effects in the turbulence.
The TKE budget equation is solved numerically using an implicit backward
computation of the terms linear in \(q^2\) and is written:


\[{\dd{}{t} ({{\h} q^2})} - { \pp{}{z} ({ \frac{5}{3} {{\lambda}_1} q { \pp {}{z}
({\h}q^2)} })} =
{- \overline{{u^{\prime}}{w^{\prime}}} { \pp{U}{z} }} - {\overline{{v^{\prime}}{w^{\prime}}}
{ \pp{V}{z} }} + {\frac{g}{\Theta_0}{\overline{{w^{\prime}}{{{\theta}_v}^{\prime}}}}
- \frac{ q^3}{{\Lambda}_1} }\]

where \(q\) is the turbulent velocity, \({u^{\prime}}\),
\({v^{\prime}}\), \({w^{\prime}}\) and
\({{\theta}^{\prime}}\) are the fluctuating parts of the velocity
components and potential temperature, \(U\) and \(V\) are the
mean velocity components, \({\Theta_0}^{-1}\) is the coefficient of
thermal expansion, and \({{\lambda}_1}\) and \({{\Lambda} _1}\)
are constant multiples of the master length scale, \(\ell\), which
is designed to be a characteristic measure of the vertical structure of
the turbulent layers.

The first term on the left-hand side represents the time rate of change
of TKE, and the second term is a representation of the triple
correlation, or turbulent transport term. The first three terms on the
right-hand side represent the sources of TKE due to shear and bouyancy,
and the last term on the right hand side is the dissipation of TKE.

In the level 2.5 approach, the vertical fluxes of the scalars
\(\theta_v\) and \(q\) and the wind components \(u\) and
\(v\) are expressed in terms of the diffusion coefficients
\(K_h\) and \(K_m\), respectively. In the statisically
realizable level 2.5 turbulence scheme of [HL88], these diffusion coefficients
are expressed as


\[\begin{split}K_h
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) \, & \mbox{decaying turbulence}
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.\end{split}\]

and


\[\begin{split}K_m
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) \, & \mbox{decaying turbulence}
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) \, & \mbox{growing turbulence} \end{array} \right.\end{split}\]

where the subscript \(e\) refers to the value under conditions of
local equillibrium (obtained from the Level 2.0 Model), \(\ell\) is
the master length scale related to the vertical structure of the
atmosphere, and \(S_M\) and \(S_H\) are functions of \(G_H\)
and \(G_M\), the dimensionless buoyancy and wind shear parameters,
respectively. Both \(G_H\) and \(G_M\), and their equilibrium
values \(G_{H_e}\) and \(G_{M_e}\), are functions of the
Richardson number:


\[{\bf RI} = \frac{ \frac{g}{\theta_v} \pp{\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
 =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 } .\]

Negative values indicate unstable buoyancy and shear, small positive
values (\(<0.2\)) indicate dominantly unstable shear, and large
positive values indicate dominantly stable stratification.

Turbulent eddy diffusion coefficients of momentum, heat and moisture in
the surface layer, which corresponds to the lowest GCM level (see —
missing table —), are calculated using stability-dependant functions
based on Monin-Obukhov theory:


\[{K_m} (surface) = C_u \times u_* = C_D W_s\]

and


\[{K_h} (surface) =  C_t \times u_* = C_H W_s\]

where \(u_*=C_uW_s\) is the surface friction velocity, \(C_D\)
is termed the surface drag coefficient, \(C_H\) the heat transfer
coefficient, and \(W_s\) is the magnitude of the surface layer wind.

\(C_u\) is the dimensionless exchange coefficient for momentum from
the surface layer similarity functions:


\[{C_u} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }\]

where k is the Von Karman constant and \(\psi_m\) is the surface
layer non-dimensional wind shear given by


\[\psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta} .\]

Here \(\zeta\) is the non-dimensional stability parameter, and
\(\phi_m\) is the similarity function of \(\zeta\) which
expresses the stability dependance of the momentum gradient. The
functional form of \(\phi_m\) is specified differently for stable
and unstable layers.

\(C_t\) is the dimensionless exchange coefficient for heat and
moisture from the surface layer similarity functions:


\[{C_t} = -\frac{( \overline{w^{\prime}\theta^{\prime}}) }{ u_* \Delta \theta } =
-\frac{( \overline{w^{\prime}q^{\prime}}) }{ u_* \Delta q } =
\frac{ k }{ (\psi_{h} + \psi_{g}) }\]

where \(\psi_h\) is the surface layer non-dimensional temperature
gradient given by


\[\psi_{h} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta} .\]

Here \(\phi_h\) is the similarity function of \(\zeta\), which
expresses the stability dependance of the temperature and moisture
gradients, and is specified differently for stable and unstable layers
according to [HS95].

\(\psi_g\) is the non-dimensional temperature or moisture gradient
in the viscous sublayer, which is the mosstly laminar region between the
surface and the tops of the roughness elements, in which temperature and
moisture gradients can be quite large. Based on [YK74]:


\[\psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }
(h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}\]

where Pr is the Prandtl number for air, \(\nu\) is the molecular
viscosity, \(z_{0}\) is the surface roughness length, and the
subscript ref refers to a reference value. \(h_{0} = 30z_{0}\)
with a maximum value over land of 0.01

The surface roughness length over oceans is is a function of the
surface-stress velocity,


\[{z_0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + \frac{c_5 }{ u_*}\]

where the constants are chosen to interpolate between the reciprocal
relation of [Kon75] for weak winds, and the piecewise linear relation of [LP81] for
moderate to large winds. Roughness lengths over land are specified from
the climatology of [DS89].

For an unstable surface layer, the stability functions, chosen to
interpolate between the condition of small values of \(\beta\) and
the convective limit, are the KEYPS function [Pan73] for momentum, and its
generalization for heat and moisture:


\[{\phi_m}^4 - 18 \zeta {\phi_m}^3 = 1 \hspace{1cm} ; \hspace{1cm}
{\phi_h}^2 - 18 \zeta {\phi_h}^3 = 1 \hspace{1cm} .\]

The function for heat and moisture assures non-vanishing heat and
moisture fluxes as the wind speed approaches zero.

For a stable surface layer, the stability functions are the
observationally based functions of [Cla70], slightly modified for the momemtum
flux:


\[{\phi_m} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}_1
(1+ 5 {\zeta}_1) } \hspace{1cm} ; \hspace{1cm}
{\phi_h} = \frac{ 1 + 5 {{\zeta}_1} }{ 1 + 0.00794 {\zeta}
(1+ 5 {{\zeta}_1}) } .\]

The moisture flux also depends on a specified evapotranspiration
coefficient, set to unity over oceans and dependant on the
climatological ground wetness over land.

Once all the diffusion coefficients are calculated, the diffusion
equations are solved numerically using an implicit backward operator.




Atmospheric Boundary Layer

The depth of the atmospheric boundary layer (ABL) is diagnosed by the
parameterization as the level at which the turbulent kinetic energy is
reduced to a tenth of its maximum near surface value. The vertical
structure of the ABL is explicitly resolved by the lowest few (3-8)
model layers.




Surface Energy Budget

The ground temperature equation is solved as part of the turbulence
package using a backward implicit time differencing scheme:


\[C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE\]

where \(R_{sw}\) is the net surface downward shortwave radiative
flux and \(R_{lw}\) is the net surface upward longwave radiative
flux.

\(H\) is the upward sensible heat flux, given by:


\[{H} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{NLAY})
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t\]

where \(\rho\) = the atmospheric density at the surface,
\(c_{p}\) is the specific heat of air at constant pressure, and
\(\theta\) represents the potential temperature of the surface and
of the lowest \(\sigma\)-level, respectively.

The upward latent heat flux, \(LE\), is given by


\[{LE} =  \rho \beta L C_{H} W_s (q_{surface} - q_{NLAY})
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t\]

where \(\beta\) is the fraction of the potential evapotranspiration
actually evaporated, L is the latent heat of evaporation, and
\(q_{surface}\) and \(q_{NLAY}\) are the specific humidity of
the surface and of the lowest \(\sigma\)-level, respectively.

The heat conduction through sea ice, \(Q_{ice}\), is given by


\[{Q_{ice}} = \frac{C_{ti} }{ H_i} (T_i-T_g)\]

where \(C_{ti}\) is the thermal conductivity of ice, \(H_i\) is
the ice thickness, assumed to be \(3 \hspace{.1cm} m\) where sea ice
is present, \(T_i\) is 273 degrees Kelvin, and \(T_g\) is the
surface temperature of the ice.

\(C_g\) is the total heat capacity of the ground, obtained by
solving a heat diffusion equation for the penetration of the diurnal
cycle into the ground (), and is given by:


\[C_g = \sqrt{ \frac{\lambda C_s }{ 2\omega} } = \sqrt{(0.386 + 0.536W + 0.15W^2)2\times10^{-3}
\frac{86400}{2\pi} } \, \, .\]

Here, the thermal conductivity, \(\lambda\), is equal to
\(2\times10^{-3}\) \(\frac{ly}{sec}
\frac{cm}{K}\), the angular velocity of the earth, \(\omega\), is
written as \(86400\) \(sec/day\) divided by \(2 \pi\)
\(radians/
day\), and the expression for \(C_s\), the heat capacity per unit
volume at the surface, is a function of the ground wetness, \(W\).

Land Surface Processes:




Surface Type

The fizhi package surface Types are designated using the Koster-Suarez
[KS91][KS92] Land Surface Model (LSM) mosaic philosophy which allows multiple
“tiles”, or multiple surface types, in any one grid cell. The
Koster-Suarez LSM surface type classifications are shown in Table 8.13. The surface types and the percent of the grid cell
occupied by any surface type were derived from the surface
classification of [DT94], and information about the location of permanent ice
was obtained from the classifications of [DS89]. The surface type map for a
\(1^\circ\) grid is shown in Figure 8.9. The
determination of the land or sea category of surface type was made from
NCAR’s 10 minute by 10 minute Navy topography dataset, which includes
information about the percentage of water-cover at any point. The data
were averaged to the model’s grid resolutions, and any grid-box whose
averaged water percentage was \(\geq 60 \%\) was defined as a water
point. The Land-Water designation was further modified subjectively to
ensure sufficient representation from small but isolated land and water
regions.


Table 8.13 Surface Type Designation





	Type

	Vegetation Designation





	1

	Broadleaf Evergreen Trees



	2

	Broadleaf Deciduous Trees



	3

	Needleleaf Trees



	4

	Ground Cover



	5

	Broadleaf Shrubs



	6

	Dwarf Trees (Tundra)



	7

	Bare Soil



	8

	Desert (Bright)



	9

	Glacier



	10

	Desert (Dark)



	100

	Ocean
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Surface Roughness

The surface roughness length over oceans is computed iteratively with
the wind stress by the surface layer parameterization [HS95]. It employs an
interpolation between the functions of [LP81] for high winds and of [Kon75] for weak
winds.




Albedo

The surface albedo computation, described in , employs the “two stream”
approximation used in Sellers’ (1987) Simple Biosphere (SiB) Model which
distinguishes between the direct and diffuse albedos in the visible and
in the near infra-red spectral ranges. The albedos are functions of the
observed leaf area index (a description of the relative orientation of
the leaves to the sun), the greenness fraction, the vegetation type, and
the solar zenith angle. Modifications are made to account for the
presence of snow, and its depth relative to the height of the vegetation
elements.




Gravity Wave Drag

The fizhi package employs the gravity wave drag scheme of [ZSL95]. This scheme
is a modified version of Vernekar et al. (1992), which was based on
Alpert et al. (1988) and Helfand et al. (1987). In this version, the
gravity wave stress at the surface is based on that derived by
Pierrehumbert (1986) and is given by:


\[|\vec{\tau}_{sfc}| = \frac{\rho U^3}{N \ell^*} \left( \frac{F_r^2}{1+F_r^2}\right) \, \, ,\]

where \(F_r = N h /U\) is the Froude number, \(N\) is the Brunt
- Väisälä frequency, \(U\) is the surface wind speed, \(h\) is
the standard deviation of the sub-grid scale orography, and
\(\ell^*\) is the wavelength of the monochromatic gravity wave in
the direction of the low-level wind. A modification introduced by Zhou
et al. allows for the momentum flux to escape through the top of the
model, although this effect is small for the current 70-level model. The
subgrid scale standard deviation is defined by \(h\), and is not
allowed to exceed 400 m.

The effects of using this scheme within a GCM are shown in [TS96]. Experiments
using the gravity wave drag parameterization yielded significant and
beneficial impacts on both the time-mean flow and the transient
statistics of the a GCM climatology, and have eliminated most of the
worst dynamically driven biases in the a GCM simulation. An examination
of the angular momentum budget during climate runs indicates that the
resulting gravity wave torque is similar to the data-driven torque
produced by a data assimilation which was performed without gravity wave
drag. It was shown that the inclusion of gravity wave drag results in
large changes in both the mean flow and in eddy fluxes. The result is a
more accurate simulation of surface stress (through a reduction in the
surface wind strength), of mountain torque (through a redistribution of
mean sea-level pressure), and of momentum convergence (through a
reduction in the flux of westerly momentum by transient flow eddies).

Boundary Conditions and other Input Data:

Required fields which are not explicitly predicted or diagnosed during
model execution must either be prescribed internally or obtained from
external data sets. In the fizhi package these fields include: sea
surface temperature, sea ice estent, surface geopotential variance,
vegetation index, and the radiation-related background levels of: ozone,
carbon dioxide, and stratospheric moisture.

Boundary condition data sets are available at the model’s resolutions
for either climatological or yearly varying conditions. Any frequency of
boundary condition data can be used in the fizhi package; however, the
current selection of data is summarized in Table 8.14. The
time mean values are interpolated during each model timestep to the
current time.


Table 8.14 Boundary conditions and other input data used in the fizhi package. Also noted are the current years and frequencies available.






	Fizhi Input Datasets



	Sea Ice Extent

	monthly

	1979-current, climatology



	Sea Ice Extent

	weekly

	1982-current, climatology



	Sea Surface Temperature

	monthly

	1979-current, climatology



	Sea Surface Temperature

	weekly

	1982-current, climatology



	Zonally Averaged Upper-Level Moisture

	monthly

	climatology



	Zonally Averaged Ozone Concentration

	monthly

	climatology









Topography and Topography Variance

Surface geopotential heights are provided from an averaging of the Navy
10 minute by 10 minute dataset supplied by the National Center for
Atmospheric Research (NCAR) to the model’s grid resolution. The original
topography is first rotated to the proper grid-orientation which is
being run, and then averages the data to the model resolution.

The standard deviation of the subgrid-scale topography is computed by
interpolating the 10 minute data to the model’s resolution and
re-interpolating back to the 10 minute by 10 minute resolution. The
sub-grid scale variance is constructed based on this smoothed dataset.




Upper Level Moisture

The fizhi package uses climatological water vapor data above 100 mb from
the Stratospheric Aerosol and Gas Experiment (SAGE) as input into the
model’s radiation packages. The SAGE data is archived as monthly zonal
means at \(5^\circ\) latitudinal resolution. The data is
interpolated to the model’s grid location and current time, and blended
with the GCM’s moisture data. Below 300 mb, the model’s moisture data is
used. Above 100 mb, the SAGE data is used. Between 100 and 300 mb, a
linear interpolation (in pressure) is performed using the data from SAGE
and the GCM.






8.5.3.3. Fizhi Diagnostics

Fizhi Diagnostic Menu: [sec:pkg:fizhi:diagnostics]









	NAME

	UNITS

	LEVELS

	DESCRIPTION



	UFLUX

	N m–2

	1

	Surface U-Wind Stress on the atmosphere



	VFLUX

	N m–2

	1

	Surface V-Wind Stress on the atmosphere



	HFLUX

	W m–2

	1

	Surface Flux of Sensible Heat



	EFLUX

	W m–2

	1

	Surface Flux of Latent Heat



	QICE

	W m–2

	1

	Heat Conduction through Sea-Ice



	RADLWG

	W m–2

	1

	Net upward LW flux at the ground



	RADSWG

	W m–2

	1

	Net downward SW flux at the ground



	RI

	dimensionless

	Nrphys

	Richardson Number



	CT

	dimensionless

	1

	Surface Drag coefficient for T and Q



	CU

	dimensionless

	1

	Surface Drag coefficient for U and V



	ET

	m2 s–1

	Nrphys

	Diffusivity coefficient for T and Q



	EU

	m2 s–1

	Nrphys

	Diffusivity coefficient for U and V



	TURBU

	m s–1 day–1

	Nrphys

	U-Momentum Changes due to Turbulence



	TURBV

	m s–1 day–1

	Nrphys

	V-Momentum Changes due to Turbulence



	TURBT

	deg day–1

	Nrphys

	Temperature Changes due to Turbulence



	TURBQ

	g/kg/day

	Nrphys

	Specific Humidity Changes due to Turbulence



	MOISTT

	deg day–1

	Nrphys

	Temperature Changes due to Moist Processes



	MOISTQ

	g/kg/day

	Nrphys

	Specific Humidity Changes due to Moist Processes



	RADLW

	deg day–1

	Nrphys

	Net Longwave heating rate for each level



	RADSW

	deg day–1

	Nrphys

	Net Shortwave heating rate for each level



	PREACC

	mm/day

	1

	Total Precipitation



	PRECON

	mm/day

	1

	Convective Precipitation



	TUFLUX

	N m–2

	Nrphys

	Turbulent Flux of U-Momentum



	TVFLUX

	N m–2

	Nrphys

	Turbulent Flux of V-Momentum



	TTFLUX

	W m–2

	Nrphys

	Turbulent Flux of Sensible Heat














	NAME

	UNITS

	LEVELS

	DESCRIPTION



	TQFLUX

	W m–2

	Nrphys

	Turbulent Flux of Latent Heat



	CN

	dimensionless

	1

	Neutral Drag Coefficient



	WINDS

	m s–1

	1

	Surface Wind Speed



	DTSRF

	deg

	1

	Air/Surface virtual temperature difference



	TG

	deg

	1

	Ground temperature



	TS

	deg

	1

	Surface air temperature (Adiabatic from lowest model layer)



	DTG

	deg

	1

	Ground temperature adjustment



	QG

	g kg–1

	1

	Ground specific humidity



	QS

	g kg–1

	1

	Saturation surface specific humidity



	TGRLW

	deg

	1

	Instantaneous ground temperature used as input to the Longwave radiation subroutine



	ST4

	W m–2

	1

	Upward Longwave flux at the ground (\(\sigma T^4\))



	OLR

	W m–2

	1

	Net upward Longwave flux at the top of the model



	OLRCLR

	W m–2

	1

	Net upward clearsky Longwave flux at the top of the model



	LWGCLR

	W m–2

	1

	Net upward clearsky Longwave flux at the ground



	LWCLR

	deg day–1

	Nrphys

	Net clearsky Longwave heating rate for each level



	TLW

	deg

	Nrphys

	Instantaneous temperature used as input to the Longwave radiation subroutine



	SHLW

	g g–1

	Nrphys

	Instantaneous specific humidity used as input to the Longwave radiation subroutine



	OZLW

	g g–1

	Nrphys

	Instantaneous ozone used as input to the Longwave radiation subroutine



	CLMOLW

	\(0-1\)

	Nrphys

	Maximum overlap cloud fraction used in the Longwave radiation subroutine



	CLDTOT

	\(0-1\)

	Nrphys

	Total cloud fraction used in the Longwave and Shortwave radiation subroutines



	LWGDOWN

	W m–2

	1

	Downwelling Longwave radiation at the ground



	GWDT

	deg day–1

	Nrphys

	Temperature tendency due to Gravity Wave Drag



	RADSWT

	W m–2

	1

	Incident Shortwave radiation at the top of the atmosphere



	TAUCLD

	per 100 mb

	Nrphys

	Counted Cloud Optical Depth (non-dimensional) per 100 mb



	TAUCLDC

	Number

	Nrphys

	Cloud Optical Depth Counter














	NAME

	UNITS

	LEVELS

	Description



	CLDLOW

	0-1

	Nrphys

	Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)



	EVAP

	mm/day

	1

	Surface evaporation



	DPDT

	hPa/day

	1

	Surface Pressure time-tendency



	UAVE

	m/sec

	Nrphys

	Average U-Wind



	VAVE

	m/sec

	Nrphys

	Average V-Wind



	TAVE

	deg

	Nrphys

	Average Temperature



	QAVE

	g/kg

	Nrphys

	Average Specific Humidity



	OMEGA

	hPa/day

	Nrphys

	Vertical Velocity



	DUDT

	m/sec/day

	Nrphys

	Total U-Wind tendency



	DVDT

	m/sec/day

	Nrphys

	Total V-Wind tendency



	DTDT

	deg/day

	Nrphys

	Total Temperature tendency



	DQDT

	g/kg/day

	Nrphys

	Total Specific Humidity tendency



	VORT

	10^{-4}/sec

	Nrphys

	Relative Vorticity



	DTLS

	deg/day

	Nrphys

	Temperature tendency due to Stratiform Cloud Formation



	DQLS

	g/kg/day

	Nrphys

	Specific Humidity tendency due to Stratiform Cloud Formation



	USTAR

	m/sec

	1

	Surface USTAR wind



	Z0

	m

	1

	Surface roughness



	FRQTRB

	0-1

	Nrphys-1

	Frequency of Turbulence



	PBL

	mb

	1

	Planetary Boundary Layer depth



	SWCLR

	deg/day

	Nrphys

	Net clearsky Shortwave heating rate for each level



	OSR

	W m–2

	1

	Net downward Shortwave flux at the top of the model



	OSRCLR

	W m–2

	1

	Net downward clearsky Shortwave flux at the top of the model



	CLDMAS

	kg / m^2

	Nrphys

	Convective cloud mass flux



	UAVE

	m/sec

	Nrphys

	Time-averaged \(u\)-Wind














	NAME

	UNITS

	LEVELS

	DESCRIPTION



	VAVE

	m/sec

	Nrphys

	Time-averaged \(v\)-Wind



	TAVE

	deg

	Nrphys

	Time-averaged Temperature`



	QAVE

	g/g

	Nrphys

	Time-averaged Specific Humidity



	RFT

	deg/day

	Nrphys

	Temperature tendency due Rayleigh Friction



	PS

	mb

	1

	Surface Pressure



	QQAVE

	(m/sec)2

	Nrphys

	Time-averaged Turbulent Kinetic Energy



	SWGCLR

	W m–2

	1

	Net downward clearsky Shortwave flux at the ground



	PAVE

	mb

	1

	Time-averaged Surface Pressure



	DIABU

	m/sec/day

	Nrphys

	Total Diabatic forcing on \(u\)-Wind



	DIABV

	m/sec/day

	Nrphys

	Total Diabatic forcing on \(v\)-Wind



	DIABT

	deg/day

	Nrphys

	Total Diabatic forcing on Temperature



	DIABQ

	g/kg/day

	Nrphys

	Total Diabatic forcing on Specific Humidity



	RFU

	m/sec/day

	Nrphys

	U-Wind tendency due to Rayleigh Friction



	RFV

	m/sec/day

	Nrphys

	V-Wind tendency due to Rayleigh Friction



	GWDU

	m/sec/day

	Nrphys

	U-Wind tendency due to Gravity Wave Drag



	GWDU

	m/sec/day

	Nrphys

	V-Wind tendency due to Gravity Wave Drag



	GWDUS

	N m–2

	1

	U-Wind Gravity Wave Drag Stress at Surface



	GWDVS

	N m–2

	1

	V-Wind Gravity Wave Drag Stress at Surface



	GWDUT

	N m–2

	1

	U-Wind Gravity Wave Drag Stress at Top



	GWDVT

	N m–2

	1

	V-Wind Gravity Wave Drag Stress at Top



	LZRAD

	mg/kg

	Nrphys

	Estimated Cloud Liquid Water used in Radiation














	NAME

	UNITS

	LEVELS

	DESCRIPTION



	SLP

	mb

	1

	Time-averaged Sea-level Pressure



	CLDFRC

	0-1

	1

	Total Cloud Fraction



	TPW

	gm cm–2

	1

	Precipitable water



	U2M

	m/sec

	1

	U-Wind at 2 meters



	V2M

	m/sec

	1

	V-Wind at 2 meters



	T2M

	deg

	1

	Temperature at 2 meters



	Q2M

	g/kg

	1

	Specific Humidity at 2 meters



	U10M

	m/sec

	1

	U-Wind at 10 meters



	V10M

	m/sec

	1

	V-Wind at 10 meters



	T10M

	deg

	1

	Temperature at 10 meters



	Q10M

	g/kg

	1

	Specific Humidity at 10 meters



	DTRAIN

	kg m–2

	Nrphys

	Detrainment Cloud Mass Flux



	QFILL

	g/kg/day

	Nrphys

	Filling of negative specific humidity



	DTCONV

	deg/sec

	Nr

	Temp Change due to Convection



	DQCONV

	g/kg/sec

	Nr

	Specific Humidity Change due to Convection



	RELHUM

	percent

	Nr

	Relative Humidity



	PRECLS

	g/m^2/sec

	1

	Large Scale Precipitation



	ENPREC

	J/g

	1

	Energy of Precipitation (snow, rain Temp)









8.5.3.4. Fizhi Diagnostic Description

In this section we list and describe the diagnostic quantities available
within the GCM. The diagnostics are listed in the order that they appear
in the Diagnostic Menu, Section [sec:pkg:fizhi:diagnostics]. In all
cases, each diagnostic as currently archived on the output datasets is
time-averaged over its diagnostic output frequency:


\[{\bf DIAGNOSTIC} = \frac{1}{TTOT} \sum_{t=1}^{t=TTOT} diag(t)\]

where \(TTOT = \frac{ {\bf NQDIAG} }{\Delta t}\), NQDIAG is the
output frequency of the diagnostic, and \(\Delta t\) is the timestep
over which the diagnostic is updated.


Surface Zonal Wind Stress on the Atmosphere (\(Newton/m^2\))

The zonal wind stress is the turbulent flux of zonal momentum from the
surface.


\[{\bf UFLUX} =  - \rho C_D W_s u \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u\]

where \(\rho\) = the atmospheric density at the surface,
\(C_{D}\) is the surface drag coefficient, \(C_u\) is the
dimensionless surface exchange coefficient for momentum (see diagnostic
number 10), \(W_s\) is the magnitude of the surface layer wind, and
\(u\) is the zonal wind in the lowest model layer.




Surface Meridional Wind Stress on the Atmosphere (\(Newton/m^2\))

The meridional wind stress is the turbulent flux of meridional
momentum from the surface.


\[{\bf VFLUX} =  - \rho C_D W_s v \hspace{1cm}where: \hspace{.2cm}C_D = C^2_u\]

where \(\rho\) = the atmospheric density at the surface,
\(C_{D}\) is the surface drag coefficient, \(C_u\) is the
dimensionless surface exchange coefficient for momentum (see diagnostic
number 10), \(W_s\) is the magnitude of the surface layer wind, and
\(v\) is the meridional wind in the lowest model layer.




Surface Flux of Sensible Heat (W m–2)

The turbulent flux of sensible heat from the surface to the atmosphere
is a function of the gradient of virtual potential temperature and the
eddy exchange coefficient:


\[{\bf HFLUX} =  P^{\kappa}\rho c_{p} C_{H} W_s (\theta_{surface} - \theta_{Nrphys})
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t\]

where \(\rho\) = the atmospheric density at the surface,
\(c_{p}\) is the specific heat of air, \(C_{H}\) is the
dimensionless surface heat transfer coefficient, \(W_s\) is the
magnitude of the surface layer wind, \(C_u\) is the dimensionless
surface exchange coefficient for momentum (see diagnostic number 10),
\(C_t\) is the dimensionless surface exchange coefficient for heat
and moisture (see diagnostic number 9), and \(\theta\) is the
potential temperature at the surface and at the bottom model level.




Surface Flux of Latent Heat (\(Watts/m^2\))

The turbulent flux of latent heat from the surface to the atmosphere
is a function of the gradient of moisture, the potential
evapotranspiration fraction and the eddy exchange coefficient:


\[{\bf EFLUX} =  \rho \beta L C_{H} W_s (q_{surface} - q_{Nrphys})
\hspace{1cm}where: \hspace{.2cm}C_H = C_u C_t\]

where \(\rho\) = the atmospheric density at the surface,
\(\beta\) is the fraction of the potential evapotranspiration
actually evaporated, L is the latent heat of evaporation, \(C_{H}\)
is the dimensionless surface heat transfer coefficient, \(W_s\) is
the magnitude of the surface layer wind, \(C_u\) is the
dimensionless surface exchange coefficient for momentum (see diagnostic
number 10), \(C_t\) is the dimensionless surface exchange
coefficient for heat and moisture (see diagnostic number 9), and
\(q_{surface}\) and \(q_{Nrphys}\) are the specific humidity at
the surface and at the bottom model level, respectively.




Heat Conduction Through Sea Ice (\(Watts/m^2\))

Over sea ice there is an additional source of energy at the surface due
to the heat conduction from the relatively warm ocean through the sea
ice. The heat conduction through sea ice represents an additional energy
source term for the ground temperature equation.


\[{\bf QICE} = \frac{C_{ti}}{H_i} (T_i-T_g)\]

where \(C_{ti}\) is the thermal conductivity of ice, \(H_i\) is
the ice thickness, assumed to be \(3 \hspace{.1cm} m\) where sea ice
is present, \(T_i\) is 273 degrees Kelvin, and \(T_g\) is the
temperature of the sea ice.

NOTE: QICE is not available through model version 5.3, but is
available in subsequent versions.




Net upward Longwave Flux at the surface (\(Watts/m^2\))


\[\begin{split}\begin{aligned}
{\bf RADLWG} & =  & F_{LW,Nrphys+1}^{Net} \\
             & =  & F_{LW,Nrphys+1}^\uparrow - F_{LW,Nrphys+1}^\downarrow\end{aligned}\end{split}\]

where Nrphys+1 indicates the lowest model edge-level, or
\(p = p_{surf}\). \(F_{LW}^\uparrow\) is the upward Longwave
flux and \(F_{LW}^\downarrow\) is the downward Longwave flux.




Net downard shortwave Flux at the surface (\(Watts/m^2\))


\[\begin{split}\begin{aligned}
{\bf RADSWG} & =  & F_{SW,Nrphys+1}^{Net} \\
             & =  & F_{SW,Nrphys+1}^\downarrow - F_{SW,Nrphys+1}^\uparrow\end{aligned}\end{split}\]

where Nrphys+1 indicates the lowest model edge-level, or
\(p = p_{surf}\). \(F_{SW}^\downarrow\) is the downward
Shortwave flux and \(F_{SW}^\uparrow\) is the upward Shortwave flux.




Richardson number (\(dimensionless\))

The non-dimensional stability indicator is the ratio of the buoyancy
to the shear:


\[{\bf RI} = \frac{ \frac{g}{\theta_v} \pp {\theta_v}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }
 =  \frac{c_p \pp{\theta_v}{z} \pp{P^ \kappa}{z} }{ (\pp{u}{z})^2 + (\pp{v}{z})^2 }\]

where we used the hydrostatic equation:


\[{\pp{\Phi}{P^ \kappa}} = c_p \theta_v\]

Negative values indicate unstable buoyancy AND shear, small positive
values (\(<0.4\)) indicate dominantly unstable shear, and large
positive values indicate dominantly stable stratification.




CT - Surface Exchange Coefficient for Temperature and Moisture (dimensionless)

The surface exchange coefficient is obtained from the similarity
functions for the stability dependant flux profile relationships:


\[{\bf CT} = -\frac{( \overline{w^{\prime}\theta^{\prime}} ) }{ u_* \Delta \theta } =
-\frac{( \overline{w^{\prime}q^{\prime}} ) }{ u_* \Delta q } =
\frac{ k }{ (\psi_{h} + \psi_{g}) }\]

where \(\psi_h\) is the surface layer non-dimensional temperature
change and \(\psi_g\) is the viscous sublayer non-dimensional
temperature or moisture change:


\[\psi_{h} = \int_{\zeta_{0}}^{\zeta} \frac{\phi_{h} }{ \zeta} d \zeta \hspace{1cm} and
\hspace{1cm} \psi_{g} = \frac{ 0.55 (Pr^{2/3} - 0.2) }{ \nu^{1/2} }
(h_{0}u_{*} - h_{0_{ref}}u_{*_{ref}})^{1/2}\]

and: \(h_{0} = 30z_{0}\) with a maximum value over land of 0.01

\(\phi_h\) is the similarity function of \(\zeta\), which
expresses the stability dependance of the temperature and moisture
gradients, specified differently for stable and unstable layers
according to . k is the Von Karman constant, \(\zeta\) is the
non-dimensional stability parameter, Pr is the Prandtl number for air,
\(\nu\) is the molecular viscosity, \(z_{0}\) is the surface
roughness length, \(u_*\) is the surface stress velocity (see
diagnostic number 67), and the subscript ref refers to a reference
value.




CU - Surface Exchange Coefficient for Momentum (dimensionless)

The surface exchange coefficient is obtained from the similarity
functions for the stability dependant flux profile relationships:


\[{\bf CU} = \frac{u_* }{ W_s} = \frac{ k }{ \psi_{m} }\]

where \(\psi_m\) is the surface layer non-dimensional wind shear:


\[\psi_{m} = {\int_{\zeta_{0}}^{\zeta} \frac{\phi_{m} }{ \zeta} d \zeta}\]

\(\phi_m\) is the similarity function of \(\zeta\), which
expresses the stability dependance of the temperature and moisture
gradients, specified differently for stable and unstable layers
according to . k is the Von Karman constant, \(\zeta\) is the
non-dimensional stability parameter, \(u_*\) is the surface stress
velocity (see diagnostic number 67), and \(W_s\) is the magnitude of
the surface layer wind.




ET - Diffusivity Coefficient for Temperature and Moisture (m^2/sec)

In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the
turbulent heat or moisture flux for the atmosphere above the surface
layer can be expressed as a turbulent diffusion coefficient \(K_h\)
times the negative of the gradient of potential temperature or moisture.
In the [HL88] adaptation of this closure, \(K_h\) takes the form:


\[\begin{split}{\bf ET} = K_h = -\frac{( \overline{w^{\prime}\theta_v^{\prime}}) }{ \pp{\theta_v}{z} }
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_H(G_M,G_H) & \mbox{decaying turbulence}
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{H}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.\end{split}\]

where \(q\) is the turbulent velocity, or
\(\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
energy}\), \(q_e\) is the turbulence velocity derived from the more
simple level 2.0 model, which describes equilibrium turbulence,
\(\ell\) is the master length scale related to the layer depth,
\(S_H\) is a function of \(G_H\) and \(G_M\), the
dimensionless buoyancy and wind shear parameters, respectively, or a
function of \(G_{H_e}\) and \(G_{M_e}\), the equilibrium
dimensionless buoyancy and wind shear parameters. Both \(G_H\) and
\(G_M\), and their equilibrium values \(G_{H_e}\) and
\(G_{M_e}\), are functions of the Richardson number.

For the detailed equations and derivations of the modified level 2.5
closure scheme, see [HL88].

In the surface layer, \({\bf {ET}}\) is the exchange coefficient
for heat and moisture, in units of \(m/sec\), given by:


\[{\bf ET_{Nrphys}} =  C_t * u_* = C_H W_s\]

where \(C_t\) is the dimensionless exchange coefficient for heat and
moisture from the surface layer similarity functions (see diagnostic
number 9), \(u_*\) is the surface friction velocity (see diagnostic
number 67), \(C_H\) is the heat transfer coefficient, and
\(W_s\) is the magnitude of the surface layer wind.




EU - Diffusivity Coefficient for Momentum (m^2/sec)

In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the
turbulent heat momentum flux for the atmosphere above the surface layer
can be expressed as a turbulent diffusion coefficient \(K_m\) times
the negative of the gradient of the u-wind. In the [HL88] adaptation of this
closure, \(K_m\) takes the form:


\[\begin{split}{\bf EU} = K_m = -\frac{( \overline{u^{\prime}w^{\prime}} ) }{ \pp{U}{z} }
 = \left\{ \begin{array}{l@{\quad\mbox{for}\quad}l} q \, \ell \, S_M(G_M,G_H) & \mbox{decaying turbulence}
\\ \frac{ q^2 }{ q_e } \, \ell \, S_{M}(G_{M_e},G_{H_e}) & \mbox{growing turbulence} \end{array} \right.\end{split}\]

where \(q\) is the turbulent velocity, or
\(\sqrt{2*turbulent \hspace{.2cm} kinetic \hspace{.2cm}
energy}\), \(q_e\) is the turbulence velocity derived from the more
simple level 2.0 model, which describes equilibrium turbulence,
\(\ell\) is the master length scale related to the layer depth,
\(S_M\) is a function of \(G_H\) and \(G_M\), the
dimensionless buoyancy and wind shear parameters, respectively, or a
function of \(G_{H_e}\) and \(G_{M_e}\), the equilibrium
dimensionless buoyancy and wind shear parameters. Both \(G_H\) and
\(G_M\), and their equilibrium values \(G_{H_e}\) and
\(G_{M_e}\), are functions of the Richardson number.

For the detailed equations and derivations of the modified level 2.5
closure scheme, see [HL88].

In the surface layer, \({\bf {EU}}\) is the exchange coefficient
for momentum, in units of \(m/sec\), given by:


\[{\bf EU_{Nrphys}} = C_u * u_* = C_D W_s\]

where \(C_u\) is the dimensionless exchange coefficient for momentum
from the surface layer similarity functions (see diagnostic number 10),
\(u_*\) is the surface friction velocity (see diagnostic number 67),
\(C_D\) is the surface drag coefficient, and \(W_s\) is the
magnitude of the surface layer wind.




TURBU - Zonal U-Momentum changes due to Turbulence (m/sec/day)

The tendency of U-Momentum due to turbulence is written:


\[{\bf TURBU} = {\pp{u}{t}}_{turb} = {\pp{}{z} }{(- \overline{u^{\prime}w^{\prime}})}
 = {\pp{}{z} }{(K_m \pp{u}{z})}\]

The Helfand and Labraga level 2.5 scheme models the turbulent flux of
u-momentum in terms of \(K_m\), and the equation has the form of a
diffusion equation.




TURBV - Meridional V-Momentum changes due to Turbulence (m/sec/day)

The tendency of V-Momentum due to turbulence is written:


\[{\bf TURBV} = {\pp{v}{t}}_{turb} = {\pp{}{z} }{(- \overline{v^{\prime}w^{\prime}})}
 = {\pp{}{z} }{(K_m \pp{v}{z})}\]

The Helfand and Labraga level 2.5 scheme models the turbulent flux of
v-momentum in terms of \(K_m\), and the equation has the form of a
diffusion equation.




TURBT - Temperature changes due to Turbulence (deg/day)

The tendency of temperature due to turbulence is written:


\[{\bf TURBT} = {\pp{T}{t}} = P^{\kappa}{\pp{\theta}{t}}_{turb} =
P^{\kappa}{\pp{}{z} }{(- \overline{w^{\prime}\theta^{\prime}})}
 = P^{\kappa}{\pp{}{z} }{(K_h \pp{\theta_v}{z})}\]

The Helfand and Labraga level 2.5 scheme models the turbulent flux of
temperature in terms of \(K_h\), and the equation has the form of a
diffusion equation.




TURBQ - Specific Humidity changes due to Turbulence (g/kg/day)

The tendency of specific humidity due to turbulence is written:


\[{\bf TURBQ} = {\pp{q}{t}}_{turb} = {\pp{}{z} }{(- \overline{w^{\prime}q^{\prime}})}
 = {\pp{}{z} }{(K_h \pp{q}{z})}\]

The Helfand and Labraga level 2.5 scheme models the turbulent flux of
temperature in terms of \(K_h\), and the equation has the form of a
diffusion equation.




MOISTT - Temperature Changes Due to Moist Processes (deg/day)


\[{\bf MOISTT} = \left. {\pp{T}{t}}\right|_{c} + \left. {\pp{T}{t}} \right|_{ls}\]

where:


\[ \begin{align}\begin{aligned}  \left.{\pp{T}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{c_p} \Gamma_s \right)_i
  \hspace{.4cm} and
  \hspace{.4cm} \left.{\pp{T}{t}}\right|_{ls} = \frac{L}{c_p} (q^*-q)\\and\end{aligned}\end{align} \]


\[\Gamma_s = g \eta \pp{s}{p}\]

The subscript \(c\) refers to convective processes, while the
subscript \(ls\) refers to large scale precipitation processes, or
supersaturation rain. The summation refers to contributions from each
cloud type called by RAS. The dry static energy is given as \(s\),
the convective cloud base mass flux is given as \(m_B\), and the
cloud entrainment is given as \(\eta\), which are explicitly defined
in para_phys_pkg_fizhi_mc, the description of the convective
parameterization. The fractional adjustment, or relaxation parameter,
for each cloud type is given as \(\alpha\), while \(R\) is the
rain re-evaporation adjustment.




MOISTQ - Specific Humidity Changes Due to Moist Processes (g/kg/day)


\[{\bf MOISTQ} = \left. {\pp{q}{t}}\right|_{c} + \left. {\pp{q}{t}} \right|_{ls}\]

where:


\[\left.{\pp{q}{t}}\right|_{c} = R \sum_i \left( \alpha \frac{m_B}{L}(\Gamma_h-\Gamma_s) \right)_i
\hspace{.4cm} and
\hspace{.4cm} \left.{\pp{q}{t}}\right|_{ls} = (q^*-q)\]

and


\[\Gamma_s = g \eta \pp{s}{p}\hspace{.4cm} and \hspace{.4cm}\Gamma_h = g \eta \pp{h}{p}\]

The subscript \(c\) refers to convective processes, while the
subscript \(ls\) refers to large scale precipitation processes, or
supersaturation rain. The summation refers to contributions from each
cloud type called by RAS. The dry static energy is given as \(s\),
the moist static energy is given as \(h\), the convective cloud base
mass flux is given as \(m_B\), and the cloud entrainment is given as
\(\eta\), which are explicitly defined in para_phys_pkg_fizhi_mc,
the description of the convective parameterization. The fractional
adjustment, or relaxation parameter, for each cloud type is given as
\(\alpha\), while \(R\) is the rain re-evaporation adjustment.




RADLW - Heating Rate due to Longwave Radiation (deg/day)

The net longwave heating rate is calculated as the vertical divergence
of the net terrestrial radiative fluxes. Both the clear-sky and
cloudy-sky longwave fluxes are computed within the longwave routine. The
subroutine calculates the clear-sky flux, \(F^{clearsky}_{LW}\),
first. For a given cloud fraction, the clear line-of-sight probability
\(C(p,p^{\prime})\) is computed from the current level pressure
\(p\) to the model top pressure, \(p^{\prime} = p_{top}\), and
the model surface pressure, \(p^{\prime} = p_{surf}\), for the
upward and downward radiative fluxes. (see Section
[sec:fizhi:radcloud]). The cloudy-sky flux is then obtained as:


\[F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},\]

Finally, the net longwave heating rate is calculated as the vertical
divergence of the net terrestrial radiative fluxes:


\[\pp{\rho c_p T}{t} = - \p{z} F_{LW}^{NET} ,\]

or


\[{\bf RADLW} = \frac{g}{c_p \pi} \p{\sigma} F_{LW}^{NET} .\]

where \(g\) is the accelation due to gravity, \(c_p\) is the
heat capacity of air at constant pressure, and


\[F_{LW}^{NET} = F_{LW}^\uparrow - F_{LW}^\downarrow\]




RADSW - Heating Rate due to Shortwave Radiation (deg/day)

The net Shortwave heating rate is calculated as the vertical divergence
of the net solar radiative fluxes. The clear-sky and cloudy-sky
shortwave fluxes are calculated separately. For the clear-sky case, the
shortwave fluxes and heating rates are computed with both CLMO (maximum
overlap cloud fraction) and CLRO (random overlap cloud fraction) set to
zero (see Section [sec:fizhi:radcloud]). The shortwave routine is then
called a second time, for the cloudy-sky case, with the true
time-averaged cloud fractions CLMO and CLRO being used. In all cases, a
normalized incident shortwave flux is used as input at the top of the
atmosphere.

The heating rate due to Shortwave Radiation under cloudy skies is
defined as:


\[\pp{\rho c_p T}{t} = - \p{z} F(cloudy)_{SW}^{NET} \cdot {\rm RADSWT},\]

or


\[{\bf RADSW} = \frac{g}{c_p \pi} \p{\sigma} F(cloudy)_{SW}^{NET}\cdot {\rm RADSWT} .\]

where \(g\) is the accelation due to gravity, \(c_p\) is the
heat capacity of air at constant pressure, RADSWT is the true incident
shortwave radiation at the top of the atmosphere (See Diagnostic #48),
and


\[F(cloudy)_{SW}^{Net} = F(cloudy)_{SW}^\uparrow - F(cloudy)_{SW}^\downarrow\]




PREACC - Total (Large-scale + Convective) Accumulated Precipition (mm/day)

For a change in specific humidity due to moist processes,
\(\Delta q_{moist}\), the vertical integral or total precipitable
amount is given by:


\[{\bf PREACC} = \int_{surf}^{top} \rho \Delta q_{moist} dz = - \int_{surf}^{top} \Delta  q_{moist}
\frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{moist} dp\]

A precipitation rate is defined as the vertically integrated moisture
adjustment per Moist Processes time step, scaled to \(mm/day\).




PRECON - Convective Precipition (mm/day)

For a change in specific humidity due to sub-grid scale cumulus
convective processes, \(\Delta q_{cum}\), the vertical integral or
total precipitable amount is given by:


\[{\bf PRECON} = \int_{surf}^{top} \rho \Delta q_{cum} dz = - \int_{surf}^{top} \Delta  q_{cum}
\frac{dp}{g} = \frac{1}{g} \int_0^1 \Delta q_{cum} dp\]

A precipitation rate is defined as the vertically integrated moisture
adjustment per Moist Processes time step, scaled to \(mm/day\).




TUFLUX - Turbulent Flux of U-Momentum (Newton/m^2)

The turbulent flux of u-momentum is calculated for
\(diagnostic \hspace{.2cm} purposes
\hspace{.2cm} only\) from the eddy coefficient for momentum:


\[{\bf TUFLUX} =  {\rho } {(\overline{u^{\prime}w^{\prime}})} =
{\rho } {(- K_m \pp{U}{z})}\]

where \(\rho\) is the air density, and \(K_m\) is the eddy
coefficient.




TVFLUX - Turbulent Flux of V-Momentum (Newton/m^2)

The turbulent flux of v-momentum is calculated for
\(diagnostic \hspace{.2cm} purposes
\hspace{.2cm} only\) from the eddy coefficient for momentum:


\[{\bf TVFLUX} =  {\rho } {(\overline{v^{\prime}w^{\prime}})} =
 {\rho } {(- K_m \pp{V}{z})}\]

where \(\rho\) is the air density, and \(K_m\) is the eddy
coefficient.




TTFLUX - Turbulent Flux of Sensible Heat (Watts/m^2)

The turbulent flux of sensible heat is calculated for
\(diagnostic \hspace{.2cm} purposes
\hspace{.2cm} only\) from the eddy coefficient for heat and moisture:


\[{\bf TTFLUX} = c_p {\rho }
P^{\kappa}{(\overline{w^{\prime}\theta^{\prime}})}
 = c_p  {\rho } P^{\kappa}{(- K_h \pp{\theta_v}{z})}\]

where \(\rho\) is the air density, and \(K_h\) is the eddy
coefficient.




TQFLUX - Turbulent Flux of Latent Heat (Watts/m^2)

The turbulent flux of latent heat is calculated for
\(diagnostic \hspace{.2cm} purposes
\hspace{.2cm} only\) from the eddy coefficient for heat and moisture:


\[{\bf TQFLUX} = {L {\rho } (\overline{w^{\prime}q^{\prime}})} =
{L {\rho }(- K_h \pp{q}{z})}\]

where \(\rho\) is the air density, and \(K_h\) is the eddy
coefficient.




CN - Neutral Drag Coefficient (dimensionless)

The drag coefficient for momentum obtained by assuming a neutrally
stable surface layer:


\[{\bf CN} = \frac{ k }{ \ln(\frac{h }{z_0}) }\]

where \(k\) is the Von Karman constant, \(h\) is the height of
the surface layer, and \(z_0\) is the surface roughness.

NOTE: CN is not available through model version 5.3, but is available
in subsequent versions.




WINDS - Surface Wind Speed (meter/sec)

The surface wind speed is calculated for the last internal turbulence
time step:


\[{\bf WINDS} = \sqrt{u_{Nrphys}^2 + v_{Nrphys}^2}\]

where the subscript \(Nrphys\) refers to the lowest model level.

The air/surface virtual temperature difference measures the stability of
the surface layer:


\[{\bf DTSRF} = (\theta_{v{Nrphys+1}} - \theta{v_{Nrphys}}) P^{\kappa}_{surf}\]

where


\[\theta_{v{Nrphys+1}} = \frac{ T_g }{ P^{\kappa}_{surf} } (1 + .609 q_{Nrphys+1}) \hspace{1cm}
and \hspace{1cm} q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})\]

\(\beta\) is the surface potential evapotranspiration coefficient
(\(\beta=1\) over oceans), \(q^*(T_g,P_s)\) is the saturation
specific humidity at the ground temperature and surface pressure, level
\(Nrphys\) refers to the lowest model level and level
\(Nrphys+1\) refers to the surface.




TG - Ground Temperature (deg K)

The ground temperature equation is solved as part of the turbulence
package using a backward implicit time differencing scheme:


\[{\bf TG} \hspace{.1cm} is \hspace{.1cm} obtained \hspace{.1cm} from: \hspace{.1cm}
C_g\pp{T_g}{t} = R_{sw} - R_{lw} + Q_{ice} - H - LE\]

where \(R_{sw}\) is the net surface downward shortwave radiative
flux, \(R_{lw}\) is the net surface upward longwave radiative flux,
\(Q_{ice}\) is the heat conduction through sea ice, \(H\) is the
upward sensible heat flux, \(LE\) is the upward latent heat flux,
and \(C_g\) is the total heat capacity of the ground. \(C_g\) is
obtained by solving a heat diffusion equation for the penetration of the
diurnal cycle into the ground (), and is given by:


\[C_g = \sqrt{ \frac{\lambda C_s }{ 2 \omega } } = \sqrt{(0.386 + 0.536W + 0.15W^2)2x10^{-3}
\frac{86400.}{2\pi} } \, \, .\]

Here, the thermal conductivity, \(\lambda\), is equal to
\(2x10^{-3}\) \(\frac{ly}{sec}
\frac{cm}{K}\), the angular velocity of the earth, \(\omega\), is
written as \(86400\) \(sec/day\) divided by \(2 \pi\)
\(radians/
day\), and the expression for \(C_s\), the heat capacity per unit
volume at the surface, is a function of the ground wetness, \(W\).




TS - Surface Temperature (deg K)

The surface temperature estimate is made by assuming that the model’s
lowest layer is well-mixed, and therefore that \(\theta\) is
constant in that layer. The surface temperature is therefore:


\[{\bf TS} = \theta_{Nrphys} P^{\kappa}_{surf}\]




DTG - Surface Temperature Adjustment (deg K)

The change in surface temperature from one turbulence time step to the
next, solved using the Ground Temperature Equation (see diagnostic
number 30) is calculated:


\[{\bf DTG} = {T_g}^{n} - {T_g}^{n-1}\]

where superscript \(n\) refers to the new, updated time level, and
the superscript \(n-1\) refers to the value at the previous
turbulence time level.




QG - Ground Specific Humidity (g/kg)

The ground specific humidity is obtained by interpolating between the
specific humidity at the lowest model level and the specific humidity of
a saturated ground. The interpolation is performed using the potential
evapotranspiration function:


\[{\bf QG} = q_{Nrphys+1} = q_{Nrphys} + \beta(q^*(T_g,P_s) - q_{Nrphys})\]

where \(\beta\) is the surface potential evapotranspiration
coefficient (\(\beta=1\) over oceans), and \(q^*(T_g,P_s)\) is
the saturation specific humidity at the ground temperature and surface
pressure.




QS - Saturation Surface Specific Humidity (g/kg)

The surface saturation specific humidity is the saturation specific
humidity at the ground temprature and surface pressure:


\[{\bf QS} = q^*(T_g,P_s)\]




TGRLW - Instantaneous ground temperature used as input to the Longwave radiation subroutine (deg)


\[{\bf TGRLW}  = T_g(\lambda , \phi ,n)\]

where \(T_g\) is the model ground temperature at the current time
step \(n\).




ST4 - Upward Longwave flux at the surface (Watts/m^2)


\[{\bf ST4} = \sigma T^4\]

where \(\sigma\) is the Stefan-Boltzmann constant and T is the
temperature.




OLR - Net upward Longwave flux at \(p=p_{top}\) (Watts/m^2)


\[{\bf OLR}  =  F_{LW,top}^{NET}\]

where top indicates the top of the first model layer. In the GCM,
\(p_{top}\) = 0.0 mb.




OLRCLR - Net upward clearsky Longwave flux at \(p=p_{top}\) (Watts/m^2)


\[{\bf OLRCLR}  =  F(clearsky)_{LW,top}^{NET}\]

where top indicates the top of the first model layer. In the GCM,
\(p_{top}\) = 0.0 mb.




LWGCLR - Net upward clearsky Longwave flux at the surface (Watts/m^2)


\[\begin{split}\begin{aligned}
{\bf LWGCLR} & =  & F(clearsky)_{LW,Nrphys+1}^{Net} \\
             & =  & F(clearsky)_{LW,Nrphys+1}^\uparrow - F(clearsky)_{LW,Nrphys+1}^\downarrow\end{aligned}\end{split}\]

where Nrphys+1 indicates the lowest model edge-level, or
\(p = p_{surf}\). \(F(clearsky)_{LW}^\uparrow\) is the upward
clearsky Longwave flux and the \(F(clearsky)_{LW}^\downarrow\) is
the downward clearsky Longwave flux.




LWCLR - Heating Rate due to Clearsky Longwave Radiation (deg/day)

The net longwave heating rate is calculated as the vertical divergence
of the net terrestrial radiative fluxes. Both the clear-sky and
cloudy-sky longwave fluxes are computed within the longwave routine. The
subroutine calculates the clear-sky flux, \(F^{clearsky}_{LW}\),
first. For a given cloud fraction, the clear line-of-sight probability
\(C(p,p^{\prime})\) is computed from the current level pressure
\(p\) to the model top pressure, \(p^{\prime} = p_{top}\), and
the model surface pressure, \(p^{\prime} = p_{surf}\), for the
upward and downward radiative fluxes. (see Section
[sec:fizhi:radcloud]). The cloudy-sky flux is then obtained as:


\[F_{LW} = C(p,p') \cdot F^{clearsky}_{LW},\]

Thus, LWCLR is defined as the net longwave heating rate due to the
vertical divergence of the clear-sky longwave radiative flux:


\[\pp{\rho c_p T}{t}_{clearsky} = - \p{z} F(clearsky)_{LW}^{NET} ,\]

or


\[{\bf LWCLR} = \frac{g}{c_p \pi} \p{\sigma} F(clearsky)_{LW}^{NET} .\]

where \(g\) is the accelation due to gravity, \(c_p\) is the
heat capacity of air at constant pressure, and


\[F(clearsky)_{LW}^{Net} = F(clearsky)_{LW}^\uparrow - F(clearsky)_{LW}^\downarrow\]




TLW - Instantaneous temperature used as input to the Longwave radiation subroutine (deg)


\[{\bf TLW}  = T(\lambda , \phi ,level, n)\]

where \(T\) is the model temperature at the current time step
\(n\).




SHLW - Instantaneous specific humidity used as input to the Longwave radiation subroutine (kg/kg)


\[{\bf SHLW}  = q(\lambda , \phi , level , n)\]

where \(q\) is the model specific humidity at the current time step
\(n\).




OZLW - Instantaneous ozone used as input to the Longwave radiation subroutine (kg/kg)


\[{\bf OZLW}  = {\rm OZ}(\lambda , \phi , level , n)\]

where \(\rm OZ\) is the interpolated ozone data set from the
climatological monthly mean zonally averaged ozone data set.




CLMOLW - Maximum Overlap cloud fraction used in LW Radiation (0-1)

CLMOLW is the time-averaged maximum overlap cloud fraction that has been
filled by the Relaxed Arakawa/Schubert Convection scheme and will be
used in the Longwave Radiation algorithm. These are convective clouds
whose radiative characteristics are assumed to be correlated in the
vertical. For a complete description of cloud/radiative interactions,
see Section [sec:fizhi:radcloud].


\[{\bf CLMOLW} = CLMO_{RAS,LW}(\lambda, \phi,  level )\]




CLDTOT - Total cloud fraction used in LW and SW Radiation (0-1)

CLDTOT is the time-averaged total cloud fraction that has been
filled by the Relaxed Arakawa/Schubert and Large-scale Convection
schemes and will be used in the Longwave and Shortwave Radiation
packages. For a complete description of cloud/radiative interactions,
see Section [sec:fizhi:radcloud].


\[{\bf CLDTOT} = F_{RAS} + F_{LS}\]

where \(F_{RAS}\) is the time-averaged cloud fraction due to
sub-grid scale convection, and \(F_{LS}\) is the time-averaged cloud
fraction due to precipitating and non-precipitating large-scale moist
processes.




CLMOSW - Maximum Overlap cloud fraction used in SW Radiation (0-1)

CLMOSW is the time-averaged maximum overlap cloud fraction that has been
filled by the Relaxed Arakawa/Schubert Convection scheme and will be
used in the Shortwave Radiation algorithm. These are convective clouds
whose radiative characteristics are assumed to be correlated in the
vertical. For a complete description of cloud/radiative interactions,
see Section [sec:fizhi:radcloud].


\[{\bf CLMOSW} = CLMO_{RAS,SW}(\lambda, \phi,  level )\]




CLROSW - Random Overlap cloud fraction used in SW Radiation (0-1)

CLROSW is the time-averaged random overlap cloud fraction that has been
filled by the Relaxed Arakawa/Schubert and Large-scale Convection
schemes and will be used in the Shortwave Radiation algorithm. These are
convective and large-scale clouds whose radiative characteristics are
not assumed to be correlated in the vertical. For a complete description
of cloud/radiative interactions, see Section [sec:fizhi:radcloud].


\[{\bf CLROSW} = CLRO_{RAS,Large Scale,SW}(\lambda, \phi,  level )\]




RADSWT - Incident Shortwave radiation at the top of the atmosphere (Watts/m^2)


\[{\bf RADSWT} = {\frac{S_0}{R_a^2}} \cdot cos \phi_z\]

where \(S_0\), is the extra-terrestial solar contant, \(R_a\) is
the earth-sun distance in Astronomical Units, and \(cos \phi_z\) is
the cosine of the zenith angle. It should be noted that RADSWT, as
well as OSR and OSRCLR, are calculated at the top of the
atmosphere (p=0 mb). However, the OLR and OLRCLR diagnostics are
currently calculated at \(p= p_{top}\) (0.0 mb for the GCM).




EVAP - Surface Evaporation (mm/day)

The surface evaporation is a function of the gradient of moisture, the
potential evapotranspiration fraction and the eddy exchange coefficient:


\[{\bf EVAP} =  \rho \beta K_{h} (q_{surface} - q_{Nrphys})\]

where \(\rho\) = the atmospheric density at the surface,
\(\beta\) is the fraction of the potential evapotranspiration
actually evaporated (\(\beta=1\) over oceans), \(K_{h}\) is the
turbulent eddy exchange coefficient for heat and moisture at the surface
in \(m/sec\) and \(q{surface}\) and \(q_{Nrphys}\) are the
specific humidity at the surface (see diagnostic number 34) and at the
bottom model level, respectively.




DUDT - Total Zonal U-Wind Tendency  (m/sec/day)

DUDT is the total time-tendency of the Zonal U-Wind due to Hydrodynamic,
Diabatic, and Analysis forcing.


\[{\bf DUDT} = \pp{u}{t}_{Dynamics} + \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}\]




DVDT - Total Zonal V-Wind Tendency  (m/sec/day)

DVDT is the total time-tendency of the Meridional V-Wind due to
Hydrodynamic, Diabatic, and Analysis forcing.


\[{\bf DVDT} = \pp{v}{t}_{Dynamics} + \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}\]




DTDT - Total Temperature Tendency  (deg/day)

DTDT is the total time-tendency of Temperature due to Hydrodynamic, Diabatic,
and Analysis forcing.


\[\begin{split}\begin{aligned}
{\bf DTDT} & = & \pp{T}{t}_{Dynamics} + \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
           & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} \end{aligned}\end{split}\]




DQDT - Total Specific Humidity Tendency  (g/kg/day)

DQDT is the total time-tendency of Specific Humidity due to Hydrodynamic,
Diabatic, and Analysis forcing.


\[{\bf DQDT} = \pp{q}{t}_{Dynamics} + \pp{q}{t}_{Moist Processes}
+ \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}\]




USTAR -  Surface-Stress Velocity (m/sec)

The surface stress velocity, or the friction velocity, is the wind speed
at the surface layer top impeded by the surface drag:


\[{\bf USTAR} = C_uW_s \hspace{1cm}where: \hspace{.2cm}
C_u = \frac{k}{\psi_m}\]

\(C_u\) is the non-dimensional surface drag coefficient (see
diagnostic number 10), and \(W_s\) is the surface wind speed (see
diagnostic number 28).




Z0 - Surface Roughness Length (m)

Over the land surface, the surface roughness length is interpolated to
the local time from the monthly mean data of . Over the ocean, the
roughness length is a function of the surface-stress velocity,
\(u_*\).


\[{\bf Z0} = c_1u^3_* + c_2u^2_* + c_3u_* + c_4 + {c_5}{u_*}\]

where the constants are chosen to interpolate between the reciprocal
relation of for weak winds, and the piecewise linear relation of for
moderate to large winds.




FRQTRB - Frequency of Turbulence (0-1)

The fraction of time when turbulence is present is defined as the
fraction of time when the turbulent kinetic energy exceeds some minimum
value, defined here to be \(0.005 \hspace{.1cm}m^2/sec^2\). When
this criterion is met, a counter is incremented. The fraction over the
averaging interval is reported.




PBL - Planetary Boundary Layer Depth (mb)

The depth of the PBL is defined by the turbulence parameterization to be
the depth at which the turbulent kinetic energy reduces to ten percent
of its surface value.


\[{\bf PBL} = P_{PBL} - P_{surface}\]

where \(P_{PBL}\) is the pressure in \(mb\) at which the
turbulent kinetic energy reaches one tenth of its surface value, and
\(P_s\) is the surface pressure.




SWCLR - Clear sky Heating Rate due to Shortwave Radiation (deg/day)

The net Shortwave heating rate is calculated as the vertical divergence
of the net solar radiative fluxes. The clear-sky and cloudy-sky
shortwave fluxes are calculated separately. For the clear-sky case, the
shortwave fluxes and heating rates are computed with both CLMO (maximum
overlap cloud fraction) and CLRO (random overlap cloud fraction) set to
zero (see Section [sec:fizhi:radcloud]). The shortwave routine is then
called a second time, for the cloudy-sky case, with the true
time-averaged cloud fractions CLMO and CLRO being used. In all cases, a
normalized incident shortwave flux is used as input at the top of the
atmosphere.

The heating rate due to Shortwave Radiation under clear skies is defined
as:


\[\pp{\rho c_p T}{t} = - \p{z} F(clear)_{SW}^{NET} \cdot {\rm RADSWT},\]

or


\[{\bf SWCLR} = \frac{g}{c_p } \p{p} F(clear)_{SW}^{NET}\cdot {\rm RADSWT} .\]

where \(g\) is the accelation due to gravity, \(c_p\) is the
heat capacity of air at constant pressure, RADSWT is the true incident
shortwave radiation at the top of the atmosphere (See Diagnostic #48),
and


\[F(clear)_{SW}^{Net} = F(clear)_{SW}^\uparrow - F(clear)_{SW}^\downarrow\]




OSR - Net upward Shortwave flux at the top of the model (Watts/m^2)


\[{\bf OSR}  =  F_{SW,top}^{NET}\]

where top indicates the top of the first model layer used in the
shortwave radiation routine. In the GCM, \(p_{SW_{top}}\) = 0 mb.




OSRCLR - Net upward clearsky Shortwave flux at the top of the model (Watts/m^2)


\[{\bf OSRCLR}  =  F(clearsky)_{SW,top}^{NET}\]

where top indicates the top of the first model layer used in the
shortwave radiation routine. In the GCM, \(p_{SW_{top}}\) = 0 mb.




CLDMAS - Convective Cloud Mass Flux (kg/m^2)

The amount of cloud mass moved per RAS timestep from all convective
clouds is written:


\[{\bf CLDMAS} = \eta m_B\]

where \(\eta\) is the entrainment, normalized by the cloud base mass
flux, and \(m_B\) is the cloud base mass flux. \(m_B\) and
\(\eta\) are defined explicitly in para_phys_pkg_fizhi_mc, the
description of the convective parameterization.




UAVE - Time-Averaged Zonal U-Wind (m/sec)

The diagnostic UAVE is simply the time-averaged Zonal U-Wind over
the NUAVE output frequency. This is contrasted to the instantaneous
Zonal U-Wind which is archived on the Prognostic Output data stream.


\[{\bf UAVE} = u(\lambda, \phi, level , t)\]

Note, UAVE is computed and stored on the staggered C-grid.




VAVE - Time-Averaged Meridional V-Wind (m/sec)

The diagnostic VAVE is simply the time-averaged Meridional V-Wind
over the NVAVE output frequency. This is contrasted to the
instantaneous Meridional V-Wind which is archived on the Prognostic
Output data stream.


\[{\bf VAVE} = v(\lambda, \phi, level , t)\]

Note, VAVE is computed and stored on the staggered C-grid.




TAVE - Time-Averaged Temperature (Kelvin)

The diagnostic TAVE is simply the time-averaged Temperature over
the NTAVE output frequency. This is contrasted to the instantaneous
Temperature which is archived on the Prognostic Output data stream.


\[{\bf TAVE} = T(\lambda, \phi, level , t)\]




QAVE - Time-Averaged Specific Humidity (g/kg)

The diagnostic QAVE is simply the time-averaged Specific Humidity
over the NQAVE output frequency. This is contrasted to the
instantaneous Specific Humidity which is archived on the Prognostic
Output data stream.


\[{\bf QAVE} = q(\lambda, \phi, level , t)\]




PAVE - Time-Averaged Surface Pressure - PTOP (mb)

The diagnostic PAVE is simply the time-averaged Surface Pressure -
PTOP over the NPAVE output frequency. This is contrasted to the
instantaneous Surface Pressure - PTOP which is archived on the
Prognostic Output data stream.


\[\begin{split}\begin{aligned}
{\bf PAVE} & =  & \pi(\lambda, \phi, level , t) \\
           & =  & p_s(\lambda, \phi, level , t) - p_T\end{aligned}\end{split}\]




QQAVE - Time-Averaged Turbulent Kinetic Energy (m/sec)^2

The diagnostic QQAVE is simply the time-averaged prognostic
Turbulent Kinetic Energy produced by the GCM Turbulence parameterization
over the NQQAVE output frequency. This is contrasted to the
instantaneous Turbulent Kinetic Energy which is archived on the
Prognostic Output data stream.


\[{\bf QQAVE} = qq(\lambda, \phi, level , t)\]

Note, QQAVE is computed and stored at the “mass-point” locations
on the staggered C-grid.




SWGCLR - Net downward clearsky Shortwave flux at the surface (Watts/m^2)


\[\begin{split}\begin{aligned}
{\bf SWGCLR} & =  & F(clearsky)_{SW,Nrphys+1}^{Net} \\
             & =  & F(clearsky)_{SW,Nrphys+1}^\downarrow - F(clearsky)_{SW,Nrphys+1}^\uparrow\end{aligned}\end{split}\]

where Nrphys+1 indicates the lowest model edge-level, or
\(p = p_{surf}\). \(F(clearsky){SW}^\downarrow\) is the downward
clearsky Shortwave flux and \(F(clearsky)_{SW}^\uparrow\) is the
upward clearsky Shortwave flux.




DIABU - Total Diabatic Zonal U-Wind Tendency  (m/sec/day)

DIABU is the total time-tendency of the Zonal U-Wind due to Diabatic
processes and the Analysis forcing.


\[{\bf DIABU} = \pp{u}{t}_{Moist} + \pp{u}{t}_{Turbulence} + \pp{u}{t}_{Analysis}\]




DIABV - Total Diabatic Meridional V-Wind Tendency  (m/sec/day)

DIABV is the total time-tendency of the Meridional V-Wind due to Diabatic
processes and the Analysis forcing.


\[{\bf DIABV} = \pp{v}{t}_{Moist} + \pp{v}{t}_{Turbulence} + \pp{v}{t}_{Analysis}\]




DIABT Total Diabatic Temperature Tendency (deg/day)

DIABT is the total time-tendency of Temperature due to Diabatic processes and
the Analysis forcing.


\[\begin{split}\begin{aligned}
{\bf DIABT} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
           & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence} + \pp{T}{t}_{Analysis} \end{aligned}\end{split}\]

If we define the time-tendency of Temperature due to Diabatic
processes as


\[\begin{split}\begin{aligned}
\pp{T}{t}_{Diabatic} & = & \pp{T}{t}_{Moist Processes} + \pp{T}{t}_{Shortwave Radiation} \\
                     & + & \pp{T}{t}_{Longwave Radiation} + \pp{T}{t}_{Turbulence}\end{aligned}\end{split}\]

then, since there are no surface pressure changes due to Diabatic
processes, we may write


\[\pp{T}{t}_{Diabatic} = \frac{p^\kappa}{\pi}\pp{\pi \theta}{t}_{Diabatic}\]

where \(\theta = T/p^\kappa\). Thus, DIABT may be written as


\[{\bf DIABT} = \frac{p^\kappa}{\pi} \left( \pp{\pi \theta}{t}_{Diabatic} + \pp{\pi \theta}{t}_{Analysis} \right)\]




DIABQ - Total Diabatic Specific Humidity Tendency (g/kg/day)

DIABQ is the total time-tendency of Specific Humidity due to Diabatic
processes and the Analysis forcing.


\[{\bf DIABQ} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence} + \pp{q}{t}_{Analysis}\]

If we define the time-tendency of Specific Humidity due to Diabatic
processes as


\[\pp{q}{t}_{Diabatic} = \pp{q}{t}_{Moist Processes} + \pp{q}{t}_{Turbulence}\]

then, since there are no surface pressure changes due to Diabatic
processes, we may write


\[ \begin{align}\begin{aligned}\pp{q}{t}_{Diabatic} = \frac{1}{\pi}\pp{\pi q}{t}_{Diabatic}\\Thus, **DIABQ** may be written as\end{aligned}\end{align} \]


\[{\bf DIABQ} = \frac{1}{\pi} \left( \pp{\pi q}{t}_{Diabatic} + \pp{\pi q}{t}_{Analysis} \right)\]




VINTUQ - Vertically Integrated Moisture Flux (m/sec  g/kg)

The vertically integrated moisture flux due to the zonal u-wind is
obtained by integrating \(u q\) over the depth of the atmosphere at
each model timestep, and dividing by the total mass of the column.


\[{\bf VINTUQ} = \frac{ \int_{surf}^{top} u q \rho dz  } { \int_{surf}^{top} \rho dz  }\]

Using
\(\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p\), we
have


\[{\bf VINTUQ} = { \int_0^1 u q dp  }\]




VINTVQ - Vertically Integrated Moisture Flux (m/sec g/kg)

The vertically integrated moisture flux due to the meridional v-wind
is obtained by integrating \(v q\) over the depth of the atmosphere
at each model timestep, and dividing by the total mass of the column.


\[{\bf VINTVQ} = \frac{ \int_{surf}^{top} v q \rho dz  } { \int_{surf}^{top} \rho dz  }\]

Using
\(\rho \delta z = -\frac{\delta p}{g} = - \frac{1}{g} \delta p\), we
have


\[{\bf VINTVQ} = { \int_0^1 v q dp  }\]




VINTUT - Vertically Integrated Heat Flux (m/sec deg)

The vertically integrated heat flux due to the zonal u-wind is
obtained by integrating \(u T\) over the depth of the atmosphere at
each model timestep, and dividing by the total mass of the column.


\[{\bf VINTUT} = \frac{ \int_{surf}^{top} u T \rho dz  } { \int_{surf}^{top} \rho dz  }\]

Or,


\[{\bf VINTUT} = { \int_0^1 u T dp  }\]




VINTVT - Vertically Integrated Heat Flux (m/sec deg)

The vertically integrated heat flux due to the meridional v-wind is
obtained by integrating \(v T\) over the depth of the atmosphere at
each model timestep, and dividing by the total mass of the column.


\[{\bf VINTVT} = \frac{ \int_{surf}^{top} v T \rho dz  } { \int_{surf}^{top} \rho dz  }\]

Using \(\rho \delta z = -\frac{\delta p}{g}\), we have


\[{\bf VINTVT} = { \int_0^1 v T dp  }\]




CLDFRC - Total 2-Dimensional Cloud Fracton (0-1)

If we define the time-averaged random and maximum overlapped cloudiness
as CLRO and CLMO respectively, then the probability of clear sky
associated with random overlapped clouds at any level is (1-CLRO) while
the probability of clear sky associated with maximum overlapped clouds
at any level is (1-CLMO). The total clear sky probability is given by
(1-CLRO)*(1-CLMO), thus the total cloud fraction at each level may be
obtained by 1-(1-CLRO)*(1-CLMO).

At any given level, we may define the clear line-of-site probability by
appropriately accounting for the maximum and random overlap cloudiness.
The clear line-of-site probability is defined to be equal to the product
of the clear line-of-site probabilities associated with random and
maximum overlap cloudiness. The clear line-of-site probability
\(C(p,p^{\prime})\) associated with maximum overlap clouds, from the
current pressure \(p\) to the model top pressure,
\(p^{\prime} = p_{top}\), or the model surface pressure,
\(p^{\prime} = p_{surf}\), is simply 1.0 minus the largest maximum
overlap cloud value along the line-of-site, ie.


\[1-MAX_p^{p^{\prime}} \left( CLMO_p \right)\]

Thus, even in the time-averaged sense it is assumed that the maximum
overlap clouds are correlated in the vertical. The clear line-of-site
probability associated with random overlap clouds is defined to be the
product of the clear sky probabilities at each level along the
line-of-site, ie.


\[\prod_{p}^{p^{\prime}} \left( 1-CLRO_p \right)\]

The total cloud fraction at a given level associated with a line-
of-site calculation is given by


\[1-\left( 1-MAX_p^{p^{\prime}} \left[ CLMO_p \right] \right)
    \prod_p^{p^{\prime}} \left( 1-CLRO_p \right)\]

The 2-dimensional net cloud fraction as seen from the top of the
atmosphere is given by


\[{\bf CLDFRC} = 1-\left( 1-MAX_{l=l_1}^{Nrphys} \left[ CLMO_l \right] \right)
    \prod_{l=l_1}^{Nrphys} \left( 1-CLRO_l \right)\]

For a complete description of cloud/radiative interactions, see
Section [sec:fizhi:radcloud].




QINT - Total Precipitable Water (gm/cm^2)

The Total Precipitable Water is defined as the vertical integral of the
specific humidity, given by:


\[\begin{split}\begin{aligned}
{\bf QINT} & = & \int_{surf}^{top} \rho q dz \\
           & = & \frac{\pi}{g} \int_0^1 q dp
\end{aligned}\end{split}\]

where we have used the hydrostatic relation
\(\rho \delta z = -\frac{\delta p}{g}\).




U2M  Zonal U-Wind at 2 Meter Depth (m/sec)

The u-wind at the 2-meter depth is determined from the similarity
theory:


\[{\bf U2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{u_{sl}}{W_s} =
\frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }u_{sl}\]

where \(\psi_m(2m)\) is the non-dimensional wind shear at two
meters, and the subscript \(sl\) refers to the height of the top of
the surface layer. If the roughness height is above two meters,
\({\bf U2M}\) is undefined.




V2M - Meridional V-Wind at 2 Meter Depth (m/sec)

The v-wind at the 2-meter depth is a determined from the similarity
theory:


\[{\bf V2M} = \frac{u_*}{k} \psi_{m_{2m}} \frac{v_{sl}}{W_s} =
\frac{ \psi_{m_{2m}} }{ \psi_{m_{sl}} }v_{sl}\]

where \(\psi_m(2m)\) is the non-dimensional wind shear at two
meters, and the subscript \(sl\) refers to the height of the top of
the surface layer. If the roughness height is above two meters,
\({\bf V2M}\) is undefined.




T2M - Temperature at 2 Meter Depth (deg K)

The temperature at the 2-meter depth is a determined from the similarity
theory:


\[{\bf T2M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{2m}}+\psi_g}) + \theta_{surf} ) =
P^{\kappa}(\theta_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
(\theta_{sl} - \theta_{surf}) )\]

where:


\[\theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }\]

where \(\psi_h(2m)\) is the non-dimensional temperature gradient
at two meters, \(\psi_g\) is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript \(sl\) refers to
the height of the top of the surface layer. If the roughness height is
above two meters, \({\bf T2M}\) is undefined.




Q2M - Specific Humidity at 2 Meter Depth (g/kg)

The specific humidity at the 2-meter depth is determined from the
similarity theory:


\[{\bf Q2M} = P^{\kappa} \frac({q_*}{k} ({\psi_{h_{2m}}+\psi_g}) + q_{surf} ) =
P^{\kappa}(q_{surf} + \frac{ \psi_{h_{2m}}+\psi_g }{ \psi_{h_{sl}}+\psi_g }
(q_{sl} - q_{surf}))\]

where:


\[q_* = - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }\]

where \(\psi_h(2m)\) is the non-dimensional temperature gradient
at two meters, \(\psi_g\) is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript \(sl\) refers to
the height of the top of the surface layer. If the roughness height is
above two meters, \({\bf Q2M}\) is undefined.




U10M - Zonal U-Wind at 10 Meter Depth (m/sec)

The u-wind at the 10-meter depth is an interpolation between the surface
wind and the model lowest level wind using the ratio of the
non-dimensional wind shear at the two levels:


\[{\bf U10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{u_{sl}}{W_s} =
\frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }u_{sl}\]

where \(\psi_m(10m)\) is the non-dimensional wind shear at ten
meters, and the subscript \(sl\) refers to the height of the top of
the surface layer.




V10M - Meridional V-Wind at 10 Meter Depth (m/sec)

The v-wind at the 10-meter depth is an interpolation between the surface
wind and the model lowest level wind using the ratio of the
non-dimensional wind shear at the two levels:


\[{\bf V10M} = \frac{u_*}{k} \psi_{m_{10m}} \frac{v_{sl}}{W_s} =
\frac{ \psi_{m_{10m}} }{ \psi_{m_{sl}} }v_{sl}\]

where \(\psi_m(10m)\) is the non-dimensional wind shear at ten
meters, and the subscript \(sl\) refers to the height of the top of
the surface layer.




T10M - Temperature at 10 Meter Depth (deg K)

The temperature at the 10-meter depth is an interpolation between the
surface potential temperature and the model lowest level potential
temperature using the ratio of the non-dimensional temperature gradient
at the two levels:


\[{\bf T10M} = P^{\kappa} (\frac{\theta*}{k} ({\psi_{h_{10m}}+\psi_g}) + \theta_{surf} ) =
P^{\kappa}(\theta_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
(\theta_{sl} - \theta_{surf}))\]

where:


\[\theta_* = - \frac{ (\overline{w^{\prime}\theta^{\prime}}) }{ u_* }\]

where \(\psi_h(10m)\) is the non-dimensional temperature gradient
at two meters, \(\psi_g\) is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript \(sl\) refers to
the height of the top of the surface layer.




Q10M - Specific Humidity at 10 Meter Depth (g/kg)

The specific humidity at the 10-meter depth is an interpolation between
the surface specific humidity and the model lowest level specific
humidity using the ratio of the non-dimensional temperature gradient at
the two levels:


\[{\bf Q10M} = P^{\kappa} (\frac{q_*}{k} ({\psi_{h_{10m}}+\psi_g}) + q_{surf} ) =
P^{\kappa}(q_{surf} + \frac{\psi_{h_{10m}}+\psi_g}{\psi_{h_{sl}}+\psi_g}
(q_{sl} - q_{surf}))\]

where:


\[q_* =  - \frac{ (\overline{w^{\prime}q^{\prime}}) }{ u_* }\]

where \(\psi_h(10m)\) is the non-dimensional temperature gradient
at two meters, \(\psi_g\) is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript \(sl\) refers to
the height of the top of the surface layer.




DTRAIN - Cloud Detrainment Mass Flux (kg/m^2)

The amount of cloud mass moved per RAS timestep at the cloud
detrainment level is written:


\[{\bf DTRAIN} = \eta_{r_D}m_B\]

where \(r_D\) is the detrainment level, \(m_B\) is the cloud
base mass flux, and \(\eta\) is the entrainment, defined in para_phys_pkg_fizhi_mc.




QFILL - Filling of negative Specific Humidity (g/kg/day)

Due to computational errors associated with the numerical scheme used
for the advection of moisture, negative values of specific humidity may
be generated. The specific humidity is checked for negative values after
every dynamics timestep. If negative values have been produced, a
filling algorithm is invoked which redistributes moisture from below.
Diagnostic QFILL is equal to the net filling needed to eliminate
negative specific humidity, scaled to a per-day rate:


\[{\bf QFILL} = q^{n+1}_{final} - q^{n+1}_{initial}\]

where


\[q^{n+1} = (\pi q)^{n+1} / \pi^{n+1}\]






8.5.3.5. Key subroutines, parameters and files




8.5.3.6. Dos and don’ts




8.5.3.7. Fizhi Reference




8.5.3.8. Experiments and tutorials that use fizhi


	Global atmosphere experiment with realistic SST and topography in
fizhi-cs-32x32x10 verification directory.


	Global atmosphere aqua planet experiment in fizhi-cs-aqualev20
verification directory.










          

      

      

    

  

    
      
          
            
  
8.6.1. THSICE: The Thermodynamic Sea Ice Package

Important note: This document has been written by Stephanie
Dutkiewicz and describes an earlier implementation of the sea-ice
package. This needs to be updated to reflect the recent changes (JMC).

This thermodynamic ice model is based on the 3-layer model by Winton
(2000). and the energy-conserving LANL CICE model (Bitz and Lipscomb,
1999). The model considers two equally thick ice layers; the upper layer
has a variable specific heat resulting from brine pockets, the lower
layer has a fixed heat capacity. A zero heat capacity snow layer lies
above the ice. Heat fluxes at the top and bottom surfaces are used to
calculate the change in ice and snow layer thickness. Grid cells of the
ocean model are either fully covered in ice or are open water. There is
a provision to parametrize ice fraction (and leads) in this package.
Modifications are discussed in small font following the subroutine
descriptions.


8.6.1.1. Key parameters and Routines

The ice model is called from thermodynamics.F, subroutine
ice_forcing.F is called in place of external_forcing_surf.F.

In ice_forcing.F, we calculate the freezing potential of the ocean
model surface layer of water:


\[{\bf frzmlt} = (T_f - SST) \frac{c_{sw} \rho_{sw} \Delta z}{\Delta t}\]

where \(c_{sw}\) is seawater heat capacity, \(\rho_{sw}\) is the
seawater density, \(\Delta z\) is the ocean model upper layer
thickness and \(\Delta t\) is the model (tracer) timestep. The
freezing temperature, \(T_f=\mu S\) is a function of the salinity.


	Provided there is no ice present and frzmlt is less than 0, the surface tendencies of wind, heat and freshwater are calculated as usual (ie. as in external_forcing_surf.F).


	If there is ice present in the grid cell we call the main ice model routine ice_therm.F (see below). Output from this routine gives net heat and freshwater flux affecting the top of the ocean.




Subroutine ice_forcing.F uses these values to find the sea surface
tendencies in grid cells. When there is ice present, the surface stress
tendencies are set to zero; the ice model is purely thermodynamic and
the effect of ice motion on the sea-surface is not examined.

Relaxation of surface \(T\) and \(S\) is only allowed
equatorward of relaxlat (see DATA.ICE below), and no relaxation
is allowed under the ice at any latitude.

(Note that there is provision for allowing grid cells to have both
open water and seaice; if compact is between  0 and 1)


subroutine ICE_FREEZE

This routine is called from thermodynamics.F after the new temperature
calculation, calc_gt.F, but before calc_gs.F. In ice_freeze.F,
any ocean upper layer grid cell with no ice cover, but with temperature
below freezing, \(T_f=\mu S\) has ice initialized. We calculate
frzmlt from all the grid cells in the water column that have a
temperature less than freezing. In this routine, any water below the
surface that is below freezing is set to \(T_f\). A call to
ice_start.F is made if frzmlt \(>0\), and salinity tendancy
is updated for brine release.

(There is a provision for fractional ice: In the case where the grid cell has less ice coverage than icemaskmax we allow ice_start.F to be called)




subroutine ICE_START

The energy available from freezing the sea surface is brought into this
routine as esurp. The enthalpy of the 2 layers of any new ice is
calculated as:


\[\begin{split}\begin{aligned}
q_1 & = & -c_{i}*T_f + L_i \nonumber \\
q_2 & = & -c_{f}T_{mlt}+ c_{i}(T_{mlt}-T{f}) + L_i(1-\frac{T_{mlt}}{T_f})
\nonumber\end{aligned}\end{split}\]

where \(c_f\) is specific heat of liquid fresh water, \(c_i\) is
the specific heat of fresh ice, \(L_i\) is latent heat of freezing,
\(\rho_i\) is density of ice and \(T_{mlt}\) is melting
temperature of ice with salinity of 1. The height of a new layer of ice
is


\[h_{i new} = \frac{{\bf esurp} \Delta t}{qi_{0av}}\]

where \(qi_{0av}=-\frac{\rho_i}{2} (q_1+q_2)\).

The surface skin temperature \(T_s\) and ice temperatures
\(T_1\), \(T_2\) and the sea surface temperature are set at
\(T_f\).

(There is provision for fractional ice: new ice is formed over open
water; the first freezing in the cell must have a height of himin0;
this determines the ice fraction compact. If there is already ice in
the grid cell, the new ice must have the same height and the new ice
fraction is


\[i_f=(1-\hat{i_f}) \frac{h_{i new}}{h_i}\]

where \(\hat{i_f}\) is ice fraction from previous timestep and
\(h_i\) is current ice height. Snow is redistributed over the new
ice fraction. The ice fraction is not allowed to become larger than
iceMaskmax and if the ice height is above hihig then freezing
energy comes from the full grid cell, ice growth does not occur under
orginal ice due to freezing water.)




subroutine ICE_THERM

The main subroutine of this package is ice_therm.F where the ice
temperatures are calculated and the changes in ice and snow thicknesses
are determined. Output provides the net heat and fresh water fluxes that
force the top layer of the ocean model.

If the current ice height is less than himin then the ice layer is
set to zero and the ocean model upper layer temperature is allowed to
drop lower than its freezing temperature; and atmospheric fluxes are
allowed to effect the grid cell. If the ice height is greater than
himin we proceed with the ice model calculation.

We follow the procedure of Winton (1999) – see equations 3 to 21 – to
calculate the surface and internal ice temperatures. The surface
temperature is found from the balance of the flux at the surface
\(F_s\), the shortwave heat flux absorbed by the ice, fswint,
and the upward conduction of heat through the snow and/or ice,
\(F_u\). We linearize \(F_s\) about the surface temperature,
\(\hat{T_s}\), at the previous timestep (where \(\hat{ }\)
indicates the value at the previous timestep):


\[F_s (T_s) = F_s(\hat{T_s}) + \frac{\partial F_s(\hat{T_s)}}{\partial T_s}
(T_s-\hat{T_s})\]

where,


\[F_s  =  F_{sensible}+F_{latent}+F_{longwave}^{down}+F_{longwave}^{up}+ (1-
\alpha) F_{shortwave}\]

and


\[\frac{d F_s}{dT} = \frac{d F_{sensible}}{dT} + \frac{d F_{latent}}{dT}
+\frac{d F_{longwave}^{up}}{dT}.\]

\(F_s\) and \(\frac{d F_s}{dT}\) are currently calculated from
the BULKF package described separately, but could also be provided
by an atmospheric model. The surface albedo is calculated from the ice
height and/or surface temperature (see below, srf_albedo.F) and the
shortwave flux absorbed in the ice is


\[{\bf fswint} = (1-e^{\kappa_i h_i})(1-\alpha) F_{shortwave}\]

where \(\kappa_i\) is bulk extinction coefficient.

The conductive flux to the surface is


\[F_u=K_{1/2}(T_1-T_s)\]

where \(K_{1/2}\) is the effective conductive coupling of the
snow-ice layer between the surface and the mid-point of the upper layer
of ice :math:`
K_{1/2}=frac{4 K_i K_s}{K_s h_i + 4 K_i h_s}
. :math:`K_i and \(K_s\) are constant thermal conductivities of
seaice and snow.

From the above equations we can develop a system of equations to find
the skin surface temperature, \(T_s\) and the two ice layer
temperatures (see Winton, 1999, for details). We solve these equations
iteratively until the change in \(T_s\) is small. When the surface
temperature is greater then the melting temperature of the surface, the
temperatures are recalculated setting \(T_s\) to 0. The enthalpy of
the ice layers are calculated in order to keep track of the energy in
the ice model. Enthalpy is defined, here, as the energy required to melt
a unit mass of seaice with temperature \(T\). For the upper layer
(1) with brine pockets and the lower fresh layer (2):


\[\begin{split}\begin{aligned}
q_1 & = & - c_f T_f + c_i (T_f-T)+ L_{i}(1-\frac{T_f}{T})
\nonumber \\
q_2 & = & -c_i T+L_i \nonumber\end{aligned}\end{split}\]

where \(c_f\) is specific heat of liquid fresh water, \(c_i\) is
the specific heat of fresh ice, and \(L_i\) is latent heat of
melting fresh ice.

From the new ice temperatures, we can calculate the energy flux at the
surface available for melting (if \(T_s\)=0) and the energy at the
ocean-ice interface for either melting or freezing.


\[\begin{split}\begin{aligned}
E_{top} &  =  & (F_s- K_{1/2}(T_s-T_1) ) \Delta t
\nonumber \\
E_{bot} &= & (\frac{4K_i(T_2-T_f)}{h_i}-F_b) \Delta t
\nonumber\end{aligned}\end{split}\]

where \(F_b\) is the heat flux at the ice bottom due to the sea
surface temperature variations from freezing. If \(T_{sst}\) is
above freezing, \(F_b=c_{sw} \rho_{sw}
\gamma (T_{sst}-T_f)u^{*}\), \(\gamma\) is the heat transfer
coefficient and \(u^{*}=QQ\) is frictional velocity between ice and
water. If \(T_{sst}\) is below freezing,
\(F_b=(T_f - T_{sst})c_f \rho_f \Delta z /\Delta t\) and set
\(T_{sst}\) to \(T_f\). We also include the energy from lower
layers that drop below freezing, and set those layers to \(T_f\).

If \(E_{top}>0\) we melt snow from the surface, if all the snow is
melted and there is energy left, we melt the ice. If the ice is all gone
and there is still energy left, we apply the left over energy to heating
the ocean model upper layer (See Winton, 1999, equations 27-29).
Similarly if \(E_{bot}>0\) we melt ice from the bottom. If all the
ice is melted, the snow is melted (with energy from the ocean model
upper layer if necessary). If \(E_{bot}<0\) we grow ice at the
bottom


\[\Delta h_i = \frac{-E_{bot}}{(q_{bot} \rho_i)}\]

where \(q_{bot}=-c_{i} T_f + L_i\) is the enthalpy of the new ice,
The enthalpy of the second ice layer, \(q_2\) needs to be modified:


\[q_2 = \frac{ \hat{h_i}/2 \hat{q_2} + \Delta h_i q_{bot} }
        {\hat{h_i}/{2}+\Delta h_i}\]

If there is a ice layer and the overlying air temperature is below
0\(^o\)C then any precipitation, \(P\) joins the snow layer:


\[\Delta h_s  = -P \frac{\rho_f}{\rho_s} \Delta t,\]

\(\rho_f\) and \(\rho_s\) are the fresh water and snow
densities. Any evaporation, similarly, removes snow or ice from the
surface. We also calculate the snow age here, in case it is needed for
the surface albedo calculation (see srf_albedo.F below).

For practical reasons we limit the ice growth to hilim and snow is
limited to hslim. We converts any ice and/or snow above these limits
back to water, maintaining the salt balance. Note however, that heat is
not conserved in this conversion; sea surface temperatures below the ice
are not recalculated.

If the snow/ice interface is below the waterline, snow is converted to
ice (see Winton, 1999, equations 35 and 36). The subroutine
new_layers_winton.F, described below, repartitions the ice into
equal thickness layers while conserving energy.

The subroutine ice_therm.F now calculates the heat and fresh water
fluxes affecting the ocean model surface layer. The heat flux:


\[q_{net}= {\bf fswocn} - F_{b} - \frac{{\bf esurp}}{\Delta t}\]

is composed of the shortwave flux that has passed through the ice layer
and is absorbed by the water, fswocn\(=QQ\), the ocean flux to
the ice \(F_b\), and the surplus energy left over from the melting,
esurp. The fresh water flux is determined from the amount of fresh
water and salt in the ice/snow system before and after the timestep.

(There is a provision for fractional ice: If ice height is above
hihig then all energy from freezing at sea surface is used only in
the open water aparts of the cell (ie. \(F_b\) will only have the
conduction term). The melt energy is partitioned by frac_energy
between melting ice height and ice extent. However, once ice height
drops below himon0 then all energy melts ice extent.)




subroutine SFC_ALBEDO

The routine ice_therm.F calls this routine to determine the surface
albedo. There are two calculations provided here:


	from LANL CICE model


\[\alpha = f_s \alpha_s + (1-f_s) (\alpha_{i_{min}}
         + (\alpha_{i_{max}}- \alpha_{i_{min}}) (1-e^{-h_i/h_{\alpha}}))\]

where \(f_s\) is 1 if there is snow, 0 if not; the snow albedo,
\(\alpha_s\) has two values depending on whether \(T_s<0\) or
not; \(\alpha_{i_{min}}\) and \(\alpha_{i_{max}}\) are ice
albedos for thin melting ice, and thick bare ice respectively, and
\(h_{\alpha}\) is a scale height.



	From GISS model (Hansen et al 1983)


\[\alpha = \alpha_i e^{-h_s/h_a} + \alpha_s (1-e^{-h_s/h_a})\]

where \(\alpha_i\) is a constant albedo for bare ice, \(h_a\) is
a scale height and \(\alpha_s\) is a variable snow albedo.


\[\alpha_s = \alpha_1 + \alpha_2 e^{-\lambda_a a_s}\]

where \(\alpha_1\) is a constant, \(\alpha_2\) depends on
\(T_s\), \(a_s\) is the snow age, and \(\lambda_a\) is a
scale frequency. The snow age is calculated in ice_therm.F and is
given in equation 41 in Hansen et al (1983).








subroutine NEW_LAYERS_WINTON

The subroutine new_layers_winton.F repartitions the ice into equal
thickness layers while conserving energy. We pass to this subroutine,
the ice layer enthalpies after melting/growth and the new height of the
ice layers. The ending layer height should be half the sum of the new
ice heights from ice_therm.F. The enthalpies of the ice layers are
adjusted accordingly to maintain total energy in the ice model. If layer
2 height is greater than layer 1 height then layer 2 gives ice to layer
1 and:


\[q_1=f_1 \hat{q_1} + (1-f1) \hat{q_2}\]

where \(f_1\) is the fraction of the new to old upper layer heights.
\(T_1\) will therefore also have changed. Similarly for when ice
layer height 2 is less than layer 1 height, except here we need to to be
careful that the new \(T_2\) does not fall below the melting
temperature.




Initializing subroutines

ice_init.F: Set ice variables to zero, or reads in pickup information from
pickup.ic (which was written out in checkpoint.F)

ice_readparms.F: Reads data.ice




Diagnostic subroutines

ice_ave.F: Keeps track of means of the ice variables

ice_diags.F: Finds averages and writes out diagnostics




Common Blocks

ICE.h: Ice Varibles, also relaxlat and startIceModel

ICE_DIAGS.h: matrices for diagnostics: averages of fields from ice_diags.F

BULKF_ICE_CONSTANTS.h (in BULKF package): all the parameters need by the ice model




Input file DATA.ICE

Here we need to set StartIceModel: which is 1 if the model starts
from no ice; and 0 if there is a pickup file with the ice matrices
(pickup.ic) which is read in ice_init.F and written out in
checkpoint.F. The parameter relaxlat defines the latitude poleward
of which there is no relaxing of surface \(T\) or \(S\) to
observations. This avoids the relaxation forcing the ice model at these
high latitudes.

(Note: hicemin is set to 0 here. If the provision for allowing grid
cells to have both open water and seaice is ever implemented, this would
be greater than 0)






8.6.1.2. Important Notes


	heat fluxes have different signs in the ocean and ice models.


	StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).







8.6.1.3. THSICE Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<--  Units   -->|<- Tile (max=80c)
------------------------------------------------------------------------
SI_Fract|  1 |SM P    M1      |0-1             |Sea-Ice fraction  [0-1]
SI_Thick|  1 |SM PC197M1      |m               |Sea-Ice thickness (area weighted average)
SI_SnowH|  1 |SM PC197M1      |m               |Snow thickness over Sea-Ice (area weighted)
SI_Tsrf |  1 |SM  C197M1      |degC            |Surface Temperature over Sea-Ice (area weighted)
SI_Tice1|  1 |SM  C197M1      |degC            |Sea-Ice Temperature, 1srt layer (area weighted)
SI_Tice2|  1 |SM  C197M1      |degC            |Sea-Ice Temperature, 2nd  layer (area weighted)
SI_Qice1|  1 |SM  C198M1      |J/kg            |Sea-Ice enthalpy, 1srt layer (mass weighted)
SI_Qice2|  1 |SM  C198M1      |J/kg            |Sea-Ice enthalpy, 2nd  layer (mass weighted)
SIalbedo|  1 |SM PC197M1      |0-1             |Sea-Ice Albedo [0-1] (area weighted average)
SIsnwAge|  1 |SM P    M1      |s               |snow age over Sea-Ice
SIsnwPrc|  1 |SM  C197M1      |kg/m^2/s        |snow precip. (+=dw) over Sea-Ice (area weighted)
SIflxAtm|  1 |SM      M1      |W/m^2           |net heat flux from the Atmosphere (+=dw)
SIfrwAtm|  1 |SM      M1      |kg/m^2/s        |fresh-water flux to the Atmosphere (+=up)
SIflx2oc|  1 |SM      M1      |W/m^2           |heat flux out of the ocean (+=up)
SIfrw2oc|  1 |SM      M1      |m/s             |fresh-water flux out of the ocean (+=up)
SIsaltFx|  1 |SM      M1      |psu.kg/m^2      |salt flux out of the ocean (+=up)
SItOcMxL|  1 |SM      M1      |degC            |ocean mixed layer temperature
SIsOcMxL|  1 |SM P    M1      |psu             |ocean mixed layer salinity
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8.6.1.5. Experiments and tutorials that use thsice


	Global atmosphere experiment in aim.5l_cs verification directory,
input from input.thsice directory.


	Global ocean experiment in global_ocean.cs32x15 verification
directory, input from input.thsice directory.










          

      

      

    

  

    
      
          
            
  
8.6.2. SEAICE Package

Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel
Campin, Patrick Heimbach, Chris Hill and Jinlun Zhang


8.6.2.1. Introduction

Package “seaice” provides a dynamic and thermodynamic interactive
sea-ice model.

CPP options enable or disable different aspects of the package
(Section 8.6.2.2). Run-Time options, flags, filenames and
field-related dates/times are set in data.seaice (Section 8.6.2.3).
A description of key subroutines is given in
Section 8.6.2.5. Input fields, units and sign conventions
are summarized in Section Input fields and units, and
available diagnostics output is listed in
Section 8.6.2.6.




8.6.2.2. SEAICE configuration and compiling


Compile-time options

As with all MITgcm packages, SEAICE can be turned on or off at compile
time


	using the packages.conf file by adding seaice to it,


	or using genmake2 adding -enable=seaice or -disable=seaice switches


	required packages and CPP options:
SEAICE requires the external forcing package exf to be enabled; no
additional CPP options are required.




(see Section Section 3.5).

Parts of the SEAICE code can be enabled or disabled at compile time via
CPP preprocessor flags. These options are set in SEAICE_OPTIONS.h. Table 8.15 summarizes the most important ones. For more
options see the default pkg/seaice/SEAICE_OPTIONS.h.


Table 8.15 Some of the most relevant CPP preporocessor flags in the seaice-package.





	CPP option

	Description





	SEAICE_DEBUG

	Enhance STDOUT for debugging



	SEAICE_ALLOW_DYNAMICS

	sea-ice dynamics code



	SEAICE_CGRID

	LSR solver on C-grid (rather than original B-grid)



	SEAICE_ALLOW_EVP

	enable use of EVP rheology solver



	SEAICE_ALLOW_JFNK

	enable use of JFNK rheology solver



	SEAICE_ALLOW_KRYLOV

	enable use of Krylov rheology solver



	SEAICE_LSR_ZEBRA

	use a coloring method for LSR solver



	SEAICE_EXTERNAL_FLUXES

	use EXF-computed fluxes as starting point



	SEAICE_ZETA_SMOOTHREG

	use differentialable regularization for viscosities



	SEAICE_ALLOW_BOTTOMDRAG

	enable grounding parameterisation for improved fastice in shallow seas



	SEAICE_ITD

	run with dynamical sea Ice Thickness Distribution (ITD)



	SEAICE_VARIABLE_FREEZING_POINT

	enable linear dependence of the freezing point on salinity (by default undefined)



	ALLOW_SEAICE_FLOODING

	enable snow to ice conversion for submerged sea-ice



	SEAICE_VARIABLE_SALINITY

	enable sea-ice with variable salinity (by default undefined)



	SEAICE_SITRACER

	enable sea-ice tracer package (by default undefined)



	SEAICE_BICE_STRESS

	B-grid only for backward compatiblity: turn on ice-stress on ocean



	EXPLICIT_SSH_SLOPE

	B-grid only for backward compatiblity: use ETAN for tilt computations rather than geostrophic velocities











8.6.2.3. Run-time parameters

Run-time parameters (see Table 8.16) are set in
files data.pkg (read in packages_readparms.F), and data.seaice (read in seaice_readparms.F).


Enabling the package

A package is switched on/off at run-time by setting (e.g. for SEAICE useSEAICE = .TRUE. in data.pkg).




General flags and parameters

Table 8.16 lists most run-time parameters.


Table 8.16 Run-time parameters and default values






	Name

	Default value

	Description



	SEAICEwriteState

	T

	write sea ice state to file



	SEAICEuseDYNAMICS

	T

	use dynamics



	SEAICEuseJFNK

	F

	use the JFNK-solver



	SEAICEuseTEM

	F

	use truncated ellipse method



	SEAICEuseStrImpCpl

	F

	use strength implicit coupling in LSR/JFNK



	SEAICEuseMetricTerms

	T

	use metric terms in dynamics



	SEAICEuseEVPpickup

	T

	use EVP pickups



	SEAICEuseFluxForm

	F

	use flux form for 2nd central difference advection scheme



	SEAICErestoreUnderIce

	F

	enable restoring to climatology under ice



	useHB87stressCoupling

	F

	turn on ice-ocean stress coupling following



	usePW79thermodynamics

	T

	flag to turn off zero-layer-thermodynamics for testing



	SEAICEadvHeff/Area/Snow/Salt

	T

	flag to turn off advection of scalar state variables



	SEAICEuseFlooding

	T

	use flood-freeze algorithm



	SEAICE_no_slip

	F

	switch between free-slip and no-slip boundary conditions



	SEAICE_deltaTtherm

	dTracerLev(1)

	thermodynamic timestep



	SEAICE_deltaTdyn

	dTracerLev(1)

	dynamic timestep



	SEAICE_deltaTevp

	0

	EVP sub-cycling time step, values \(>\) 0 turn on EVP



	SEAICEuseEVPstar

	F

	use modified EVP* instead of EVP



	SEAICEuseEVPrev

	F

	use yet another variation on EVP*



	SEAICEnEVPstarSteps

	UNSET

	number of modified EVP* iteration



	SEAICE_evpAlpha

	UNSET

	EVP* parameter



	SEAICE_evpBeta

	UNSET

	EVP* parameter



	SEAICEaEVPcoeff

	UNSET

	aEVP parameter



	SEAICEaEVPcStar

	4

	aEVP parameter   [KDL16]



	SEAICEaEVPalphaMin

	5

	aEVP parameter   [KDL16]



	SEAICE_elasticParm

	\(\frac{1}{3}\)

	EVP paramter \(E_0\)



	SEAICE_evpTauRelax

	\(\Delta{t}_{EVP}\)

	relaxation time scale \(T\) for EVP waves



	SEAICEnonLinIterMax

	10

	maximum number of JFNK-Newton iterations (non-linear)



	SEAICElinearIterMax

	10

	maximum number of JFNK-Krylov iterations (linear)



	SEAICE_JFNK_lsIter

	(off)

	start line search after “lsIter” Newton iterations



	SEAICEnonLinTol

	1.0E-05

	non-linear tolerance parameter for JFNK solver



	JFNKgamma_lin_min/max

	0.10/0.99

	tolerance parameters for linear JFNK solver



	JFNKres_tFac

	UNSET

	tolerance parameter for FGMRES residual



	SEAICE_JFNKepsilon

	1.0E-06

	step size for the FD-Jacobian-times-vector



	SEAICE_dumpFreq

	dumpFreq

	dump frequency



	SEAICE_taveFreq

	taveFreq

	time-averaging frequency



	SEAICE_dump_mdsio

	T

	write snap-shot using MDSIO



	SEAICE_tave_mdsio

	T

	write TimeAverage using MDSIO



	SEAICE_dump_mnc

	F

	write snap-shot using MNC



	SEAICE_tave_mnc

	F

	write TimeAverage using MNC



	SEAICE_initialHEFF

	0.00000E+00

	initial sea-ice thickness



	SEAICE_drag

	2.00000E-03

	air-ice drag coefficient



	OCEAN_drag

	1.00000E-03

	air-ocean drag coefficient



	SEAICE_waterDrag

	5.50000E+00

	water-ice drag



	SEAICE_dryIceAlb

	7.50000E-01

	winter albedo



	SEAICE_wetIceAlb

	6.60000E-01

	summer albedo



	SEAICE_drySnowAlb

	8.40000E-01

	dry snow albedo



	SEAICE_wetSnowAlb

	7.00000E-01

	wet snow albedo



	SEAICE_waterAlbedo

	1.00000E-01

	water albedo



	SEAICE_strength

	2.75000E+04

	sea-ice strength \(P^{\ast}\)



	SEAICE_cStar

	20.0000E+00

	sea-ice strength paramter \(C^{\ast}\)



	SEAICE_rhoAir

	1.3 (or exf value)

	density of air (kg/m:math:^3)



	SEAICE_cpAir

	1004 (or exf value)

	specific heat of air (J/kg/K)



	SEAICE_lhEvap

	2,500,000 (or exf value)

	latent heat of evaporation



	SEAICE_lhFusion

	334,000 (or exf value)

	latent heat of fusion



	SEAICE_lhSublim

	2,834,000

	latent heat of sublimation



	SEAICE_dalton

	1.75E-03

	sensible heat transfer coefficient



	SEAICE_iceConduct

	2.16560E+00

	sea-ice conductivity



	SEAICE_snowConduct

	3.10000E-01

	snow conductivity



	SEAICE_emissivity

	5.50000E-08

	Stefan-Boltzman



	SEAICE_snowThick

	1.50000E-01

	cutoff snow thickness



	SEAICE_shortwave

	3.00000E-01

	penetration shortwave radiation



	SEAICE_freeze

	-1.96000E+00

	freezing temp. of sea water



	SEAICE_saltFrac

	0.0

	salinity newly formed ice (fraction of ocean surface salinity)



	SEAICE_frazilFrac

	0.0

	Fraction of surface level negative heat content anomalies (relative to the local freezing poin



	SEAICEstressFactor

	1.00000E+00

	scaling factor for ice-ocean stress



	Heff/Area/HsnowFile/Hsalt

	UNSET

	initial fields for variables HEFF/AREA/HSNOW/HSALT



	LSR_ERROR

	1.00000E-04

	sets accuracy of LSR solver



	DIFF1

	0.0

	parameter used in advect.F



	HO

	5.00000E-01

	demarcation ice thickness (AKA lead closing paramter \(h_0\))



	MAX_HEFF

	1.00000E+01

	maximum ice thickness



	MIN_ATEMP

	-5.00000E+01

	minimum air temperature



	MIN_LWDOWN

	6.00000E+01

	minimum downward longwave



	MAX_TICE

	3.00000E+01

	maximum ice temperature



	MIN_TICE

	-5.00000E+01

	minimum ice temperature



	IMAX_TICE

	10

	iterations for ice heat budget



	SEAICE_EPS

	1.00000E-10

	reduce derivative singularities



	SEAICE_area_reg

	1.00000E-5

	minimum concentration to regularize ice thickness



	SEAICE_hice_reg

	0.05 m

	minimum ice thickness for regularization



	SEAICE_multDim

	1

	number of ice categories for thermodynamics



	SEAICE_useMultDimSnow

	F

	use SEAICE_multDim snow categories









Input fields and units



	HeffFile: Initial sea ice thickness averaged over grid cell in meters; initializes variable HEFF;


	AreaFile: Initial fractional sea ice cover, range \([0,1]\); initializes variable AREA;


	HsnowFile: Initial snow thickness on sea ice averaged over grid cell in meters; initializes variable HSNOW;


	HsaltFile: Initial salinity of sea ice averaged over grid cell in g/m\(^2\); initializes variable HSALT;












8.6.2.4. Description

The MITgcm sea ice model (MITgcm/sim) is based on a variant of the
viscous-plastic (VP) dynamic-thermodynamic sea ice model [ZH97] first
introduced by [Hib79][Hib80]. In order to adapt this model to the requirements of
coupled ice-ocean state estimation, many important aspects of the
original code have been modified and improved [LMC+10]:


	the code has been rewritten for an Arakawa C-grid, both B- and C-grid
variants are available; the C-grid code allows for no-slip and
free-slip lateral boundary conditions;


	three different solution methods for solving the nonlinear momentum
equations have been adopted: LSOR [ZH97], EVP [HD97], JFNK [LTSedlacek+10][LFLV14];


	ice-ocean stress can be formulated as in [HB87] or as in [CMF08];


	ice variables are advected by sophisticated, conservative advection
schemes with flux limiting;


	growth and melt parameterizations have been refined and extended in
order to allow for more stable automatic differentiation of the code.




The sea ice model is tightly coupled to the ocean compontent of the
MITgcm. Heat, fresh water fluxes and surface stresses are computed from
the atmospheric state and – by default – modified by the ice model at
every time step.

The ice dynamics models that are most widely used for large-scale
climate studies are the viscous-plastic (VP) model [Hib79], the cavitating
fluid (CF) model [FWDH92], and the elastic-viscous-plastic (EVP) model [HD97].
Compared to the VP model, the CF model does not allow ice shear in
calculating ice motion, stress, and deformation. EVP models approximate
VP by adding an elastic term to the equations for easier adaptation to
parallel computers. Because of its higher accuracy in plastic solution
and relatively simpler formulation, compared to the EVP model, we
decided to use the VP model as the default dynamic component of our ice
model. To do this we extended the line successive over relaxation (LSOR)
method of [ZH97] for use in a parallel configuration. An EVP model and a
free-drift implemtation can be selected with runtime flags.


Compatibility with ice-thermodynamics thsice package

Note, that by default the seaice-package includes the orginial so-called
zero-layer thermodynamics following with a snow cover as in . The
zero-layer thermodynamic model assumes that ice does not store heat and,
therefore, tends to exaggerate the seasonal variability in ice
thickness. This exaggeration can be significantly reduced by using ’s []
three-layer thermodynamic model that permits heat storage in ice.
Recently, the three-layer thermodynamic model has been reformulated by .
The reformulation improves model physics by representing the brine
content of the upper ice with a variable heat capacity. It also improves
model numerics and consumes less computer time and memory.

The Winton sea-ice thermodynamics have been ported to the MIT GCM; they currently reside under pkg/thsice. The package thsice is described in section Section 8.6.1; it is fully compatible with the packages seaice and exf.  When turned on together with seaice, the zero-layer thermodynamics are replaced by the Winton thermodynamics. In order to use the seaice-package with the thermodynamics of thsice, compile both packages and turn both package on in data.pkg; see an example in global_ocean.cs32x15/input.icedyn. Note, that once thsice is turned on, the variables and diagnostics associated to the default thermodynamics are meaningless, and the diagnostics of thsice have to be used instead.




Surface forcing







The sea ice model requires the following input fields: 10-m winds, 2-m air temperature and specific humidity, downward longwave and shortwave radiations, precipitation, evaporation, and river and glacier runoff. The sea ice model also requires surface temperature from the ocean model and the top level horizontal velocity. Output fields are surface wind stress, evaporation minus precipitation minus runoff, net surface heat flux, and net shortwave flux. The sea-ice model is global: in ice-free regions bulk formulae are used to estimate oceanic forcing from the atmospheric fields.




Dynamics







The momentum equation of the sea-ice model is


(8.2)\[  m \frac{D\mathbf{u}}{Dt} = -mf\mathbf{k}\times\mathbf{u} +
  \mathbf{\tau}_{air} + \mathbf{\tau}_{ocean}
  - m \nabla{\phi(0)} + \mathbf{F},\]

where \(m=m_{i}+m_{s}\) is the ice and snow mass per unit area;
\(\mathbf{u}=u\mathbf{i}+v\mathbf{j}\)
is the ice velocity vector; \(\mathbf{i}\),
\(\mathbf{j}\), and
\(\mathbf{k}\) are unit vectors in the
\(x\), \(y\), and \(z\) directions, respectively; \(f\)
is the Coriolis parameter;
\(\mathbf{\tau}_{air}\) and
\(\mathbf{\tau}_{ocean}\) are the
wind-ice and ocean-ice stresses, respectively; \(g\) is the gravity
accelation; \(\nabla\phi(0)\) is the gradient (or tilt) of the sea
surface height; \(\phi(0) = g\eta + p_{a}/\rho_{0} + mg/\rho_{0}\)
is the sea surface height potential in response to ocean dynamics
(\(g\eta\)), to atmospheric pressure loading
(\(p_{a}/\rho_{0}\), where \(\rho_{0}\) is a reference density)
and a term due to snow and ice loading ; and
\(\mathbf{F}=\nabla\cdot\sigma\) is the
divergence of the internal ice stress tensor \(\sigma_{ij}\).
Advection of sea-ice momentum is neglected. The wind and ice-ocean
stress terms are given by


\[\begin{split}\begin{aligned}
  \mathbf{\tau}_{air}   = & \rho_{air}  C_{air}
  |\mathbf{U}_{air} -\mathbf{u}|  R_{air}  (\mathbf{U}_{air}
  -\mathbf{u}), \\
  \mathbf{\tau}_{ocean} = & \rho_{ocean}C_{ocean}
  |\mathbf{U}_{ocean}-\mathbf{u}|
  R_{ocean}(\mathbf{U}_{ocean}-\mathbf{u}),
\end{aligned}\end{split}\]

where \(\mathbf{U}_{air/ocean}\) are the
surface winds of the atmosphere and surface currents of the ocean,
respectively; \(C_{air/ocean}\) are air and ocean drag coefficients;
\(\rho_{air/ocean}\) are reference densities; and
\(R_{air/ocean}\) are rotation matrices that act on the wind/current
vectors.




Viscous-Plastic (VP) Rheology







For an isotropic system the stress tensor \(\sigma_{ij}\)
(\(i,j=1,2\)) can be related to the ice strain rate and strength
by a nonlinear viscous-plastic (VP) constitutive law :


(8.3)\[  \sigma_{ij}=2\eta(\dot{\epsilon}_{ij},P)\dot{\epsilon}_{ij}
  + \left[\zeta(\dot{\epsilon}_{ij},P) -
    \eta(\dot{\epsilon}_{ij},P)\right]\dot{\epsilon}_{kk}\delta_{ij}
  - \frac{P}{2}\delta_{ij}.\]

The ice strain rate is given by


\[\dot{\epsilon}_{ij} = \frac{1}{2}\left(
    \frac{\partial{u_{i}}}{\partial{x_{j}}} +
    \frac{\partial{u_{j}}}{\partial{x_{i}}}\right).\]

The maximum ice pressure \(P_{\max}\), a measure of ice strength,
depends on both thickness \(h\) and compactness (concentration)
\(c\):


(8.4)\[P_{\max} = P^{\ast}c\,h\,\exp\{-C^{\ast}\cdot(1-c)\},\]

with the constants \(P^{\ast}\) (run-time parameter
SEAICE_strength) and \(C^{\ast}=20\) (run-time parameter
SEAICE_cStar). The nonlinear bulk and shear viscosities
\(\eta\) and \(\zeta\) are functions of ice strain rate
invariants and ice strength such that the principal components of the
stress lie on an elliptical yield curve with the ratio of major to
minor axis \(e\) equal to \(2\); they are given by:


\[\begin{split}\begin{aligned}
  \zeta =& \min\left(\frac{P_{\max}}{2\max(\Delta,\Delta_{\min})},
   \zeta_{\max}\right) \\
  \eta =& \frac{\zeta}{e^2} \\
  & \text{with the abbreviation} \\
  \Delta = & \left[
    \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right)
    (1+e^{-2}) +  4e^{-2}\dot{\epsilon}_{12}^2 +
    2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2})
  \right]^{\frac{1}{2}}.\end{aligned}\end{split}\]

The bulk viscosities are bounded above by imposing both a minimum
\(\Delta_{\min}\) (for numerical reasons, run-time parameter
SEAICE_EPS with a default value of \(10^{-10}\,\text{s}^{-1}\))
and a maximum \(\zeta_{\max} = P_{\max}/\Delta^\ast\), where
\(\Delta^\ast=(5\times10^{12}/2\times10^4)\,\text{s}^{-1}\). (There
is also the option of bounding \(\zeta\) from below by setting
run-time parameter SEAICE_zetaMin \(>0\), but this is generally not
recommended). For stress tensor computation the replacement pressure
\(P = 2\,\Delta\zeta\) is used so that the stress state always
lies on the elliptic yield curve by definition.

Defining the CPP-flag SEAICE_ZETA_SMOOTHREG in SEAICE_OPTIONS.h before compiling replaces the method for
bounding \(\zeta\) by a smooth (differentiable) expression:


(8.5)\[\begin{split}  \begin{split}
  \zeta &= \zeta_{\max}\tanh\left(\frac{P}{2\,\min(\Delta,\Delta_{\min})
      \,\zeta_{\max}}\right)\\
  &= \frac{P}{2\Delta^\ast}
  \tanh\left(\frac{\Delta^\ast}{\min(\Delta,\Delta_{\min})}\right)
  \end{split}\end{split}\]

where \(\Delta_{\min}=10^{-20}\,\text{s}^{-1}\) is chosen to avoid
divisions by zero.




LSR and JFNK solver







In the matrix notation, the discretized momentum equations can be
written as


(8.6)\[  \mathbf{A}(\mathbf{x})\,\mathbf{x} = \mathbf{b}(\mathbf{x}).\]

The solution vector \(\mathbf{x}\) consists of the two velocity
components \(u\) and \(v\) that contain the velocity variables
at all grid points and at one time level. The standard (and default)
method for solving Eq. (8.6) in the sea ice component of
the MITgcm, as in many sea ice models, is an iterative Picard solver: in the
\(k\)-th iteration a linearized form
\(\mathbf{A}(\mathbf{x}^{k-1})\,\mathbf{x}^{k} =
\mathbf{b}(\mathbf{x}^{k-1})\) is solved (in the case of the MITgcm it
is a Line Successive (over) Relaxation (LSR) algorithm ). Picard
solvers converge slowly, but generally the iteration is terminated
after only a few non-linear steps and the calculation continues with
the next time level. This method is the default method in the
MITgcm. The number of non-linear iteration steps or pseudo-time steps
can be controlled by the runtime parameter SEAICEnonLinIterMax
(default is 2).

In order to overcome the poor convergence of the Picard-solver,
introduced a Jacobian-free Newton-Krylov solver for the sea ice momentum
equations. This solver is also implemented in the MITgcm . The Newton
method transforms minimizing the residual
\(\mathbf{F}(\mathbf{x}) = \mathbf{A}(\mathbf{x})\,\mathbf{x} -
\mathbf{b}(\mathbf{x})\) to finding the roots of a multivariate Taylor
expansion of the residual \(\mathbf{F}\) around the previous
(\(k-1\)) estimate \(\mathbf{x}^{k-1}\):


(8.7)\[   \mathbf{F}(\mathbf{x}^{k-1}+\delta\mathbf{x}^{k}) =
   \mathbf{F}(\mathbf{x}^{k-1}) + \mathbf{F}'(\mathbf{x}^{k-1})
   \,\delta\mathbf{x}^{k}\]

with the Jacobian
\(\mathbf{J}\equiv\mathbf{F}'\).
The root
\(\mathbf{F}(\mathbf{x}^{k-1}+\delta\mathbf{x}^{k})=0\)
is found by solving


(8.8)\[   \mathbf{J}(\mathbf{x}^{k-1})\,\delta\mathbf{x}^{k} =
   -\mathbf{F}(\mathbf{x}^{k-1})\]

for \(\delta\mathbf{x}^{k}\). The next
(\(k\)-th) estimate is given by
\(\mathbf{x}^{k}=\mathbf{x}^{k-1}+a\,\delta\mathbf{x}^{k}\).
In order to avoid overshoots the factor \(a\) is iteratively reduced
in a line search
(\(a=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\)) until
\(\|\mathbf{F}(\mathbf{x}^k)\| <  \|\mathbf{F}(\mathbf{x}^{k-1})\|\),
where \(\|\cdot\|=\int\cdot\,dx^2\) is the \(L_2\)-norm. In
practice, the line search is stopped at \(a=\frac{1}{8}\). The line
search starts after SEAICE_JFNK_lsIter non-linear
Newton iterations (off by default).

Forming the Jacobian \(\mathbf{J}\) explicitly is
often avoided as “too error prone and time consuming” . Instead, Krylov
methods only require the action of \(\mathbf{J}\) on an arbitrary
vector \(\mathbf{w}\) and hence allow a matrix free algorithm
for solving Eq. (8.8). The action of \(\mathbf{J}\) can be
approximated by a first-order Taylor series expansion:


(8.9)\[        \mathbf{J}(\mathbf{x}^{k-1})\,\mathbf{w} \approx
        \frac{\mathbf{F}(\mathbf{x}^{k-1}+\epsilon\mathbf{w})
        - \mathbf{F}(\mathbf{x}^{k-1})} \epsilon\]

or computed exactly with the help of automatic differentiation (AD)
tools. SEAICE_JFNKepsilon sets the step size \(\epsilon\).

We use the Flexible Generalized Minimum RESidual method with
right-hand side preconditioning to solve Eq. (8.8)
iteratively starting from a first guess of
\(\delta\mathbf{x}^{k}_{0} = 0\). For the preconditioning matrix
\(\mathbf{P}\) we choose a simplified form of the system matrix
\(\mathbf{A}(\mathbf{x}^{k-1})\) where \(\mathbf{x}^{k-1}\) is
the estimate of the previous Newton step \(k-1\). The transformed
equation (8.8) becomes


(8.10)\[\mathbf{J}(\mathbf{x}^{k-1})\,\mathbf{P}^{-1}\delta\mathbf{z} =
-\mathbf{F}(\mathbf{x}^{k-1}), \quad\text{with} \quad
\delta{\mathbf{z}} = \mathbf{P}\delta\mathbf{x}^{k}.\]

The Krylov method iteratively improves the approximate solution
to Eq. (8.10) in subspace
(\(\mathbf{r}_0\), \(\mathbf{J}\mathbf{P}^{-1}\mathbf{r}_0\),
\((\mathbf{J}\mathbf{P}^{-1})^2\mathbf{r}_0\),
\(\dots\),
\((\mathbf{J}\mathbf{P}^{-1})^m\mathbf{r}_0\))
with increasing \(m\);
\(\mathbf{r}_0 = -\mathbf{F}(\mathbf{x}^{k-1})      -\mathbf{J}(\mathbf{x}^{k-1})\,\delta\mathbf{x}^{k}_{0}\)
is the initial residual of Eq. (8.8);
\(\mathbf{r}_0=-\mathbf{F}(\mathbf{x}^{k-1})\)
with the first guess
\(\delta\mathbf{x}^{k}_{0}=0\). We allow a
Krylov-subspace of dimension \(m=50\) and we do not use restarts.
The preconditioning operation involves applying
\(\mathbf{P}^{-1}\) to the basis vectors
\(\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m\)
of the Krylov subspace. This operation is approximated by solving the
linear system
\(\mathbf{P}\,\mathbf{w}=\mathbf{v}_i\).
Because \(\mathbf{P} \approx \mathbf{A}(\mathbf{x}^{k-1})\), we
can use the LSR-algorithm already implemented in the Picard solver. Each
preconditioning operation uses a fixed number of 10 LSR-iterations
avoiding any termination criterion. More details and results can be
found in .

To use the JFNK-solver set SEAICEuseJNFK = .TRUE., in the namelist file
data.seaice; SEAICE_ALLOW_JFNK needs to be defined in SEAICE_OPTIONS.h and we recommend using a smooth regularization of \(\zeta\) by defining SEAICE_ZETA_SMOOTHREG (see above) for better convergence. The non-linear Newton iteration is terminated when the \(L_2\)-norm of the residual is reduced by \(\gamma_{\mathrm{nl}}\) (runtime parameter SEAICEnonLinTol = 1.E-4, will already lead to expensive simulations) with respect to the initial norm: \(\|\mathbf{F}(\mathbf{x}^k)\| <
\gamma_{\mathrm{nl}}\|\mathbf{F}(\mathbf{x}^0)\|\).
Within a non-linear iteration, the linear FGMRES solver is terminated
when the residual is smaller than \(\gamma_k\|\mathbf{F}(\mathbf{x}^{k-1})\|\) where \(\gamma_k\) is determined by


(8.11)\[\begin{split}        \gamma_k =
   \begin{cases}
        \gamma_0 &\text{for $\|\mathbf{F}(\mathbf{x}^{k-1})\| \geq r$},  \\
    \max\left(\gamma_{\min},
    \frac{\|\mathbf{F}(\mathbf{x}^{k-1})\|}
    {\|\mathbf{F}(\mathbf{x}^{k-2})\|}\right)
    &\text{for $\|\mathbf{F}(\mathbf{x}^{k-1})\| < r$,}
  \end{cases}\end{split}\]

so that the linear tolerance parameter \(\gamma_k\) decreases with
the non-linear Newton step as the non-linear solution is approached.
This inexact Newton method is generally more robust and
computationally more efficient than exact methods . Typical parameter
choices are \(\gamma_0\) = JFNKgamma_lin_max = 0.99,
\(\gamma_{\min}\) = JFNKgamma_lin_min = 0.1, and \(r\) =
JFNKres_tFac
\(\times\|\mathbf{F}(\mathbf{x}^{0})\|\) with
JFNKres_tFac = 0.5. We recommend a maximum number of
non-linear iterations SEAICEnewtonIterMax = 100 and a maximum number
of Krylov iterations SEAICEkrylovIterMax = 50, because the Krylov
subspace has a fixed dimension of 50.

Setting SEAICEuseStrImpCpl = .TRUE., turns on “strength implicit
coupling” [HJL04] in the LSR-solver and in the LSR-preconditioner for the JFNK-solver. In this mode, the different contributions of the stress
divergence terms are re-ordered in order to increase the diagonal dominance of the system matrix. Unfortunately, the convergence rate of the LSR solver is increased only slightly, while the JFNK-convergence appears to be unaffected.




Elastic-Viscous-Plastic (EVP) Dynamics

[HD97] introduced an elastic contribution to the strain rate in
order to regularize (8.3) in such a way that the
resulting elastic-viscous-plastic (EVP) and VP models are identical at steady state,


(8.12)\[\frac{1}{E}\frac{\partial\sigma_{ij}}{\partial{t}} +
  \frac{1}{2\eta}\sigma_{ij}
  + \frac{\eta - \zeta}{4\zeta\eta}\sigma_{kk}\delta_{ij}
  + \frac{P}{4\zeta}\delta_{ij}
  = \dot{\epsilon}_{ij}.\]

The EVP-model uses an explicit time stepping scheme with a short timestep. According to the recommendation of [HD97], the EVP-model should be stepped forward in time 120 times (SEAICE_deltaTevp = SEAICIE_deltaTdyn/120) within the physical ocean model time step (although this parameter is under debate), to allow for elastic waves to disappear. Because the scheme does not require a matrix inversion it is fast in spite of the small internal timestep and simple to implement on parallel computers .
For completeness, we repeat the equations for the components of the
stress tensor \(\sigma_{1} =
\sigma_{11}+\sigma_{22}\), \(\sigma_{2}= \sigma_{11}-\sigma_{22}\),
and \(\sigma_{12}\). Introducing the divergence \(D_D =
\dot{\epsilon}_{11}+\dot{\epsilon}_{22}\), and the horizontal tension and
shearing strain rates, \(D_T =
\dot{\epsilon}_{11}-\dot{\epsilon}_{22}\) and \(D_S =
2\dot{\epsilon}_{12}\), respectively, and using the above abbreviations,
the equations (8.12) can be written as:


(8.13)\[\frac{\partial\sigma_{1}}{\partial{t}} + \frac{\sigma_{1}}{2T} +
\frac{P}{2T} = \frac{P}{2T\Delta} D_D\]


(8.14)\[\frac{\partial\sigma_{2}}{\partial{t}} + \frac{\sigma_{2} e^{2}}{2T}
= \frac{P}{2T\Delta} D_T\]


(8.15)\[\frac{\partial\sigma_{12}}{\partial{t}} + \frac{\sigma_{12} e^{2}}{2T}
= \frac{P}{4T\Delta} D_S\]

Here, the elastic parameter \(E\) is redefined in terms of a damping
timescale \(T\) for elastic waves


\[E=\frac{\zeta}{T}.\]

\(T=E_{0}\Delta{t}\) with the tunable parameter \(E_0<1\) and
the external (long) timestep \(\Delta{t}\).
\(E_{0} = \frac{1}{3}\) is the default value in the code and close
to what and recommend.

To use the EVP solver, make sure that both SEAICE_CGRID and
SEAICE_ALLOW_EVP are defined in SEAICE_OPTIONS.h
(default). The solver is turned on by setting the sub-cycling time
step SEAICE_deltaTevp to a value larger than zero. The choice of
this time step is under debate.  [HD97] recommend order(120)
time steps for the EVP solver within one model time step
\(\Delta{t}\) (deltaTmom). One can also choose order(120) time
steps within the forcing time scale, but then we recommend adjusting
the damping time scale \(T\) accordingly, by setting either SEAICE_elasticPlarm (\(E_{0}\)), so that \(E_{0}\Delta{t}=\) forcing time scale, or directly SEAICE_evpTauRelax (\(T\)) to the forcing time scale. (NOTE: with the improved EVP variants of the next section, the above recommendations are obsolete. Use mEVP or aEVP instead.)




More stable variants of Elastic-Viscous-Plastic Dynamics: EVP* , mEVP, and aEVP

The genuine EVP schemes appears to give noisy solu tions [Hun01][LKT+12][BFLM13]. This has lead to a modified EVP or EVP* [LKT+12][BFLM13][KDL15]; here, we refer to these variants by modified EVP (mEVP) and adaptive EVP (aEVP) [KDL16]. The main idea is to modify the “natural” time-discretization of the momentum equations:


(8.16)\[  m\frac{D\mathbf{u}}{Dt} \approx
  m\frac{\mathbf{u}^{p+1}-\mathbf{u}^{n}}{\Delta{t}} +
  \beta^{\ast}\frac{\mathbf{u}^{p+1}-\mathbf{u}^{p}}{\Delta{t}_{\mathrm{EVP}}}\]

where \(n\) is the previous time step index, and \(p\) is the
previous sub-cycling index. The extra “intertial” term
\(m\,(\mathbf{u}^{p+1}-\mathbf{u}^{n})/\Delta{t})\) allows the
definition of a residual \(|\mathbf{u}^{p+1}-\mathbf{u}^{p}|\)
that, as \(\mathbf{u}^{p+1} \rightarrow \mathbf{u}^{n+1}\),
converges to \(0\). In this way EVP can be re-interpreted as a
pure iterative solver where the sub-cycling has no association with
time-relation (through \(\Delta{t}_{\mathrm{EVP}}\)) . Using the
terminology of , the evolution equations of stress \(\sigma_{ij}\)
and momentum \(\mathbf{u}\) can be written as:


(8.17)\[\sigma_{ij}^{p+1}=\sigma_{ij}^p+\frac{1}{\alpha}
\Big(\sigma_{ij}(\mathbf{u}^p)-\sigma_{ij}^p\Big),
\phantom{\int}\]


(8.18)\[\mathbf{u}^{p+1}=\mathbf{u}^p+\frac{1}{\beta}
\Big(\frac{\Delta t}{m}\nabla \cdot{\bf \sigma}^{p+1}+
\frac{\Delta t}{m}\mathbf{R}^{p}+\mathbf{u}_n
-\mathbf{u}^p\Big).\]

\(\mathbf{R}\) contains all terms in the momentum equations except
for the rheology terms and the time derivative; \(\alpha\) and
\(\beta\) are free parameters (SEAICE_evpAlpha, SEAICE_evpBeta) that replace the time stepping parameters SEAICE_deltaTevp (\(\Delta{T}_{\mathrm{EVP}}\)), SEAICE_elasticParm (\(E_{0}\)), or SEAICE_evpTauRelax (\(T\)). \(\alpha\) and \(\beta\) determine the speed of convergence and the stability. Usually, it makes sense to use
\(\alpha = \beta\), and SEAICEnEVPstarSteps \(\gg (\alpha,\,\beta)\) [KDL15]. Currently,
there is no termination criterion and the number of mEVP iterations is
fixed to SEAICEnEVPstarSteps.

In order to use mEVP in the MITgcm, set SEAICEuseEVPstar = .TRUE.,
in data.seaice. If SEAICEuseEVPrev =.TRUE., the actual form of
equations (8.17) and (8.18) is used with fewer
implicit terms and the factor of \(e^{2}\) dropped in the stress
equations (8.14) and
(8.15). Although this modifies the original
EVP-equations, it turns out to improve convergence [BFLM13].

Another variant is the aEVP scheme [KDL16], where the value
of \(\alpha\) is set dynamically based on the stability criterion


(8.19)\[  \alpha = \beta = \max\left( \tilde{c}\pi\sqrt{c \frac{\zeta}{A_{c}}
    \frac{\Delta{t}}{\max(m,10^{-4}\,\text{kg})}},\alpha_{\min} \right)\]

with the grid cell area \(A_c\) and the ice and snow mass \(m\).
This choice sacrifices speed of convergence for stability with the
result that aEVP converges quickly to VP where \(\alpha\) can be
small and more slowly in areas where the equations are stiff. In
practice, aEVP leads to an overall better convergence than mEVP [KDL16]. To use aEVP in the MITgcm set SEAICEaEVPcoeff \(= \tilde{c}\); this also sets the default values of SEAICEaEVPcStar (\(c=4\)) and SEAICEaEVPalphaMin (\(\alpha_{\min}=5\)). Good convergence has been obtained with setting these values [KDL16]:
SEAICEaEVPcoeff = 0.5, SEAICEnEVPstarSteps = 500, SEAICEuseEVPstar = .TRUE., SEAICEuseEVPrev = .TRUE.

Note, that probably because of the C-grid staggering of velocities and
stresses, mEVP may not converge as successfully as in [KDL15], and that convergence at very high resolution (order 5km) has not been studied yet.




Truncated ellipse method (TEM) for yield curve

In the so-called truncated ellipse method the shear viscosity \(\eta\) is capped to suppress any tensile stress:


(8.20)\[  \eta = \min\left(\frac{\zeta}{e^2},
  \frac{\frac{P}{2}-\zeta(\dot{\epsilon}_{11}+\dot{\epsilon}_{22})}
  {\sqrt{\max(\Delta_{\min}^{2},(\dot{\epsilon}_{11}-\dot{\epsilon}_{22})^2
      +4\dot{\epsilon}_{12}^2})}\right).\]

To enable this method, set #define SEAICE_ALLOW_TEM in
SEAICE_OPTIONS.h and turn it on with SEAICEuseTEM in data.seaice.




Ice-Ocean stress

Moving sea ice exerts a stress on the ocean which is the opposite of
the stress \(\mathbf{\tau}_{ocean}\) in
Eq. (8.2). This stess is applied directly to the surface
layer of the ocean model. An alternative ocean stress formulation is
given by [HB87]. Rather than applying
\(\mathbf{\tau}_{ocean}\) directly, the stress is derived from
integrating over the ice thickness to the bottom of the oceanic
surface layer. In the resulting equation for the combined ocean-ice
momentum, the interfacial stress cancels and the total stress appears
as the sum of windstress and divergence of internal ice stresses:
\(\delta(z) (\mathbf{\tau}_{air} + \mathbf{F})/\rho_0\), see alse
Eq. 2 of [HB87]. The disadvantage of this formulation is
that now the velocity in the surface layer of the ocean that is used
to advect tracers, is really an average over the ocean surface
velocity and the ice velocity leading to an inconsistency as the ice
temperature and salinity are different from the oceanic variables. To
turn on the stress formulation of [HB87], set
useHB87StressCoupling=.TRUE., in data.seaice.




Finite-volume discretization of the stress tensor divergence

On an Arakawa C grid, ice thickness and concentration and thus ice
strength \(P\) and bulk and shear viscosities \(\zeta\) and
\(\eta\) are naturally defined a C-points in the center of the grid
cell. Discretization requires only averaging of \(\zeta\) and
\(\eta\) to vorticity or Z-points (or \(\zeta\)-points, but here
we use Z in order avoid confusion with the bulk viscosity) at the bottom
left corner of the cell to give \(\overline{\zeta}^{Z}\) and
\(\overline{\eta}^{Z}\). In the following, the superscripts indicate
location at Z or C points, distance across the cell (F), along the cell
edge (G), between \(u\)-points (U), \(v\)-points (V), and
C-points (C). The control volumes of the \(u\)- and
\(v\)-equations in the grid cell at indices \((i,j)\) are
\(A_{i,j}^{w}\) and \(A_{i,j}^{s}\), respectively. With these
definitions (which follow the model code documentation except that
\(\zeta\)-points have been renamed to Z-points), the strain rates
are discretized as:


\[\begin{split}\begin{aligned}
  \dot{\epsilon}_{11} &= \partial_{1}{u}_{1} + k_{2}u_{2} \\ \notag
  => (\epsilon_{11})_{i,j}^C &= \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}}
   + k_{2,i,j}^{C}\frac{v_{i,j+1}+v_{i,j}}{2} \\
  \dot{\epsilon}_{22} &= \partial_{2}{u}_{2} + k_{1}u_{1} \\\notag
  => (\epsilon_{22})_{i,j}^C &= \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}}
   + k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\
   \dot{\epsilon}_{12} = \dot{\epsilon}_{21} &= \frac{1}{2}\biggl(
   \partial_{1}{u}_{2} + \partial_{2}{u}_{1} - k_{1}u_{2} - k_{2}u_{1}
   \biggr) \\ \notag
  => (\epsilon_{12})_{i,j}^Z &= \frac{1}{2}
  \biggl( \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^V}
   + \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^U} \\\notag
  &\phantom{=\frac{1}{2}\biggl(}
   - k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}
   - k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
   \biggr),\end{aligned}\end{split}\]

so that the diagonal terms of the strain rate tensor are naturally
defined at C-points and the symmetric off-diagonal term at Z-points.
No-slip boundary conditions (\(u_{i,j-1}+u_{i,j}=0\) and
\(v_{i-1,j}+v_{i,j}=0\) across boundaries) are implemented via
“ghost-points”; for free slip boundary conditions
\((\epsilon_{12})^Z=0\) on boundaries.

For a spherical polar grid, the coefficients of the metric terms are
\(k_{1}=0\) and \(k_{2}=-\tan\phi/a\), with the spherical radius
\(a\) and the latitude \(\phi\);
\(\Delta{x}_1 = \Delta{x} = a\cos\phi
\Delta\lambda\), and \(\Delta{x}_2 = \Delta{y}=a\Delta\phi\). For a
general orthogonal curvilinear grid, \(k_{1}\) and \(k_{2}\) can
be approximated by finite differences of the cell widths:


\[\begin{split}\begin{aligned}
  k_{1,i,j}^{C} &= \frac{1}{\Delta{y}_{i,j}^{F}}
  \frac{\Delta{y}_{i+1,j}^{G}-\Delta{y}_{i,j}^{G}}{\Delta{x}_{i,j}^{F}} \\
  k_{2,i,j}^{C} &= \frac{1}{\Delta{x}_{i,j}^{F}}
  \frac{\Delta{x}_{i,j+1}^{G}-\Delta{x}_{i,j}^{G}}{\Delta{y}_{i,j}^{F}} \\
  k_{1,i,j}^{Z} &= \frac{1}{\Delta{y}_{i,j}^{U}}
  \frac{\Delta{y}_{i,j}^{C}-\Delta{y}_{i-1,j}^{C}}{\Delta{x}_{i,j}^{V}} \\
  k_{2,i,j}^{Z} &= \frac{1}{\Delta{x}_{i,j}^{V}}
  \frac{\Delta{x}_{i,j}^{C}-\Delta{x}_{i,j-1}^{C}}{\Delta{y}_{i,j}^{U}}\end{aligned}\end{split}\]

The stress tensor is given by the constitutive viscous-plastic relation
\(\sigma_{\alpha\beta} = 2\eta\dot{\epsilon}_{\alpha\beta} +
[(\zeta-\eta)\dot{\epsilon}_{\gamma\gamma} - P/2
]\delta_{\alpha\beta}\) . The stress tensor divergence
\((\nabla\sigma)_{\alpha} = \partial_\beta\sigma_{\beta\alpha}\), is
discretized in finite volumes . This conveniently avoids dealing with
further metric terms, as these are “hidden” in the differential cell
widths. For the \(u\)-equation (\(\alpha=1\)) we have:


\[\begin{split}\begin{aligned}
  (\nabla\sigma)_{1}: \phantom{=}&
  \frac{1}{A_{i,j}^w}
  \int_{\mathrm{cell}}(\partial_1\sigma_{11}+\partial_2\sigma_{21})\,dx_1\,dx_2
  \\\notag
  =& \frac{1}{A_{i,j}^w} \biggl\{
  \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{11}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
  + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{21}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
  \biggr\} \\ \notag
  \approx& \frac{1}{A_{i,j}^w} \biggl\{
  \Delta{x}_2\sigma_{11}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
  + \Delta{x}_1\sigma_{21}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
  \biggr\} \\ \notag
  =& \frac{1}{A_{i,j}^w} \biggl\{
  (\Delta{x}_2\sigma_{11})_{i,j}^C -
  (\Delta{x}_2\sigma_{11})_{i-1,j}^C
  \\\notag
  \phantom{=}& \phantom{\frac{1}{A_{i,j}^w} \biggl\{}
  + (\Delta{x}_1\sigma_{21})_{i,j+1}^Z - (\Delta{x}_1\sigma_{21})_{i,j}^Z
  \biggr\}\end{aligned}\end{split}\]

with


\[\begin{split}\begin{aligned}
  (\Delta{x}_2\sigma_{11})_{i,j}^C =& \phantom{+}
  \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
  \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
  &+ \Delta{y}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
  k_{2,i,j}^C \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
  \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
  \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
  \phantom{=}& + \Delta{y}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
  k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
  \phantom{=}& - \Delta{y}_{i,j}^{F} \frac{P}{2} \\
  (\Delta{x}_1\sigma_{21})_{i,j}^Z =& \phantom{+}
  \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
  \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}} \\ \notag
  & + \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
  \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\ \notag
  & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
  k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2} \\ \notag
  & - \Delta{x}_{i,j}^{V}\overline{\eta}^{Z}_{i,j}
  k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2}\end{aligned}\end{split}\]

Similarly, we have for the \(v\)-equation (\(\alpha=2\)):


\[\begin{split}\begin{aligned}
  (\nabla\sigma)_{2}: \phantom{=}&
  \frac{1}{A_{i,j}^s}
  \int_{\mathrm{cell}}(\partial_1\sigma_{12}+\partial_2\sigma_{22})\,dx_1\,dx_2
  \\\notag
  =& \frac{1}{A_{i,j}^s} \biggl\{
  \int_{x_2}^{x_2+\Delta{x}_2}\sigma_{12}dx_2\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
  + \int_{x_1}^{x_1+\Delta{x}_1}\sigma_{22}dx_1\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
  \biggr\} \\ \notag
  \approx& \frac{1}{A_{i,j}^s} \biggl\{
  \Delta{x}_2\sigma_{12}\biggl|_{x_{1}}^{x_{1}+\Delta{x}_{1}}
  + \Delta{x}_1\sigma_{22}\biggl|_{x_{2}}^{x_{2}+\Delta{x}_{2}}
  \biggr\} \\ \notag
  =& \frac{1}{A_{i,j}^s} \biggl\{
  (\Delta{x}_2\sigma_{12})_{i+1,j}^Z - (\Delta{x}_2\sigma_{12})_{i,j}^Z
  \\ \notag
  \phantom{=}& \phantom{\frac{1}{A_{i,j}^s} \biggl\{}
  + (\Delta{x}_1\sigma_{22})_{i,j}^C - (\Delta{x}_1\sigma_{22})_{i,j-1}^C
  \biggr\} \end{aligned}\end{split}\]

with


\[\begin{split}\begin{aligned}
  (\Delta{x}_1\sigma_{12})_{i,j}^Z =& \phantom{+}
  \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
  \frac{u_{i,j}-u_{i,j-1}}{\Delta{y}_{i,j}^{U}}
  \\\notag &
  + \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
  \frac{v_{i,j}-v_{i-1,j}}{\Delta{x}_{i,j}^{V}} \\\notag
  &- \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
  k_{2,i,j}^{Z}\frac{u_{i,j}+u_{i,j-1}}{2}
  \\\notag &
  - \Delta{y}_{i,j}^{U}\overline{\eta}^{Z}_{i,j}
  k_{1,i,j}^{Z}\frac{v_{i,j}+v_{i-1,j}}{2} \\ \notag
  (\Delta{x}_2\sigma_{22})_{i,j}^C =& \phantom{+}
  \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
  \frac{u_{i+1,j}-u_{i,j}}{\Delta{x}_{i,j}^{F}} \\ \notag
  &+ \Delta{x}_{i,j}^{F}(\zeta - \eta)^{C}_{i,j}
  k_{2,i,j}^{C} \frac{v_{i,j+1}+v_{i,j}}{2} \\ \notag
  & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
  \frac{v_{i,j+1}-v_{i,j}}{\Delta{y}_{i,j}^{F}} \\ \notag
  & + \Delta{x}_{i,j}^{F}(\zeta + \eta)^{C}_{i,j}
  k_{1,i,j}^{C}\frac{u_{i+1,j}+u_{i,j}}{2} \\ \notag
  & -\Delta{x}_{i,j}^{F} \frac{P}{2}\end{aligned}\end{split}\]

Again, no slip boundary conditions are realized via ghost points and
\(u_{i,j-1}+u_{i,j}=0\) and \(v_{i-1,j}+v_{i,j}=0\) across
boundaries. For free slip boundary conditions the lateral stress is set
to zeros. In analogy to \((\epsilon_{12})^Z=0\) on boundaries, we
set \(\sigma_{21}^{Z}=0\), or equivalently \(\eta_{i,j}^{Z}=0\),
on boundaries.




Thermodynamics


**NOTE: THIS SECTION IS TERRIBLY OUT OF DATE**



In its original formulation the sea ice model uses simple
thermodynamics following the appendix of [Sem76]. This
formulation does not allow storage of heat, that is, the heat capacity
of ice is zero. Upward conductive heat flux is parameterized assuming
a linear temperature profile and together with a constant ice
conductivity. It is expressed as \((K/h)(T_{w}-T_{0})\), where
\(K\) is the ice conductivity, \(h\) the ice thickness, and
\(T_{w}-T_{0}\) the difference between water and ice surface
temperatures. This type of model is often refered to as a “zero-layer”
model. The surface heat flux is computed in a similar way to that of
and .

The conductive heat flux depends strongly on the ice thickness
\(h\). However, the ice thickness in the model represents a mean
over a potentially very heterogeneous thickness distribution. In order
to parameterize a sub-grid scale distribution for heat flux
computations, the mean ice thickness \(h\) is split into \(N\)
thickness categories \(H_{n}\) that are equally distributed between
\(2h\) and a minimum imposed ice thickness of \(5\,\text{cm}\)
by \(H_n= \frac{2n-1}{7}\,h\) for \(n\in[1,N]\). The heat fluxes
computed for each thickness category is area-averaged to give the total
heat flux [Hib84]. To use this thickness category parameterization set SEAICE_multDim to the number of desired categories in data.seaice (7 is a good guess, for anything larger than 7 modify SEAICE_SIZE.h); note that this requires different restart files and switching this flag on in the middle of an integration is not advised. In order to include the same distribution for snow, set SEAICE_useMultDimSnow = .TRUE.; only then, the parameterization of always having a fraction of thin ice is efficient and generally thicker ice is produce [CMKL+14].

The atmospheric heat flux is balanced by an oceanic heat flux from
below. The oceanic flux is proportional to
\(\rho\,c_{p}\left(T_{w}-T_{fr}\right)\) where \(\rho\) and
\(c_{p}\) are the density and heat capacity of sea water and
\(T_{fr}\) is the local freezing point temperature that is a
function of salinity. This flux is not assumed to instantaneously melt
or create ice, but a time scale of three days (run-time parameter SEAICE_gamma_t) is used to relax \(T_{w}\) to the freezing point. The parameterization of lateral and vertical growth of sea ice follows that of  [Hib79][Hib80]; the so-called lead closing parameter \(h_{0}\) (run-time parameter HO) has
a default value of 0.5 meters.

On top of the ice there is a layer of snow that modifies the heat flux
and the albedo [ZWDHSR98]. Snow modifies the effective conductivity according to


\[\frac{K}{h} \rightarrow \frac{1}{\frac{h_{s}}{K_{s}}+\frac{h}{K}},\]

where \(K_s\) is the conductivity of snow and \(h_s\) the snow
thickness. If enough snow accumulates so that its weight submerges the
ice and the snow is flooded, a simple mass conserving parameterization
of snowice formation (a flood-freeze algorithm following Archimedes’
principle) turns snow into ice until the ice surface is back at
\(z=0\) [Lepparanta83]. The flood-freeze algorithm is enabled with the CPP-flag SEAICE_ALLOW_FLOODDING and turned on with run-time parameter SEAICEuseFlooding=.TRUE..




Advection of thermodynamic variables

Effective ice thickness (ice volume per unit area, \(c\cdot{h}\)),
concentration \(c\) and effective snow thickness
(\(c\cdot{h}_{s}\)) are advected by ice velocities:


(8.21)\[  \frac{\partial{X}}{\partial{t}} =
        - \nabla\cdot\left(\mathbf{u}\,X\right) + \Gamma_{X} + D_{X}\]

where \(\Gamma_X\) are the thermodynamic source terms and
\(D_{X}\) the diffusive terms for quantities
\(X=(c\cdot{h}), c, (c\cdot{h}_{s})\). From the various advection
scheme that are available in the MITgcm, we recommend flux-limited
schemes to preserve sharp gradients and edges that are typical of sea
ice distributions and to rule out unphysical over- and undershoots
(negative thickness or concentration). These schemes conserve volume and
horizontal area and are unconditionally stable, so that we can set
\(D_{X}=0\). Run-timeflags: SEAICEadvScheme ``(default=2, is the historic 2nd-order, centered difference scheme), ``DIFF = \(D_{X}/\Delta{x}\) (default=0.004).

The MITgcm sea ice model provides the option to use the thermodynamics
model of [Win00], which in turn is based on the 3-layer model of
[Sem76] and which treats brine content by means of enthalpy
conservation; the corresponding package thsice is described in
section Section 8.6.1. This scheme requires additional state
variables, namely the enthalpy of the two ice layers (instead of
effective ice salinity), to be advected by ice velocities. The
internal sea ice temperature is inferred from ice enthalpy. To avoid
unphysical (negative) values for ice thickness and concentration, a
positive 2nd-order advection scheme with a SuperBee flux limiter
[Roe85] should be used to advect all sea-ice-related quantities
of the [Win00] thermodynamic model (runtime flag
thSIceAdvScheme=77 and thSIce_diffK =\(D_{X}\)=0 in
data.ice, defaults are 0). Because of the non-linearity of the
advection scheme, care must be taken in advecting these quantities:
when simply using ice velocity to advect enthalpy, the total energy
(i.e., the volume integral of enthalpy) is not
conserved. Alternatively, one can advect the energy content (i.e.,
product of ice-volume and enthalpy) but then false enthalpy extrema
can occur, which then leads to unrealistic ice temperature. In the
currently implemented solution, the sea-ice mass flux is used to
advect the enthalpy in order to ensure conservation of enthalpy and to
prevent false enthalpy extrema.






8.6.2.5. Key subroutines

Top-level routine: seaice_model.F

C     !CALLING SEQUENCE:
c ...
c  seaice_model (TOP LEVEL ROUTINE)
c  |
c  |-- #ifdef SEAICE_CGRID
c  |     SEAICE_DYNSOLVER
c  |     |
c  |     |-- < compute proxy for geostrophic velocity >
c  |     |
c  |     |-- < set up mass per unit area and Coriolis terms >
c  |     |
c  |     |-- < dynamic masking of areas with no ice >
c  |     |
c  |     |
c  |   #ELSE
c  |     DYNSOLVER
c  |   #ENDIF
c  |
c  |-- if ( useOBCS )
c  |     OBCS_APPLY_UVICE
c  |
c  |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
c  |     SEAICE_ADVDIFF
c  |
c  |   SEAICE_REG_RIDGE
c  |
c  |-- if ( usePW79thermodynamics )
c  |     SEAICE_GROWTH
c  |
c  |-- if ( useOBCS )
c  |     if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
c  |     if ( SEAICEadvArea ) OBCS_APPLY_AREA
c  |     if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
c  |     if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
c  |
c  |-- < do various exchanges >
c  |
c  |-- < do additional diagnostics >
c  |
c  o








8.6.2.6. SEAICE diagnostics

Diagnostics output is available via the diagnostics package (see Section
[sec:pkg:diagnostics]). Available output fields are summarized in the
following table:

---------+----------+----------------+-----------------
 <-Name->|<- grid ->|<--  Units   -->|<- Tile (max=80c)
---------+----------+----------------+-----------------
 sIceLoad|SM      U1|kg/m^2          |sea-ice loading (in Mass of ice+snow / area unit)
---
SEA ICE STATE:
---
 SIarea  |SM      M1|m^2/m^2         |SEAICE fractional ice-covered area [0 to 1]
 SIheff  |SM      M1|m               |SEAICE effective ice thickness
 SIhsnow |SM      M1|m               |SEAICE effective snow thickness
 SIhsalt |SM      M1|g/m^2           |SEAICE effective salinity
 SIuice  |UU      M1|m/s             |SEAICE zonal ice velocity, >0 from West to East
 SIvice  |VV      M1|m/s             |SEAICE merid. ice velocity, >0 from South to North
---
ATMOSPHERIC STATE AS SEEN BY SEA ICE:
---
 SItices |SM  C   M1|K               |Surface Temperature over Sea-Ice (area weighted)
 SIuwind |UM      U1|m/s             |SEAICE zonal 10-m wind speed, >0 increases uVel
 SIvwind |VM      U1|m/s             |SEAICE meridional 10-m wind speed, >0 increases uVel
 SIsnPrcp|SM      U1|kg/m^2/s        |Snow precip. (+=dw) over Sea-Ice (area weighted)
---
FLUXES ACROSS ICE-OCEAN INTERFACE (ATMOS to OCEAN FOR ICE-FREE REGIONS):
---
 SIfu    |UU      U1|N/m^2           |SEAICE zonal surface wind stress, >0 increases uVel
 SIfv    |VV      U1|N/m^2           |SEAICE merid. surface wind stress, >0 increases vVel
 SIqnet  |SM      U1|W/m^2           |Ocean surface heatflux, turb+rad, >0 decreases theta
 SIqsw   |SM      U1|W/m^2           |Ocean surface shortwave radiat., >0 decreases theta
 SIempmr |SM      U1|kg/m^2/s        |Ocean surface freshwater flux, > 0 increases salt
 SIqneto |SM      U1|W/m^2           |Open Ocean Part of SIqnet, turb+rad, >0 decr theta
 SIqneti |SM      U1|W/m^2           |Ice Covered Part of SIqnet, turb+rad, >0 decr theta
---
FLUXES ACROSS ATMOSPHERE-ICE INTERFACE (ATMOS to OCEAN FOR ICE-FREE REGIONS):
---
 SIatmQnt|SM      U1|W/m^2           |Net atmospheric heat flux, >0 decreases theta
 SIatmFW |SM      U1|kg/m^2/s        |Net freshwater flux from atmosphere & land (+=down)
 SIfwSubl|SM      U1|kg/m^2/s        |Freshwater flux of sublimated ice, >0 decreases ice
---
THERMODYNAMIC DIAGNOSTICS:
---
 SIareaPR|SM      M1|m^2/m^2         |SIarea preceeding ridging process
 SIareaPT|SM      M1|m^2/m^2         |SIarea preceeding thermodynamic growth/melt
 SIheffPT|SM      M1|m               |SIheff preceeeding thermodynamic growth/melt
 SIhsnoPT|SM      M1|m               |SIhsnow preceeeding thermodynamic growth/melt
 SIaQbOCN|SM      M1|m/s             |Potential HEFF rate of change by ocean ice flux
 SIaQbATC|SM      M1|m/s             |Potential HEFF rate of change by atm flux over ice
 SIaQbATO|SM      M1|m/s             |Potential HEFF rate of change by open ocn atm flux
 SIdHbOCN|SM      M1|m/s             |HEFF rate of change by ocean ice flux
 SIdSbATC|SM      M1|m/s             |HSNOW rate of change by atm flux over sea ice
 SIdSbOCN|SM      M1|m/s             |HSNOW rate of change by ocean ice flux
 SIdHbATC|SM      M1|m/s             |HEFF rate of change by atm flux over sea ice
 SIdHbATO|SM      M1|m/s             |HEFF rate of change by open ocn atm flux
 SIdHbFLO|SM      M1|m/s             |HEFF rate of change by flooding snow
 SIdAbATO|SM      M1|m^2/m^2/s       |Potential AREA rate of change by open ocn atm flux
 SIdAbATC|SM      M1|m^2/m^2/s       |Potential AREA rate of change by atm flux over ice
 SIdAbOCN|SM      M1|m^2/m^2/s       |Potential AREA rate of change by ocean ice flux
 SIdA    |SM      M1|m^2/m^2/s       |AREA rate of change (net)
---
DYNAMIC/RHEOLOGY DIAGNOSTICS:
---
 SIpress |SM      M1|m^2/s^2         |SEAICE strength (with upper and lower limit)
 SIzeta  |SM      M1|m^2/s           |SEAICE nonlinear bulk viscosity
 SIeta   |SM      M1|m^2/s           |SEAICE nonlinear shear viscosity
 SIsigI  |SM      M1|no units        |SEAICE normalized principle stress, component one
 SIsigII |SM      M1|no units        |SEAICE normalized principle stress, component two
---
ADVECTIVE/DIFFUSIVE FLUXES OF SEA ICE variables:
---
 ADVxHEFF|UU      M1|m.m^2/s         |Zonal      Advective Flux of eff ice thickn
 ADVyHEFF|VV      M1|m.m^2/s         |Meridional Advective Flux of eff ice thickn
 SIuheff |UU      M1|m^2/s           |Zonal      Transport of eff ice thickn (centered)
 SIvheff |VV      M1|m^2/s           |Meridional Transport of eff ice thickn (centered)
 DFxEHEFF|UU      M1|m^2/s           |Zonal      Diffusive Flux of eff ice thickn
 DFyEHEFF|VV      M1|m^2/s           |Meridional Diffusive Flux of eff ice thickn
 ADVxAREA|UU      M1|m^2/m^2.m^2/s   |Zonal      Advective Flux of fract area
 ADVyAREA|VV      M1|m^2/m^2.m^2/s   |Meridional Advective Flux of fract area
 DFxEAREA|UU      M1|m^2/m^2.m^2/s   |Zonal      Diffusive Flux of fract area
 DFyEAREA|VV      M1|m^2/m^2.m^2/s   |Meridional Diffusive Flux of fract area
 ADVxSNOW|UU      M1|m.m^2/s         |Zonal      Advective Flux of eff snow thickn
 ADVySNOW|VV      M1|m.m^2/s         |Meridional Advective Flux of eff snow thickn
 DFxESNOW|UU      M1|m.m^2/s         |Zonal      Diffusive Flux of eff snow thickn
 DFyESNOW|VV      M1|m.m^2/s         |Meridional Diffusive Flux of eff snow thickn
 ADVxSSLT|UU      M1|psu.m^2/s       |Zonal      Advective Flux of seaice salinity
 ADVySSLT|VV      M1|psu.m^2/s       |Meridional Advective Flux of seaice salinity
 DFxESSLT|UU      M1|psu.m^2/s       |Zonal      Diffusive Flux of seaice salinity
 DFyESSLT|VV      M1|psu.m^2/s       |Meridional Diffusive Flux of seaice salinity








8.6.2.7. Experiments and tutorials that use seaice


	Labrador Sea experiment in lab_sea verification directory. }


	seaice_obcs, based on lab_sea


	offline_exf_seaice/input.seaicetd, based on lab_sea


	global_ocean.cs32x15/input.icedyn and global_ocean.cs32x15/input.seaice, global cubed-sphere-experiment with combinations of seaice and thsice










          

      

      

    

  

    
      
          
            
  
9. Packages II - Diagnostics and I/O





          

      

      

    

  

    
      
          
            
  
10. Ocean State Estimation Packages

This chapter describes packages that have been introduced for ocean
state estimation purposes and in relation with automatic differentiation
(see Automatic Differentiation). Various examples in this chapter rely on two
model configurations that can be setup as explained in Test Cases For Estimation Package Capabilities


10.1. ECCO: model-data comparisons using gridded data sets

Author: Gael Forget

The functionalities implemented in pkg/ecco are: (1) output
time-averaged model fields to compare with gridded data sets; (2)
compute normalized model-data distances (i.e., cost functions); (3)
compute averages and transports (i.e., integrals). The former is
achieved as the model runs forwards in time whereas the others occur
after time-integration has completed. Following
[FCH+15] the total cost function is formulated
generically as


(10.1)\[\mathcal{J}(\vec{u}) = \sum_i \alpha_i \left(\vec{d}_i^T R_i^{-1} \vec{d}_i\right) + \sum_j \beta_j \vec{u}^T\vec{u}\]


(10.2)\[\vec{d}_i = \mathcal{P}(\vec{m}_i - \vec{o}_i)\]


(10.3)\[\vec{m}_i = \mathcal{S}\mathcal{D}\mathcal{M}(\vec{v})\]


(10.4)\[\vec{v}   = \mathcal{Q}(\vec{u})\]


(10.5)\[\vec{u}   = \mathcal{R}(\vec{u}')\]

using symbols defined in Table 10.1. Per
Equation (10.3) model counterparts
(\(\vec{m}_i\)) to observational data (\(\vec{o}_i\)) derive
from adjustable model parameters (\(\vec{v}\)) through model
dynamics integration (\(\mathcal{M}\)), diagnostic calculations
(\(\mathcal{D}\)), and averaging in space and time
(\(\mathcal{S}\)). Alternatively \(\mathcal{S}\) stands for
subsampling in space and time in the context of
Section 10.2 (PROFILES: model-data comparisons at observed locations). Plain
model-data misfits (\(\vec{m}_i-\vec{o}_i\)) can be penalized
directly in Eq. (10.1) but penalized misfits
(\(\vec{d}_i\)) more generally derive from
\(\vec{m}_i-\vec{o}_i\) through the generic \(\mathcal{P}\)
post-processor (Eq. (10.2)). Eqs. (10.4)-(10.5)
pertain to model control parameter adjustment capabilities described in
Section 10.3 (CTRL: Model Parameter Adjustment Capability).


Table 10.1 Symbol used in formulating generic cost functions.





	symbol

	definition





	\(\vec{u}\)

	vector of nondimensional control
variables



	\(\vec{v}\)

	vector of dimensional control
variables



	\(\alpha_i, \beta_j\)

	misfit and control cost function
multipliers (1 by default)



	\(R_i\)

	data error covariance matrix
(\(R_i^{-1}\) are weights)



	\(\vec{d}_i\)

	a set of model-data differences



	\(\vec{o}_i\)

	observational data vector



	\(\vec{m}_i\)

	model counterpart to
\(\vec{o}_i\)



	\(\mathcal{P}\)

	post-processing operator (e.g., a
smoother)



	\(\mathcal{M}\)

	forward model dynamics operator



	\(\mathcal{D}\)

	diagnostic computation operator



	\(\mathcal{S}\)

	averaging/subsampling operator



	\(\mathcal{Q}\)

	Pre-processing operator



	\(\mathcal{R}\)

	Pre-conditioning operator







10.1.1. Generic Cost Function

The parameters available for configuring generic cost function terms in
data.ecco are given in Table 10.2 and
examples of possible specifications are available in:


	MITgcm_contrib/verification_other/global_oce_cs32/input/data.ecco


	MITgcm_contrib/verification_other/global_oce_cs32/input_ad.sens/data.ecco


	MITgcm_contrib/gael/verification/global_oce_llc90/input.ecco_v4/data.ecco




The gridded observation file name is specified by gencost_datafile.
Observational time series may be provided as on big file or split into
yearly files finishing in ‘_1992’, ‘_1993’, etc. The corresponding
\(\vec{m}_i\) physical variable is specified via the
gencost_barfile root (see Table 10.3).
A file named as specified by gencost_barfile gets created where
averaged fields are written progressively as the model steps forward in
time. After the final time step this file is re-read by
cost_generic.F to compute the corresponding cost function term. If
gencost_outputlevel = 1 and gencost_name=‘foo’ then
cost_generic.F outputs model-data misfit fields (i.e.,
\(\vec{d}_i\)) to a file named ‘misfit_foo.data’ for offline
analysis and visualization.

In the current implementation, model-data error covariance matrices
\(R_i\) omit non-diagonal terms. Specifying \(R_i\) thus boils
down to providing uncertainty fields (\(\sigma_i\) such that
\(R_i=\sigma_i^2\)) in a file specified via gencost_errfile. By
default \(\sigma_i\) is assumed to be time-invariant but a
\(\sigma_i\) time series of the same length as the \(\vec{o}_i\)
time series can be provided using the variaweight option
(Table 10.4). By
default cost functions are quadratic but
\(\vec{d}_i^T R_i^{-1} \vec{d}_i\) can be replaced with
\(R_i^{-1/2} \vec{d}_i\) using the nosumsq option
(Table 10.4).

In principle, any averaging frequency should be possible, but only
‘day’, ‘month’, ‘step’, and ‘const’ are implemented for
gencost_avgperiod. If two different averaging frequencies are needed
for a variable used in multiple cost function terms (e.g., daily and
monthly) then an extension starting with ‘_’ should be added to
gencost_barfile (such as ‘_day’ and ‘_mon’).  1 If two cost
function terms use the same variable and frequency, however, then using
a common gencost_barfile saves disk space.

Climatologies of \(\vec{m}_i\) can be formed from the time series of
model averages in order to compare with climatologies of
\(\vec{o}_i\) by activating the ‘clim’ option via
gencost_preproc and setting the corresponding gencost_preproc_i
integer parameter to the number of records (i.e., a # of months, days,
or time steps) per climatological cycle. The generic post-processor
(\(\mathcal{P}\) in Eq. (10.2)) also
allows model-data misfits to be, for example, smoothed in space by
setting gencost_posproc to ‘smooth’ and specifying the smoother
parameters via gencost_posproc_c and gencost_posproc_i (see
Table 10.4).
Other options associated with the computation of
Eq. (10.1) are summarized in
Table 10.4 and
further discussed below. Multiple gencost_preproc /
gencost_posproc options may be specified per cost term.

In general the specification of gencost_name is optional, has no
impact on the end-result, and only serves to distinguish between cost
function terms amongst the model output (STDOUT.0000, STDERR.0000,
costfunction000, misfit*.data). Exceptions listed in
Table 10.6 however
activate alternative cost function codes (in place of
cost_generic.F) described in Section 10.1.3. In this
section and in Table 10.3
(unlike in other parts of the manual) ‘zonal’ / ‘meridional’ are to be
taken literally and these components are centered (i.e., not at the
staggered model velocity points). Preparing gridded velocity data sets
for use in cost functions thus boils down to interpolating them to XC /
YC.


Table 10.2 Run-time parameters used in formulating generic cost functions
         and defined via ecco_gencost_nml` namelist in data.ecco.
         All parameters are vectors of length NGENCOST (the # of
         available cost terms) except for gencost_proc* are arrays
         of size NGENPPROC\(\times\)NGENCOST (10 \(\times\)         20 by default; can be changed in ecco.h at compile time). In addition,
         the gencost_is3d internal parameter is reset to true on the
         fly in all 3D cases in Table 10.3.






	parameter

	type

	function





	gencost_name

	character(*)

	Name of cost term



	gencost_barfile

	character(*)

	File to receive model counterpart
\(\vec{m}_i\) (See
Table 10.3)



	gencost_datafile

	character(*)

	File containing
observational data
\(\vec{o}_i\)



	gencost_avgperiod

	character(5)

	Averaging period for
\(\vec{o}_i\) and
\(\vec{m}_i\)
(see text)



	gencost_outputlevel

	integer

	Greater than 0 will
output misfit fields



	gencost_errfile

	character(*)

	Uncertainty field
name (not used in
Section 10.1.2)



	gencost_mask

	character(*)

	Mask file name root
(used only in
Section 10.1.2)



	mult_gencost

	real

	Multiplier
\(\alpha_i\)
(default: 1)



	gencost_preproc

	character(*)

	Preprocessor names



	gencost_preproc_c

	character(*)

	Preprocessor
character arguments



	gencost_preproc_i

	integer(*)

	Preprocessor integer
arguments



	gencost_preproc_r

	real(*)

	Preprocessor real
arguments



	gencost_posproc

	character(*)

	Post-processor names



	gencost_posproc_c

	character(*)

	Post-processor
character arguments



	gencost_posproc_i

	integer(*)

	Post-processor
integer arguments



	gencost_posproc_r

	real(*)

	Post-processor real
arguments



	gencost_spmin

	real

	Data less than this
value will be omitted



	gencost_spmax

	real

	Data greater than
this value will be
omitted



	gencost_spzero

	real

	Data points equal to
this value will be
omitted



	gencost_startdate1

	integer

	Start date of
observations
(YYYMMDD)



	gencost_startdate2

	integer

	Start date of
observations (HHMMSS)



	gencost_is3d

	logical

	Needs to be true for
3D fields



	gencost_enddate1

	integer

	Not fully implemented
(used only in
Section 10.1.3)



	gencost_enddate2

	integer

	Not fully implemented
(used only in
Section 10.1.3)







Table 10.3 Implemented gencost_barfile options (as of checkpoint
         65z) that can be used via cost_generic.F
         (Section 10.1.1). An extension starting with ‘_’ can be
         appended at the end of the variable name to distinguish between separate
         cost function terms. Note: the ‘m_eta’ formula depends on the
         ATMOSPHERIC_LOADING and ALLOW_PSBAR_STERIC compile time options
         and ‘useRealFreshWaterFlux’ run time parameter.






	variable name

	description

	remarks





	m_eta

	sea surface height

	free surface + ice +
global steric
correction



	m_sst

	sea surface
temperature

	first level potential
temperature



	m_sss

	sea surface salinity

	first level salinity



	m_bp

	bottom pressure

	phiHydLow



	m_siarea

	sea-ice area

	from pkg/seaice



	m_siheff

	sea-ice effective
thickness

	from pkg/seaice



	m_sihsnow

	snow effective
thickness

	from pkg/seaice



	m_theta

	potential temperature

	three-dimensional



	m_salt

	salinity

	three-dimensional



	m_UE

	zonal velocity

	three-dimensional



	m_VN

	meridional velocity

	three-dimensional



	m_ustress

	zonal wind stress

	from pkg/exf



	m_vstress

	meridional wind
stress

	from pkg/exf



	m_uwind

	zonal wind

	from pkg/exf



	m_vwind

	meridional wind

	from pkg/exf



	m_atemp

	atmospheric
temperature

	from pkg/exf



	m_aqh

	atmospheric specific
humidity

	from pkg/exf



	m_precip

	precipitation

	from pkg/exf



	m_swdown

	downward shortwave

	from pkg/exf



	m_lwdown

	downward longwave

	from pkg/exf



	m_wspeed

	wind speed

	from pkg/exf



	m_diffkr

	vertical/diapycnal
diffusivity

	three-dimensional,
constant



	m_kapgm

	GM diffusivity

	three-dimensional,
constant



	m_kapredi

	isopycnal diffusivity

	three-dimensional,
constant



	m_geothermalflux

	geothermal heat flux

	constant



	m_bottomdrag

	bottom drag

	constant







Table 10.4 gencost_preproc and gencost_posproc options
         implemented as of checkpoint 65z. Note: the distinction between
         gencost_preproc and gencost_posproc seems unclear and may be
         revisited in the future.






	name

	description

	gencost_preproc_i
, _r, or _c





	gencost_preproc

	
	


	clim

	Use climatological
misfits

	integer: no. of
records per
climatological cycle



	mean

	Use time mean of
misfits

	—



	anom

	Use anomalies from
time mean

	—



	variaweight

	Use time-varying
weight \(W_i\)

	—



	nosumsq

	Use linear misfits

	—



	factor

	Multiply
\(\vec{m}_i\) by
a scaling factor

	real: the scaling
factor



	gencost_posproc

	
	


	smooth

	Smooth misfits

	character: smoothing
scale file



	
	
	integer: smoother #
of time steps









10.1.2. Generic Integral Function

The functionality described in this section is operated by
cost_gencost_boxmean.F. It is primarily aimed at obtaining a
mechanistic understanding of a chosen physical variable via adjoint
sensitivity computations (see Automatic Differentiation) as done for example in
[MGZ+99][HWP+11][FWL+15]. Thus the
quadratic term in Eq. (10.1)
(\(\vec{d}_i^T R_i^{-1} \vec{d}_i\)) is by default replaced with a
\(d_i\) scalar 2 that derives from model fields through a generic
integral formula (Eq. (10.3)). The
specification of gencost_barfile again selects the physical variable
type. Current valid options to use cost_gencost_boxmean.F are
reported in Table 10.5. A
suffix starting with ‘_’ can again be appended to
gencost_barfile.

The integral formula is defined by masks provided via binary files which
names are specified via gencost_mask. There are two cases: (1) if
gencost_mask = ‘foo_mask’ and gencost_barfile is of the
‘m_boxmean*’ type then the model will search for horizontal, vertical,
and temporal mask files named foo_maskC, foo_maskK, and
foo_maskT; (2) if instead gencost_barfile is of the
‘m_horflux_’ type then the model will search for foo_maskW,
foo_maskS, foo_maskK, and foo_maskT.

The ‘C’ mask or the ‘W’ / ‘S’ masks are expected to be two-dimensional
fields. The ‘K’ and ‘T’ masks (both optional; all 1 by default) are
expected to be one-dimensional vectors. The ‘K’ vector length should
match Nr. The ‘T’ vector length should match the # of records that the
specification of gencost_avgperiod implies but there is no
restriction on its values. In case #1 (‘m_boxmean*’) the ‘C’ and ‘K’
masks should consists of +1 and 0 values and a volume average will be
computed accordingly. In case #2 (‘m_horflux*’) the ‘W’, ‘S’, and ‘K’
masks should consists of +1, -1, and 0 values and an integrated
horizontal transport (or overturn) will be computed accordingly.


Table 10.5 Implemented gencost_barfile options (as of checkpoint
         65z) that can be used via cost_gencost_boxmean.F
         (Section 10.1.2).






	variable name

	description

	remarks





	m_boxmean_theta

	mean of theta over box

	specify box



	m_boxmean_salt

	mean of salt over box

	specify box



	m_boxmean_eta

	mean of SSH over box

	specify box



	m_horflux_vol

	volume transport through section

	specify transect









10.1.3. Custom Cost Functions

This section (very much a work in progress…) pertains to the special
cases of cost_gencost_bpv4.F, cost_gencost_seaicev4.F,
cost_gencost_sshv4.F, cost_gencost_sstv4.F, and
cost_gencost_transp.F. The cost_gencost_transp.F function can be
used to compute a transport of volume, heat, or salt through a specified
section (non quadratic cost function). To this end one sets
gencost_name = ‘transp*’, where * is an optional suffix starting
with ‘_’, and set gencost_barfile to one of m_trVol,
m_trHeat, and m_trSalt.


Table 10.6 Pre-defined gencost_name special cases (as of checkpoint
         65z; Section 10.1.3).






	name

	description

	remarks





	sshv4-mdt

	sea surface height

	mean dynamic
topography (SSH -
geod)



	sshv4-tp

	sea surface height

	Along-Track
Topex/Jason SLA
(level 3)



	sshv4-ers

	sea surface height

	Along-Track
ERS/Envisat SLA
(level 3)



	sshv4-gfo

	sea surface height

	Along-Track GFO class
SLA (level 3)



	sshv4-lsc

	sea surface height

	Large-Scale SLA (from
the above)



	sshv4-gmsl

	sea surface height

	Global-Mean SLA (from
the above)



	bpv4-grace

	bottom pressure

	GRACE maps (level 4)



	sstv4-amsre

	sea surface
temperature

	Along-Swath SST
(level 3)



	sstv4-amsre-lsc

	sea surface
temperature

	Large-Scale SST (from
the above)



	si4-cons

	sea ice concentration

	needs sea-ice adjoint
(level 4)



	si4-deconc

	model sea ice
deficiency

	proxy penalty (from
the above)



	si4-exconc

	model sea ice excess

	proxy penalty (from
the above)



	transp_trVol

	volume transport

	specify masks
(Section 10.1.2)



	transp_trHeat

	heat transport

	specify masks
(Section 10.1.2)



	transp_trSalt

	salt transport

	specify masks
(Section 10.1.2)









10.1.4. Key Routines

TBA… ecco_readparms.F, ecco_check.F, ecco_summary.F, …
cost_generic.F, cost_gencost_boxmean.F, ecco_toolbox.F, …
ecco_phys.F, cost_gencost_customize.F,
cost_averagesfields.F, …




10.1.5. Compile Options

TBA… ALLOW_GENCOST_CONTRIBUTION, ALLOW_GENCOST3D, …
ALLOW_PSBAR_STERIC, ALLOW_SHALLOW_ALTIMETRY, ALLOW_HIGHLAT_ALTIMETRY,
… ALLOW_PROFILES_CONTRIBUTION, … ALLOW_ECCO_OLD_FC_PRINT, …
ECCO_CTRL_DEPRECATED, … packages required for some functionalities:
smooth, profiles, ctrl






10.2. PROFILES: model-data comparisons at observed locations

Author: Gael Forget

The purpose of pkg/profiles is to allow sampling of MITgcm runs
according to a chosen pathway (after a ship or a drifter, along
altimeter tracks, etc.), typically leading to easy model-data
comparisons. Given input files that contain positions and dates,
pkg/profiles will interpolate the model trajectory at the observed
location. In particular, pkg/profiles can be used to do model-data
comparison online and formulate a least-squares problem (ECCO
application).

The pkg/profiles namelist is called data.profiles. In the example below,
it includes two input netcdf file names (ARGOifremer_r8.nc
and XBT_v5.nc) that should be linked to the run directory
and cost function multipliers that only matter in the
context of automatic differentiation (see Automatic Differentiation). The
first index is a file number and the second index (in mult* only) is a
variable number. By convention, the variable number is an integer
ranging 1 to 6: temperature, salinity, zonal velocity, meridional
velocity, sea surface height anomaly, and passive tracer.

The netcdf input file structure is illustrated in the case of XBT_v5.nc
To create such files, one can use the MITprof matlab toolbox obtained
from https://github.com/gaelforget/MITprof .
At run time, each file is scanned to determine which
variables are included; these will be interpolated. The (final) output
file structure is similar but with interpolated model values in prof_T
etc., and it contains model mask variables (e.g. prof_Tmask). The very
model output consists of one binary (or netcdf) file per processor.
The final netcdf output is to be built from those using
netcdf_ecco_recompose.m (offline).

When the k2 option is used (e.g. for cubed sphere runs), the input file
is to be completed with interpolation grid points and coefficients
computed offline using netcdf_ecco_GenericgridMain.m. Typically, you
would first provide the standard namelist and files. After detecting
that interpolation information is missing, the model will generate
special grid files (profilesXCincl1PointOverlap* etc.) and then stop.
You then want to run netcdf_ecco_GenericgridMain.m using the special
grid files. This operation could eventually be inlined.

Example: data.profiles

#
# \*****************\*
# PROFILES cost function
# \*****************\*
&PROFILES_NML
#
profilesfiles(1)= ’ARGOifremer_r8’,
mult_profiles(1,1) = 1.,
mult_profiles(1,2) = 1.,
profilesfiles(2)= ’XBT_v5’,
mult_profiles(2,1) = 1.,
#
/





Example: XBT_v5.nc

netcdf XBT_v5 {
dimensions:
iPROF = 278026 ;
iDEPTH = 55 ;
lTXT = 30 ;
variables:
double depth(iDEPTH) ;
depth:units = "meters" ;
double prof_YYYYMMDD(iPROF) ;
prof_YYYYMMDD:missing_value = -9999. ;
prof_YYYYMMDD:long_name = "year (4 digits), month (2 digits), day (2 digits)" ;
double prof_HHMMSS(iPROF) ;
prof_HHMMSS:missing_value = -9999. ;
prof_HHMMSS:long_name = "hour (2 digits), minute (2 digits), second (2 digits)" ;
double prof_lon(iPROF) ;
prof_lon:units = "(degree E)" ;
prof_lon:missing_value = -9999. ;
double prof_lat(iPROF) ;
prof_lat:units = "(degree N)" ;
prof_lat:missing_value = -9999. ;
char prof_descr(iPROF, lTXT) ;
prof_descr:long_name = "profile description" ;
double prof_T(iPROF, iDEPTH) ;
prof_T:long_name = "potential temperature" ;
prof_T:units = "degree Celsius" ;
prof_T:missing_value = -9999. ;
double prof_Tweight(iPROF, iDEPTH) ;
prof_Tweight:long_name = "weights" ;
prof_Tweight:units = "(degree Celsius)-2" ;
prof_Tweight:missing_value = -9999. ;
}








10.3. CTRL: Model Parameter Adjustment Capability

Author: Gael Forget

The parameters available for configuring generic cost terms in
data.ctrl are given in Table 10.7.


Table 10.7 Parameters in ctrl_nml_genarr namelist in data.ctrl.
         The * can be replaced by arr2d, arr3d, or tim2d for
         time-invariant two and three dimensional controls and time-varying 2D
         controls, respectively. Parameters for genarr2d, genarr3d, and
         gentime2d are arrays of length maxCtrlArr2D, maxCtrlArr3D,
         and maxCtrlTim2D, respectively, with one entry per term in the cost
         function.






	parameter

	type

	function





	xx_gen*_file

	character(*)

	Control Name: prefix from
Table 10.8
+ suffix.



	xx_gen*_weight

	character(*)

	Weights in the form
of
\(\sigma_{\vec{u
}_j}^{-2}\)



	xx_gen*_bounds

	real(5)

	Apply bounds



	xx_gen*_preproc

	character(*)

	Control
preprocessor(s) (see
Table 10.9
)



	xx_gen*_preproc_c

	character(*)

	Preprocessor
character arguments



	xx_gen*_preproc_i

	integer(*)

	Preprocessor integer
arguments



	xx_gen*_preproc_r

	real(*)

	Preprocessor real
arguments



	gen*Precond

	real

	Preconditioning
factor (\(=1\) by
default)



	mult_gen*

	real

	Cost function
multiplier
\(\beta_j\)
(\(= 1\) by
default)



	xx_gentim2d_period

	real

	Frequency of
adjustments (in
seconds)



	xx_gentim2d_startda
te1

	integer

	Adjustment start date



	xx_gentim2d_startda
te2

	integer

	Default: model start
date



	xx_gentim2d_cumsum

	logical

	Accumulate control
adjustments



	xx_gentim2d_glosum

	logical

	Global sum of
adjustment (output is
still 2D)







Table 10.8 Generic control prefixes implemented as of checkpoint 65z.






	
	name

	description





	2D, time-invariant
controls

	genarr2d

	


	
	xx_etan

	initial sea surface
height



	
	xx_bottomdrag

	bottom drag



	
	xx_geothermal

	geothermal heat flux



	3D, time-invariant
controls

	genarr3d

	


	
	xx_theta

	initial potential
temperature



	
	xx_salt

	initial salinity



	
	xx_kapgm

	GM coefficient



	
	xx_kapredi

	isopycnal diffusivity



	
	xx_diffkr

	diapycnal diffusivity



	2D, time-varying
controls

	gentim2D

	


	
	xx_atemp

	atmospheric
temperature



	
	xx_aqh

	atmospheric specific
humidity



	
	xx_swdown

	downward shortwave



	
	xx_lwdown

	downward longwave



	
	xx_precip

	precipitation



	
	xx_uwind

	zonal wind



	
	xx_vwind

	meridional wind



	
	xx_tauu

	zonal wind stress



	
	xx_tauv

	meridional wind
stress



	
	xx_gen_precip

	globally averaged
precipitation?







Table 10.9 xx_gen????d_preproc options implemented as of checkpoint
         65z. Notes: \(^a\): If noscaling is false, the control
         adjustment is scaled by one on the square root of the weight before
         being added to the base control variable; if noscaling is true, the
         control is multiplied by the weight in the cost function itself.






	name

	description

	arguments





	WC01

	Correlation modeling

	integer: operator
type (default: 1)



	smooth

	Smoothing without
normalization

	integer: operator
type (default: 1)



	docycle

	Average period
replication

	integer: cycle length



	replicate

	Alias for docycle

	(units of
xx_gentim2d_period)



	rmcycle

	Periodic average
subtraction

	integer: cycle length



	variaweight

	Use time-varying
weight

	—



	noscaling:math:
^{a}

	Do not scale with
xx_gen*_weight

	—



	documul

	Sets
xx_gentim2d_cumsum

	—



	doglomean

	Sets
xx_gentim2d_glosum

	—






The control problem is non-dimensional by default, as reflected in the
omission of weights in control penalties [(\(\vec{u}_j^T\vec{u}_j\)
in (10.1)]. Non-dimensional controls
(\(\vec{u}_j\)) are scaled to physical units (\(\vec{v}_j\))
through multiplication by the respective uncertainty fields
(\(\sigma_{\vec{u}_j}\)), as part of the generic preprocessor
\(\mathcal{Q}\) in (10.4). Besides the
scaling of \(\vec{u}_j\) to physical units, the preprocessor
\(\mathcal{Q}\) can include, for example, spatial correlation
modeling (using an implementation of Weaver and Coutier, 2001) by
setting xx_gen*_preproc = ’WC01’. Alternatively, setting
xx_gen*_preproc = ’smooth’ activates the smoothing part of WC01,
but omits the normalization. Additionally, bounds for the controls can
be specified by setting xx_gen*_bounds. In forward mode, adjustments
to the \(i^\text{th}\) control are clipped so that they remain
between xx_gen*_bounds(i,1) and xx_gen*_bounds(i,4). If
xx_gen*_bounds(i,1) \(<\) xx_gen*_bounds(i+1,1) for
\(i = 1, 2, 3\), then the bounds will “emulate a local
minimum;” otherwise, the bounds have no effect in adjoint mode.

For the case of time-varying controls, the frequency is specified by
xx_gentim2d_period. The generic control package interprets special
values of xx_gentim2d_period in the same way as the exf package:
a value of \(-12\) implies cycling monthly fields while a value of
\(0\) means that the field is steady. Time varying weights can be
provided by specifying the preprocessor variaweight, in which case
the xx_gentim2d_weight file must contain as many records as the
control parameter time series itself (approximately the run length
divided by xx_gentim2d_period).

The parameter mult_gen* sets the multiplier for the corresponding
cost function penalty [\(\beta_j\) in (10.1);
\(\beta_j = 1\) by default). The preconditioner, \(\cal{R}\),
does not directly appear in the estimation problem, but only serves to
push the optimization process in a certain direction in control space;
this operator is specified by gen*Precond (\(=1\) by default).




10.4. SMOOTH: Smoothing And Covariance Model

Author: Gael Forget

TO BE CONTINUED…




10.5. The line search optimisation algorithm

Author: Patrick Heimbach


10.5.1. General features

The line search algorithm is based on a quasi-Newton variable storage
method which was implemented by [GL89].

TO BE CONTINUED…




10.5.2. The online vs. offline version


	
Online version

Every call to simul refers to an execution of the forward and
adjoint model. Several iterations of optimization may thus be
performed within a single run of the main program (lsopt_top). The
following cases may occur:




	cold start only (no optimization)


	cold start, followed by one or several iterations of optimization


	warm start from previous cold start with one or several iterations


	warm start from previous warm start with one or several iterations






	
Offline version

Every call to simul refers to a read procedure which reads the
result of a forward and adjoint run Therefore, only one call to
simul is allowed, itmax = 0, for cold start itmax = 1, for warm
start Also, at the end, x(i+1) needs to be computed and saved
to be available for the offline model and adjoint run







In order to achieve minimum difference between the online and offline
code xdiff(i+1) is stored to file at the end of an (offline)
iteration, but recomputed identically at the beginning of the next
iteration.




10.5.3. Number of iterations vs. number of simulations


- itmax: controls the max. number of iterations

- nfunc: controls the max. number of simulations within one iteration




10.5.3.1. Summary





From one iteration to the next the descent direction changes. Within
one iteration more than one forward and adjoint run may be performed.
The updated control used as input for these simulations uses the same
descent direction, but different step sizes.






10.5.3.2. Description





From one iteration to the next the descent direction dd changes using
the result for the adjoint vector gg of the previous iteration. In
lsline the updated control





\[\tt
xdiff(i,1) = xx(i-1) + tact(i-1,1)*dd(i-1)\]

serves as input for a forward and adjoint model run yielding a new
gg(i,1). In general, the new solution passes the 1st and 2nd Wolfe
tests so xdiff(i,1) represents the solution sought:


\[{\tt xx(i) = xdiff(i,1)}\]

If one of the two tests fails, an inter- or extrapolation is invoked
to determine a new step size tact(i-1,2). If more than one function
call is permitted, the new step size is used together with the “old”
descent direction dd(i-1) (i.e. dd is not updated using the new
gg(i)), to compute a new


\[{\tt xdiff(i,2) = xx(i-1) + tact(i-1,2)*dd(i-1)}\]

that serves as input in a new forward and adjoint run, yielding
gg(i,2). If now, both Wolfe tests are successful, the updated solution
is given by


\[\tt
xx(i) = xdiff(i,2) = xx(i-1) + tact(i-1,2)*dd(i-1)\]




In order to save memory both the fields dd and xdiff have a double
usage.


	



- in lsopt_top: used as x(i) - x(i-1) for Hessian update

- in lsline: intermediate result for control update x = x +
tact*dd





	



- in lsopt_top, lsline: descent vector, dd = -gg and hessupd

- in dgscale: intermediate result to compute new preconditioner










10.5.3.3. The parameter file lsopt.par


	NUPDATE max. no. of update pairs (gg(i)-gg(i-1), xx(i)-xx(i-1))
to be stored in OPWARMD to estimate Hessian [pair of current iter. is
stored in (2*jmax+2, 2*jmax+3) jmax must be > 0 to access these
entries] Presently NUPDATE must be > 0 (i.e. iteration without
reference to previous iterations through OPWARMD has not been tested)


	EPSX relative precision on xx bellow which xx should not be
improved


	EPSG relative precision on gg below which optimization is
considered successful


	IPRINT controls verbose (>=1) or non-verbose output


	NUMITER max. number of iterations of optimisation; NUMTER = 0:
cold start only, no optimization


	ITER_NUM index of new restart file to be created (not necessarily
= NUMITER!)


	NFUNC max. no. of simulations per iteration (must be > 0); is
used if step size tact is inter-/extrapolated; in this case, if NFUNC
> 1, a new simulation is performed with same gradient but “improved”
step size


	FMIN first guess cost function value (only used as long as first
iteration not completed, i.e. for jmax <= 0)







10.5.3.4. OPWARMI, OPWARMD files

Two files retain values of previous iterations which are used in latest
iteration to update Hessian:


	OPWARMI: contains index settings and scalar variables







	n = nn

	no. of control variables



	fc = ff

	cost value of last iteration



	isize

	no. of bytes per record in OPWARMD



	m = nupdate

	max. no. of updates for Hessian



	jmin, jmax

	pointer indices for OPWARMD file (cf. below)



	gnorm0

	norm of first (cold start) gradient gg



	iabsiter

	total number of iterations with respect to cold start








	OPWARMD: contains vectors (control and gradient)








	entry

	name

	description





	1

	xx(i)

	control vector of
latest iteration



	2

	gg(i)

	gradient of latest
iteration



	3

	xdiff(i),diag

	preconditioning
vector; (1,…,1) for
cold start



	2*jmax+2

	gold=g(i)-g(i-1)

	for last update
(jmax)



	2*jmax+3

	xdiff=tact*d=xx(i)-xx
(i-1)

	for last update
(jmax)










Example 1: jmin = 1, jmax = 3, mupd = 5

  1   2   3   |   4   5     6   7     8   9     empty     empty
|___|___|___| | |___|___| |___|___| |___|___| |___|___| |___|___|
      0       |     1         2         3

Example 2: jmin = 3, jmax = 7, mupd = 5   ---> jmax = 2

  1   2   3   |
|___|___|___| | |___|___| |___|___| |___|___| |___|___| |___|___|
              |     6         7         3         4         5








10.5.3.5. Error handling

lsopt_top
    |
    |---- check arguments
    |---- CALL INSTORE
    |       |
    |       |---- determine whether OPWARMI available:
    |                * if no:  cold start: create OPWARMI
    |                * if yes: warm start: read from OPWARMI
    |             create or open OPWARMD
    |
    |---- check consistency between OPWARMI and model parameters
    |
    |---- >>> if COLD start: <<<
    |      |  first simulation with f.g. xx_0; output: first ff_0, gg_0
    |      |  set first preconditioner value xdiff_0 to 1
    |      |  store xx(0), gg(0), xdiff(0) to OPWARMD (first 3 entries)
    |      |
    |     >>> else: WARM start: <<<
    |         read xx(i), gg(i) from OPWARMD (first 2 entries)
    |         for first warm start after cold start, i=0
    |
    |
    |
    |---- /// if ITMAX > 0: perform optimization (increment loop index i)
    |      (
    |      )---- save current values of gg(i-1) -> gold(i-1), ff -> fold(i-1)
    |      (---- CALL LSUPDXX
    |      )       |
    |      (       |---- >>> if jmax=0 <<<
    |      )       |      |  first optimization after cold start:
    |      (       |      |  preconditioner estimated via ff_0 - ff_(first guess)
    |      )       |      |  dd(i-1) = -gg(i-1)*preco
    |      (       |      |
    |      )       |     >>> if jmax > 0 <<<
    |      (       |         dd(i-1) = -gg(i-1)
    |      )       |         CALL HESSUPD
    |      (       |           |
    |      )       |           |---- dd(i-1) modified via Hessian approx.
    |      (       |
    |      )       |---- >>> if <dd,gg> >= 0 <<<
    |      (       |         ifail = 4
    |      )       |
    |      (       |---- compute step size: tact(i-1)
    |      )       |---- compute update: xdiff(i) = xx(i-1) + tact(i-1)*dd(i-1)
    |      (
    |      )---- >>> if ifail = 4 <<<
    |      (         goto 1000
    |      )
    |      (---- CALL OPTLINE / LSLINE
    |      )       |
   ...    ...     ...





...    ...
 |      )
 |      (---- CALL OPTLINE / LSLINE
 |      )       |
 |      (       |---- /// loop over simulations
 |      )              (
 |      (              )---- CALL SIMUL
 |      )              (       |
 |      (              )       |----  input: xdiff(i)
 |      )              (       |---- output: ff(i), gg(i)
 |      (              )       |---- >>> if ONLINE <<<
 |      )              (                 runs model and adjoint
 |      (              )             >>> if OFFLINE <<<
 |      )              (                 reads those values from file
 |      (              )
 |      )              (---- 1st Wolfe test:
 |      (              )     ff(i) <= tact*xpara1*<gg(i-1),dd(i-1)>
 |      )              (
 |      (              )---- 2nd Wolfe test:
 |      )              (     <gg(i),dd(i-1)> >= xpara2*<gg(i-1),dd(i-1)>
 |      (              )
 |      )              (---- >>> if 1st and 2nd Wolfe tests ok <<<
 |      (              )      |  320: update xx: xx(i) = xdiff(i)
 |      )              (      |
 |      (              )     >>> else if 1st Wolfe test not ok <<<
 |      )              (      |  500: INTERpolate new tact:
 |      (              )      |  barr*tact < tact < (1-barr)*tact
 |      )              (      |  CALL CUBIC
 |      (              )      |
 |      )              (     >>> else if 2nd Wolfe test not ok <<<
 |      (              )         350: EXTRApolate new tact:
 |      )              (         (1+barmin)*tact < tact < 10*tact
 |      (              )         CALL CUBIC
 |      )              (
 |      (              )---- >>> if new tact > tmax <<<
 |      )              (      |  ifail = 7
 |      (              )      |
 |      )              (---- >>> if new tact < tmin OR tact*dd < machine precision <<<
 |      (              )      |  ifail = 8
 |      )              (      |
 |      (              )---- >>> else <<<
 |      )              (         update xdiff for new simulation
 |      (              )
 |      )             \\\ if nfunc > 1: use inter-/extrapolated tact and xdiff
 |      (                               for new simulation
 |      )                               N.B.: new xx is thus not based on new gg, but
 |      (                                     rather on new step size tact
 |      )
 |      (---- store new values xx(i), gg(i) to OPWARMD (first 2 entries)
 |      )---- >>> if ifail = 7,8,9 <<<
 |      (         goto 1000
 |      )
...    ...





...    ...
 |      )
 |      (---- store new values xx(i), gg(i) to OPWARMD (first 2 entries)
 |      )---- >>> if ifail = 7,8,9 <<<
 |      (         goto 1000
 |      )
 |      (---- compute new pointers jmin, jmax to include latest values
 |      )     gg(i)-gg(i-1), xx(i)-xx(i-1) to Hessian matrix estimate
 |      (---- store gg(i)-gg(i-1), xx(i)-xx(i-1) to OPWARMD
 |      )     (entries 2*jmax+2, 2*jmax+3)
 |      (
 |      )---- CALL DGSCALE
 |      (       |
 |      )       |---- call dostore
 |      (       |       |
 |      )       |       |---- read preconditioner of previous iteration diag(i-1)
 |      (       |             from OPWARMD (3rd entry)
 |      )       |
 |      (       |---- compute new preconditioner diag(i), based upon diag(i-1),
 |      )       |     gg(i)-gg(i-1), xx(i)-xx(i-1)
 |      (       |
 |      )       |---- call dostore
 |      (               |
 |      )               |---- write new preconditioner diag(i) to OPWARMD (3rd entry)
 |      (
 |---- \\\ end of optimization iteration loop
 |
 |
 |
 |---- CALL OUTSTORE
 |       |
 |       |---- store gnorm0, ff(i), current pointers jmin, jmax, iterabs to OPWARMI
 |
 |---- >>> if OFFLINE version <<<
 |         xx(i+1) needs to be computed as input for offline optimization
 |          |
 |          |---- CALL LSUPDXX
 |          |       |
 |          |       |---- compute dd(i), tact(i) -> xdiff(i+1) = x(i) + tact(i)*dd(i)
 |          |
 |          |---- CALL WRITE_CONTROL
 |          |       |
 |          |       |---- write xdiff(i+1) to special file for offline optim.
 |
 |---- print final information
 |
 O






	1

	ecco_check may be missing a test for conflicting names…



	2

	The quadratic option in fact does not yet exist in
cost_gencost_boxmean.F…












10.6. Test Cases For Estimation Package Capabilities

First, download the model as explained in Getting Started with MITgcm via the MITgcm git server

% git clone https://github.com/user_name/MITgcm.git





Then, download the setup from the MITgcm_contrib/ area by logging into the cvs server

% setenv CVSROOT ':pserver:cvsanon@mitgcm.org:/u/gcmpack'
% cvs login
%     ( enter the CVS password: "cvsanon" )





and following the directions provided here for global_oce_cs32 [http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/verification_other/global_oce_cs32/README]
or here for global_oce_llc90 [http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/verification_other/global_oce_llc90/README]. These model configurations
are used for daily regression tests to ensure continued availability of the tested estimation package features discussed in Ocean State Estimation Packages.
Daily results of these tests, which currently run on the glacier cluster, are reported on this site [http://mitgcm.org/public/testing.html].
To this end, one sets a crontab job [https://www.computerhope.com/unix/ucrontab.htm] that typically executes the script reported below.
The various commands can also be used to run these examples outside of crontab, directly at the command line via the testreport capability [http://mitgcm.org/public/devel_HOWTO/devel_HOWTO_onepage/].


Note

Users are advised against running global_oce_llc90/ tests with fewer than 12 cores (96 for adjoint tests) to avoid potential memory overloads. global_oce_llc90/ [http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/verification_other/global_oce_llc90/] (595M) uses the same LLC90 grid as the production ECCO version 4 setup does [FCH+15]. The much coarser resolution global_oce_cs32/ [http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/verification_other/global_oce_cs32/] (614M) uses the CS32 grid and can run on any modern laptop.



% #!/bin/csh -f
% setenv PATH ~/bin:$PATH
% setenv MODULESHOME /usr/share/Modules
% source /usr/share/Modules/init/csh
% module use /usr/share/Modules
% module load openmpi-x86_64
% setenv MPI_INC_DIR $MPI_INCLUDE
%
% cd ~/MITgcm
% #mkdir gitpull.log
% set D=`date +%Y-%m-%d`
% git pull -v > gitpull.log/gitpull.$D.log
%
% cd verification
%
% #ieee case:
% ./testreport -clean -t 'global_oce_*'
% ./testreport -of=../tools/build_options/linux_amd64_gfortran -MPI 24 -t 'global_oce_*' -addr username@something.whatever
% ../tools/do_tst_2+2 -t 'global_oce_*' -mpi -exe 'mpirun -np 24 ./mitgcmuv' -a username@something.whatever
%
% #devel case:
% ./testreport -clean -t 'global_oce_*'
% ./testreport -of=../tools/build_options/linux_amd64_gfortran -MPI 24 -devel -t 'global_oce_*' -addr username@something.whatever
% ../tools/do_tst_2+2 -t 'global_oce_*' -mpi -exe 'mpirun -np 24 ./mitgcmuv' -a username@something.whatever
%
% #fast case:
% ./testreport -clean -t 'global_oce_*'
% ./testreport -of=../tools/build_options/linux_amd64_gfortran -MPI 24 -t 'global_oce_*' -fast -addr username@something.whatever
% ../tools/do_tst_2+2 -t 'global_oce_*' -mpi -exe 'mpirun -np 24 ./mitgcmuv' -a username@something.whatever
%
% #adjoint case:
% ./testreport -clean -t 'global_oce_*'
% ./testreport -of=../tools/build_options/linux_amd64_gfortran -MPI 24 -ad -t 'global_oce_*' -addr username@something.whatever
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