MiTgcm Documentation
Release 2d7a4aZ2

Alistair Adcroft, Jean-Michel Campin, Ed Doddridge,
Stephanie Dutkiewicz, Constantinos Evangelinos,

David Ferreira, Mick Follows, Gael Forget,

Baylor Fox-Kemper, Patrick Heimbach, Chris Hill, Ed Hill,
Helen Hill, Oliver Jahn, Jody Klymak, Martin Losch,
John Marshall, Guillaume Maze, Matt Mazloff,

Dimitris Menemenlis, Andrea Molod, and Jeff Scott

Aug 28, 2023






1 Overview

1.1
1.2

1.3

1.4

1.5

1.6

2.1
2.2
23
24
2.5

2.6
2.7
2.8

CONTENTS:

Introduction . . . . ... e e
Mlustrations of the model inaction . . . . . . . . . . . ... ...
1.2.1  Global atmosphere: ‘Held-Suarez’ benchmark . . . . . ... .. ... ... ... ... ...
122 OCEAN ZYIES « . o v v v vt et e e e e e e e e e e e e e e e e e e e
1.2.3  Global oceancirculation . . . .. ... ... ... . e
1.2.4  Convection and mixing over topography . . . . . . . ... ... ... L ...
1.2.5 Boundary forced internal waves . . . . . . . .. Lo
1.2.6  Parameter sensitivity using the adjointof MITgem . . . . . . .. ... ... ... .. ....
1.2.7  Global state estimation of theocean . . . . . ... ... .. ... . . ... ... ... ...
1.2.8  Ocean biogeochemical cycles . . . . . . . . . . . . . i i e e
1.2.9  Simulations of laboratory experiments . . . . . . . . .. . ... oo
Continuous equations in ‘r’ coordinates . . . . . . . .. . ..o oo
1.3.1 Kinematic Boundary conditions . . . . . . . ... ... .. ... o
1.3.2 Atmosphere . . . . . oL e e e
133 Ocean . . . ... e
1.3.4  Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms . . . . . .
1.3.5  Solution strategy . . . . . . . . . e e e e e e
1.3.6  Finding the pressure field . . . . . . . . . . . ...
1.3.7  Forcing/dissipation . . . . . . . . . L e
1.3.8 Vectorinvariantform . . . . . . . .. ... o
1.3.9  Adjoint . . . . . e e e e e e e e
Appendix ATMOSPHERE . . . . . . . . . e e
1.4.1  Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates . . . . . . . ..
Appendix OCEAN . . . . . . o e
1.5.1  Equations of Motion forthe Ocean . . . . . . . . .. .. ... ... . ... ... ...,
Appendix OPERATORS . . . . . . . . e e e
1.6.1  Coordinate SyStemS . . . . . . v v v i i e e e e e e e e e e e e e e e e e e e

Discretization and Algorithm

Notation . . ... ........
Time-stepping . . . . ... ...
Pressure method with rigid-lid . .

Pressure method with implicit linear free-surface . . . . . . . . ... ... ... .. L.
Explicit time-stepping: Adams-Bashforth . . . . . .. ... ... oo oo

2.5.1 Adams-Bashforth II . . .
2.5.2 Adams-Bashforth III . .

Implicit time-stepping: backward method . . . . . . .. . ... ... oo 0oL
Synchronous time-stepping: variables co-locatedintime . . . . . . . ... ... ... ... 0.

Staggered baroclinic time-stepping

33
33
34
34
36
37
37
38
38
42
45




2.9 Non-hydrostatic formulation . . . . . . . . . . L e 47
2.10 Variantsonthe Free Surface . . . . . . . . . . .. .. L 48
2.10.1 Crank-Nicolson barotropic time stepping . . . . . . . . . . . . v 0 vt e 49
2.10.2 Non-linear free-surface . . . . . . . . . . . L L e e 50
2.11 Spatial discretization of the dynamical equations . . . . . . . ... ... ... ... ... ...... 55
2.11.1 The finite volume method: finite volumes versus finite difference . . . . . . . ... ... .. 55
2.11.2 Cgrid staggering of variables. . . . . . . . . . . . . ... e 56
2.11.3 Gridinitializationand data . . . . . . . . . ... L. L 56
2.11.4 Horizontal grid . . . . . . . . .. L e 56
2.11.5 Vertical grid . . . . . . . .o e 59
2.11.6  Topography: partially filledcells . . . . . . ... .. .. ... . 60
2.12 Continuity and horizontal pressure gradientterm . . . . . . . . . . . ... ..o 61
2.13 Hydrostaticbalance . . . . . . . . . . e e e e e e e e 61
2.14 Flux-form momentum equations . . . . . . . . . . . . .. ot e e e e 62
2.14.1 Advectionof momentum . . . . . ... L. oL e e e 62
2,142 CorioliSterms . . . . . . . o o vt e e e e e e e e e e 63
2.14.3 Curvature metriC terms . . . . . . v v v e e e e e e e e e e e e e e e e e e 64
2.14.4 Non-hydrostatic metric terms . . . . . .« . o v v v v e e e e e e e e e e e e e 64
2.14.5 Lateral dissipation . . . . . . . . L. e e e e e e e e e 65
2.14.6 Vertical dissipation . . . . . . . . . .. 66
2.14.7 Derivation of discrete energy conservation . . . . . . . ... ... oo . 67
2.14.8 Mom Diagnostics . . . . . . ... L e e e e e e 67
2.15 Vector invariant momentum equations . . . . . . . . . . e e e e e e e e e e e e e e e e 69
2.15.1 Relative VOrticity . . . . . . . o i e e e e e e e e e e e 70
2.15.2 Kineticenergy . . . . . . . . . .. e e 70
2153 Coriolis terms . . . . . . L . e e e e e e e e e e e e e e 71
2.15.4 Shearterms . . . . . . . ittt e e e e e e e e e e 71
2.15.5 Gradient of Bernoulli function . . . . . . . ... ... 72
2.15.6 Horizontal divergence . . . . . . . . . . o i e e e e e e e e e e e e 72
2.15.7 Horizontal dissipation . . . . . . . . . . .. e 72
2.15.8 Vertical dissipation . . . . . . . ... L e 73
2.16 Tracer eqUAtiONS . . . . . . . . oL e e e e e e e e e e e e e 73
2.16.1 Time-stepping of tracers: ABIL . . . . . . . . . . . .. L 73
2.17 Advectionschemes . . . . . . . . . ... e e e e e e 74
2.17.1 Linear advectionschemes . . . . . . . . . . .. . .. e 74
2.17.2 Non-linear advection schemes . . . . . . . . . .. . .. L e 78
2.17.3 Comparison of advection schemes . . . . . . . . ... ... . ... 81
2.18 Shapiro Filter . . . . . . . . e e 86
2.18.1 SHAP DIiagnostics . . . . . . v v i i i i e e e e e e e e e e e e e e e e 90
2.19 Nonlinear Viscosities for Large Eddy Simulation . . . . . . .. ... ... .. ... ... ...... 90
2.19.1 Eddy Viscosity . . . . . . . o e e e e 91
2.19.2 Mercator, Nondimensional Equations . . . . . .. . ... ... ... .. ... 96
Getting Started with MITgcm 99
3.1  Where to find information . . . . . . . ... oL e e 99
3.2 Obtainingthecode . . . . . . . . .. .. e 99
32,1 Method 1 . . ..o L e 100
322 Method2 . . ... e 100
3.3 Updatingthecode . . . . . . . . e e e e e e e e 100
3.4 Model and directory StrucCture . . . . . . . . . . . ottt e e e e e e e 101
3.5 Buildingthemodel . . . . . . . ... 102
3.5.1  Quickstart Guide . . . . . . ... e e e e 102
3.5.2  Generating a Makefileusing genmake2 . . . . . . . ... ... L 103
353 makecommands .. ... Ll e e e e 110




3.6

3.7

3.8

39

4.1

4.2

4.3

4.4

4.5

354 Buildingwith MPL . . . . . . 0L
3.5.5 BuildingwithOpenMP . . . . . . . . . e e
Running the model . . . . . . . . . o . e e e
3.6.1 Runningwith MPL . . . . .. ...
3.6.2  Running withOpenMP . . . . . . ...
3.6.3 Outputfiles . . . . . . e e
3.6.4 Lookingattheoutput . . . . . . . . . . o e e e e e e e
Customizing the Model Configuration - Code Parameters and Compilation Options . . . . . . . . ..
3.7.1  Model Array Dimensions . . . . . . . .. ..o e
3772 CPreprocessor OpONS . . . . . . v v v v vt e et e e e e e e e e e e e
3.7.3  Preprocessor Execution Environment Options . . . . . . . . ... ... ... ... ... .
Customizing the Model Configuration - Runtime Parameters . . . . . . ... ... ... ... ....
3.8.1  Parameters: Configuration, Computational Domain, Geometry, and Time-Discretization

3.8.2  Parameters: Main Algorithmic Parameters . . . . . . . .. ... ... ... ... ...
3.8.3  Parameters: Equationof State . . . . . . ... ..
3.8.4  Parameters: Momentum Equations . . . . . . . .. ... oL L o o
3.8.5 Parameters: Tracer Equations . . . . . . . . . .. ...
3.8.6  Parameters: Model Forcing . . . . . . . . . . . .. e
3.8.7  Parameters: Simulation Controls . . . . . . . . . ... L o
3.8.8  Parameters Used In Optional Packages . . . . . . .. ... ... ... ... ........
3.8.9  Execution Environment Parameters . . . . . . . . . . .. ... oL o oo
MITgem Input Data File Format . . . . . . . . . ... 00

MITgcem Tutorial Example Experiments

Barotropic Ocean Gyre . . . . . . . . . . o o e e e e e e e
4.1.1 Equations Solved . . . . . . . ..
4.1.2  Discrete Numerical Configuration . . . . . . . ... ... . ... ... .. ...
4.1.3  Configuration . . . . . . . . L. e e e
4.1.4  Building and running the model . . . . . . ... .. ... oo oL
4.1.5 Model Solution . . . . . . ... e e e e
Baroclinic Ocean Gyre . . . . . . . . . . it i e e e e e
42.1 Equationssolved . . . . . . . . e e e e e e
4.2.2  Discrete Numerical Configuration . . . . . . . . . .. . . i i
423  Configuration . . . . . . . .. e e e e e e e e e e
424 Building and running the model . . . . . .. ... . L oL oL
425 Runningwith MPL . . . . 0. . 0o
4.2.6  RunningwithOpenMP . . . . . . . . .. e
427 Modelsolution . . . . . . ... e
Southern Ocean Reentrant Channel Example . . . . . . . .. ... ... ... . ... .. ...,
43.1 Equations Solved . . . . . . ... L e
4.3.2  Discrete Numerical Configuration . . . . . . . . . .. ... ... ...
4.3.3  Configuration . . . . . . . . L. e e e e e
4.3.4 Building and running themodel . . . . . .. ... . ... .
43.5 Model Solution . . . . . ... e e e
Ocean Gyre Advection Schemes . . . . . . . . ... ... L e
4.4.1  Advection and tracer tranSport . . . . . ... ... oo e e e e e e e e e e
44.2 Introducing atracerintotheflow . . . . . . . . ... L oo o
443  Selecting an advectionscheme . . . . . . ... ... L Lo
444  Comparison of different advection schemes . . . . . ... ... ... ... ... .....
Global Ocean Simulation . . . . . . . . . . . e
451 OVerview . . . . . . e e e e e e
4.5.2  Discrete Numerical Configuration . . . . . . . . . .. ... ...
4.5.3  Experiment Configuration . . . . . . . . . . ... e
Global Ocean Simulation in Pressure Coordinates . . . . . . . . . ... .. ... ... ... ....

4.6

115




4.6.1 OVEIVIEW . . o o v o o e e e e e e e e e e e 230

4.6.2  Discrete Numerical Configuration . . . . . . . . . . . . o i it e 231
4.6.3  Experiment Configuration . . . . . . . . . . . . . . e e 232
4.7 Held-Suarez Atmosphere . . . . . . . . . . ... 243
471 OVerVIEW . . . o o i e e e e e e e e e 244
472 Forcing . . . . . . e 244
4773  Set-updescription . . . . . . .. e e e e e e e e e e e 245
474  Experiment Configuration . . . . . . . . . . . . e e e e 246
4.8 Deep Convection . . . . . . v it e e e e e e e e e e e e e e e e 256
4.8.1  OVerview . . . . . . e e e e e e 257
4.8.2 Equationssolved . . . . . . . .. e 257
4.8.3  Discrete numerical configuration . . . . . . . ... .. L e 259
4.8.4  Numerical stability criteria and other considerations . . . . . . . ... .. ... .. ..... 259
4.8.5 Experiment configuration . . . . . . . .. ... oL e 259
4.9  Gravity Plume On a Continental Slope . . . . . . . . .. ... ... ... 266
49.1  Configuration . . . . . . . . e e e e e e e e e 268
4.9.2 Binaryinputdata . . . . . . ... e e e e e 268
493 Codeconfiguration . . . . . . . . . . e e e e e e e 272
494  Model parameters . . . . . . . .o e e e e e e e e e e e e e e e e e 272
4.10 Biogeochemistry Simulation . . . . . . . . ... L. oL 272
4.10.1 Overview . . . . .o e e e e e e 273
4.10.2 Equations Solved . . . . . . ... 274
4.10.3 Code configuration . . . . . . . . . . e e e e e e e e e e e 275
4.10.4 Runningtheexample . . . . . . . . . e e e e e e 276
4.11 Global Ocean State Estimation . . . . . . . . .. ... ... 276
4111 OVerview . . . . . o e e e e e e 276
4.11.2 Implementation of the control variable and the cost function . . . .. ... ... ... ... 279
4.11.3 Code Configuration . . . . . . . . o v i i i et e e e e e e e e e e e e 280
4.11.4 Compiling . . . . . . o o e e e e e e 280
4.11.5 Running the estimation . . . . . . . . .. . ... L e 281
4.12 Adjoint Sensitivity Analysis for Tracer Injection . . . . . .. ... .. ... ... 0oL 282
4.12.1 Overview of the experiment . . . . . . . . . . . .. e 282
4.12.2 Code configuration . . . . . . . . . oL e e e e 283
4.12.3 Compiling the model and its adjoint . . . . . . . . .. .. ... ... .. ... 289
4.13 Offline Experiments . . . . . . . . . o o i e e e e e e e e e e 291
4131 OVerview . . . . . e e e e 291
4.13.2 Time-stepping of tracers . . . . . . . . . . ... e e e e 291
4.13.3 Code Configuration . . . . . . . . . . . . L. e e 291
4.13.4 Running the Experiment . . . . . . . . . . . . . e e e 300
4.13.5 A more complicatedexample . . . . . . . ... 300
414 Rotating Tank . . . . . . . o . L e e e e e e e 306
4.14.1 Equations Solved . . . . . . . .. L e 306
4.14.2 Discrete Numerical Configuration . . . . . . . . . .. ... ... 306
4.14.3 Code Configuration . . . . . . . . o v i it e e e e e e e e e e e 307
4.15 Additional Example Experiments: Forward Model Setups . . . . . ... .. ... ... ....... 312
4.16 Additional Example Experiments: Adjoint Model Setups . . . . . . .. ... ... ... ... ..., 316
Contributing to the MITgem 319
5.1 Bugsand feature requests . . . . ... Lo e e e e e e e e e 319
52 UsingGitand Github . . . . . . . . . .. e 319
5.2.1  Quickstart Guide . . . . . . . .. e e e e e e e e 319
5.2.2  Detailed guide for those less familiar with Gitand GitHub . . . . . . ... ... ... ... 321
5.3 Codingstyle guide . . . . . . . . L e e e e e e e e e 326
5.4  Creating MITgem packages . . . . . . . o v i it i e e e e e e e e e e 326




54.1  Package StruCture . . . . . . o v v i i e e e e e e e e e e e e e e e e e e 326
5.4.2  Package boot SEqUENCE . . . . . . v v i it e e e e e e e e e e e e 327
543 Package S/Rcalls . . . . . . . . e e e 328
544 Package “mypackage” . . . . . . ... e 329
5.5 MITgem code testing protocols . . . . . . . oL e e e e e e e e 330
5.5.1  Test-experiment directory content . . . . . . . . . . .. ...t 330
5.5.2  Thetestreport utility . . . . . . . . . . e e e e e e e e 332
553 Thedo_tst 2+2 utility . . . . . ... 335
554 Daily Testingof MITgem . . . . . . . .. ... o e 336
5.5.5 Required Testing for MITgcm Code Contributors . . . . . . ... ... ... ... ... . 336
5.6 Contributingtothemanual . . . . . . . . . .. L e 337
5.6.1  Sectionheadings . . . . . . . . . . e e e e 338
5.6.2 Internal documentreferences . . . . . . ... ... L 338
563 Citations. . . . . .. 338
5.6.4 Otherembedded links . . . . . . . . . . . . e 339
5.6.5 Symbolic Notation . . . . . . . . . ... 339
5.6.6  Figures . . . . ... e e 340
5.6.7 Tables . . . .. 340
5.6.8 Othertextblocks . . . . . . . . . ... 341
5.6.9 Otherstyleconventions . . . . . . . . ... ... e 342
5.6.10 Buildingthemanual . . . .. .. ... L 342
5.7 Reviewing pullrequests . . . . . . . . .. e e e 343
Software Architecture 345
6.1  Overall architectural goals . . . . . . . . . . . . e 345
6.2 WRAPPER . . . . 346
6.2.1 Targethardware . . . . . . . . . . i i e e e e e e e e e e 346
6.2.2  Supporting hardware neutrality . . . . . . . . . . ... 348
6.23 WRAPPER machinemodel . . . . . . . .. ... ... ... o 348
6.24  Machine model parallelism . . . . . . ... ... 0 oL oo 348
6.2.5 Communication mechanisms . . . . . . . . . . . ... oL 350
6.2.6  Communication primitives . . . . . . . . . . . e e e e e e e e e e 352
6.2.7  Memory architeCture . . . . . . . . . . i v i e e e e e e e e e e e e e 353
6.2.8  Summary . . ... e e e e e e e e e e 354
6.3 Usingthe WRAPPER . . . . . . . . . e 355
6.3.1  Specifying a domain decomposition . . . . ... ... oo 355
6.3.2  Startingthecode . . . . . . . . . e e e e e e 359
6.3.3  Controlling communication . . . . . . . . . . . .. e e e e e e e e 362
6.4 MITgcm execution under WRAPPER . . . . . . . . ... 0 366
6.4.1  Annotated call tree for MITgcm and WRAPPER . . . . . . . . . ... ... ... ..., 367
6.4.2  Measuring and Characterizing Performance . . . . . ... ... .. ... ... ..., 377
6.4.3  Estimating Resource Requirements . . . . . . . . . . . .. ... 377
Automatic Differentiation 379
7.1 Somebasicalgebra . . . . . ... 379
7.1.1  Forward or direct sensitivity . . . . . . . . . . . . e e e 380
7.1.2  Reverse or adjoint sensitivity . . . . . . . ..o e e e 380
7.1.3  Storing vs. recomputation inreversemode . . . . . . ... ... 0oL 383
7.2 TLM and ADM generationin general . . . . . . . . . .. .. ... ... oo 385
721 General sSetup . . . . . ... L e e 386
7.2.2  Buildingthe ADcodeusing TAF . . . . . . . .. . 387
7.2.3 The AD build processindetail . . . . . . . . . . . . .. . ... e 388
7.2.4  The cost function (dependent variable) . . . . . . . ... ... oo 389
7.2.5  The control variables (independent variables) . . . .. . ... ... ... .. ... ..... 392




7.3 The gradient check package . . . . . ... .. ... 396
7.3.1  Codedescription . . . . . . . . i i e e e e e e e e e e e e 397
7.3.2 Codeconfiguration . . . . . . . . . . L e e e e e e e e 397
7.4  Adjoint dump & restart — divided adjoint (DIVA) . . . . . .. ... .. .. L. 398
7.4.1 Introduction . . . . . . . . oL e e e e e e e 398
7.4.2 Recipe l: single processor . . . . . . ... ..o 399
7.4.3  Recipe 2: multi processor (MPI) . . . . . . . . .. e 400
7.5 Adjoint code generation using OpenAD . . . . . . ... e 400
7.5.1  Introduction . . . . . ...l e e 401
7.5.2  Downloading and installing OpenAD . . . . . . .. ... ... ... L. 401
7.5.3  Building MITgem adjoint with OpenAD . . . . . . . . ... . 401
7.5.4  Building the MITgcm adjoint using an OpenAD Singularity container . . . . ... ... .. 401
7.6 Adjoint code generation using Tapenade . . . . . . . . . ... L e 402
7.6.1 Introduction . . . . . ...l e e 402
7.6.2  Downloading and installing Tapenade . . . . . . .. ... ... ... .. ... . ... . 402
7.6.3  Prerequisites for Linux or Mac OS . . . . . . . . .. ... 402
7.6.4  StepsforMac OS . . . . . . L 402
7.6.5 StepsforLinux . . . . . . . e e e e e e e 403
7.6.6  Prerequisites for Windows . . . . . . ... Lo 403
7.6.77  Stepsfor Windows . . . . ... oL e 403
7.6.8  Prerequisites for Tapenade setup . . . . . . . . . . ..o 404
7.6.9  Building MITgecm TLM with Tapenade . . . . . . . . ... ... ... ... ..... 404
7.6.10 Building MITgcem adjoint with Tapenade . . . . . . . . .. .. ... ... .. ... ..... 404
Packages I - Physical Parameterizations 407
8.1  OVerview . . . . . L e 407
8.1.1  Using MITgem Packages . . . . . . . . . . . . i i e e e e e 407
8.2  Packages Related to Hydrodynamical Kernel . . . ... ... ... ... ... ... ... ..... 412
8.2.1  Generic Advection/Diffusion . . . . . . ... ... oL 412
8.2.2  Momentum Packages . . . . . .. . 414
823 Shapiro Filter . . . . . . . . . e 414
824 FFTFiltering Code . . . . . . . . . i i e e e e e e e e e 415
8.2.5 exch2: Extended Cubed Sphere Topology . . . . . . . . .. ... . ..., 415
8.2.6  Gridalt - Alternate Grid Package . . . . . . . . . . . . .. e 422
8.3  General purpose numerical infrastructure packages . . . . . . . .. . ... 0oL 426
8.3.1  OBCS: Open boundary conditions for regional modeling . . . . . .. ... .. ... .... 426
832 RBCSPackage . .. ... . . . . . e e 435
8.3.3 PTRACERS Package . . . . . . . . 0 i e e e e e e e 438
8.4 Ocean Packages . . . . . . . . . e e e e e 441
8.4.1 GMREDI: Gent-McWilliams/Redi Eddy Parameterization . . . ... ... ... ... ... 441
8.4.2  KPP: Nonlocal K-Profile Parameterization for Vertical Mixing . . . . ... ... ... ... 451
8.4.3  GGL90: a TKE vertical mixing scheme . . . . . .. ... ... ... ... ........ 457
8.4.4  OPPS: Ocean Penetrative Plume Scheme . . . . . . ... .. ... ... . ......... 457
8.4.5 KLI10: Vertical Mixing Due to Breaking Internal Waves . . . . . .. ... ... .. ..... 458
8.4.6 BULK_FORCE: Bulk Formula Package . . . ... ... ... ... ... ... ...... 461
8.47  EXF: The external forcing package . . . . . . . . ... ... ... ... ... 465
8.4.8 CAL: The calendar package . . . . . .. . . . . . . ... 474
8.5 Atmosphere Packages . . . . . . L e 479
8.5.1  Atmospheric Intermediate Physics: AIM . . . . . . . . .. ... . . 479
8.5.2 Landpackage . . . . . . . . . e e e e e e 480
8.5.3  Fizhi: High-end Atmospheric Physics . . . . .. ... ... ... 00 . 482
8.6 Iceand SealcePackages . . . . . . . . . . . e 521
8.6.1  THSICE: The Thermodynamic Sea Ice Package . . . . . . . ... ... ... ........ 521
8.6.2 SEAICE Package . . . . . . . . . . i e e e e e e 527

vi



10

8.6.3 SHELFICE Package . . . . . . . . . . . . @ i ittt e e e e
8.6.4 SHELFICE Remeshing . . . . . . . . . . . . e e it e e e
8.6.5 STREAMICE Package . . . . . . . . . . . @ i ittt e e e e
8.7 Biogeochemistry Packages . . . . . . ... L. oL
87.1 GCHEM Package . . . . . . . . . . e
872 DICPackage . . . . . . . . i e
Packages II - Diagnostics and I/O
9.1 pkg/diagnostics — A Flexible Infrastructure . . . . . . . ... ... ... o o L.
9.1.1 Introduction . . . . . . . . . L e e e
9.1.2  Equations . . . . . . . . e e e e e e e e e e e e e e
9.1.3  Key Subroutines and Parameters . . . . . . . .. . ... L L o
9.1.4  Usage Notes . . . . . . . . . L e
9.2  Fortran Native I/O: pkg/mdsio and pkg/rw . . . . . . .. .. oL oo
9.2.1  pkg/mdsio . . . ... e
9.2.2  pkg/rw basic binary /O utilities . . . . . . . . . . . e
9.3 NetCDFI/O: pkg/mnc . . . . . . . o i e e e e e e e e e e e e e
93.1  Usingpkg/mnc . . . . . . o o e e e e e e e e e
9.3.2  pkg/mnc Troubleshooting . . . . . . . ... ... L
9.33 pkg/mnclnternals . . . . . ...
9.4  Monitor: Simulation State Monitoring Toolkit . . . . . . . .. ... ... ... ... .. ......
9.4.1 Introduction . . . . . . . ... e e e e e
9.4.2  Using pkg/monitor . . . . . . . . e e e
9.5 Grid Generation . . . . . . . . L e e e e e e e e e e
9.5.1 Using SPGrid . . . . . . . . e e
952 Example Grids . . . . . . . .. e e e e e e e e e
9.6  Pre— and Post—Processing Scripts and Utilities . . . . . . . . . .. .. ... .. ... ...
9.6.1  Utilities Supplied Withthe Model . . . . .. ... ... . ... ... ... ... .....
9.6.2  Pre-Processing Software . . . . . .. ... ... o
9.7  Potential Vorticity Matlab Toolbox . . . . . . .. .. ... L
9.7.1 Introduction . . . . . . . .. L e e
0.7.2  EqUations . . . . . . . i e e e e e e e e e e e e e e e e e e
073  Keyroutines . . . . . . . . i it e e e e e e e e e e e
9.7.4  Technical details . . . . . . ... . . ... e
9.7.5  Notes on the flux form of the PV equation and vertical PV fluxes . . . . . . ... ... ...
9.8  pkg/fit — Simulation of float / parcel displacements . . . . . . . ... ... ... ... ... ...
9.8.1 Introduction . . . . . . . .. L e e
9.8.2  Compile-time options in FLT_OPTIONS.h . . . . . . . . . . 0 i it i i i e
9.8.3  Compile-time parameters in FLT SIZE.hinclude: . . . . . ... .. ... ... .. .....
9.8.4  Run-time options in data.flt include: . . . . . . . .. ... o oL 0oL,
9.85 ImputFiles . . . . . . . oL e
9.8.6 OutputFiles . . . . . . . . . e e e e e e
9.8.7  Verification Experiment. . . . . . . . . . . . e e e e
9.8.8 Algorithmdetails . . . . . . . . . . . e e e
Ocean State Estimation Packages
10.1 ECCO: model-data comparisons using gridded datasets . . . . .. ... ... ... .........
10.1.1 Generic Cost Function . . . . . . . ... . ... e
10.1.2  Generic Integral Function . . . . . . . .. . ... L
10.1.3 Custom Cost Functions . . . . . . . . . . . . e
10.1.4 KeyRoutines . . . . . . . . . e e
10.1.5 Compile Options . . . . . . o v v it e e e e e e e e e e e e e e e
10.2 PROFILES: model-data comparisons at observed locations . . . . . . . ... ... ... .......
10.3 CTRL: Model Parameter Adjustment Capability . . . . . ... ... ... ... ... .......

579
579
579
579
579
582
594
594
596
597
597
600
601
603
603
604
604
605
606
606
606
607
607
608
608
610
610
611
614
614
614
614
615
615
616
616
617

619
619
620
623
624
625
625
625
627

vii



10.3.1 Generic Control Parameters . . . . . . . . . . . . L e
10.3.2  Shelfice Control Parameters . . . . . . . . . . . . . . e
10.3.3 Logarithmic Control Parameters . . . . . . . . . . . ... ..
10.4 SMOOTH: Smoothing And Covariance Model . . . . . . ... ... .. ... ... .. .......
10.5 The line search optimisation algorithm . . . . . . . .. .. . ... ... L. o o
10.5.1 General features . . . . . . . L ..o e e e e
10.5.2 Theonline vs. offline version . . . . . . . . ... L
10.5.3 Number of iterations vs. number of simulations . . . . . .. ... ... ... ... .....
10.5.4 Alternative code tooptimand Isopt. . . . . . . . .. ... oL oo
10.6 Test Cases For Estimation Package Capabilities . . . . . . . ... . ... ... ... .. ...,
11 Utilities
11.1 MITgemutils . . . . . . 0o e e
TLIT mds . . . e e e e e e e e e e e e e e
T1.I2 mne . .. oo o e e e e e e e
I1.1.3  diagnostics . . . . o o i e e e e e e e e e e e e e e e e e e e
LT1.14  PLracers . . . . . o v v it e e e e e e e e e e e e e e e e e e e
IT.1S JjmdOS .« . o o e
11.1.6 mdjwt . . . . o
I
I1.1.8 HIc . o o o e e e e
11.1.9 gluemncbig . . . . . . . o e e e e e e e e e e
12 Related Projects and Highlighted Papers
12.1 Projects Relatedto MITgem . . . . . . . . . o o oo e e e
12.1.1 Estimating the Circulation and Climate of the Ocean (ECCO) . . . . . . ... .. ... ...
12.1.2  Gcemfaces: Gridded Earth Variables In Matlab And Octave . . . . . . . .. ... ... ...
12.1.3 MITprof: In-Situ Ocean Data In Matlab And Octave . . . . . . . ... ... ... .. ...
12.1.4 OceanParcels - Lagrangian Particle Tracker . . . . . .. .. ... ... ... ... .....
12.1.5 Southern Ocean State Estimation (SOSE) . . . . . . . . . . .. ... .. .. ........
12.1.6 Xgcm: General Circulation Model Postprocessing with xarray . . . . . ... ... ... ..
12,17 Xmitgem . . . o e e e e e e e e e e e e e e e e
12.2 Highlighted Papers . . . . . . . . . . . . e
Bibliography
Python Module Index
Index

643
643
643
645
647
648
648
649
651
651
654

655
655
655
655
655
655
656
656
656
656

657

669

671

viii



CHAPTER
ONE

OVERVIEW

This document provides the reader with the information necessary to carry out numerical experiments using MITgcm.
It gives a comprehensive description of the continuous equations on which the model is based, the numerical algorithms
the model employs and a description of the associated program code. Along with the hydrodynamical kernel, physical
and biogeochemical parameterizations of key atmospheric and oceanic processes are available. A number of examples
illustrating the use of the model in both process and general circulation studies of the atmosphere and ocean are also
presented.

1.1 Introduction

MITgem has a number of novel aspects:

* it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is used
to drive forward both atmospheric and oceanic models - see Figure 1.1

Dynamical Kernel

Atmospheric
Physics

Ocean
Physics

Figure 1.1: MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric simulations.

* it has a non-hydrostatic capability and so can be used to study both small-scale and large scale pro-
cesses - see Figure 1.2
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~1 000km ~10 000 km

Figure 1.2: MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of phenomenon -
from convection on the left, all the way through to global circulation patterns on the right.

* finite volume techniques are employed yielding an intuitive discretization and support for the treat-
ment of irregular geometries using orthogonal curvilinear grids and shaved cells - see Figure 1.3

* tangent linear and adjoint counterparts are automatically maintained along with the forward model,
permitting sensitivity and optimization studies.

* the model is developed to perform efficiently on a wide variety of computational platforms.

Key publications reporting on and charting the development of the model are Hill and Marshall (1995), Marshall et al.
(1997a), Marshall et al. (1997b), Adcroft and Marshall (1997), Marshall et al. (1998), Adcroft and Marshall (1999),
Hill et al. (1999), Marotzke et al. (1999), Adcroft and Campin (2004), Adcroft et al. (2004b), Marshall et al. (2004)
(an overview on the model formulation can also be found in Adcroft et al. (2004c¢)):

Hill, C. and J. Marshall, (1995) Application of a Parallel Navier-Stokes Model to Ocean Circulation in Parallel Com-
putational Fluid Dynamics, In Proceedings of Parallel Computational Fluid Dynamics: Implementations and Results
Using Parallel Computers, 545-552. Elsevier Science B.V.: New York [HM95]

Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean
modeling, J. Geophysical Res., 102(C3), 5733-5752 [MHPA97]

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997b) A finite-volume, incompressible Navier Stokes
model for studies of the ocean on parallel computers, J. Geophysical Res., 102(C3), 5753-5766 [MAH+97]

Adcroft, A.J., Hill, C.N. and J. Marshall, (1997) Representation of topography by shaved cells in a height coordinate
ocean model, Mon Wea Reyv, 125, 2293-2315 [AHM97]

Marshall, J., Jones, H. and C. Hill, (1998) Efficient ocean modeling using non-hydrostatic algorithms, Journal of Marine
Systems, 18, 115-134 [MJH98]

Adcroft, A., Hill C. and J. Marshall: (1999) A new treatment of the Coriolis terms in C-grid models at both high and
low resolutions, Mon. Wea. Rev., 127, 1928-1936 [AHM99]

Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999) A Strategy for Terascale Climate Modeling, In Proceedings of
the Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, 406-425 World Scientific Publishing
Co: UK [HAIM99]

Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999) Construction of the adjoint MIT ocean
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Finite Volume: Shaved Cells

Stream Function W Tracer 0 at t=0.3

-1
-1 1 -1 I

Figure 1.3: Finite volume techniques (bottom panel) are used, permitting a treatment of topography that rivals o (terrain
following) coordinates.
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general circulation model and application to Atlantic heat transport variability, J. Geophysical Res., 104(C12), 29,529-
29,547 [MGZ+99]

A. Adcroft and J.-M. Campin, (2004a) Re-scaled height coordinates for accurate representation of free-surface flows
in ocean circulation models, Ocean Modelling, 7, 269-284 [AC04]

A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall, (2004b) Implementation of an atmosphere-ocean general circulation
model on the expanded spherical cube, Mon Wea Rev , 132, 2845-2863 [ACHMO04]

J. Marshall, A. Adcroft, J.-M. Campin, C. Hill, and A. White, (2004) Atmosphere-ocean modeling exploiting fluid
isomorphisms, Mon. Wea. Rev., 132, 2882-2894 [MAC+04]

A. Adcroft, C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, (2004c) Overview of the formulation and numerics
of the MITgcm, In Proceedings of the ECMWF seminar series on Numerical Methods, Recent developments in numer-
ical methods for atmosphere and ocean modelling, 139-149. URL: http://mitgcm.org/pdfs/ECMWFEF2004- Adcroft.pdf
[AHIMC+04]

We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems
that can be addressed using it.

1.2 lllustrations of the model in action

MITgem has been designed and used to model a wide range of phenomena, from convection on the scale of meters in
the ocean to the global pattern of atmospheric winds - see Figure 1.2. To give a flavor of the kinds of problems the
model has been used to study, we briefly describe some of them here. A more detailed description of the underlying
formulation, numerical algorithm and implementation that lie behind these calculations is given later. Indeed many
of the illustrative examples shown below can be easily reproduced: simply download the model (the minimum you
need is a PC running Linux, together with a FORTRAN77 compiler) and follow the examples described in detail in the
documentation.

1.2.1 Global atmosphere: ‘Held-Suarez’ benchmark

A novel feature of MITgcm is its ability to simulate, using one basic algorithm, both atmospheric and oceanographic
flows at both small and large scales.

Figure 1.4 shows an instantaneous plot of the 500 mb temperature field obtained using the atmospheric isomorph of
MITgcm run at 2.8° resolution on the cubed sphere. We see cold air over the pole (blue) and warm air along an
equatorial band (red). Fully developed baroclinic eddies spawned in the northern hemisphere storm track are evident.
There are no mountains or land-sea contrast in this calculation, but you can easily put them in. The model is driven
by relaxation to a radiative-convective equilibrium profile, following the description set out in Held and Suarez (1994)
[HS94] designed to test atmospheric hydrodynamical cores - there are no mountains or land-sea contrast.

As described in Adcroft et al. (2004) [ACHMO04], a ‘cubed sphere’ is used to discretize the globe permitting a uni-
form griding and obviated the need to Fourier filter. The ‘vector-invariant’ form of MITgcm supports any orthogonal
curvilinear grid, of which the cubed sphere is just one of many choices.

Figure 1.5 shows the 5-year mean, zonally averaged zonal wind from a 20-level configuration of the model. It compares
favorable with more conventional spatial discretization approaches. The two plots show the field calculated using
the cube-sphere grid and the flow calculated using a regular, spherical polar latitude-longitude grid. Both grids are
supported within the model.
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Figure 1.4: Instantaneous plot of the temperature field at 500 mb obtained using the atmospheric isomorph of MITgcm

1.2.2 Ocean gyres

Baroclinic instability is a ubiquitous process in the ocean, as well as the atmosphere. Ocean eddies play an important
role in modifying the hydrographic structure and current systems of the oceans. Coarse resolution models of the oceans
cannot resolve the eddy field and yield rather broad, diffusive patterns of ocean currents. But if the resolution of our
models is increased until the baroclinic instability process is resolved, numerical solutions of a different and much more
realistic kind, can be obtained.

Figure 1.6 shows the surface temperature and velocity field obtained from MITgcm run at éo horizontal resolution on a
lat-lon grid in which the pole has been rotated by 90° on to the equator (to avoid the converging of meridian in northern
latitudes). 21 vertical levels are used in the vertical with a ‘lopped cell’ representation of topography. The development
and propagation of anomalously warm and cold eddies can be clearly seen in the Gulf Stream region. The transport of
warm water northward by the mean flow of the Gulf Stream is also clearly visible.

1.2.3 Global ocean circulation

Figure 1.7 shows the pattern of ocean currents at the surface of a 4° global ocean model run with 15 vertical levels.
Lopped cells are used to represent topography on a regular lat-lon grid extending from 70°N to 70°S. The model is
driven using monthly-mean winds with mixed boundary conditions on temperature and salinity at the surface. The
transfer properties of ocean eddies, convection and mixing is parameterized in this model.

Figure 1.8 shows the meridional overturning circulation of the global ocean in Sverdrups.

1.2. lllustrations of the model in action 5
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Figure 1.5: Five year mean, zonally averaged zonal flow for cube-sphere simulation (top) and latitude-longitude simu-
lation (bottom) and using Held-Suarez forcing. Note the difference in the solutions over the pole — the cubed sphere
is superior.
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Figure 1.6: Instantaneous temperature map from a %O simulation of the North Atlantic. The figure shows the tempera-

ture in the second layer (37.5 m deep).
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Figure 1.7: Pattern of surface ocean currents from a global integration of the model at 4° horizontal resolution and
with 15 vertical levels.
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Figure 1.8: Meridional overturning stream function (in Sverdrups) from a global integration of the model at 4° hori-
zontal resolution and with 15 vertical levels.
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1.2.4 Convection and mixing over topography

Dense plumes generated by localized cooling on the continental shelf of the ocean may be influenced by rotation when
the deformation radius is smaller than the width of the cooling region. Rather than gravity plumes, the mechanism for
moving dense fluid down the shelf is then through geostrophic eddies. The simulation shown in Figure 1.9 (blue is
cold dense fluid, red is warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to trigger convection
by surface cooling. The cold, dense water falls down the slope but is deflected along the slope by rotation. It is found
that entrainment in the vertical plane is reduced when rotational control is strong, and replaced by lateral entrainment
due to the baroclinic instability of the along-slope current.

10.98

10.97

10.96

10.95

4 5 6

3
x (km)

Figure 1.9: MITgcm run in a non-hydrostatic configuration to study convection over a slope.

1.2.5 Boundary forced internal waves

The unique ability of MITgcm to treat non-hydrostatic dynamics in the presence of complex geometry makes it an ideal
tool to study internal wave dynamics and mixing in oceanic canyons and ridges driven by large amplitude barotropic
tidal currents imposed through open boundary conditions.

Figure 1.10 shows the influence of cross-slope topographic variations on internal wave breaking - the cross-slope
velocity is in color, the density contoured. The internal waves are excited by application of open boundary conditions
on the left. They propagate to the sloping boundary (represented using MITgcm’s finite volume spatial discretization)
where they break under non-hydrostatic dynamics.

1.2. lllustrations of the model in action 9
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Figure 1.10: Simulation of internal waves forced at an open boundary (on the left) impacting a sloping shelf. The along
slope velocity is shown colored, contour lines show density surfaces. The slope is represented with high-fidelity using
lopped cells.
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1.2.6 Parameter sensitivity using the adjoint of MITgcm

Forward and tangent linear counterparts of MITgcm are supported using an ‘automatic adjoint compiler’. These can
be used in parameter sensitivity and data assimilation studies.

As one example of application of the MITgcm adjoint, Figure 1.11 maps the gradient 3—7{[ where J is the magnitude

of the overturning stream-function shown in Figure 1.8 at 60°N and H (), ¢) is the mean, local air-sea heat flux over a
100 year period. We see that J is sensitive to heat fluxes over the Labrador Sea, one of the important sources of deep
water for the thermohaline circulations. This calculation also yields sensitivities to all other model parameters.

Sensitivity of the Meridional Overturning — Ocean

Heat Flux (Min= -7.7 107 Sv W' m? Max = 42.9 107 Sv W' m?
| | | | | | | | |

90N

60N —

30N

30S

60S -

90S \ \ \ \ \ \ \ \ \ \ \
180W 150W 120W  90W 60W 30W, 0, ,30E 60E 90E 120E 150E 180E
100°SvW 'm

-10 -5 0 5 10 15 20 25 30 35 40 45 50

Figure 1.11: Sensitivity of meridional overturning strength to surface heat flux changes. Contours show the magnitude
of the response (in Sv x 10 ) that a persistent +1 Wm™ heat flux anomaly at a given grid point would produce.

1.2.7 Global state estimation of the ocean

An important application of MITgcm is in state estimation of the global ocean circulation. An appropriately defined
‘cost function’, which measures the departure of the model from observations (both remotely sensed and in-situ) over
an interval of time, is minimized by adjusting ‘control parameters’ such as air-sea fluxes, the wind field, the initial
conditions etc. Figure 1.12 and Figure 1.13 show the large scale planetary circulation and a Hopf-Muller plot of
Equatorial sea-surface height. Both are obtained from assimilation bringing the model in to consistency with altimetric
and in-situ observations over the period 1992-1997.

1.2. lllustrations of the model in action 11
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Figure 1.12: Circulation patterns from a multi-year, global circulation simulation constrained by Topex altimeter data
and WOCE cruise observations. This output is from a higher resolution, shorter duration experiment with equatorially
enhanced grid spacing.
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Figure 1.13: Equatorial sea-surface height in unconstrained (left), constrained (middle) simulations and in observations
(right).

1.2. lllustrations of the model in action 13



MITgcm Documentation, Release 2d7a4a2

1.2.8 Ocean biogeochemical cycles

MITgcem is being used to study global biogeochemical cycles in the ocean. For example one can study the effects of
interannual changes in meteorological forcing and upper ocean circulation on the fluxes of carbon dioxide and oxygen
between the ocean and atmosphere. Figure 1.14 shows the annual air-sea flux of oxygen and its relation to density
outcrops in the southern oceans from a single year of a global, interannually varying simulation. The simulation is run

at 1°x1° resolution telescoping to %O X %O in the tropics (not shown).

MITgcm air-sea O2 flux (moI/m2/yrg with contoured potential density
0

Figure 1.14: Annual air-sea flux of oxygen (shaded) plotted along with potential density outcrops of the surface of the
southern ocean from a global 1°x1° integration with a telescoping grid (to %O ) at the equator.
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1.2.9 Simulations of laboratory experiments

Figure 1.16 shows MITgcm being used to simulate a laboratory experiment (Figure 1.15) inquiring into the dynamics
of the Antarctic Circumpolar Current (ACC). An initially homogeneous tank of water (1 m in diameter) is driven from
its free surface by a rotating heated disk. The combined action of mechanical and thermal forcing creates a lens of
fluid which becomes baroclinically unstable. The stratification and depth of penetration of the lens is arrested by its
instability in a process analogous to that which sets the stratification of the ACC.

s
e
®

il 4 ; _l.‘-'l.l'

Figure 1.15: A 1 m diameter laboratory experiment simulating the dynamics of the Antarctic Circumpolar Current.

1.3 Continuous equations in ‘v’ coordinates

To render atmosphere and ocean models from one dynamical core we exploit ‘isomorphisms’ between equation sets
that govern the evolution of the respective fluids - see Figure 1.17. One system of hydrodynamical equations is written
down and encoded. The model variables have different interpretations depending on whether the atmosphere or ocean
is being studied. Thus, for example, the vertical coordinate ‘r’ is interpreted as pressure, p, if we are modeling the
atmosphere (right hand side of Figure 1.17) and height, z, if we are modeling the ocean (left hand side of Figure 1.17).

The state of the fluid at any time is characterized by the distribution of velocity V, active tracers 6 and S, a ‘geopotential’
¢ and density p = p(6, S, p) which may depend on 6, S, and p. The equations that govern the evolution of these fields,
obtained by applying the laws of classical mechanics and thermodynamics to a Boussinesq, Navier-Stokes fluid are,
written in terms of a generic vertical coordinate, r, so that the appropriate kinematic boundary conditions can be applied
isomorphically see Figure 1.18.

DV . .

l;;h + (29 X \‘/’)h + V¢ = F}, horizontal momentum (1.1)
Dr . -
ik (29 X \7’) + 9¢ + b = F; vertical momentum (1.2)
Dt ar

1.3. Continuous equations in ‘r’ coordinates 15
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Figure 1.16: A numerical simulation of the laboratory experiment using MITgcm.
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Figure 1.17: Isomorphic equation sets used for atmosphere (right) and ocean (left).
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Figure 1.18: Vertical coordinates and kinematic boundary conditions for atmosphere (top) and ocean (bottom).

Py
Vi -V + @ 0 continuity
or

b =0b(0, S, r) equation of state

Do
Dt
DS

D~ Qg humidity/salinity

= Qp potential temperature

Here:

r is the vertical coordinate

D 0
i = 5t + v - V is the total derivative

V=V,+ 12:82 is the ‘grad’ operator
r

with V}, operating in the horizontal and Ig:% operating in the vertical, where k is a unit vector in the vertical
t is time
vV = (u,v,7) = (Vy,7) is the velocity
¢ is the ‘pressure’/‘geopotential’
€ is the Earth’s rotation
b is the ‘buoyancy’
6 is potential temperature

S is specific humidity in the atmosphere; salinity in the ocean

(1.3)
(1.4)

(1.5)

(1.6)

1.3. Continuous equations in ‘r’ coordinates
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F are forcing and dissipation of v
Qy are forcing and dissipation of 6

Qg are forcing and dissipation of S

The terms F and Q are provided by ‘physics’ and forcing packages for atmosphere and ocean. These are described in
later chapters.

1.3.1 Kinematic Boundary conditions
1.3.1.1 Vertical

at fixed and moving r surfaces we set (see Figure 1.18):

7= 0atr = Rfxed(,y) (ocean bottom, top of the atmosphere) 1.7
. Dr
= i at 7 = Rumoving (2, y) (ocean surface, bottom of the atmosphere) (1.8)

Here
Rmoving = Ro + n

where R, (x,y) is the ‘r—value’ (height or pressure, depending on whether we are in the atmosphere or ocean) of the
‘moving surface’ in the resting fluid and 7 is the departure from R, (z,y) in the presence of motion.

1.3.1.2 Horizontal

v-n=0 1.9)
where 1i is the normal to a solid boundary.
1.3.2 Atmosphere
In the atmosphere, (see Figure 1.18), we interpret:
r = pis the pressure (1.10)
._Dp . . - .
7= T w is the vertical velocity in p coordinates (1.11)
¢ = g z is the geopotential height (1.12)
oIl
b = ——@0 is the buoyancy (1.13)
dp
0=T (pc> is potential temperature (1.14)
p
S = q is the specific humidity (1.15)

where

T is absolute temperature

p is the pressure
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z is the height of the pressure surface
g is the acceleration due to gravity

In the above the ideal gas law, p = pRT, has been expressed in terms of the Exner function II(p) given by (1.16) (see
also Section 1.4.1)

K

p

I(p) = ¢p () : (1.16)
Pe

where p. is a reference pressure and k = R/c, with R the gas constant and ¢, the specific heat of air at constant

pressure.

At the top of the atmosphere (which is ‘fixed’ in our r coordinate):
Rfixed = ptop = 0.
In a resting atmosphere the elevation of the mountains at the bottom is given by
Rinoving = Ro(2,y) = po(2,y),
i.e. the (hydrostatic) pressure at the top of the mountains in a resting atmosphere.

The boundary conditions at top and bottom are given by:

w = 0 at r = Rfxeq (top of the atmosphere) (1.17)
Dps
w= Dy at 7 = Ryoving (bottom of the atmosphere) (1.18)

Then the (hydrostatic form of) equations (1.1)-(1.6) yields a consistent set of atmospheric equations which, for conve-
nience, are written out in p—coordinates in Section 1.4.1 - see eqs. (1.59)-(1.63).

1.3.3 Ocean

In the ocean we interpret:

r = z is the height (1.19)

P = % = w is the vertical velocity (1.20)

o= ra is the pressure (1.21)

b(0,S,r) = pi (p(@, S,r) — pc) is the buoyancy (1.22)

where p, is a fixed reference density of water and g is the acceleration due to gravity.
In the above:

At the bottom of the ocean: Rfxed(z,y) = —H (z,y).

The surface of the ocean is given by: Rpoving = 7

The position of the resting free surface of the ocean is given by R, = Z, = 0.

Boundary conditions are:

w = 0 at r = Rgyxeq (0cean bottom) (1.23)
D
w= FZ at 7 = Rumoving = 1) (Ocean surface) (1.24)

where 7 is the elevation of the free surface.

Then equations (1.1)- (1.6) yield a consistent set of oceanic equations which, for convenience, are written out in
z—coordinates in Section 1.5.1 - see eqs. (1.98) to (1.103).
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1.3.4 Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic
forms

Let us separate ¢ in to surface, hydrostatic and non-hydrostatic terms:

O(x,y, 1) = ¢s(2,y) + Phya(@, Y, 1) + dun(z, y,7) (1.25)
and write (1.1) in the form:

ov o
% + Vios + Vidnyd + enn Viadnn = Gy, (1.26)
Oonya _ (1.27)

or
31“ aQzl)nh

— =G; 1.28
€nh ot + or Gr ( )

Here €}, is a non-hydrostatic parameter.

The (ég, GT) in (1.26) and (1.28) represent advective, metric and Coriolis terms in the momentum equations. In

spherical coordinates they take the form' - see Marshall et al. (1997a) [MHPA97] for a full discussion:

G,=—-v-Vu advection
{ ur  uvtan g } _
I R metric
B r (1.29)
— {—2Qv sin ¢ + 27" cos ga} Coriolis
+ Fu forcing/dissipation
Gy, =—v-Vv advection
v utang .
e T metric
I r (1.30)
—{2Qusin ¢} Coriolis
+ Fy forcing/dissipation
G, =—-v-Vr advection
i
- metric
—r (1.31)
+ 2Qu cos Coriolis
+ Fr forcing/dissipation

In the above ‘r’ is the distance from the center of the earth and ‘p ’ is latitude (see Figure 1.20).

Grad and div operators in spherical coordinates are defined in Coordinate systems.

''n the hydrostatic primitive equations (HPE) all underlined terms in (1.29), (1.30) and (1.31) are omitted; the singly-underlined terms are
included in the quasi-hydrostatic model (QH). The fully non-hydrostatic model (NH) includes all terms.
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1.3.4.1 Shallow atmosphere approximation

Most models are based on the ‘hydrostatic primitive equations’ (HPE’s) in which the vertical momentum equation is
reduced to a statement of hydrostatic balance and the ‘traditional approximation’ is made in which the Coriolis force
is treated approximately and the shallow atmosphere approximation is made. MITgcm need not make the ‘traditional
approximation’. To be able to support consistent non-hydrostatic forms the shallow atmosphere approximation can be
relaxed - when dividing through by r in, for example, (1.29), we do not replace r by a, the radius of the earth.

1.3.4.2 Hydrostatic and quasi-hydrostatic forms

These are discussed at length in Marshall et al. (1997a) [MHPA97].

In the ‘hydrostatic primitive equations’ (HPE) all the underlined terms in Eqgs. (1.29) — (1.31) are neglected and ‘r’ is
replaced by ‘a’, the mean radius of the earth. Once the pressure is found at one level - e.g. by inverting a 2-D Elliptic
equation for ¢, at 7 = Ruoving - the pressure can be computed at all other levels by integration of the hydrostatic
relation, eq (1.27).

In the ‘quasi-hydrostatic’ equations (QH) strict balance between gravity and vertical pressure gradients is not imposed.
The 2Qwu cos  Coriolis term are not neglected and are balanced by a non-hydrostatic contribution to the pressure field:
only the terms underlined twice in Egs. (1.29) — (1.31) are set to zero and, simultaneously, the shallow atmosphere
approximation is relaxed. In QH all the metric terms are retained and the full variation of the radial position of a
particle monitored. The QH vertical momentum equation (1.28) becomes:

8(bnh
or

making a small correction to the hydrostatic pressure.

= 2Qu cos ¢

QH has good energetic credentials - they are the same as for HPE. Importantly, however, it has the same angular
momentum principle as the full non-hydrostatic model (NH) - see Marshall et.al. (1997a) [MHPA97]. As in HPE only
a 2-D elliptic problem need be solved.

1.3.4.3 Non-hydrostatic and quasi-nonhydrostatic forms

MITgem presently supports a full non-hydrostatic ocean isomorph, but only a quasi-non-hydrostatic atmospheric iso-
morph.

Non-hydrostatic Ocean

In the non-hydrostatic ocean model all terms in equations Eqgs. (1.29) — (1.31) are retained. A three dimensional elliptic
equation must be solved subject to Neumann boundary conditions (see below). It is important to note that use of the
full NH does not admit any new ‘fast’ waves in to the system - the incompressible condition (1.3) has already filtered
out acoustic modes. It does, however, ensure that the gravity waves are treated accurately with an exact dispersion
relation. The NH set has a complete angular momentum principle and consistent energetics - see White and Bromley
(1995) [WBO95]; Marshall et al. (1997a) [MHPA97].
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Quasi-nonhydrostatic Atmosphere

In the non-hydrostatic version of our atmospheric model we approximate 7 in the vertical momentum eqs. (1.28) and
(1.30) (but only here) by:

. Dp 1Dé¢
popp_1D¢

= == 1.32
Dt g Dt (1.32)

where py, is the hydrostatic pressure.

1.3.4.4 Summary of equation sets supported by model

Atmosphere

Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the compressible non-Boussinesq equations in
p—coordinates are supported.

Hydrostatic and quasi-hydrostatic

The hydrostatic set is written out in p—coordinates in Hydrostatic Primitive Equations for the Atmosphere in Pressure
Coordinates - see eqs. (1.59) to (1.63).

Quasi-nonhydrostatic

A quasi-nonhydrostatic form is also supported.

Ocean
Hydrostatic and quasi-hydrostatic

Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq equations in z—coordinates are supported.

Non-hydrostatic

Non-hydrostatic forms of the incompressible Boussinesq equations in z— coordinates are supported - see eqs. (1.98)
to (1.103).

1.3.5 Solution strategy

The method of solution employed in the HPE, QH and NH models is summarized in Figure 1.19. Under all dynamics,
a 2-d elliptic equation is first solved to find the surface pressure and the hydrostatic pressure at any level computed from
the weight of fluid above. Under HPE and QH dynamics, the horizontal momentum equations are then stepped forward
and 7 found from continuity. Under NH dynamics a 3-d elliptic equation must be solved for the non-hydrostatic pressure
before stepping forward the horizontal momentum equations; 7 is found by stepping forward the vertical momentum
equation.

There is no penalty in implementing QH over HPE except, of course, some complication that goes with the inclusion
of cos¢ Coriolis terms and the relaxation of the shallow atmosphere approximation. But this leads to negligible
increase in computation. In NH, in contrast, one additional elliptic equation - a three-dimensional one - must be
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inverted for p,,;,. However the ‘overhead’ of the NH model is essentially negligible in the hydrostatic limit (see detailed
discussion in Marshall et al. (1997) [MHPAO97] resulting in a non-hydrostatic algorithm that, in the hydrostatic limit,
is as computationally economic as the HPEs.

Z

V. (HV D) =8500.0) pm(1,¢,2)=_[—542'
0

Vipuy = V'év —V,.2(ps + Puy)

ov ov
ath =G, = Vo(ps + Pay) 8: =G, ~V,(ps+ Py +Py)
f ow A Iy
w=—|V,.v dz’ —=G,——
‘0[ h h 3[ &

Figure 1.19: Basic solution strategy in MITgcm. HPE and QH forms diagnose the vertical velocity, in NH a prognostic
equation for the vertical velocity is integrated.

1.3.6 Finding the pressure field
Unlike the prognostic variables u, v, w, # and S, the pressure field must be obtained diagnostically. We proceed,

as before, by dividing the total (pressure/geo) potential in to three parts, a surface part, ¢s(x,y), a hydrostatic part
¢nyd(z, y, ) and a non-hydrostatic part ¢, (x, y, ), as in (1.25), and writing the momentum equation as in (1.26).

1.3.6.1 Hydrostatic pressure

Hydrostatic pressure is obtained by integrating (1.27) vertically from r = R, where ¢nyq(r = R,) = 0, to yield:

R, b R,
/T (gl;yd dr = [(bhyd]fo = /T —bdr

and so

R,
Guya(x,y,r) = / bdr (1.33)

The model can be easily modified to accommodate a loading term (e.g atmospheric pressure pushing down on the
ocean’s surface) by setting:

Gnya(r = R,) = loading (1.34)

1.3. Continuous equations in ‘r’ coordinates 23



MITgcm Documentation, Release 2d7a4a2

1.3.6.2 Surface pressure

The surface pressure equation can be obtained by integrating continuity, (1.3), vertically from r = Rgyeq to 7 =

Rmoving
Rmoving
/ (Vh -V +07)dr =0
Rfixed
Thus:
b = Rmoving .
—n—i—v-Vn—i-/ Vi - Vpdr =0
ot Rfixed

where 17 = Rumoving — R, is the free-surface r-anomaly in units of 7. The above can be rearranged to yield, using
Leibnitz’s theorem:

877 Rumoving .
— 4+ Vy - / v, dr = source (1.35)
ot Rfixed

where we have incorporated a source term.

Whether ¢ is pressure (ocean model, p/p..) or geopotential (atmospheric model), in (1.26), the horizontal gradient term
can be written

Vios = Vi, (bsn) (1.36)

where b, is the buoyancy at the surface.

In the hydrostatic limit (e,1, = 0), equations (1.26), (1.35) and (1.36) can be solved by inverting a 2-D elliptic equation
for ¢4 as described in Chapter 2. Both ‘free surface’ and ‘rigid lid” approaches are available.

1.3.6.3 Non-hydrostatic pressure

Taking the horizontal divergence of (1.26) and adding % of (1.28), invoking the continuity equation (1.3), we deduce
that:

V2 = V- Gy — (Vigs + Viiya) =V - F (1.37)

For a given rhs this 3-D elliptic equation must be inverted for ¢,,;, subject to appropriate choice of boundary conditions.
This method is usually called The Pressure Method [Harlow and Welch (1965) [HW65]; Williams (1969) [Wil69];
Potter (1973) [Pot73]. In the hydrostatic primitive equations case (HPE), the 3-D problem does not need to be solved.

Boundary Conditions

We apply the condition of no normal flow through all solid boundaries - the coasts (in the ocean) and the bottom:

—

V-n=0 (1.38)

where 7 is a vector of unit length normal to the boundary. The kinematic condition (1.38) is also applied to the vertical
velocity at 7 = Ryoving. No-slip (vr = 0) or slip (Jvr/0n = 0) conditions are employed on the tangential component
of velocity, vy, at all solid boundaries, depending on the form chosen for the dissipative terms in the momentum
equations - see below.

Eq. (1.38) implies, making use of (1.26), that:

Vo =n-F (1.39)
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where
F‘ = éf}‘ — (vh(bs + V¢hyd)

presenting inhomogeneous Neumann boundary conditions to the Elliptic problem (1.37). As shown, for example, by
Williams (1969) [Wil69], one can exploit classical 3D potential theory and, by introducing an appropriately chosen
o-function sheet of ‘source-charge’, replace the inhomogeneous boundary condition on pressure by a homogeneous
one. The source term rhs in (1.37) is the divergence of the vector F. By simultaneously setting 7 - F = 0and
n - Véun = 0 on the boundary the following self-consistent but simpler homogenized Elliptic problem is obtained:

V2d)nh =V ]-E:
where F is a modified F such that F - 7 = 0. As is implied by (1.39) the modified boundary condition becomes:
n-Vou =0 (1.40)

If the flow is ‘close’ to hydrostatic balance then the 3-d inversion converges rapidly because ¢,y is then only a small
correction to the hydrostatic pressure field (see the discussion in Marshall et al. (1997a,b) [MHPA97] [MAH+97].

The solution ¢y, to (1.37) and (1.39) does not vanish at 7 = R,oving, and so refines the pressure there.

1.3.7 Forcing/dissipation

1.3.7.1 Forcing

The forcing terms JF on the rhs of the equations are provided by ‘physics packages’ and forcing packages. These are
described later on.

1.3.7.2 Dissipation

Momentum

Many forms of momentum dissipation are available in the model. Laplacian and biharmonic frictions are commonly
used:

82
0922
where Aj, and A, are (constant) horizontal and vertical viscosity coefficients and A, is the horizontal coefficient for
biharmonic friction. These coefficients are the same for all velocity components.

Dy = A Viv+ Ay + AyViv (1.41)

Tracers

The mixing terms for the temperature and salinity equations have a similar form to that of momentum except that the
diffusion tensor can be non-diagonal and have varying coefficients.

Drs=V-[KV(T,S)] + K,;Vi(T,S), (1.42)

where K is the diffusion tensor and K, the horizontal coefficient for biharmonic diffusion. In the simplest case where
the subgrid-scale fluxes of heat and salt are parameterized with constant horizontal and vertical diffusion coefficients,
K, reduces to a diagonal matrix with constant coefficients:

K, O 0
K= 0 K, 0 (1.43)
0 0 K,

where K} and K, are the horizontal and vertical diffusion coefficients. These coefficients are the same for all tracers
(temperature, salinity ... ).
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1.3.8 Vector invariant form

For some purposes it is advantageous to write momentum advection in eq (1.1) and (1.2) in the (so-called) ‘vector
invariant’ form:

Dv 0OV . . 1, .
m_at+(va>xv+v[2<v-v>] (1.44)

This permits alternative numerical treatments of the non-linear terms based on their representation as a vorticity flux.
Because gradients of coordinate vectors no longer appear on the rhs of (1.44), explicit representation of the metric
terms in (1.29), (1.30) and (1.31), can be avoided: information about the geometry is contained in the areas and lengths
of the volumes used to discretize the model.

1.3.9 Adjoint

Tangent linear and adjoint counterparts of the forward model are described in Section 7.

1.4 Appendix ATMOSPHERE

1.4.1 Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates

The hydrostatic primitive equations (HPE’s) in p—coordinates are:

Dv . =
Vh + XV +Vyo=F (1.45)
Dt
% +a=0 (1.46)
dp
. ow
vp-Vh‘i‘aip =0 (147)
pa = RT (1.48)
DT Da
- 1.49
v TP Q (1.49)

where V;, = (u, v, 0) is the ‘horizontal’ (on pressure surfaces) component of velocity, DQt = % +VhL-Vp+ wa% is the
total derivative, f = 2Qsin ¢ is the Coriolis parameter, ¢ = gz is the geopotential, « = 1/p is the specific volume,
w = % is the vertical velocity in the p—coordinate. Equation (1.49) is the first law of thermodynamics where internal
energy e = ¢, T, T is temperature, () is the rate of heating per unit mass and p% is the work done by the fluid in
compressing.

It is convenient to cast the heat equation in terms of potential temperature # so that it looks more like a generic conser-
vation law. Differentiating (1.48) we get:

Da Dp DT
Por T T Bop

which, when added to the heat equation (1.49) and using ¢, = ¢, + R, gives:

DT Dp
_ — 1.50
“Dr D < (150
Potential temperature is defined:
) — T(%)" (1.51)
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where p, is a reference pressure and k = R/c,,. For convenience we will make use of the Exner function II(p) which
is defined by:

I(p) = ¢,y ()" (1.52)

The following relations will be useful and are easily expressed in terms of the Exner function:

Ol kI K0 T DI 9N Dp
_—= = = — M _— = — —
Op p D op ' Dt Op Dt

cp,T' =118 ;

where b = %—59 is the buoyancy.

The heat equation is obtained by noting that

DT _ D) _ DO DU _ DO Dp

“pr = Dt Dt UDt T VDt T %D

and on substituting into (1.50) gives:

n?? _ o (1.53)

which is in conservative form.

For convenience in the model we prefer to step forward (1.53) rather than (1.49).

1.4.1.1 Boundary conditions

The upper and lower boundary conditions are:

Dp
tthetop: p=0,w = — = 1.54
at the top: p =0, w Di 0 (1.54)

at the surface: p = ps, @ = Gropo = 9 Ztopo (1.55)

In p—coordinates, the upper boundary acts like a solid boundary (w = 0 ); in z—coordinates the lower boundary is
analogous to a free surface (¢ is imposed and w # 0).

1.4.1.2 Splitting the geopotential

For the purposes of initialization and reducing round-off errors, the model deals with perturbations from reference (or
‘standard’) profiles. For example, the hydrostatic geopotential associated with the resting atmosphere is not dynamically
relevant and can therefore be subtracted from the equations. The equations written in terms of perturbations are obtained
by substituting the following definitions into the previous model equations:

0=0,+0 (1.56)
a=a,+da (1.57)
¢ =do+ ¢ (1.58)

The reference state (indicated by subscript ‘0’) corresponds to horizontally homogeneous atmosphere at rest (6, &, ¢,)
with surface pressure p,(z, y) that satisfies ¢, (o) = g Ziopo, defined:

0o(p) = f"(p)

ao(p) = b,
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4
(bo(p) = (btopo - / aodp

Po
The final form of the HPE’s in p—coordinates is then:

%’lﬂk < n+ V= F (1.59)
a;; +a/ =0 (1.60)
vp-vh+g—‘;:o (1.61)
2—1;9’ —a (1.62)

%f :% (1.63)

1.5 Appendix OCEAN

1.5.1 Equations of Motion for the Ocean

We review here the method by which the standard (Boussinesq, incompressible) HPE’s for the ocean written in
z—coordinates are obtained. The non-Boussinesq equations for oceanic motion are:

Dv - 1 S
Vi fhx ¥+ =-V.p = Fa (1.64)
Dt p
Dw 190p
nh—— —— = énnFuw 1.65
eth+g+paz €nnF (1.65)
1Dp - ow
- . - = 1.
Dy TV g =0 (1.66)
p=p(0,5,p) (1.67)
Do
- = 1.68
Di Qp (1.68)
DS
- 1.69
i Qs (1.69)

These equations permit acoustics modes, inertia-gravity waves, non-hydrostatic motions, a geostrophic (Rossby) mode
and a thermohaline mode. As written, they cannot be integrated forward consistently - if we step p forward in (1.66),
the answer will not be consistent with that obtained by stepping (1.68) and (1.69) and then using (1.67) to yield p. It is
therefore necessary to manipulate the system as follows. Differentiating the EOS (equation of state) gives:

Do _9p| DO 0p| DS dp| Dp w0
Dt 90|g, Dt 0S|,, Dt = 9Opl, ¢ Dt ’
Note that g—z = %2 is the reciprocal of the sound speed (c,) squared. Substituting into (1.66) gives:
1 Dp
——+ V. - V+0o,wx0 1.71
pc2 Dt + v ow (1.71)

where we have used an approximation sign to indicate that we have assumed adiabatic motion, dropping the % and
%. Replacing (1.66) with (1.71) yields a system that can be explicitly integrated forward:

Dvy,
Dt

~ 1 -
+ fk ><\7’h+;Vzp=.7:h (1.72)
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LN %% — e Fu (1.73)
pizgf+vz.v,,,+gf_o (1.74)
p=p(0,5,p) (1.75)
%i’ — 0, (1.76)
%%g _ 0. (1.77)

1.5.1.1 Compressible z-coordinate equations

Here we linearize the acoustic modes by replacing p with p,(z) wherever it appears in a product (ie. non-linear term)
- this is the ‘Boussinesq assumption’. The only term that then retains the full variation in p is the gravitational acceler-
ation:

Dv . 1 -
ZYh L kX + —Vap=F, (1.78)
Dt Po
Dw gp 10p
. 90 L 28 Fu 1.7
eth-l—pO-i-pOaZ €nhF (1.79)
1 Dp ., ow
poci Dt Vvt =0 (150
p=p(0,5,p) (1.81)
Do
- = 1.82
T Qo (1.82)
DS
-~ =0Q. 1.83
Dt Qs (1.83)

These equations still retain acoustic modes. But, because the “compressible” terms are linearized, the pressure equa-
tion (1.80) can be integrated implicitly with ease (the time-dependent term appears as a Helmholtz term in the non-
hydrostatic pressure equation). These are the truly compressible Boussinesq equations. Note that the EOS must have

the same pressure dependency as the linearized pressure term, ie. g—; = c%, for consistency.
0,8 s

)

1.5.1.2 ‘Anelastic’ z-coordinate equations

The anelastic approximation filters the acoustic mode by removing the time-dependency in the continuity (now pressure)
equation (1.80). This could be done simply by noting that % ~— gpo% = —gp,w, but this leads to an inconsistency
between continuity and EOS. A better solution is to change the dependency on pressure in the EOS by splitting the
pressure into a reference function of height and a perturbation:

p=p (97 S, po(Z) + espl)

Remembering that the term % in continuity comes from differentiating the EOS, the continuity equation then becomes:

1 Dp, Dy’ . ow
s z " —— =0
pocg(Dt e Dt>+v Vh+8z

If the time- and space-scales of the motions of interest are longer than those of acoustic modes, then %—pt < Dre .

Dt
< DD—’;/ g—z %pt” in the EOS (1.70). Thus we set ¢, = 0, removing

vy, in the continuity equations and g—g
0 0,5
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the dependency on p’ in the continuity equation and EOS. Expanding Drpo) — —gpow then leads to the anelastic

Dt
continuity equation:

R
C

ow
= %w -0 (1.84)

A slightly different route leads to the quasi-Boussinesq continuity equation where we use the scaling %—‘{ +V3 v
V3 - poV yielding:
1 9 (pow)

V. -V —
zvh+po 92

=0 (1.85)

Equations (1.84) and (1.85) are in fact the same equation if:

10po g

2
s

Po 0z c

Again, note that if p, is evaluated from prescribed 6, and S,, profiles, then the EOS dependency on p, and the term %
in continuity should be referred to those same profiles. The full set of ‘quasi-Boussinesq’ or ‘anelastic’ equations for
the ocean are then:

Dv . 1 S
S0 4 kX iy + —Vep=F) (1.86)
Dt Po
el o0 100y (1.87)
nh Dt Do Do 32 — €nhv w .
1 o
V.., 4 L20e) (1.88)
po Oz
p=p(0,5po(2)) (1.89)
D6
_ 1.90
1 9y (1.90)
DS
Po 1.91
D1 Qs (L.91)

1.5.1.3 Incompressible z-coordinate equations

Here, the objective is to drop the depth dependence of p, and so, technically, to also remove the dependence of p on
Do. This would yield the “truly” incompressible Boussinesq equations:

Dv . 1 -
ZIh 4 fhe x V4 —Vop = Fy, (1.92)
Dt Pe
Dw gp 10p
. 9P 29 F 1.93
eth+pc+pcaZ €nhF (1.93)
v, v+ g (1.94)
0z
p=p0,S) (1.95)
Do
— 1.96
i Qo (1.96)
DS
_ 1.97
i Qs (1.97)

where p, is a constant reference density of water.
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1.5.1.4 Compressible non-divergent equations

The above “incompressible” equations are incompressible in both the flow and the density. In many oceanic appli-
cations, however, it is important to retain compressibility effects in the density. To do this we must split the density
thus:

p=pot+p
We then assert that variations with depth of p, are unimportant while the compressible effects in p’ are:
Po = Pc

P =p(0,S,p.(2)) — po

This then yields what we can call the semi-compressible Boussinesq equations:

Dv . 1 .
0y Xy + —Vap = F (1.98)
Dt Pe
Dw gp 10p
. P2 Fu 1.99
€th+pc+pcaz €nnF. (1.99)
v, 9+ 2% o (1.100)
0z
o= p(0,S,po(2)) — pe (1.101)
Do
Zv 1.102
i 9y ( )
DS
oo 1.103
i Qs ( )

Note that the hydrostatic pressure of the resting fluid, including that associated with p., is subtracted out since it has
no effect on the dynamics.

Though necessary, the assumptions that go into these equations are messy since we essentially assume a different EOS
for the reference density and the perturbation density. Nevertheless, it is the hydrostatic (e, = 0) form of these
equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE’s).

1.6 Appendix OPERATORS

1.6.1 Coordinate systems

1.6.1.1 Spherical coordinates

In spherical coordinates, the velocity components in the zonal, meridional and vertical direction respectively, are given
by:

DA
u=rcosp

(see Figure 1.20) Here ¢ is the latitude, A the longitude, r the radial distance of the particle from the center of the earth,
Q is the angular speed of rotation of the Earth and D/ Dt is the total derivative.
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The ‘grad’ (V) and ‘div’ (V-) operators are defined by, in spherical coordinates:
_( L 919 9
T \rcosp O\ rdp’ Or

1 ou 0 1.9 (r?r)
Vo T COS {8/\—1—8(}9(1)(:05@)}—&—7”2 or

Q

A E,W

Polar axis

Figure 1.20: Spherical polar coordinates: longitude A, latitude ¢ and r the distance from the center.
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CHAPTER
TWO

DISCRETIZATION AND ALGORITHM

This chapter lays out the numerical schemes that are employed in the core MITgcm algorithm. Whenever possible
links are made to actual program code in the MITgcm implementation. The chapter begins with a discussion of the
temporal discretization used in MITgem. This discussion is followed by sections that describe the spatial discretization.
The schemes employed for momentum terms are described first, afterwards the schemes that apply to passive and
dynamically active tracers are described.

2.1 Notation

Because of the particularity of the vertical direction in stratified fluid context, in this chapter, the vector notations are
mostly used for the horizontal component: the horizontal part of a vector is simply written v (instead of vy, or vV}, in
chapter 1) and a 3D vector is simply written @' (instead of v in chapter 1).

The notations we use to describe the discrete formulation of the model are summarized as follows.

General notation:

Az, Ay, Ar grid spacing in X, Y, R directions
Ac, Aw, Ag, A¢ * horizontal area of a grid cell surrounding 6, u, v, ¢ point
Vu, Vo, Vi, Vo : Volume of the grid box surrounding u, v, w, 6 point

i, 7, k : current index relative to X, Y, R directions

Basic operators:

0; 2 0;® = ‘I)i+1/2 - ®i71/2
P = (Pig1y2 + Pi_12)/2
0y : 0,P = ﬁél@

V = horizontal gradient operator : V® = {5, ®, 5,9}
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1
A
vV.Vo

V- = horizontal divergence operator : V - f = —{§; Ay f, + d;Axf,}

V' = horizontal Laplacian operator : V' &

2.2 Time-stepping

The equations of motion integrated by the model involve four prognostic equations for flow,  and v, temperature, 6, and
salt/moisture, S, and three diagnostic equations for vertical flow, w, density/buoyancy, p/b, and pressure/geo-potential,
®nyd. In addition, the surface pressure or height may by described by either a prognostic or diagnostic equation and
if non-hydrostatics terms are included then a diagnostic equation for non-hydrostatic pressure is also solved. The
combination of prognostic and diagnostic equations requires a model algorithm that can march forward prognostic
variables while satisfying constraints imposed by diagnostic equations.

Since the model comes in several flavors and formulation, it would be confusing to present the model algorithm exactly
as written into code along with all the switches and optional terms. Instead, we present the algorithm for each of the
basic formulations which are:

1. the semi-implicit pressure method for hydrostatic equations with a rigid-lid, variables co-located in time and with
Adams-Bashforth time-stepping;

2. as 1 but with an implicit linear free-surface;

3. as 1 or 2 but with variables staggered in time;

4. as 1 or 2 but with non-hydrostatic terms included;
5. as 2 or 3 but with non-linear free-surface.

In all the above configurations it is also possible to substitute the Adams-Bashforth with an alternative time-stepping
scheme for terms evaluated explicitly in time. Since the over-arching algorithm is independent of the particular time-
stepping scheme chosen we will describe first the over-arching algorithm, known as the pressure method, with a rigid-
lid model in Section 2.3. This algorithm is essentially unchanged, apart for some coefficients, when the rigid lid
assumption is replaced with a linearized implicit free-surface, described in Section 2.4. These two flavors of the
pressure-method encompass all formulations of the model as it exists today. The integration of explicit in time terms
is out-lined in Section 2.5 and put into the context of the overall algorithm in Section 2.7 and Section 2.8. Inclusion
of non-hydrostatic terms requires applying the pressure method in three dimensions instead of two and this algorithm
modification is described in Section 2.9. Finally, the free-surface equation may be treated more exactly, including
non-linear terms, and this is described in Section 2.10.2.

2.3 Pressure method with rigid-lid

The horizontal momentum and continuity equations for the ocean ((1.98) and (1.100)), or for the atmosphere ((1.45)
and (1.47)), can be summarized by:
Ou+ gyn = Gy
o + goyn = G,
Oyu+0yv+0,w=0
where we are adopting the oceanic notation for brevity. All terms in the momentum equations, except for surface

pressure gradient, are encapsulated in the G vector. The continuity equation, when integrated over the fluid depth, H,
and with the rigid-lid/no normal flow boundary conditions applied, becomes:

O, Hii + 0,HD =0 @2.1)
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Here, Hu = |, 7 udz is the depth integral of u, similarly for Hv. The rigid-lid approximation sets w = 0 at the lid so
that it does not move but allows a pressure to be exerted on the fluid by the lid. The horizontal momentum equations
and vertically integrated continuity equation are be discretized in time and space as follows:

W 4 Atgd ™t = w4 ALGY?) (22)
o 4 Atgaunn+1 — "+ AtGS}?Hl/?) 2.3)
0y Hur 1 + 9, Hynt1 = 0 (2.4)

As written here, terms on the LHS all involve time level n + 1 and are referred to as implicit; the implicit backward
time stepping scheme is being used. All other terms in the RHS are explicit in time. The thermodynamic quantities
are integrated forward in time in parallel with the flow and will be discussed later. For the purposes of describing the
pressure method it suffices to say that the hydrostatic pressure gradient is explicit and so can be included in the vector

G.

Substituting the two momentum equations into the depth-integrated continuity equation eliminates »"*! and v"*!

yielding an elliptic equation for 7+, Equations (2.2), (2.3) and (2.4) can then be re-arranged as follows:
ut = u" + AtGt/2) (2.5)
v* =" + AtG(tY2) (2.6)
O, AtgH, " + 9, AtgH,n" " = 8, Hu* + 9, Hv* 2.7
u" Tt = ut — Atgd,n" Tt 2.8)
V" =% — Atgd,n" ! (2.9)

Equations (2.5) to (2.9), solved sequentially, represent the pressure method algorithm used in the model. The essence
of the pressure method lies in the fact that any explicit prediction for the flow would lead to a divergence flow field so a
pressure field must be found that keeps the flow non-divergent over each step of the integration. The particular location
in time of the pressure field is somewhat ambiguous; in Figure 2.1 we depicted as co-located with the future flow field
(time level n + 1) but it could equally have been drawn as staggered in time with the flow.

The correspondence to the code is as follows:
* the prognostic phase, equations (2.5) and (2.6), stepping forward »™ and v" to u* and v* is coded in timestep.F

* the vertical integration, H w* and Ho*, divergence and inversion of the elliptic operator in equation (2.7) is coded
in solve_for_pressure.F

* finally, the new flow field at time level n + 1 given by equations (2.8) and (2.9) is calculated in correction_step.F

The calling tree for these routines is as follows:

Pressure method calling tree

FORWARD_STEP

DYNAMICS
TIMESTEP u*,v* (2.5), (2.6)
SOLVE_FOR_PRESSURE
CALC_DIV_GHAT Hu*, Ho* (2.7)
CG2D "t (2.7)
MOMENTUM_CORRECTION_STEP
CALC_GRAD_PHI_SURF vnprtt
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, \/{ \L
V2n=v.(lvli)

|

u,v

n+1

Figure 2.1: A schematic of the evolution in time of the pressure method algorithm. A prediction for the flow variables
at time level n 4 1 is made based only on the explicit terms, Gt/ 2) and denoted u*, v*. Next, a pressure field is
found such that 4"+, v™*! will be non-divergent. Conceptually, the * quantities exist at time level n + 1 but they are
intermediate and only temporary.

CORRECTION_STEP w1 (2.8), (2.9)

In general, the horizontal momentum time-stepping can contain some terms that are treated implicitly in time, such as
the vertical viscosity when using the backward time-stepping scheme (implicitViscosity =. TRUE.). The method used
to solve those implicit terms is provided in Section 2.6, and modifies equations (2.2) and (2.3) to give:

" — AtD, A0 u" T 4+ Atgdyn T = w4+ AtG /)
" = ALD, A, 00"+ Atgd, T = o + AtGMTY2)

2.4 Pressure method with implicit linear free-surface

The rigid-lid approximation filters out external gravity waves subsequently modifying the dispersion relation of
barotropic Rossby waves. The discrete form of the elliptic equation has some zero eigenvalues which makes it a
potentially tricky or inefficient problem to solve.

The rigid-lid approximation can be easily replaced by a linearization of the free-surface equation which can be written:
om+ 0, Hu+0,Hi=P-E+R (2.10)

which differs from the depth-integrated continuity equation with rigid-lid (2.1) by the time-dependent term and fresh-
water source term.

Equation (2.4) in the rigid-lid pressure method is then replaced by the time discretization of (2.10) which is:
7 At Huntl + Atd, Hontl = i + AH(P — €) 2.11)

where the use of flow at time level n + 1 makes the method implicit and backward in time. This is the preferred scheme
since it still filters the fast unresolved wave motions by damping them. A centered scheme, such as Crank-Nicholson
(see Section 2.10.1), would alias the energy of the fast modes onto slower modes of motion.
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As for the rigid-lid pressure method, equations (2.2), (2.3) and (2.11) can be re-arranged as follows:

u' =" + AtGt/2) (2.12)

v* =" + AtG(TY2) (2.13)

0" = ex(n" + AP — £)) — At Hu* + 8, Hv*) (2.14)
0,gH 0, + 0,90, — L 2.15)
u" =t — Atgd,n" (2.16)

"t = v* — Atgo,n" ! (2.17)

Equations (2.12) to (2.17), solved sequentially, represent the pressure method algorithm with a backward implicit,
linearized free surface. The method is still formerly a pressure method because in the limit of large At the rigid-lid
method is recovered. However, the implicit treatment of the free-surface allows the flow to be divergent and for the sur-
face pressure/elevation to respond on a finite time-scale (as opposed to instantly). To recover the rigid-lid formulation,
we use a switch-like variable, eg (freesurfFac), which selects between the free-surface and rigid-lid; e,z = 1 allows
the free-surface to evolve; ez; = 0 imposes the rigid-lid. The evolution in time and location of variables is exactly as
it was for the rigid-lid model so that Figure 2.1 is still applicable. Similarly, the calling sequence, given /ere, is as for
the pressure-method.

2.5 Explicit time-stepping: Adams-Bashforth

In describing the the pressure method above we deferred describing the time discretization of the explicit terms. We have
historically used the quasi-second order Adams-Bashforth method (AB-II) for all explicit terms in both the momentum
and tracer equations. This is still the default mode of operation but it is now possible to use alternate schemes for
tracers (see Section 2.16), or a 3rd order Adams-Bashforth method (AB-III). In the previous sections, we summarized
an explicit scheme as:

= AKGEH) 2.18)

where 7 could be any prognostic variable (u, v, 6 or S) and 7* is an explicit estimate of 7! and would be exact if not
for implicit-in-time terms. The parenthesis about n + 1/2 indicates that the term is explicit and extrapolated forward
in time. Below we describe in more detail the AB-II and AB-III schemes.

2.5.1 Adams-Bashforth Il
The quasi-second order Adams-Bashforth scheme is formulated as follows:
G2 = (3/2 4 eAp)GT — (1/2 4 eap)G7 ! (2.19)

This is a linear extrapolation, forward in time, to ¢ = (n + 1/2 + eap)At. An extrapolation to the mid-point in
time, ¢ = (n 4+ 1/2)At, corresponding to eap = 0, would be second order accurate but is weakly unstable for
oscillatory terms. A small but finite value for exp stabilizes the method. Strictly speaking, damping terms such
as diffusion and dissipation, and fixed terms (forcing), do not need to be inside the Adams-Bashforth extrapolation.
However, in the current code, it is simpler to include these terms and this can be justified if the flow and forcing evolves
smoothly. Problems can, and do, arise when forcing or motions are high frequency and this corresponds to a reduced
stability compared to a simple forward time-stepping of such terms. The model offers the possibility to leave terms
outside the Adams-Bashforth extrapolation, by turning off the logical flag forcing_In_AB (parameter file data, namelist
PARMO1, default value = . TRUE. ) and then setting tracForcingOutAB (default=0), momForcingOutAB (default=0), and
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momDissip_In_AB (parameter file data, namelist PARMO1, default value = TRUE), respectively for the tracer terms,
momentum forcing terms, and the dissipation terms.

A stability analysis for an oscillation equation should be given at this point.

A stability analysis for a relaxation equation should be given at this point.

2.5.2 Adams-Bashforth lll

The 3rd order Adams-Bashforth time stepping (AB-III) provides several advantages (see, e.g., Durran 1991 [Dur91])
compared to the default quasi-second order Adams-Bashforth method:

* higher accuracy;
* stable with a longer time-step;
* no additional computation (just requires the storage of one additional time level).

The 3rd order Adams-Bashforth can be used to extrapolate forward in time the tendency (replacing (2.19)) as:
G2 = (14 aap + Bas)G? — (aap + 28aB)GE " + Ba Gl 2 (2.20)

3rd order accuracy is obtained with (aap, Sap) = (1/2, 5/12). Note that selecting (aap, Bas) = (1/2 + €45, 0)
one recovers AB-II. The AB-III time stepping improves the stability limit for an oscillatory problem like advection
or Coriolis. As seen from Figure 2.3, it remains stable up to a CFL of 0.72, compared to only 0.50 with AB-II and
eap = 0.1. Itis interesting to note that the stability limit can be further extended up to a CFL of 0.786 for an oscillatory
problem (see Figure 2.3) using (aap, Sap) = (0.5, 0.2811) but then the scheme is only second order accurate.

However, the behavior of the AB-III for a damping problem (like diffusion) is less favorable, since the stability limit
is reduced to 0.54 only (and 0.64 with Sap = 0.2811) compared to 1.0 (and 0.9 with e = 0.1) with the AB-II (see
Figure 2.4).

A way to enable the use of a longer time step is to keep the dissipation terms outside the AB extrapolation (setting
momDissip_In_AB to .FALSE. in main parameter file data, namelist PARMO®3, thus returning to a simple forward
time-stepping for dissipation, and to use AB-III only for advection and Coriolis terms.

The AB-III time stepping is activated by defining the option #define ALLOW_ADAMSBASHFORTH_ 3 in
CPP_OPTIONS.h. The parameters aap, Sap can be set from the main parameter file data (namelist PARM®3)
and their default values correspond to the 3rd order Adams-Bashforth. A simple example is provided in verifica-
tion/advect_xy/input.ab3_c4.

AB-III is not yet available for the vertical momentum equation (non-hydrostatic) nor for passive tracers.

2.6 Implicit time-stepping: backward method

Vertical diffusion and viscosity can be treated implicitly in time using the backward method which is an intrinsic
scheme. Recently, the option to treat the vertical advection implicitly has been added, but not yet tested; therefore, the
description hereafter is limited to diffusion and viscosity. For tracers, the time discretized equation is:

ALk, 0T = 17 AtGMHL/2) (2.21)
where GS"H/ 2 is the remaining explicit terms extrapolated using the Adams-Bashforth method as described above.

Equation (2.21) can be split split into:

™ = 7" + AtG /) (2.22)
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Figure 2.2: Oscillatory and damping response of quasi-second order Adams-Bashforth scheme for different values of
the eap parameter (0.0, 0.1, 0.25, from top to bottom) The analytical solution (in black), the physical mode (in blue)
and the numerical mode (in red) are represented with a CFL step of 0.1. The left column represents the oscillatory
response on the complex plane for CFL ranging from 0.1 up to 0.9. The right column represents the damping response
amplitude (y-axis) function of the CFL (x-axis).

2.6. Implicit time-stepping: backward method 39



MITgcm Documentation, Release 2d7a4a2

Oscil. response of AB-3 : CFL (f*dt)= 0.0 —> 0.9 every 0.1
a,p=0.60,0.000 ; fC= 0.5025 a,p=0.50,0.250 ; fC= 0.7698
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Figure 2.3: Oscillatory response of third order Adams-Bashforth scheme for different values of the (aap, Sap) param-
eters. The analytical solution (in black), the physical mode (in blue) and the numerical mode (in red) are represented
with a CFL step of 0.1.
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Damping response of AB-3 : A = 1.0 ; A*dt=0.0 —> 1.1 every 0.1

a,p=0.50,0.000 ; u= 1.0000 a,p=0.60,0.000 ; u= 0.9091
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Figure 2.4: Damping response of third order Adams-Bashforth scheme for different values of the («ap, Sap) param-

eters. The analytical solution (in black), the physical mode (in blue) and the numerical mode (in red) are represented
with a CFL step of 0.1.
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T = LN () (2.23)

where £ is the inverse of the operator
L =[14 Atd,£,0y]

Equation (2.22) looks exactly as (2.18) while (2.23) involves an operator or matrix inversion. By re-arranging (2.21)
in this way we have cast the method as an explicit prediction step and an implicit step allowing the latter to be inserted
into the over all algorithm with minimal interference.

The calling sequence for stepping forward a tracer variable such as temperature with implicit diffusion is as follows:

Adams-Bashforth calling tree
FORWARD_STEP

THERMODYNAMICS
TEMP_INTEGRATE
GAD_CALC_RHS = Go(u, ")
either
EXTERNAL_FORCING n=Gp4Q
ADAMS_BASHFORTH2  G{"™/2 (2.19)
or
EXTERNAL_FORCING G — gt g
TIMESTEP_TRACER 7 (2.18)
IMPLDIFF r(n+1) (2.23)

In order to fit within the pressure method, the implicit viscosity must not alter the barotropic flow. In other words, it
can only redistribute momentum in the vertical. The upshot of this is that although vertical viscosity may be backward
implicit and unconditionally stable, no-slip boundary conditions may not be made implicit and are thus cast as a an
explicit drag term.

2.7 Synchronous time-stepping: variables co-located in time

The Adams-Bashforth extrapolation of explicit tendencies fits neatly into the pressure method algorithm when all state
variables are co-located in time. The algorithm can be represented by the sequential solution of the follow equations:

Gps=Gos(u",0",8") (2.24)

Gyat? = (3/2+ eap)Gh s — (1/2 + eap)Gy 5" (2.25)
(6%,8%) = (0", 5™) + AtGy 'SP (2.26)
(0n+175n+1) _ [’—7}9(9*’5*) (227)

Phiya = / b(o™, S™)dr (2.28)

Gl = Go(¥", 1) (2.29)

GUY?) = (3/2+ ap)Gl — (1/2+ eap)GL ! (230)
V= 4+ AtGUT?) (2.31)
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Figure 2.5: A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the algorithm. All
prognostic variables are co-located in time. Explicit tendencies are evaluated at time level n as a function of the state
at that time level (dotted arrow). The explicit tendency from the previous time level, n — 1, is used to extrapolate
tendencies to n 4+ 1/2 (dashed arrow). This extrapolated tendency allows variables to be stably integrated forward-
in-time to render an estimate (* -variables) at the n 4+ 1 time level (solid arc-arrow). The operator £ formed from
implicit-in-time terms is solved to yield the state variables at time level n + 1.
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0= e (0" + AHP — £)) — AtV - Hv*
6fsnn—i_1 _ n*
A2 A2

‘7n+1 _ ‘7:** _ Athn"+1

V- gann—‘rl _

(2.32)

(2.33)
(2.34)

(2.35)

Figure 2.5 illustrates the location of variables in time and evolution of the algorithm with time. The Adams-Bashforth
extrapolation of the tracer tendencies is illustrated by the dashed arrow, the prediction at n 4 1 is indicated by the solid
arc. Inversion of the implicit terms, 59_, }g, then yields the new tracer fields at n 4+ 1. All these operations are carried
out in subroutine THERMODYNAMICS and subsidiaries, which correspond to equations (2.24) to (2.27). Similarly
illustrated is the Adams-Bashforth extrapolation of accelerations, stepping forward and solving of implicit viscosity
and surface pressure gradient terms, corresponding to equations (2.29) to (2.35). These operations are carried out in
subroutines DYNAMICS, SOLVE_FOR_PRESSURE and MOMENTUM_CORRECTION_STEP. This, then, repre-
sents an entire algorithm for stepping forward the model one time-step. The corresponding calling tree for the overall
synchronous algorithm using Adams-Bashforth time-stepping is given below. The place where the model geometry
hFac factors) is updated is added here but is only relevant for the non-linear free-surface algorithm. For completeness,

the external forcing, ocean and atmospheric physics have been added, although they are mainly optional.

Synchronous Adams-Bashforth calling tree

FORWARD_STEP

EXTERNAL_FIELDS_LOAD
DO_ATMOSPHERIC_PHYS
DO_OCEANIC_PHYS

THERMODYNAMICS
CALC_GT
GAD_CALC_RHS n = Gy(u,07) (2.24)
EXTERNAL_FORCING =Gl +Q
ADAMS_BASHFORTH?2 G (2.05)
TIMESTEP_TRACER 9% (2.26)
IMPLDIFF 6(n+1) (2.27)
DYNAMICS
CALC_PHI_HYD g (2.28)
MOM_FLUXFORM or MOM_VECINV ~ GZ (2.29)
TIMESTEP ¥ (2.30), (2.31)
IMPLDIFF ¥ (2.32)

UPDATE_R_STAR or UPDATE_SURF_DR (NonLin-FS only)
SOLVE_FOR_PRESSURE

CALC_DIV_GHAT n* (2.33)

CG2D "t (2.34)
MOMENTUM_CORRECTION_STEP

CALC_GRAD_PHI_SURF ATl

CORRECTION_STEP un Tt "t (2.35)
TRACERS_CORRECTION_STEP

CYCLE_TRACER o+t

SHAP_FILT_APPLY_TS or ZONAL_FILT_APPLY_TS
CONVECTIVE_ADJUSTMENT
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2.8 Staggered baroclinic time-stepping
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Figure 2.6: A schematic of the explicit Adams-Bashforth and implicit time-stepping phases of the algorithm but with
staggering in time of thermodynamic variables with the flow. Explicit momentum tendencies are evaluated at time
level n — 1/2 as a function of the flow field at that time level n — 1/2. The explicit tendency from the previous time
level, n — 3/2, is used to extrapolate tendencies to n (dashed arrow). The hydrostatic pressure/geo-potential ¢pyq is
evaluated directly at time level n (vertical arrows) and used with the extrapolated tendencies to step forward the flow
variables from n — 1/2 to n + 1/2 (solid arc-arrow). The implicit-in-time operator L, v (vertical arrows) is then
applied to the previous estimation of the the flow field (x -variables) and yields to the two velocity components u, v at
time level n + 1/2. These are then used to calculate the advection term (dashed arc-arrow) of the thermo-dynamics
tendencies at time step n. The extrapolated thermodynamics tendency, from time level n — 1 and n to n + 1/2, allows
thermodynamic variables to be stably integrated forward-in-time (solid arc-arrow) up to time level n + 1.

For well-stratified problems, internal gravity waves may be the limiting process for determining a stable time-step. In
the circumstance, it is more efficient to stagger in time the thermodynamic variables with the flow variables. Figure
2.6 illustrates the staggering and algorithm. The key difference between this and Figure 2.5 is that the thermodynamic
variables are solved after the dynamics, using the recently updated flow field. This essentially allows the gravity wave
terms to leap-frog in time giving second order accuracy and more stability.

The essential change in the staggered algorithm is that the thermodynamics solver is delayed from half a time step,
allowing the use of the most recent velocities to compute the advection terms. Once the thermodynamics fields are
updated, the hydrostatic pressure is computed to step forward the dynamics. Note that the pressure gradient must also
be taken out of the Adams-Bashforth extrapolation. Also, retaining the integer time-levels, n and n + 1, does not give
a user the sense of where variables are located in time. Instead, we re-write the entire algorithm, (2.24) to (2.35),

2.8. Staggered baroclinic time-stepping 45



MITgcm Documentation, Release 2d7a4a2

annotating the position in time of variables appropriately:
= [ 006", 5")dr

_»371/2 _ (‘;'r‘_;(‘—;n—l/Q)
G = (3/2 4 eap)GL % — (1/2 4 eap)Gr¥
¥ =912 LA (ég") - v¢gyd)
n* = e (n"’w + At(P — 6)”) — AtV - Hv*
6fs"7n+1/2 _ 77*
A2 AR
\7"-"_1/2 ﬂ** Atgvnn-‘,-l/Q

v - gannJrl/? _

Gg,S _ G07S(un+1/27 0“, Sn)

G(”+1/2) (3/2+ean)Gy s — (1/2+ €ap)Gys'

(6%,5%) = (6", 8™) + AtGY'S?
(0n+17 SnJrl) = E;S(Q*, S*)

(2.36)

(2.37)
(2.38)
(2.39)
(2.40)

(2.41)

(2.42)

(2.43)
(2.44)
(2.45)
(2.46)

(2.47)

The corresponding calling tree is given below. The staggered algorithm is activated with the run-time flag stagger-

TimeStep =.TRUE. in parameter file data, namelist PARMO1.

Staggered Adams-Bashforth calling tree

FORWARD_STEP
EXTERNAL_FIELDS_LOAD
DO_ATMOSPHERIC_PHYS
DO_OCEANIC_PHYS

DYNAMICS
CALC_PHI_HYD ¢gyd (2.36)
MOM_FLUXFORM or MOM_VECINV n=1/2 (1 37)
TIMESTEP ¥ (2.38), (2.39)
IMPLDIFF ¥ (2.40)

UPDATE_R_STAR or UPDATE_SURF_DR (NonLin-FS only)
SOLVE_FOR_PRESSURE

CALC_DIV_GHAT n* (2.41)
CG2D n /2 (2.42)
MOMENTUM_CORRECTION_STEP
CALC_GRAD_PHI_SURF vy ti/2
CORRECTION_STEP wnt/2 yntl/2 (2 43)
THERMODYNAMICS
CALC_GT
GAD_CALC_RHS G = Go(u, ™) (2.44)
EXTERNAL_FORCING Gy =Gy +9Q
ADAMS_BASHFORTH?2 G (2.45)
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TIMESTEP_TRACER 0* (2.46)

IMPLDIFF 6(n+1) (2.47)
TRACERS_CORRECTION_STEP

CYCLE_TRACER i

SHAP_FILT_APPLY_TS or ZONAL_FILT_APPLY_TS
CONVECTIVE_ADJUSTMENT

The only difficulty with this approach is apparent in equation (2.44) and illustrated by the dotted arrow connecting
u, v"1T1/2 with Gy . The flow used to advect tracers around is not naturally located in time. This could be avoided by
applying the Adams-Bashforth extrapolation to the tracer field itself and advecting that around but this approach is not
yet available. We’re not aware of any detrimental effect of this feature. The difficulty lies mainly in interpretation of
what time-level variables and terms correspond to.

2.9 Non-hydrostatic formulation

The non-hydrostatic formulation re-introduces the full vertical momentum equation and requires the solution of a 3-D
elliptic equations for non-hydrostatic pressure perturbation. We still integrate vertically for the hydrostatic pressure
and solve a 2-D elliptic equation for the surface pressure/elevation for this reduces the amount of work needed to solve
for the non-hydrostatic pressure.

The momentum equations are discretized in time as follows:

1 1
E“W + g0 + Oyt = i G(n+1/2) (2.48)
1 1
AT g0+ 0,0 = o 4 G (2:49)
1 1+1 +1 L 1
L 0, = " + GHL/2) 2.50
AT un Al T Ew (20

which must satisfy the discrete-in-time depth integrated continuity, equation (2.11) and the local continuity equation
Opu" Tt + 9yu" 4 9w T =0 (2.51)
As before, the explicit predictions for momentum are consolidated as:

u* =u" + AtGSJ”H/m
o* = " +AtGS}n+1/2)
w* = w" 4+ AtG/2)

but this time we introduce an intermediate step by splitting the tendency of the flow as follows:
un+1 —ut Ataz‘ﬁggl = ut — Atgawnn-i-l
’U"+1 _ U** _ Atayd)gﬂ»l ’U** _ ’U* _ Atgay,r]n-l—l
Substituting into the depth integrated continuity (2.11) gives

~ n+1 *

n+1 n+1 n+l | Jntl) _ EfsT __n 252
azHam (977 + ¢nh ) + ayHay (gn + nh ) At2 AtQ ( )

which is approximated by equation (2.15) on the basis that i) qﬁﬁgr ! is not yet known and ii) ngnh L gVn. If (2.15) is

solved accurately then the implication is that anh ~ 0 so that the non-hydrostatic pressure field does not drive barotropic
motion.
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The flow must satisfy non-divergence (equation (2.51)) locally, as well as depth integrated, and this constraint is used

to form a 3-D elliptic equations for qﬁglf L

Dpw T + Oy Y + 0y = Opu™ 4 Oyv™* + Oy (2.53)

The entire algorithm can be summarized as the sequential solution of the following equations:

u' = u" + AtGt/2) (2.54)

v* =" + AtG(2) (2.55)

w* = w" 4+ AtG/2) (2.56)

0= e (1" + AP — €)) — At (amHﬂ? + asz?*) (2.57)

0. aHO.1" L 9. aHO. n" 1 €fs77n+1 - n* (2.58)
xd 7] + yd yTl - At2 - _AtQ ’

ut = u* — Atgdyn" Tt (2.59)

vt =" — Atg(?y?]”+1 (2.60)

Do 4 Dy 4 0™ = O™ 4 ™ + Dpw® (2.61)

A i (2.62)

"t = " — A9, e (2.63)

Opw"t = —g untt — 8yv"+1 (2.64)

where the last equation is solved by vertically integrating for w™*!.

2.10 Variants on the Free Surface

We now describe the various formulations of the free-surface that include non-linear forms, implicit in time using
Crank-Nicholson, explicit and [one day] split-explicit. First, we’ll reiterate the underlying algorithm but this time using
the notation consistent with the more general vertical coordinate r. The elliptic equation for free-surface coordinate
(units of r), corresponding to (2.11), and assuming no non-hydrostatic effects (e, = 0) is:

etsn)" T = Vi - A (Ry — Rfixed) Vibsn" T = 1° (2.65)
where
Ro
N =exn” — AtVy, - / vidr + EfWAt(P - 5)" (2.66)
Rfixed

S/R SOLVE_FOR_PRESSURE

*: gU (DYNVARS.h)
*: gV (DYNVARS.h)
*: cg2d_b (SOLVE_FOR_PRESSURE.h )

u
v
n
n™*1: etaN (DYNVARS.h)
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Once ™! has been found, substituting into (2.2), (2.3) yields ¥"*! if the model is hydrostatic (e}, = 0):
vl = — AtVbn

This is known as the correction step. However, when the model is non-hydrostatic (e,;, = 1) we need an additional
step and an additional equation for ¢/, . This is obtained by substituting (2.48), (2.49) and (2.50) into continuity:

n 1 k% - %
(Vi A el = £ Vi 9 4 0, (2.67)
where
V=¥ — AtV bt

Note that n*! is also used to update the second RHS term 0,.7* since the vertical velocity at the surface (7'gy,t) is
evaluated as (n"*1 — ") /At.

Finally, the horizontal velocities at the new time level are found by:
G = e ALVl T (2.68)

and the vertical velocity is found by integrating the continuity equation vertically. Note that, for the convenience of the
restart procedure, the vertical integration of the continuity equation has been moved to the beginning of the time step
(instead of at the end), without any consequence on the solution.

S/R CORRECTION_STEP

n™*t1: etaN ( DYNVARS.h)
@™+t : phi_nh (NH_VARS.h)
u* : gU (DYNVARS.h)

v*: gV (DYNVARS.h)

u™*! : uVel (DYNVARS.h)
v™*1: vVel (DYNVARS.h)

Regarding the implementation of the surface pressure solver, all computation are done within the routine
SOLVE_FOR_PRESSURE and its dependent calls. The standard method to solve the 2D elliptic problem (2.65) uses
the conjugate gradient method (routine CG2D); the solver matrix and conjugate gradient operator are only function of
the discretized domain and are therefore evaluated separately, before the time iteration loop, within INI_CG2D. The
computation of the RHS n* is partly done in CALC_DIV_GHAT and in SOLVE_FOR_PRESSURE.

The same method is applied for the non hydrostatic part, using a conjugate gradient 3D solver (CG3D) that is initialized
in INI_CG3D. The RHS terms of 2D and 3D problems are computed together at the same point in the code.

2.10.1 Crank-Nicolson barotropic time stepping

The full implicit time stepping described previously is unconditionally stable but damps the fast gravity waves, resulting
in a loss of potential energy. The modification presented now allows one to combine an implicit part (v, ) and an
explicit part (1 — «,1 — (3) for the surface pressure gradient () and for the barotropic flow divergence (3). For
instance, v = § = 1 is the previous fully implicit scheme; v = § = 1/2 is the non damping (energy conserving),
unconditionally stable, Crank-Nicolson scheme; (v, 5) = (1,0) or = (0,1) corresponds to the forward - backward
scheme that conserves energy but is only stable for small time steps. In the code, -, 5 are defined as parameters,
respectively implicSurfPress, implicDiv2DFlow. They are read from the main parameter file data (namelist PARMO1)
and are set by default to 1,1.
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Equations (2.12) — (2.17) are modified as follows:

on+1

v n % =~ (n n
T Vb (L= )]+ ean Vil = o+ GUTY 4 Vg Y
At At
nn+1 _ nn R,
I / BT+ + (1= B)")dr = ep(P — &) (2.69)
At Rfixed

We set

V= AGUTYY o (y - DAV Rb + AtV T
R,
N = epsn" + e AL(P — &) — AtVy, - / (89 + (1 — B)¥"dr

Reixea

In the hydrostatic case e}, = 0, allowing us to find "1, thus:

etsn" Tt — Vi - YBALbs(Ry — Rfixed) V"™t = n*

and then to compute (CORRECTION_STEP):

VL = — Y ALV by T

Notes:

1. The RHS term of equation (2.69) corresponds the contribution of fresh water flux ({mathcal{P-E}}) to the free-

surface variations (ef,, = 1, useRealFreshWaterFlux =.TRUE. in parameter file data). In order to remain
consistent with the tracer equation, specially in the non-linear free-surface formulation, this term is also affected
by the Crank-Nicolson time stepping. The RHS reads: e, (3(P — &)"1/2 + (1 — B)(P — )"~ 1/?)

. The stability criteria with Crank-Nicolson time stepping for the pure linear gravity wave problem in cartesian

coordinates is:
* v+ < 1: unstable
e y>1/2and § > 1/2: stable

e y+B>1:stableif 2, (v —1/2)(8 —1/2) +1 > 0 with cpax = 2A8/gH [ 55 + A%yz

. A similar mixed forward/backward time-stepping is also available for the non-hydrostatic algorithm, with a frac-

tion Y (0 < yun < 1) of the non-hydrostatic pressure gradient being evaluated at time step n + 1 (backward in
time) and the remaining part (1 — vy,1,) being evaluated at time step n (forward in time). The run-time parameter
implicitNHPress corresponding to the implicit fraction ~y,, of the non-hydrostatic pressure is set by default to
the implicit fraction 7 of surface pressure (implicSurfPress), but can also be specified independently (in main
parameter file data, namelist PARMO1).

2.10.2 Non-linear free-surface

Options have been added to the model that concern the free surface formulation.

2.10.2.1 Pressure/geo-potential and free surface

For the atmosphere, since ¢ = ¢ropo — | ; adp, subtracting the reference state defined in section Section 1.4.1.2 :

s

P
(bo = ¢topo - / CYodp with ¢o(po) = ¢topo

o
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we get:
Ps Po
¢’=¢>—¢o=/ adp—/ odp
P P

For the ocean, the reference state is simpler since p. does not dependent on z (b, = g) and the surface reference position
is uniformly z = 0 (R, = 0), and the same subtraction leads to a similar relation. For both fluids, using the isomorphic

notations, we can write:
Tsurf R,
¢ = / bdr — / bodr
T T

Tsurf

Ro
¢ = bdr+ / (b — b,)dr (2.70)
R, r

and re-write as:

or:
Tsurf Tsurf
¢ = / bodr + / (b—b,)dr 2.71)
R, r

In section Section 1.3.6, following eq. (2.70), the pressure/geo-potential ¢’ has been separated into surface (¢5), and
hydrostatic anomaly (qb{]yd). In this section, the split between ¢, and qb{ly 4 is made according to equation (2.71). This
slightly different definition reflects the actual implementation in the code and is valid for both linear and non-linear
free-surface formulation, in both r-coordinate and r*-coordinate.

Because the linear free-surface approximation ignores the tracer content of the fluid parcel between R, and rg,f =
R, + n, for consistency reasons, this part is also neglected in gb{wd :

Tsurf R,
Phya = / (b — by)dr ~ / (b — b,)dr

Note that in this case, the two definitions of ¢ and %yd from equations (2.70) and (2.71) converge toward the same

Tsurf

(approximated) expressions: ¢s = [™*" bydr and qﬁ{]yd = fTR" b’dr. On the contrary, the unapproximated formulation

(see Section 2.10.2.2) retains the full expression: ¢f, q = [ (b—b,)dr . This is obtained by selecting nonlinFreeSurf
=4 in parameter file data. Regarding the surface potential:

Ro+n 1 Ro+n
¢s = / bodr =bsn  with by = 7/ bodr
R, nJR,

bs ~ b,(R,) is an excellent approximation (better than the usual numerical truncation, since generally || is smaller
than the vertical grid increment).

For the ocean, ¢ = gn and by = ¢ is uniform. For the atmosphere, however, because of topographic effects, the
reference surface pressure R, = p, has large spatial variations that are responsible for significant b, variations (from
0.8 to 1.2 [m?/kg]). For this reason, when uniformLin_PhiSurf =.FALSE. (parameter file data, namelist PARAMO1) a
non-uniform linear coefficient by is used and computed (INI_LINEAR_PHISURF) according to the reference surface
pressure p,: by = b,(R,) = cpn(pO/PSULP)(”*l)Omf(po), with Pg; p the mean sea-level pressure.

2.10.2.2 Free surface effect on column total thickness (Non-linear free-surface)

The total thickness of the fluid column is 7gyf — Rfxed = 7 + Ro — Rfixed- In most applications, the free surface
displacements are small compared to the total thickness n < H, = R, — Rgxed. In the previous sections and in
older version of the model, the linearized free-surface approximation was made, assuming 75yt — Rfxed =~ H, When
computing horizontal transports, either in the continuity equation or in tracer and momentum advection terms. This
approximation is dropped when using the non-linear free-surface formulation and the total thickness, including the time
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varying part 7, is considered when computing horizontal transports. Implications for the barotropic part are presented
hereafter. In section Section 2.10.2.3 consequences for tracer conservation is briefly discussed (more details can be
found in Campin et al. (2004) [CAHMO4]) ; the general time-stepping is presented in section Section 2.10.2.4 with
some limitations regarding the vertical resolution in section Section 2.10.2.5.

In the non-linear formulation, the continuous form of the model equations remains unchanged, except for the 2D con-
tinuity equation (2.11) which is now integrated from Rexed (2, y) up t0 surf = Ro + 7 :

Ro+n
€0t = 7,y (P = &) = =Vi- / Vdr + epo(P = )

Rfixea

Since 7 has a direct effect on the horizontal velocity (through V;, @), this adds a non-linear term to the free surface
equation. Several options for the time discretization of this non-linear part can be considered, as detailed below.

If the column thickness is evaluated at time step n, and with implicit treatment of the surface potential gradient, equa-
tions (2.65) and (2.66) become:

st — Vi - A (0" + Ry — Rixea)Vabsn™ ™ ="

where

Ro+n"™
Nt =esn" — AtVy - / Vidr + e A(P = E)"

Riixea
This method requires us to update the solver matrix at each time step.

Alternatively, the non-linear contribution can be evaluated fully explicitly:
s — Vi - At*(Ry — Riixed) Vabsn" ™ = 0% + Vi, - A2 (n")Vibsn"

This formulation allows one to keep the initial solver matrix unchanged though throughout the integration, since the
non-linear free surface only affects the RHS.

Finally, another option is a “linearized” formulation where the total column thickness appears only in the integral term
of the RHS (2.66) but not directly in the equation (2.65).

Those different options (see Table 2.1) have been tested and show little differences. However, we recommend the use
of the most precise method (nonlinFreeSurf =4) since the computation cost involved in the solver matrix update is
negligible.

Table 2.1: Non-linear free-surface flags

Parameter Value | Description

nonlinFreeSurf | -1 linear free-surface, restart from a pickup file produced
with #undef EXACT_CONSERYV code

linear free-surface (= default)

full non-linear free-surface

same as 4 but neglecting f}i"ﬂ Vdrin @y 4

same as 3 but do not update cg2d solver matrix

same as 2 but treat momentum as in linear free-surface
do not use r* vertical coordinate (= default)

use r* vertical coordinate

same as 2 but without the contribution of the slope of the
coordinate in V&

select_rStar

=IO = W |~ O

52 Chapter 2. Discretization and Algorithm


http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf
http://mitgcm.org/lxr/ident/MITgcm?_i=nonlinFreeSurf
http://mitgcm.org/lxr/ident/MITgcm?_i=EXACT_CONSERV
http://mitgcm.org/lxr/ident/MITgcm?_i=select_rStar

MITgcm Documentation, Release 2d7a4a2

2.10.2.3 Tracer conservation with non-linear free-surface

To ensure global tracer conservation (i.e., the total amount) as well as local conservation, the change in the surface level
thickness must be consistent with the way the continuity equation is integrated, both in the barotropic part (to find 7)
and baroclinic part (to find w = 7).

To illustrate this, consider the shallow water model, with a source of fresh water (P):
Oth+V - -hvé="P
where h is the total thickness of the water column. To conserve the tracer § we have to discretize:
0¢(h0) + V - (hOV) = Pbrain
Using the implicit (non-linear) free surface described above (Section 2.4) we have:
R = B — AtV - (B V) + AP

The discretized form of the tracer equation must adopt the same “form” in the computation of tracer fluxes, that is, the
same value of h, as used in the continuity equation:

L gntt = prgn — AtV - (R 0" V) 4+ AtPO,ain

The use of a 3 time-levels time-stepping scheme such as the Adams-Bashforth make the conservation sightly tricky. The
current implementation with the Adams-Bashforth time-stepping provides an exact local conservation and prevents any
drift in the global tracer content (Campin et al. (2004) [CAHMO04]). Compared to the linear free-surface method, an
additional step is required: the variation of the water column thickness (from h™ to h™*1) is not incorporated directly
into the tracer equation. Instead, the model uses the GGy terms (first step) as in the linear free surface formulation (with
the “surface correction” turned “on”, see tracer section):

g _ (_v . (hn gm ‘7n+1) _ 7;,n+19n) /hn

surf

Then, in a second step, the thickness variation (expansion/reduction) is taken into account:

n

h
n+1 __
0" = 0" At

(G5 4 PO — 07) /17

Note that with a simple forward time step (no Adams-Bashforth), these two formulations are equivalent, since (h" 1 —
h) /At =P —V - (h"¥" ) = P+t

surf

2.10.2.4 Time stepping implementation of the non-linear free-surface

The grid cell thickness was hold constant with the linear free-surface; with the non-linear free-surface, it is now varying
in time, at least at the surface level. This implies some modifications of the general algorithm described earlier in
sections Section 2.7 and Section 2.8.

A simplified version of the staggered in time, non-linear free-surface algorithm is detailed hereafter, and can be
compared to the equivalent linear free-surface case (eq. (2.37) to (2.47)) and can also be easily transposed to the
synchronous time-stepping case. Among the simplifications, salinity equation, implicit operator and detailed ellip-
tic equation are omitted. Surface forcing is explicitly written as fluxes of temperature, fresh water and momentum,
Qnrt1/2 prtl/2, F respectively. h™ and dh™ are the column and grid box thickness in r-coordinate.

Phiya = / b(0"™, S™,r)dr (2.72)
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—_— . 4 ~(n 3 =n— 1,
" 1/2_ Gg(dhm 1,912 GE7) = §G‘7 1/2_§G\7 o2 2.73)
i —n— dhnil ~ n n— n

— update model geometry : hFac(dh")

g = g2 APV — ALY / v dpn

(2.75)
_ nn71/2 + Atpn+1/2 — AtV - /(\7* - gAtvnn+1/2) dh"
v 9 g Aty TL/2 (2.76)
R = R APV AV / vH/2gpn (2.77)
n n ,nt+l/2 pgn (n+1/2) 3 n 1 n—1
Gl = Gy(dh™,u ™) 5 Gy = 5(:9 - §G9 (2.78)
g+t = gn o+ a2 (G2 4 (P2 (0 — 0") + QU2 fan™)  (279)
- dthrl 9 rain N

Two steps have been added to linear free-surface algorithm (eq. (2.37) to (2.47)): Firstly, the model “geometry” (here
the hFacC,W,S) is updated just before entering SOLVE_FOR_PRESSURE, using the current dh™ field. Secondly,
the vertically integrated continuity equation (2.77) has been added (exactConserv =.TRUE., in parameter file data,
namelist PARMO1) just before computing the vertical velocity, in subroutine INTEGR_CONTINUITY. Although this
equation might appear redundant with (2.75), the integrated column thickness h"*! will be different from " +1/2 +
H in the following cases:

* when Crank-Nicolson time-stepping is used (see Section 2.10.1).
» when filters are applied to the flow field, after (2.76), and alter the divergence of the flow.

» when the solver does not iterate until convergence; for example, because a too large residual target was set
(cg2dTargetResidual, parameter file data, namelist PARM02).

In this staggered time-stepping algorithm, the momentum tendencies are computed using dh"~! geometry factors
(2.73) and then rescaled in subroutine TIMESTEP, (2.74), similarly to tracer tendencies (see Section 2.10.2.3). The
tracers are stepped forward later, using the recently updated flow field v**1/2 and the corresponding model geometry
dh™ to compute the tendencies (2.78); then the tendencies are rescaled by dh™/dh™** to derive the new tracers values
(6, 9)"+1 ((2.79), in subroutines CALC_GT, CALC_GS).

Note that the fresh-water input is added in a consistent way in the continuity equation and in the tracer equation, taking
into account the fresh-water temperature 6,;,.

Regarding the restart procedure, two 2D fields A" 1 and (h™ — h"~!)/At in addition to the standard state variables
and tendencies ("~ 1/2, v?—1/2 gn S, Gn3/ 2 Gggl) are stored in a “pickup” file. The model restarts reading

this pickup file, then updates the model geometry according to A", and compute A" and the vertical velocity before
starting the main calling sequence (eq. (2.72) to (2.79), FORWARD_STEP).

S/R INTEGR_CONTINUITY

hntt — Hy @ etaH (DYNVARS.h)
h™ — H, : etaHnm1 ( SURFACE.h )
(h"*tt — h™) /At : dEtaHdt (SURFACE.h)
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2.10.2.5 Non-linear free-surface and vertical resolution

When the amplitude of the free-surface variations becomes as large as the vertical resolution near the surface, the
surface layer thickness can decrease to nearly zero or can even vanish completely. This later possibility has not been
implemented, and a minimum relative thickness is imposed (hFacInf, parameter file data, namelist PARMO1) to prevent
numerical instabilities caused by very thin surface level.

A better alternative to the vanishing level problem relies on a different vertical coordinate r* : The time variation of
the total column thickness becomes part of the 7* coordinate motion, as in a o, o, model, but the fixed part related
to topography is treated as in a height or pressure coordinate model. A complete description is given in Adcroft and
Campin (2004) [AC04].

The time-stepping implementation of the r* coordinate is identical to the non-linear free-surface in r coordinate, and
differences appear only in the spacial discretization.

2.11 Spatial discretization of the dynamical equations

Spatial discretization is carried out using the finite volume method. This amounts to a grid-point method (namely
second-order centered finite difference) in the fluid interior but allows boundaries to intersect a regular grid allowing a
more accurate representation of the position of the boundary. We treat the horizontal and vertical directions as separable
and differently.

2.11.1 The finite volume method: finite volumes versus finite difference

The finite volume method is used to discretize the equations in space. The expression “finite volume” actually has two
meanings; one is the method of embedded or intersecting boundaries (shaved or lopped cells in our terminology) and
the other is non-linear interpolation methods that can deal with non-smooth solutions such as shocks (i.e. flux limiters
for advection). Both make use of the integral form of the conservation laws to which the weak solution is a solution on
each finite volume of (sub-domain). The weak solution can be constructed out of piece-wise constant elements or be
differentiable. The differentiable equations can not be satisfied by piece-wise constant functions.

As an example, the 1-D constant coeflicient advection-diffusion equation:
Ol + 0p(ub — K0,0) =0
can be discretized by integrating over finite sub-domains, i.e. the lengths Ax;:
Axdf+ 0;(F) =0

is exact if f(x) is piece-wise constant over the interval Ax; or more generally if 6; is defined as the average over the
interval Ax;.

The flux, F;_; /2, Must be approximated:

— K
F=uf——0,0
Az, '
and this is where truncation errors can enter the solution. The method for obtaining @ is unspecified and a wide range
of possibilities exist including centered and upwind interpolation, polynomial fits based on the the volume average
definitions of quantities and non-linear interpolation such as flux-limiters.

Choosing simple centered second-order interpolation and differencing recovers the same ODE’s resulting from finite
differencing for the interior of a fluid. Differences arise at boundaries where a boundary is not positioned on a regular
or smoothly varying grid. This method is used to represent the topography using lopped cell, see Adcroft et al. (1997)
[AHMO97]. Subtle difference also appear in more than one dimension away from boundaries. This happens because
each direction is discretized independently in the finite difference method while the integrating over finite volume
implicitly treats all directions simultaneously.
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2.11.2 C grid staggering of variables

The basic algorithm employed for stepping forward the momentum equations is based on retaining non-divergence of
the flow at all times. This is most naturally done if the components of flow are staggered in space in the form of an
Arakawa C grid (Arakawa and Lamb, 1977 [AL77]).

Figure 2.7 shows the components of flow (u,v,w) staggered in space such that the zonal component falls on the interface
between continuity cells in the zonal direction. Similarly for the meridional and vertical directions. The continuity cell
is synonymous with tracer cells (they are one and the same).

Figure 2.7: Three dimensional staggering of velocity components. This facilitates the natural discretization of the
continuity and tracer equations.

2.11.3 Grid initialization and data

Initialization of grid data is controlled by subroutine INI_GRID which in calls INI_VERTICAL_GRID to
initialize the vertical grid, and then either of INI_CARTESIAN_GRID, INI_SPHERICAL_POLAR_GRID or
INI_CURVILINEAR_GRID to initialize the horizontal grid for cartesian, spherical-polar or curvilinear coordinates
respectively.

The reciprocals of all grid quantities are pre-calculated and this is done in subroutine INI_MASKS_ETC which is
called later by subroutine INITIALISE_FIXED.

All grid descriptors are global arrays and stored in common blocks in GRID.h and a generally declared as _RS.

2.11.4 Horizontal grid

The model domain is decomposed into tiles and within each tile a quasi-regular grid is used. A tile is the ba-
sic unit of domain decomposition for parallelization but may be used whether parallelized or not; see section
[sec:domain_decomposition] for more details. Although the tiles may be patched together in an unstructured manner
(i.e. irregular or non-tessilating pattern), the interior of tiles is a structured grid of quadrilateral cells. The horizon-
tal coordinate system is orthogonal curvilinear meaning we can not necessarily treat the two horizontal directions as
separable. Instead, each cell in the horizontal grid is described by the length of it’s sides and it’s area.

The grid information is quite general and describes any of the available coordinates systems, cartesian, spherical-
polar or curvilinear. All that is necessary to distinguish between the coordinate systems is to initialize the grid data
(descriptors) appropriately.
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In the following, we refer to the orientation of quantities on the computational grid using geographic terminology
such as points of the compass. This is purely for convenience but should not be confused with the actual geographic
orientation of model quantities.
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Figure 2.8: Staggering of horizontal grid descriptors (lengths and areas). The grid lines indicate the tracer cell bound-
aries and are the reference grid for all panels. a) The area of a tracer cell, A, is bordered by the lengths Az, and Ay,,.
b) The area of a vorticity cell, A¢, is bordered by the lengths Ax. and Ay,. c) The area of a u cell, A,,, is bordered by
the lengths Az, and Ayy. d) The area of a v cell, A, is bordered by the lengths Az and Ay,,.

Figure 2.8 (a) shows the tracer cell (synonymous with the continuity cell). The length of the southern edge, Az,
western edge, Ay, and surface area, A., presented in the vertical are stored in arrays dxG, dyG and rA. The “g” suffix
indicates that the lengths are along the defining grid boundaries. The “c” suffix associates the quantity with the cell
centers. The quantities are staggered in space and the indexing is such that dxG(i,j) is positioned to the south of rA(i,j)

and dyG(i,j) positioned to the west.

Figure 2.8 (b) shows the vorticity cell. The length of the northern edge, Ax., eastern edge, Ay, and surface area, A,
presented in the vertical are stored in arrays dxC, dyC and rAz. The “c” suffix indicates that the lengths are measured
between the cell centers and the “¢” suffix associates points with the vorticity points. The quantities are staggered in
space and the indexing is such that dxC(i,j) is positioned to the north of rAz(i,j) and dyC(i,j) positioned to the east.

Figure 2.8 (c) shows the “u” or western (w) cell. The length of the southern edge, Az, eastern edge, Ay and surface
area, A,,, presented in the vertical are stored in arrays dxV, dyF and rAw. The “v” suffix indicates that the length is
measured between the v-points, the “f” suffix indicates that the length is measured between the (tracer) cell faces and
the “w” suffix associates points with the u-points (w stands for west). The quantities are staggered in space and the

indexing is such that dxV(i,j) is positioned to the south of rAw(i,j) and dyF(i,j) positioned to the east.

Figure 2.8 (d) shows the “v” or southern (s) cell. The length of the northern edge, Az, western edge, Ay, and surface
area, A, presented in the vertical are stored in arrays dxF, dyU and rAs. The “u” suffix indicates that the length is
measured between the u-points, the “f” suffix indicates that the length is measured between the (tracer) cell faces and
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the “s” suffix associates points with the v-points (s stands for south). The quantities are staggered in space and the
indexing is such that dxF(i,j) is positioned to the north of rAs(i,j) and dyU(i,j) positioned to the west.

S/R INI_CARTESIAN_GRID , INI_SPHERICAL_POLAR_GRID , INI_CURVILINEAR_GRID

Ac, Ac, Ay, At TA, 1Az, tAw, rAs ( GRID.h )
Axg, Ay, dxG, dyG (GRID.h)
Ax., Ay, : dxC, dyC (GRID.h)
Az, Ayy : dxF, dyF (GRID.h)
Ax,, Ay, : dxV, dyU (GRID.h)

2.11.4.1 Reciprocals of horizontal grid descriptors
Lengths and areas appear in the denominator of expressions as much as in the numerator. For efficiency and portability,
we pre-calculate the reciprocal of the horizontal grid quantities so that in-line divisions can be avoided.

For each grid descriptor (array) there is a reciprocal named using the prefix recip_. This doubles the amount of storage
in GRID.h but they are all only 2-D descriptors.

S/R INI_MASKS_ETC
AL Agl, AL AL recip_rA, recip_rAz, recip_rAw, recip_rAs ( GRID.h )
Azt Ayt recip_dxG, recip_dyG ( GRID.h)
Azt Ayt recip_dxC, recip_dyC ( GRID.h)
Azt Ay;!: recip_dxF, recip_dyF (GRID.h )
Azt Ayt recip_dxV, recip_dyU ( GRID.h)

2.11.4.2 Cartesian coordinates

Cartesian coordinates are selected when the logical flag usingCartesianGrid in namelist PARMO4 is set to true. The grid
spacing can be set to uniform via scalars dXspacing and dYspacing in namelist PARM®4 or to variable resolution by the
vectors DELX and DELY. Units are normally meters. Non-dimensional coordinates can be used by interpreting the
gravitational constant as the Rayleigh number.

2.11.4.3 Spherical-polar coordinates

Spherical coordinates are selected when the logical flag usingSphericalPolarGrid in namelist PARM04 is set to true. The
grid spacing can be set to uniform via scalars dXspacing and dYspacing in namelist PARMO4 or to variable resolution
by the vectors DELX and DELY. Units of these namelist variables are alway degrees. The horizontal grid descriptors
are calculated from these namelist variables have units of meters.
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2.11.4.4 Curvilinear coordinates
Curvilinear coordinates are selected when the logical flag usingCurvilinearGrid in namelist PARMO4 is set to true. The

grid spacing can not be set via the namelist. Instead, the grid descriptors are read from data files, one for each descriptor.
As for other grids, the horizontal grid descriptors have units of meters.

2.11.5 Vertical grid
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Figure 2.9: Two versions of the vertical grid. a) The cell centered approach where the interface depths are specified
and the tracer points centered in between the interfaces. b) The interface centered approach where tracer levels are
specified and the w-interfaces are centered in between.

As for the horizontal grid, we use the suffixes “c” and “f” to indicates faces and centers. Figure 2.9 (a) shows the default
vertical grid used by the model. Ar; is the difference in r (vertical coordinate) between the faces (i.e. Ary = —dr
where the minus sign appears due to the convention that the surface layer has index k£ = 1.).

The vertical grid is calculated in subroutine INI_VERTICAL_GRID and specified via the vector delR in namelist
PARMO4. The units of “r” are either meters or Pascals depending on the isomorphism being used which in turn is
dependent only on the choice of equation of state.

There are alternative namelist vectors delZ and delP which dictate whether z- or p- coordinates are to be used but we
intend to phase this out since they are redundant.

The reciprocals Ar;l and Ar_ ! are pre-calculated (also in subroutine INI_VERTICAL_GRID). All vertical grid
descriptors are stored in common blocks in GRID.h.

2.11. Spatial discretization of the dynamical equations 59


http://mitgcm.org/lxr/ident/MITgcm?_i=usingCurvilinearGrid
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F
http://mitgcm.org/lxr/ident/MITgcm?_i=delR
http://mitgcm.org/lxr/ident/MITgcm?_i=delZ
http://mitgcm.org/lxr/ident/MITgcm?_i=delP
https://github.com/MITgcm/MITgcm/blob/master/model/src/ini_vertical_grid.F
https://github.com/MITgcm/MITgcm/blob/master/model/inc/GRID.h

MITgcm Documentation, Release 2d7a4a2

The above grid Figure 2.9 (a) is known as the cell centered approach because the tracer points are at cell centers; the
cell centers are mid-way between the cell interfaces. This discretization is selected when the thickness of the levels
are provided (delR, parameter file data, namelist PARMO4) An alternative, the vertex or interface centered approach,
is shown in Figure 2.9 (b). Here, the interior interfaces are positioned mid-way between the tracer nodes (no longer
cell centers). This approach is formally more accurate for evaluation of hydrostatic pressure and vertical advection but
historically the cell centered approach has been used. An alternative form of subroutine INI_ VERTICAL_GRID is
used to select the interface centered approach This form requires to specify Nr + 1 vertical distances delRc (parameter
file data, namelist PARMO4, e.g. ideal _2D_oce/input/data) corresponding to surface to center, N — 1 center to center,
and center to bottom distances.

S/R INI_VERTICAL_GRID

Arg, Ar. : drF, drC ( GRID.h)
Aryt, Arg ! recip_drF, recip_drC (GRID.h)

2.11.6 Topography: partially filled cells

Adcroft et al. (1997) [AHMO97] presented two alternatives to the step-wise finite difference representation of topogra-
phy. The method is known to the engineering community as intersecting boundary method. It involves allowing the
boundary to intersect a grid of cells thereby modifying the shape of those cells intersected. We suggested allowing the
topography to take on a piece-wise linear representation (shaved cells) or a simpler piecewise constant representation
(partial step). Both show dramatic improvements in solution compared to the traditional full step representation, the
piece-wise linear being the best. However, the storage requirements are excessive so the simpler piece-wise constant
or partial-step method is all that is currently supported.

b,
h Ar
Ar

Figure 2.10: A schematic of the x-r plane showing the location of the non-dimensional fractions h. and h,, . The
physical thickness of a tracer cell is given by h.(i, j, k) Ar (k) and the physical thickness of the open side is given by
ha (i, j, k) Ay (K) -

Figure 2.10 shows a schematic of the x-r plane indicating how the thickness of a level is determined at tracer and u
points. The physical thickness of a tracer cell is given by h.(i, j, k)Ars(k) and the physical thickness of the open
side is given by hy, (i, j, k)Ary(k). Three 3-D descriptors h., h,, and h, are used to describe the geometry: hFacC,
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hFacW and hFacS respectively. These are calculated in subroutine INI_MASKS_ETC along with there reciprocals
recip_hFacC, recip_hFacW and recip_hFacS.

The non-dimensional fractions (or h-facs as we call them) are calculated from the model depth array and then processed
to avoid tiny volumes. The rule is that if a fraction is less than hFacMin then it is rounded to the nearer of 0 or hFacMin
or if the physical thickness is less than hFacMinDr then it is similarly rounded. The larger of the two methods is
used when there is a conflict. By setting hFacMinDr equal to or larger than the thinnest nominal layers, min (Azy),
but setting hFacMin to some small fraction then the model will only lop thick layers but retain stability based on the
thinnest unlopped thickness; min (Azy, hFacMinDr).

S/R filelink:INI_ MASKS_ETC

he, hay, hs : hFacC, hFacW, hFacS ( GRID.h )
ol pt h;l : recip_hFacC, recip_hFacW, recip_hFacS ( GRID.h )

c *'Pw

2.12 Continuity and horizontal pressure gradient term

The core algorithm is based on the “C grid” discretization of the continuity equation which can be summarized as:

1 0P €nh r 1 /
Oyu + Rdz 87“8 n+ R&‘I}nh =Gy — Aimc(;l(ph (2.80)
1 6@ €nh 1
) s, = - — 5P .
at?] + Ayc 5J or . n + Ayc (5] nh Gv Ayc 6] h (2 81)
0w + —— 5,8 ) = eanG + B — ——5,! (2.82)
€nh W AT’C k¥ nh = €nhGuw ATC k*n :
5iAygATfhwu + 5ijgA7’fhsv + 0pAcw = A0k (P — €)r=o (2.83)

where the continuity equation has been most naturally discretized by staggering the three components of velocity as
shown in Figure 2.7. The grid lengths Az, and Ay, are the lengths between tracer points (cell centers). The grid
lengths Az, Ay, are the grid lengths between cell corners. Ary and Ar, are the distance (in units of 7) between
level interfaces (w-level) and level centers (tracer level). The surface area presented in the vertical is denoted A,.. The
factors h,, and hg are non-dimensional fractions (between 0 and 1) that represent the fraction cell depth that is “open”
for fluid flow.

The last equation, the discrete continuity equation, can be summed in the vertical to yield the free-surface equation:

A + 6 AygArphyu+6; Y - AzgArshaw = A(P — €)r=o (2.84)
k k

The source term P — £ on the rhs of continuity accounts for the local addition of volume due to excess precipitation
and run-off over evaporation and only enters the top-level of the ocean model.

2.13 Hydrostatic balance

The vertical momentum equation has the hydrostatic or quasi-hydrostatic balance on the right hand side. This dis-
cretization guarantees that the conversion of potential to kinetic energy as derived from the buoyancy equation exactly
matches the form derived from the pressure gradient terms when forming the kinetic energy equation.

In the ocean, using z-coordinates, the hydrostatic balance terms are discretized:

— 1
EnhOsW + gp’k + Eékfb’ =... (2.85)
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In the atmosphere, using p-coordinates, hydrostatic balance is discretized:
7"+ L —0 (2.86)
All
where AlI is the difference in Exner function between the pressure points. The non-hydrostatic equations are not

available in the atmosphere.

The difference in approach between ocean and atmosphere occurs because of the direct use of the ideal gas equation
in forming the potential energy conversion term aw. Because of the different representation of hydrostatic balance
between ocean and atmosphere there is no elegant way to represent both systems using an arbitrary coordinate.

The integration for hydrostatic pressure is made in the positive r direction (increasing k-index). For the ocean, this is
from the free-surface down and for the atmosphere this is from the ground up.

The calculations are made in the subroutine CALC_PHI_HYD. Inside this routine, one of other of the atmo-
spheric/oceanic form is selected based on the string variable buoyancyRelation.

2.14 Flux-form momentum equations

The original finite volume model was based on the Eulerian flux form momentum equations. This is the default though
the vector invariant form is optionally available (and recommended in some cases).

The “G’s” (our colloquial name for all terms on rhs!) are broken into the various advective, Coriolis, horizontal dissi-
pation, vertical dissipation and metric forces:

Gu — szv 4 GSor + GZ—diss + Gz—diss + Ggetric + Ggh—metric (287)
Gv _ ngv + Ggor + Ggfdiss + Ggfdiss + Ggletric + Gghfmetric (288)
Gw — Gz}dv + Ggor + G’ﬁ)—diss + va—diss + Ggetric + GE}h—metric (289)

In the hydrostatic limit, G,, = 0 and €,}, = 0, reducing the vertical momentum to hydrostatic balance.

These terms are calculated in routines called from subroutine MOM_FLUXFORM and collected into the global arrays
¢gU, gV, and gW.

S/R MOM_FLUXFORM
G, : ¢U (DYNVARS.h)
G, : gV (DYNVARS.h)
G : gW (NH_VARS.h)

2.14.1 Advection of momentum

The advective operator is second order accurate in space:

ApArphy,GEY = 50T + 5,V + 6, W 1 (2.90)
AT h G2 = 5T7% + 6,V + 6, o 2.91)
AAr G = 5T + 6,V"w + 6, W o (2.92)
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and because of the flux form does not contribute to the global budget of linear momentum. The quantities U, V' and
W are volume fluxes defined:

U= Ay,Arsh,u (2.93)
V = Az Arghgv (2.94)
W= Aw (2.95)

The advection of momentum takes the same form as the advection of tracers but by a translated advective flow. Con-
sequently, the conservation of second moments, derived for tracers later, applies to 12 and v2 and w? so that advection
of momentum correctly conserves kinetic energy.

S/RMOM_U_ADV_UU, MOM_U_ADV_VU, MOM_U_ADV_WU
uu, vu, wu : Zon, fMer, fVerUkp ( local to MOM_FLUXFORM.F )

S/R MOM_V_ADV_UV,MOM_V_ADV_VV,MOM_V_ADV_WV
uv, vv, wv : fZon, fMer, fVerVkp (local to MOM_FLUXFORM.F )

2.14.2 Coriolis terms

The “pure C grid” Coriolis terms (i.e. in absence of C-D scheme) are discretized:

AupArphy, GO = fANTht — enn f' AcArphont (2.96)
A A7 h G = —fA AT hot (2.97)
B
AN .G = e [/ A AT ph T (2.98)
where the Coriolis parameters f and f’ are defined:
f=2Qsinyp
' =2Qcosy

where ¢ is geographic latitude when using spherical geometry, otherwise the 3-plane definition is used:
f=/fo+ By
=0

This discretization globally conserves kinetic energy. It should be noted that despite the use of this discretization in
former publications, all calculations to date have used the following different discretization:

GOt = £, — ey, fl* (2.99)
GSr = — f, " (2.100)
GSor = e f! u* (2.101)

where the subscripts on f and f’ indicate evaluation of the Coriolis parameters at the appropriate points in space. The
above discretization does not conserve anything, especially energy, but for historical reasons is the default for the code.
A flag controls this discretization: set run-time integer selectCoriScheme to two (=2) (which otherwise defaults to zero)
to select the energy-conserving conserving form (2.96), (2.97), and (2.98) above.

S/R CD_CODE_SCHEME, MOM_U_CORIOLIS, MOM_V_CORIOLIS
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GC°r, G : ¢F (local to MOM_FLUXFORM.F )

2.14.3 Curvature metric terms

The most commonly used coordinate system on the sphere is the geographic system (A, ). The curvilinear nature
of these coordinates on the sphere lead to some “metric” terms in the component momentum equations. Under the
thin-atmosphere and hydrostatic approximations these terms are discretized:

A Arphe,GRere = L tan 0 A Ar phoo? (2.102)
a
— j
ASATthGL“emC =L tan @ACArthﬂi (2.103)
a
GLr)lctric -0 (2104)

where a is the radius of the planet (sphericity is assumed) or the radial distance of the particle (i.e. a function of height).
It is easy to see that this discretization satisfies all the properties of the discrete Coriolis terms since the metric factor
“ tan ¢ can be viewed as a modification of the vertical Coriolis parameter: f — f + % tan .

However, as for the Coriolis terms, a non-energy conserving form has exclusively been used to date:

s uv
Ggetrlc — tan ")
a

uut

metric _
Gy = tan ¢

where tan ¢ is evaluated at the v and v points respectively.

S/R MOM_U_METRIC_SPHERE, MOM_V_METRIC_SPHERE
Gmetric Gmetric . ;T (Jocal to MOM_FLUXFORM.F )

2.14.4 Non-hydrostatic metric terms

For the non-hydrostatic equations, dropping the thin-atmosphere approximation re-introduces metric terms involving
w which are required to conserve angular momentum:

%

—i—k
ApAr sy, Gretrie = L2 A Ay b, (2.105)
a
: o
ASATthGznetrlc — _U ;U ACA’/‘f hc (2106)
N A *
AAr gmetic = U TV A Ay ik, (2.107)
a

Because we are always consistent, even if consistently wrong, we have, in the past, used a different discretization in the
model which is:

. u__.
Ggetrlc — _7w1,k
a
. v
Ggletrlc _ _7w‘7k
a
; 1, 2 k2
Ggetrlc — E(uzk + ,U]k )
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S/R MOM_U_METRIC_NH, MOM_V_METRIC_NH
Gmetric Gmetric . ;T (Jocal to MOM_FLUXFORM.F )

2.14.5 Lateral dissipation

Historically, we have represented the SGS Reynolds stresses as simply down gradient momentum fluxes, ignoring
constraints on the stress tensor such as symmetry.

A Arphy, Gh=355 = §, Ay Arphemyy + 0;A2, ArpheTio (2.108)
AAr ph G = 5, Ay, Ar pheTor + 8302 Ar phTo (2.109)
The lateral viscous stresses are discretized:
1 1
T = AhCHA(‘P)wa(SiU - A4311A2(<P)A7xf5iv2u (2.110)
1 1 9
T12 :AhclgA(cp)Eéju7A4012A2(<p)§5jv u (2111)
1 1 9
To1 = Ahc21A(@)E6iU - A4021A2(¢)E(5iv v (2.112)
1 1 9
T29 — AhCQQA(QQ)Tch(;jU — A4622A2 (W)Twajv v (2113)

where the non-dimensional factors ci,an (), {I,m,n} € {1,2} define the “cosine” scaling with latitude which can
be applied in various ad-hoc ways. For instance, c11a = c21a = (cos 4,0)3/ 2 ci12A = c2aa = 1 would represent the
anisotropic cosine scaling typically used on the “lat-lon” grid for Laplacian viscosity.

It should be noted that despite the ad-hoc nature of the scaling, some scaling must be done since on a lat-lon grid the

converging meridians make it very unlikely that a stable viscosity parameter exists across the entire model domain.
The Laplacian viscosity coefficient, A;, (viscAh), has units of m2s~".

(viscA4), has units of m*s~1.

The bi-harmonic viscosity coefficient, Ay

S/R MOM_U_XVISCFLUX, MOM_U_YVISCFLUX
711, T12 - VF, V4F (local to MOM_FLUXFORM.F )

S/R MOM_V_XVISCFLUX, MOM_V_YVISCFLUX
To1, Too : VE, V4F (local to MOM_FLUXFORM.F )

Two types of lateral boundary condition exist for the lateral viscous terms, no-slip and free-slip.

The free-slip condition is most convenient to code since it is equivalent to zero-stress on boundaries. Simple masking
of the stress components sets them to zero. The fractional open stress is properly handled using the lopped cells.

The no-slip condition defines the normal gradient of a tangential flow such that the flow is zero on the boundary. Rather
than modify the stresses by using complicated functions of the masks and “ghost” points (see Adcroft and Marshall
(1998) [AMO8]) we add the boundary stresses as an additional source term in cells next to solid boundaries. This has
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the advantage of being able to cope with “thin walls” and also makes the interior stress calculation (code) independent
of the boundary conditions. The “body” force takes the form:

ide—dra 4 A:rvj

GEide—drag Az, (1 —he) v (Ancrzal(p)u — Ascianz(9)Viu) (2.114)
. 4 A ui

Gydemdree = Az, (1—he) fiu (Aneara(p)v — Asearnz (9)V30) (2.115)

In fact, the above discretization is not quite complete because it assumes that the bathymetry at velocity points is deeper
than at neighboring vorticity points, e.g. 1 — h,, <1 — h¢

S/R MOM_U_SIDEDRAG, MOM_V_SIDEDRAG
Gside—drag (gside—drag . yE (]ocal to MOM_FLUXFORM.F )

2.14.6 Vertical dissipation

Vertical viscosity terms are discretized with only partial adherence to the variable grid lengths introduced by the finite
volume formulation. This reduces the formal accuracy of these terms to just first order but only next to boundaries;
exactly where other terms appear such as linear and quadratic bottom drag.

—diss 1
GZ diss _ A'r'fh OxT13 (2.116)
w
Gv—diss _ 1 S (2 117)
v ATfhs k123 ’
Gvfdiss =€ 1 S 2118
w = nhiA?"fhd kT33 (2.118)

represents the general discrete form of the vertical dissipation terms.

In the interior the vertical stresses are discretized:

T13 — Avﬁéku
1
T23 = Avﬁékv
C
1
733 — AvAi’/‘fékw

It should be noted that in the non-hydrostatic form, the stress tensor is even less consistent than for the hydrostatic (see
Wajsowicz (1993) [Waj93]). It is well known how to do this properly (see Griffies and Hallberg (2000) [GHOO]) and is
on the list of to-do’s.

S/R MOM_U_RVISCFLUX, MOM_V_RVISCFLUX

713 : fVrUp, fVrDw (local to MOM_FLUXFORM.F )
To3 ¢ fVrUp, fVrDw (local to MOM_FLUXFORM.F )

As for the lateral viscous terms, the free-slip condition is equivalent to simply setting the stress to zero on boundaries.
The no-slip condition is implemented as an additional term acting in conjunction with the interior and free-slip stresses.
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Bottom drag represents additional friction, in addition to that imposed by the no-slip condition at the bottom. The drag
is cast as a stress expressed as a linear or quadratic function of the mean flow in the layer above the topography:

1 —i

rhottom—drog _ <2Av A et Cd\/ﬂ > u (2.119)
1 :

Toy oS <2Av -t Ca 2KEJ> v (2.120)

where these terms are only evaluated immediately above topography. 7, (bottomDragLinear) has units of m s™ and a
typical value of the order 0.0002 m s™'. Cj; (bottomDragQuadratic) is dimensionless with typical values in the range
0.001-0.003.

After defining ALLOW_BOTTOMDRAG_ROUGHNESS in MOM_COMMON_OPTIONS.h, the quadratic drag co-
efficient can be computed by the logarithmic law of the wall:

1
7\2 1 z2+z
=(=) —1 r (2.121)
u(z) (p) 04 Zr

where z, is the roughness length (runtime parameter zZRoughBot). Here, z is the height from the seafloor and 7 is the
bottom stress (and stress in the log-layer). The velocity is computed at the center of the bottom cell z;, = %Ar hw, SO
stress on the bottom cell is 7/p = Cqu, where up, = u(2p) is the bottom cell velocity and:

2

0.4
= 2.122
Ca In TAThy+2, ( )
4

r

This formulation assumes that the bottommost cell is sufficiently thin that it is in a constant-stress log layer. A value of
zRoughBot of 0.01 m yields a quadratic drag coefficient of 0.0022 for Ar; = 100 m, or a quadratic drag coefficient of
0.0041 for Ary =10 m.

For z, = 0, Cy defaults to the value of bottomDragQuadratic.

S/R MOM_U_BOTTOMDRAG, MOM_V_BOTTOMDRAG
protom=drag Ay pbottom=drag /AL - v (local to MOM_FLUXFORM.F )

2.14.7 Derivation of discrete energy conservation

These discrete equations conserve kinetic plus potential energy using the following definitions:

1 /—i —j —k
KE = 3 (qu + 02 4 epuw? ) (2.123)
2.14.8 Mom Diagnostics
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
VISCAHZ | 15 |SZ MR |lmA2/s |Harmonic Visc Coefficient (m2/s) (Zeta.
‘%Pt)
VISCA4Z | 15 |SZ MR |lmrd/s |Biharmonic Visc Coefficient (m4/s) (Zeta.

(continues on next page)
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(continued from previous page)

~Pt)
VISCAHD | 15 |SM MR |lmA2/s |Harmonic Viscosity Coefficient (m2/s).
— (Div Pt)
VISCA4D | 15 |SM MR |lmA4/s |Biharmonic Viscosity Coefficient (m4/s).
—(Div Pt)
VAHZMAX | 15 |SZ MR |mA2/s | CFL-MAX Harm Visc Coefficient (m2/s).
—(Zeta Pt)
VA4ZMAX | 15 |SZ MR |lmr4/s | CFL-MAX Biharm Visc Coefficient (m4/s).
—(Zeta Pt)
VAHDMAX | 15 |SM MR |lmA2/s | CFL-MAX Harm Visc Coefficient (m2/s).
—(Div Pt)
VA4DMAX | 15 |SM MR |mA4/s | CFL-MAX Biharm Visc Coefficient (m4/s).
— (Div Pt)
VAHZMIN | 15 |SZ MR |lmA2/s |RE-MIN Harm Visc Coefficient (m2/s).
—(Zeta Pt)
VA4ZMIN | 15 |SZ MR |mr4/s |RE-MIN Biharm Visc Coefficient (m4/s).
—(Zeta Pt)
VAHDMIN | 15 |SM MR |lmA2/s |RE-MIN Harm Visc Coefficient (m2/s) (Div.
~Pt)
VA4DMIN | 15 |SM MR |lmA4/s |RE-MIN Biharm Visc Coefficient (m4/s).
—(Div Pt)
VAHZLTH | 15 |SZ MR |lmA2/s |Leith Harm Visc Coefficient (m2/s) (Zeta.
~Pt)
VA4ZLTH | 15 |SZ MR |lmrd/s |Leith Biharm Visc Coefficient (m4/s).
—(Zeta Pt)
VAHDLTH | 15 |SM MR |lmA2/s |Leith Harm Visc Coefficient (m2/s) (Div.
—Pt)
VA4DLTH | 15 |SM MR |lmrd/s |Leith Biharm Visc Coefficient (m4/s).
— (Div Pt)
VAHZLTHD| 15 |SZ MR |lmA2/s |LeithD Harm Visc Coefficient (m2/s).
—(Zeta Pt)
VA4ZLTHD| 15 |SZ MR |mr4/s |LeithD Biharm Visc Coefficient (m4/s).
—(Zeta Pt)
VAHDLTHD| 15 |SM MR |lmAr2/s |LeithD Harm Visc Coefficient (m2/s) (Div.
~Pt)
VA4ADLTHD| 15 |SM MR |lmrA4/s |[LeithD Biharm Visc Coefficient (m4/s).
—(Div Pt)
VAHZSMAG| 15 |SZ MR |lmA2/s | Smagorinsky Harm Visc Coefficient (m2/s).
—(Zeta Pt)
VA4ZSMAG| 15 |SZ MR |mr4/s | Smagorinsky Biharm Visc Coeff. (m4/s).
—(Zeta Pt)
VAHDSMAG| 15 |SM MR |lmA2/s | Smagorinsky Harm Visc Coefficient (m2/s).
—(Div Pt)
VA4DSMAG| 15 |SM MR |lmrd/s | Smagorinsky Biharm Visc Coeff. (m4/s).
— (Div Pt)
momKE | 15 |SM MR |mA2/sA2 |[Kinetic Energy (in momentum Eq.)
momHDiv | 15 |SM MR |sA-1 |Horizontal Divergence (in momentum Eg.)
momVort3| 15 |SZ MR |sA-1 |3rd component (vertical) of Vorticity
Strain | 15 |SZ MR |sA-1 |Horizontal Strain of Horizontal..
—Velocities
Tension | 15 |SM MR |sA-1 |Horizontal Tension of Horizontal..
—Velocities

(continues on next page)
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(continued from previous page)

UBotDrag| 15 |UU 129MR |m/sA2 |U momentum tendency from Bottom Drag
VBotDrag| 15 |VV  128MR |m/sA2 |V momentum tendency from Bottom Drag
USidDrag| 15 |UU 131MR |m/sA2 |U momentum tendency from Side Drag
VSidDrag| 15 |VV 130MR |m/sA2 |V momentum tendency from Side Drag
Um_Diss | 15 |UU 133MR |m/sA2 |U momentum tendency from Dissipation
Vm_Diss | 15 |VV 132MR |m/sA2 |V momentum tendency from Dissipation
Um_Advec| 15 |UU 135MR |m/sA2 |U momentum tendency from Advection terms
Vm_Advec| 15 |VV 134MR |m/sA2 |V momentum tendency from Advection terms
Um_Cori | 15 |UU 137MR |m/sA2 |U momentum tendency from Coriolis term
Vm_Cori | 15 |VV 136MR |m/sA2 |V momentum tendency from Coriolis term
Um_Ext | 15 |UU 137MR |m/sA2 |U momentum tendency from external forcing
Vm_Ext | 15 |VV 138MR |m/sA2 |V momentum tendency from external forcing
Um_AdvZ3| 15 |UU 141MR |m/sA2 |U momentum tendency from Vorticity.
—Advection

Vm_AdvZ3| 15 |VV 140MR |m/sA2 |V momentum tendency from Vorticity.
—Advection

Um_AdvRe| 15 |UU 143MR |m/sA2 |U momentum tendency from vertical.
—Advection (Explicit part)

Vm_AdvRe| 15 |VV 142MR |m/sA2 |V momentum tendency from vertical.
—Advection (Explicit part)

ADVx_Um | 15 |UM 145MR |mAd/sA2 | Zonal Advective Flux of U momentum
ADVy_Um | 15 |VZ 144MR |mAd/sA2 |Meridional Advective Flux of U momentum
ADVrE_Um| 15 |WU LR |mAd/sA2 |[Vertical Advective Flux of U momentum,
< (Explicit part)

ADVx_Vm | 15 |UZ 148MR |mA4/sA2 | Zonal Advective Flux of V momentum
ADVy_Vm | 15 |VM 147MR |mAd/sA2 |Meridional Advective Flux of V momentum
ADVrE_Vm| 15 |WV LR |mAd/sA2 |Vertical Advective Flux of V momentum,
<~ (Explicit part)

VISCx_Um| 15 |UM 151MR |mAd/sA2 | Zonal Viscous Flux of U momentum
VISCy_Um| 15 |VZ 150MR |mA4/sA2 |Meridional Viscous Flux of U momentum
VISrE_Um| 15 |WU LR |mAd/sA2 |Vertical Viscous Flux of U momentum,
<~ (Explicit part)

VISrI_Um| 15 |WU LR |mAd/sA2 |Vertical Viscous Flux of U momentum.,

< (Implicit part)

VISCx_Vm| 15 |UZ 155MR |mAd4/sA2 | Zonal Viscous Flux of V momentum
VISCy_Vm| 15 |VM 154MR |mA4/sA2 |Meridional Viscous Flux of V momentum
VISrE_Vm| 15 |WV LR |mAd/sA2 |Vertical Viscous Flux of V momentum,
— (Explicit part)

VISrI_Vm| 15 |WV LR |mAd/sA2 |[Vertical Viscous Flux of V momentum,

< (Implicit part)

2.15 Vector invariant momentum equations

The finite volume method lends itself to describing the continuity and tracer equations in curvilinear coordinate systems.
However, in curvilinear coordinates many new metric terms appear in the momentum equations (written in Lagrangian
or flux-form) making generalization far from elegant. Fortunately, an alternative form of the equations, the vector
invariant equations are exactly that; invariant under coordinate transformations so that they can be applied uniformly
in any orthogonal curvilinear coordinate system such as spherical coordinates, boundary following or the conformal
spherical cube system.
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The non-hydrostatic vector invariant equations read:
OV+(2Q+C)xV—bF+VB=V-7 (2.124)

which describe motions in any orthogonal curvilinear coordinate system. Here, B is the Bernoulli function and E =
V x Vv is the vorticity vector. We can take advantage of the elegance of these equations when discretizing them and
use the discrete definitions of the grad, curl and divergence operators to satisfy constraints. We can also consider the
analogy to forming derived equations, such as the vorticity equation, and examine how the discretization can be adjusted
to give suitable vorticity advection among other things.

The underlying algorithm is the same as for the flux form equations. All that has changed is the contents of the “G’s”.
For the time-being, only the hydrostatic terms have been coded but we will indicate the points where non-hydrostatic
contributions will enter:

Gu =Gl +GRY + GRY + GUrP + G + G 4 Gt (2.125)
G, = Giu + ngu + Gglw + GgyB + ngTy + Gg—diss + G:j—diss (2.126)
G = G{Uu + Gf;” + G%u + G%B + GZ)_diSS + G%_diss (2.127)

S/R MOM_VECINV

G, : €U (DYNVARS.h)
G, : gV (DYNVARS.h)
Guw : ¢W (NH_VARS.h)

2.15.1 Relative vorticity

The vertical component of relative vorticity is explicitly calculated and use in the discretization. The particular form
is crucial for numerical stability; alternative definitions break the conservation properties of the discrete equations.

Relative vorticity is defined:
r 1

G =5 =

iy (0;Aycv — §;Azcu) (2.128)

where A¢ is the area of the vorticity cell presented in the vertical and I is the circulation about that cell.

S/R MOM_CALC_RELVORT3
(3 : vort3 (local to MOM_VECINV.F)

2.15.2 Kinetic energy
The kinetic energy, denoted KE, is defined:

1 —i  — —k
KE = §(UQ + 02 4 eppu?) (2.129)

S/R MOM_CALC_KE
KE : KE (local to MOM_VECINV.F)
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2.15.3 Coriolis terms

The potential enstrophy conserving form of the linear Coriolis terms are written:

i
fo _ 4 Az R 2.130
G, Ao he Tghsv ( )
fu _ _ Iliij 2.131
G} Ay he Ayghwu ( )

Here, the Coriolis parameter f is defined at vorticity (corner) points.

The potential enstrophy conserving form of the non-linear Coriolis terms are written:

L G
Csv _ A 2.132
G Ao he xghsv ( )
1 C3 iiij
Cau _ _ 2.133
G, Aye he Ayghwu ( )

The Coriolis terms can also be evaluated together and expressed in terms of absolute vorticity f 4+ (3. The potential
enstrophy conserving form using the absolute vorticity is written:

1 TG —
Giv 4 Gigv — f + C3 quhsvj (2134)
Al’c hC ’
1 716G J

GIv 4 G = — Ayghot! (2.135)

Ay. he¢
The distinction between using absolute vorticity or relative vorticity is useful when constructing higher order advec-
tion schemes; monotone advection of relative vorticity behaves differently to monotone advection of absolute vorticity.
Currently the choice of relative/absolute vorticity, centered/upwind/high order advection is available only through com-
mented subroutine calls.

S/R MOM_VI_CORIOLIS, MOM_VI_U_CORIOLIS, MOM_VI_V_CORIOLIS

G{v,GSY - uCf (local to MOM_VECINV.F )
GI*, GSv . vCf (local to MOM_VECINV.F)

2.15.4 Shear terms

The shear terms ((sw and (;w) are are discretized to guarantee that no spurious generation of kinetic energy is possible;
the horizontal gradient of Bernoulli function has to be consistent with the vertical advection of shear:

1 - k
Gw_ __ ~ A — ; 2.136
Gy Al i Acw (0pu — €nnd;w) ( )
G = éfl wj(ékv —€ h&w)’m (2.137)
v AsArphg ¢ e

S/R MOM_VI_U_VERTSHEAR, MOM_VI_V_VERTSHEAR

GS2* : uCf (local to MOM_VECINV.F)
G$1v : vCf (local to MOM_VECINV.F)
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2.15.5 Gradient of Bernoulli function

1
GoB = - 5:(¢' + KE) (2.138)
1
GWB = _—5,(¢' + KE) (2.139)
Az, J

S/R MOM_VI_U_GRAD_KE, MOM_VI_V_GRAD_KE

G9=KE ; yCf (local to MOM_VECINV.F)

GKE . Cf (local to MOM_VECINV.F)

2.15.6 Horizontal divergence

The horizontal divergence, a complimentary quantity to relative vorticity, is used in parameterizing the Reynolds
stresses and is discretized:
1
AChC

D= (0; Ayghyu + §;Azghgv) (2.140)

S/R MOM_CALC_KE
D : hDiv (local to MOM_VECINV.F )

2.15.7 Horizontal dissipation

The following discretization of horizontal dissipation conserves potential vorticity (thickness weighted relative vortic-
ity) and divergence and dissipates energy, enstrophy and divergence squared:

1
0i(ApD — ApaD*) — ———0;h¢(AcC — Acal™) (2.141)

thdiss _
“ Ayyh

Az,

1 1
Ao 0ihe(AcC = AC™) + 1 —0;(ApD — ApaD”) (2.142)

thdiss —_
! Ay

where
1
 Ache

1
= A—C(&Aycvzv — 6ijcV2u)

D* (6:AYghw VU + §;Ax,h V)

C*

S/R MOM_VI_HDISSIP

Gh=dissip . uDissip (local to MOM_VI_HDISSIP.F )
Gh=dissip . yDissip (local to MOM_VI_HDISSIP.F )

72 Chapter 2. Discretization and Algorithm


http://mitgcm.org/lxr/ident/MITgcm?_i=uCf
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
http://mitgcm.org/lxr/ident/MITgcm?_i=vCf
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
http://mitgcm.org/lxr/ident/MITgcm?_i=hDiv
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vecinv.F
http://mitgcm.org/lxr/ident/MITgcm?_i=uDissip
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_hdissip.F
http://mitgcm.org/lxr/ident/MITgcm?_i=vDissip
https://github.com/MITgcm/MITgcm/blob/master/pkg/mom_vecinv/mom_vi_hdissip.F

MITgcm Documentation, Release 2d7a4a2

2.15.8 Vertical dissipation

Currently, this is exactly the same code as the flux form equations.

s 1
GZ—dlS§ = A’rfh OxT13 (2.143)
w
Gv—diss _ 1 S (2 144)
v o ATfhs k23 ’

represents the general discrete form of the vertical dissipation terms.

In the interior the vertical stresses are discretized:

1
T13 — AUTTC(S]CU
— A,
T23 = UATC kU

S/R MOM_U_RVISCFLUX, MOM_V_RVISCFLUX
T13, To3 ¢ vif (local to MOM_VECINV.F )

2.16 Tracer equations

The basic discretization used for the tracer equations is the second order piece-wise constant finite volume form of the
forced advection-diffusion equations. There are many alternatives to second order method for advection and alternative
parameterizations for the sub-grid scale processes. The Gent-McWilliams eddy parameterization, KPP mixing scheme
and PV flux parameterization are all dealt with in separate sections. The basic discretization of the advection-diffusion
part of the tracer equations and the various advection schemes will be described here.

2.16.1 Time-stepping of tracers: ABII

The default advection scheme is the centered second order method which requires a second order or quasi-second order
time-stepping scheme to be stable. Historically this has been the quasi-second order Adams-Bashforth method (ABII)
and applied to all terms. For an arbitrary tracer, 7, the forced advection-diffusion equation reads:

0T+ Glgy = Ghig + Giore (2.145)

where G74., G, and G are the tendencies due to advection, diffusion and forcing, respectively, namely:
Ty = 0z (ur) + 9y (vr) + Op(wT) = TV - v (2.146)
ag =V - (KV71) (2.147)

and the forcing can be some arbitrary function of state, time and space.

The term, 7V - v, is required to retain local conservation in conjunction with the linear implicit free-surface. It only
affects the surface layer since the flow is non-divergent everywhere else. This term is therefore referred to as the surface
correction term. Global conservation is not possible using the flux-form (as here) and a linearized free-surface (Griffies
and Hallberg (2000) [GHOO] , Campin et al. (2004) [CAHMO04]).

The continuity equation can be recovered by setting Ggig = Gtorc = 0 and 7 = 1.
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The driver routine that calls the routines to calculate tendencies are CALC_GT and CALC_GS for temperature and
salt (moisture), respectively. These in turn call a generic advection diffusion routine GAD_CALC_RHS that is called
with the flow field and relevant tracer as arguments and returns the collective tendency due to advection and diffusion.
Forcing is add subsequently in CALC_GT or CALC_GS to the same tendency array.

S/R GAD_CALC_RHS
T : tau (argument )
G : gTracer (argument )
F,. : fVerT (argument )

The space and time discretization are treated separately (method of lines). Tendencies are calculated at time levels n
and n — 1 and extrapolated to n + 1/2 using the Adams-Bashforth method:

G(n+1/2) _ (% + 6)G(n) _ (% + E)G(n—l) (2.148)

where G = GT, + Gl + GT,. at time step n. The tendency at n — 1 is not re-calculated but rather the tendency

adv src
at n is stored in a global array for later re-use.

S/R ADAMS_BASHFORTH2

G +1/2) + gTracer (‘argument on exit )
G : gTracer (‘argument on entry )
G=1 : gTrNm1 ( argument )

€ : ABeps (PARAMS.h)

The tracers are stepped forward in time using the extrapolated tendency:

() — (M) L ApG(nt1/2) (2.149)

S/R TIMESTEP_TRACER

7(n+1) : oTracer ( argument on exit )
7(") : tracer (argument on entry )
G +1/2) + gTracer (argument )

At : deltaTtracer (PARAMS.h)

Strictly speaking the ABII scheme should be applied only to the advection terms. However, this scheme is only used
in conjunction with the standard second, third and fourth order advection schemes. Selection of any other advection
scheme disables Adams-Bashforth for tracers so that explicit diffusion and forcing use the forward method.

2.17 Advection schemes

2.17.1 Linear advection schemes

The advection schemes known as centered second order, centered fourth order, first order upwind and upwind biased
third order are known as linear advection schemes because the coefficient for interpolation of the advected tracer are
linear and a function only of the flow, not the tracer field it self. We discuss these first since they are most commonly
used in the field and most familiar.
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2.17.1.1 Centered second order advection-diffusion

The basic discretization, centered second order, is the default. It is designed to be consistent with the continuity
equation to facilitate conservation properties analogous to the continuum. However, centered second order advection
is notoriously noisy and must be used in conjunction with some finite amount of diffusion to produce a sensible solution.

The advection operator is discretized:
AArsheGly, = 6 Fy + 6;F, + 0 F, (2.150)

where the area integrated fluxes are given by:

F, U7’
Fy,= V7w
F.= W7

The quantities U, V and W are volume fluxes. defined as:
U= AysArshyu
V= Azg,Arshsv
W = A.w

For non-divergent flow, this discretization can be shown to conserve the tracer both locally and globally and to globally
conserve tracer variance, 72. The proof is given in Adcroft (1995) [Adc95] and Adcroft et al. (1997) [AHM97] .

S/R GAD_C2_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer ( argument )

S/R GAD_C2_ADV_Y

Fy - vT (argument )
V' : vTrans ( argument )
T : tracer ( argument )

S/R GAD_C2_ADV_R

F, : wT (argument )
W : rTrans ( argument )
T : tracer ( argument )
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2.17.1.2 Third order upwind bias advection

Upwind biased third order advection offers a relatively good compromise between accuracy and smoothness. It is not
a “positive” scheme meaning false extrema are permitted but the amplitude of such are significantly reduced over the
centered second order method.

The third order upwind fluxes are discretized:

%

1 1 1
F, = Ut — ~0ii S1U10i =04
T 5 T + 2| | 5 T
1. 7 1 1
Fy = Vr— 65“‘7 + §|V|6J66JJT
—
1 1 1
FT = WT — 661‘1‘7— + §|W|6k66kk7_

At boundaries, ;7 is set to zero allowing J,,,, to be evaluated. We are currently examine the accuracy of this boundary
condition and the effect on the solution.

S/R GAD_U3_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer ( argument )

S/R GAD_U3_ADV_Y

Fy . vT (argument )
V : vTrans ( argument )
T : tracer ( argument )

S/R GAD_U3_ADV_R

F,.: wT (argument )
W : rTrans ( argument )
T : tracer ( argument )

2.17.1.3 Centered fourth order advection

Centered fourth order advection is formally the most accurate scheme we have implemented and can be used to great
effect in high resolution simulations where dynamical scales are well resolved. However, the scheme is noisy, like the
centered second order method, and so must be used with some finite amount of diffusion. Bi-harmonic is recommended
since it is more scale selective and less likely to diffuse away the well resolved gradient the fourth order scheme worked
so hard to create.
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The centered fourth order fluxes are discretized:

%

1
Fw = Ur — 65”7'
71 J
Vr— 6(5”‘7'

!
|

k

1
Fr = W’T — 65“7'

As for the third order scheme, the best discretization near boundaries is under investigation but currently ;7 = O on a

boundary.

S/R GAD_C4_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer ( argument )

S/R GAD_C4_ADV_Y

Fy . vT (argument )
V' : vTrans ( argument )
T : tracer ( argument )

S/R GAD_C4_ADV_R

F, : wT (argument )
W : rTrans ( argument )
T : tracer ( argument )

2.17.1.4 First order upwind advection

Although the upwind scheme is the underlying scheme for the robust or non-linear methods given in Section 2.17.2,
we haven’t actually implemented this method for general use. It would be very diffusive and it is unlikely that it could
ever produce more useful results than the positive higher order schemes.

Upwind bias is introduced into many schemes using the abs function and it allows the first order upwind flux to be

written:

&3
[

-1

1

1
F.= W7k - §|W|5kr

If for some reason the above method is desired, the second order flux limiter scheme described in Section 2.17.2.1
reduces to the above scheme if the limiter is set to zero.
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2.17.2 Non-linear advection schemes

Non-linear advection schemes invoke non-linear interpolation and are widely used in computational fluid dynamics
(non-linear does not refer to the non-linearity of the advection operator). The flux limited advection schemes belong
to the class of finite volume methods which neatly ties into the spatial discretization of the model.

When employing the flux limited schemes, first order upwind or direct-space-time method, the time-stepping is
switched to forward in time.

2.17.2.1 Second order flux limiters

The second order flux limiter method can be cast in several ways but is generally expressed in terms of other flux
approximations. For example, in terms of a first order upwind flux and second order Lax-Wendroff flux, the limited
flux is given as:

F=1=9()F+¢(r)Fiw (2.151)
where t(r) is the limiter function,
1
Fy =um" — < |u|d;T
2
is the upwind flux,
;1
Fw=uT" — §c|u\6ﬂ

is the Lax-Wendroff flux and ¢ = @ﬁt is the Courant (CFL) number.

The limiter function, ¥ (r), takes the slope ratio
Tii1 — Ti_
r= MV u>0

Ti — Ti—1

Titl — T
r=—"-—2"V u<0
Ti — Ti—1

as its argument. There are many choices of limiter function but we only provide the Superbee limiter (Roe 1995
[Roe85]):

¥ (r) = max|[0, min[1, 2r], min[2, r]]

S/R GAD_FLUXLIMIT_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer ( argument )

S/R GAD_FLUXLIMIT_ADV_Y

Fy . vT (argument )
V : vTrans ( argument )
T : tracer ( argument )

S/R GAD_FLUXLIMIT_ADV_R
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F,.: wT (argument )
W : rTrans ( argument )
T : tracer ( argument )

2.17.2.2 Third order direct space-time

The direct space-time method deals with space and time discretization together (other methods that treat space and
time separately are known collectively as the “Method of Lines”). The Lax-Wendroff scheme falls into this category;
it adds sufficient diffusion to a second order flux that the forward-in-time method is stable. The upwind biased third
order DST scheme is:

F=u(ri-1+do(ri —7i—1) +di(ri-1 —Ti—2)) ¥V u>0

2.152
FZ’U,(TZ‘—do(Ti—Tifl)—dl(TiJrl—Ti)) V u<0 ( )

where

1
do= (2= le)(1~c])
1

dy = 5

(1= feD (X +e])

The coefficients dy and d; approach 1/3 and 1/6 respectively as the Courant number, ¢, vanishes. In this limit, the
conventional third order upwind method is recovered. For finite Courant number, the deviations from the linear method
are analogous to the diffusion added to centered second order advection in the Lax-Wendroff scheme.

The DST3 method described above must be used in a forward-in-time manner and is stable for 0 < |¢| < 1. Although
the scheme appears to be forward-in-time, it is in fact third order in time and the accuracy increases with the Courant
number! For low Courant number, DST3 produces very similar results (indistinguishable in Figure 2.12) to the linear
third order method but for large Courant number, where the linear upwind third order method is unstable, the scheme
is extremely accurate (Figure 2.13) with only minor overshoots.

S/R GAD_DST3_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer ( argument )

S/R GAD_DST3_ADV_Y

Fy . vT (argument )
V' : vTrans ( argument )
T : tracer ( argument )

S/R GAD_DST3_ADV_R
F, : wT (argument )
W : rTrans ( argument )
T : tracer ( argument )
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2.17.2.3 Third order direct space-time with flux limiting

The overshoots in the DST3 method can be controlled with a flux limiter. The limited flux is written:

1 1
F = 5(u + |ul) (T¢,1 +(rt)(ri — Ti,l)) + §(u — |ul]) (Ti,l +(r7)(m — Ti,l)) (2.153)
where
gt Til T Tic2
Ti — Ti-1
= Ti+t1 — T
Ti — Ti—1

and the limiter is the Sweby limiter:

1
¥(r) = max[0, min[min(1, dy + dy 7],

%)

S/R GAD_DST3FL_ADV_X

F, : uT (argument )
U : uTrans ( argument )
T : tracer ( argument )

S/R GAD_DST3FL_ADV_Y

Fy . vT (argument )
V : vTrans ( argument )
T : tracer ( argument )

S/R GAD_DST3FL_ADV_R

F,.: wT (argument )
W : rTrans ( argument )
T : tracer ( argument )

2.17.2.4 Multi-dimensional advection

In many of the aforementioned advection schemes the behavior in multiple dimensions is not necessarily as good as
the one dimensional behavior. For instance, a shape preserving monotonic scheme in one dimension can have severe
shape distortion in two dimensions if the two components of horizontal fluxes are treated independently. There is a
large body of literature on the subject dealing with this problem and among the fixes are operator and flux splitting
methods, corner flux methods, and more. We have adopted a variant on the standard splitting methods that allows the
flux calculations to be implemented as if in one dimension:

. 1 1
n+l/3 _ n _ T (M .
T 7" — At <$51F (") =71 x&u)

1 1
TS = g tl/S At (Aydey(r"“/”) - T"m) (2.154)

Ay

1 1
n+3/3 _ _n+2/3 _ A 5. F® n+2/3y _ . n_— <.
T T t (Arék (r )—T Arélw>
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In order to incorporate this method into the general model algorithm, we compute the effective tendency rather than
update the tracer so that other terms such as diffusion are using the n time-level and not the updated n + 3/3 quantities:

n 1
Ga$1/2 = E(7n+3/3 —-7")

So that the over all time-stepping looks likes:

L At (Gn+1/2 + Gdjff('rn) + Gg)rcing)

adv

S/R GAD_ADVECTION

T : tracer ( argument )
GZ;}/ 2. gTracer (argument )
Fw7Fy7F7' : aF(lOC&])

U : uTrans (local )

V' : vTrans (local )

W : rTrans ( local )

A schematic of multi-dimension time stepping for the cube sphere configuration is show in Figure 2.11 .

2.17.3 Comparison of advection schemes

Table 2.2 shows a summary of the different advection schemes available in MITgem. “AB” stands for Adams-Bashforth
and “DST” for direct space-time. The code corresponds to the number used to select the corresponding advection
scheme in the parameter file (e.g., tempAdvScheme=3 in file data selects the 3rd order upwind advection scheme for
temperature advection).
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Figure 2.11: Multi-dimensional advection time-stepping with cubed-sphere topology.
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Table 2.2: MITgcm Advection Schemes

Advection Scheme Code| Use Use multi- | Stencil (1- | Comments
AB? dim? D)

Ist order upwind 1 no yes* 3 linear 7, non-
linear ¢

centered 2nd order 2 yes no 3 linear

3rd order upwind 3 yes no 5 linear T

centered 4th order 4 yes no 5 linear

2nd order DST (Lax-Wendroff) 20 no yes* 3 linear 7, non-
linear ¥

3rd order DST 30 no yes™ 5 linear 7, non-
linear ¢

2nd order flux limiters 77 no yes' 5 non-linear

3rd order DST flux limiter 33 no yes™ 5 non-linear

piecewise parabolic w/“null” limiter 40 no yes 7 non-linear

piecewise parabolic w/“mono” limiter 41 no yes 7 non-linear

piecewise parabolic w/“weno” limiter 42 no yes 7 non-linear

piecewise quartic w/“null” limiter 50 no yes 9 non-linear

piecewise quartic w/“mono” limiter 51 no yes 9 non-linear

piecewise quartic w/“weno” limiter 52 no yes 9 non-linear

7th order one-step method w/monotonicity | 7 no yes 9 non-linear

preserving limiter

second order-moment Prather 80 no yes 3 non-linear

second order-moment Prather w/limiter 81 no yes 3 non-linear

yes" indicates that either the multi-dim advection algorithm or standard approach can be utilized, controlled by a
namelist parameter multiDimAdvection (in these cases, given that these schemes was designed to use multi-dim advec-
tion, using the standard approach is not recommended). The minimum size of the required tile overlap region (OLx,
OLXx) is (stencil size -1)/2. The minimum overlap required by the model in general is 2, so for some of the above choices
the advection scheme will not cost anything in terms of an additional overlap requirement, but especially given a small
tile size, using scheme 7 for example would require costly additional overlap points (note a cube sphere grid with a
“wet-corner” requires doubling this overlap!) In the ‘Comments’ column, 7 refers to tracer advection, ¥ momentum
advection.

Shown in Figure 2.12 and Figure 2.13 is a 1-D comparison of advection schemes. Here we advect both a smooth hill
and a hill with a more abrupt shock. Figure 2.12 shown the result for a weak flow (low Courant number) whereas Figure
2.13 shows the result for a stronger flow (high Courant number).

Figure 2.14, Figure 2.15 and Figure 2.16 show solutions to a simple diagonal advection problem using a selection of
schemes for low, moderate and high Courant numbers, respectively. The top row shows the linear schemes, integrated
with the Adams-Bashforth method. Theses schemes are clearly unstable for the high Courant number and weakly
unstable for the moderate Courant number. The presence of false extrema is very apparent for all Courant numbers.
The middle row shows solutions obtained with the unlimited but multi-dimensional schemes. These solutions also
exhibit false extrema though the pattern now shows symmetry due to the multi-dimensional scheme. Also, the schemes
are stable at high Courant number where the linear schemes weren’t. The bottom row (left and middle) shows the
limited schemes and most obvious is the absence of false extrema. The accuracy and stability of the unlimited non-
linear schemes is retained at high Courant number but at low Courant number the tendency is to lose amplitude in sharp
peaks due to diffusion. The one dimensional tests shown in Figure 2.12 and Figure 2.13 show this phenomenon.

Finally, the bottom left and right panels use the same advection scheme but the right does not use the multi-dimensional
method. At low Courant number this appears to not matter but for moderate Courant number severe distortion of the
feature is apparent. Moreover, the stability of the multi-dimensional scheme is determined by the maximum Courant
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Figure 2.12: Comparison of 1-D advection schemes: Courant number is 0.05 with 60 points and solutions are shown
for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind, DST3, third order upwind and
second order upwind. b) Shows the centered schemes; Lax-Wendroff, DST4, centered second order, centered fourth
order and finite volume fourth order. ¢) Shows the second order flux limiters: minmod, Superbee, MC limiter and the
van Leer limiter. d) Shows the DST3 method with flux limiters due to Sweby with u = 1, u = ¢/(1 — ¢) and a fourth

order DST method with Sweby limiter, u = ¢/(1 — ¢) .
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Figure 2.13: Comparison of 1-D advection schemes: Courant number is 0.89 with 60 points and solutions are shown
for T=1 (one complete period). a) Shows the upwind biased schemes; first order upwind and DST3. Third order upwind
and second order upwind are unstable at this Courant number. b) Shows the centered schemes; Lax-Wendroft, DST4.
Centered second order, centered fourth order and finite volume fourth order are unstable at this Courant number. c)
Shows the second order flux limiters: minmod, Superbee, MC limiter and the van Leer limiter. d) Shows the DST3
method with flux limiters due to Sweby with u = 1, u = ¢/(1 —¢) and a fourth order DST method with Sweby limiter,

w=c/(l—c).

2.17. Advection schemes

85



MITgcm Documentation, Release 2d7a4a2

number applied of each dimension while the stability of the method of lines is determined by the sum. Hence, in the
high Courant number plot, the scheme is unstable.

With many advection schemes implemented in the code two questions arise: “Which scheme is best?” and “Why don’t
you just offer the best advection scheme?”. Unfortunately, no one advection scheme is “the best” for all particular
applications and for new applications it is often a matter of trial to determine which is most suitable. Here are some
guidelines but these are not the rule;

* If you have a coarsely resolved model, using a positive or upwind biased scheme will introduce significant dif-
fusion to the solution and using a centered higher order scheme will introduce more noise. In this case, simplest
may be best.

* If you have a high resolution model, using a higher order scheme will give a more accurate solution but scale-
selective diffusion might need to be employed. The flux limited methods offer similar accuracy in this regime.

* If your solution has shocks or propagating fronts then a flux limited scheme is almost essential.

* If your time-step is limited by advection, the multi-dimensional non-linear schemes have the most stability (up
to Courant number 1).

* If you need to know how much diffusion/dissipation has occurred you will have a lot of trouble figuring it out
with a non-linear method.

* The presence of false extrema is non-physical and this alone is the strongest argument for using a positive scheme.

2.18 Shapiro Filter

The Shapiro filter (Shapiro 1970) [Sha70] is a high order horizontal filter that efficiently remove small scale grid noise
without affecting the physical structures of a field. It is applied at the end of the time step on both velocity and tracer
fields.

Three different space operators are considered here (S1,S2 and S4). They differ essentially by the sequence of derivative
in both X and Y directions. Consequently they show different damping response function specially in the diagonal
directions X+Y and X-Y.

Space derivatives can be computed in the real space, taking into account the grid spacing. Alternatively, a pure com-
putational filter can be defined, using pure numerical differences and ignoring grid spacing. This later form is stable
whatever the grid is, and therefore specially useful for highly anisotropic grid such as spherical coordinate grid. A
damping time-scale parameter 75, defines the strength of the filter damping.

The three computational filter operators are :

At 1 1
lc: 1—1/2 =)™+ (505,)"
St 1= 1/2 ()" + (o) ™]
At 1
S2c : 1-— —(0s +055) 1"
c 1 A5+ )]
At 1 At 1
dc : 1- —6:0)"|[1 = ———(=6;,)"
Sdc [ o ()T = (50"

In addition, the S2 operator can easily be extended to a physical space filter:

At L %hap =2
—bhapz=n

TShap { 8 } ]

S2g : 1-

with the Laplacian operator ﬁz and a length scale parameter Lgy,,,. The stability of this S2g filter requires Lgpap <
Min(GePa) (Az Ay).

86 Chapter 2. Discretization and Algorithm



MITgcm Documentation, Release 2d7a4a2

2nd order centered 3rd order upwind 4th order centered

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 04 0.6 0.8
Lax—Wendroff 3-DST 4-DST

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Superbee flux limiter 3-DST Sweby u=u(c) Superbee (no multi-dim)

0.2 0.4 06 0.8 0.2 0.4 0.6 0.8 0.2 0.4 06 0.8

Figure 2.14: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.01 with 30 x 30 points and solutions are shown for T=1/2. White lines indicate zero crossing
(ie. the presence of false minima). The left column shows the second order schemes; top) centered second order
with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third
order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method and
bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-Bashforth
and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the Superbee flux
limiter (second order) applied independently in each direction (method of lines).

2.18. Shapiro Filter 87



MITgcm Documentation, Release 2d7a4a2

2nd order centered 3rd order upwind 4th order centered

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 04 0.6 0.8
Lax—Wendroff 3-DST 4-DST

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Superbee flux limiter 3-DST Sweby u=u(c) Superbee (no multi-dim)

0.2 0.4 06 0.8 0.2 0.4 0.6 0.8 0.2 0.4 06 0.8

Figure 2.15: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.27 with 30 x 30 points and solutions are shown for T=1/2. White lines indicate zero crossing
(ie. the presence of false minima). The left column shows the second order schemes; top) centered second order
with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle column shows the third
order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order direct space-time method and
bottom) the same with flux limiting. The top right panel shows the centered fourth order scheme with Adams-Bashforth
and right middle panel shows a fourth order variant on the DST method. Bottom right panel shows the Superbee flux
limiter (second order) applied independently in each direction (method of lines).
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Figure 2.16: Comparison of advection schemes in two dimensions; diagonal advection of a resolved Gaussian feature.
Courant number is 0.47 with 30 x 30 points and solutions are shown for T=1/2. White lines indicate zero crossings
and initial maximum values (ie. the presence of false extrema). The left column shows the second order schemes; top)
centered second order with Adams-Bashforth, middle) Lax-Wendroff and bottom) Superbee flux limited. The middle
column shows the third order schemes; top) upwind biased third order with Adams-Bashforth, middle) third order
direct space-time method and bottom) the same with flux limiting. The top right panel shows the centered fourth order
scheme with Adams-Bashforth and right middle panel shows a fourth order variant on the DST method. Bottom right
panel shows the Superbee flux limiter (second order) applied independently in each direction (method of lines).
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2.18.1 SHAP Diagnostics

SHAP_dT | 5 |SM MR |[K/s | Temperature Tendency due to Shapiro Filter
SHAP_dS | 5 |SM MR |g/kg/s |Specific Humidity Tendency due to Shapiro Filter
SHAP_dU | 5 |UU 148MR |m/s?2 |Zonal Wind Tendency due to Shapiro Filter
SHAP_dV | 5 |VV 147MR |m/s?2 |[Meridional Wind Tendency due to Shapiro Filter

2.19 Nonlinear Viscosities for Large Eddy Simulation

In Large Eddy Simulations (LES), a turbulent closure needs to be provided that accounts for the effects of subgridscale
motions on the large scale. With sufficiently powerful computers, we could resolve the entire flow down to the molecular
viscosity scales (L, =~ lcm). Current computation allows perhaps four decades to be resolved, so the largest problem
computationally feasible would be about 10m. Most oceanographic problems are much larger in scale, so some form
of LES is required, where only the largest scales of motion are resolved, and the subgridscale effects on the large-scale
are parameterized.

To formalize this process, we can introduce a filter over the subgridscale L: u, — ug and L: b — b. This filter has some
intrinsic length and time scales, and we assume that the flow at that scale can be characterized with a single velocity
scale (V) and vertical buoyancy gradient (N?2). The filtered equations of motion in a local Mercator projection about
the gridpoint in question (see Appendix for notation and details of approximation) are:

TN = . W— TN ~ TN 2l
Du  wvsinb | Mg, Or _ (Du  Du)  V7u (2.155)
Dt Rosiné, Ro 0Oz Dt Dt Re
—~ ~ . = = 2
Dy usind | Mgoor (Db Dvy V7o (2.156)
Dt Rosinf Ro 0y Dt Dt Re
Dw & _p Dw Do 2
Dw | b: :_<D“’_D“’> Vo 2.157)
Dt Fro)2 Dt Dt Re
Db ‘Db Db V2b
DO s (Y Eh) VO 2.158
7T (Dt Dt>+PrRe (2.158)
ou o ow
=+—)+5=0 2.159
a <8x + ay) 0z ( )

Tildes denote multiplication by cos 8/ cos 6 to account for converging meridians.

The ocean is usually turbulent, and an operational definition of turbulence is that the terms in parentheses (the *eddy’
terms) on the right of (2.155) - (2.158)) are of comparable magnitude to the terms on the left-hand side. The terms
proportional to the inverse of , instead, are many orders of magnitude smaller than all of the other terms in virtually
every oceanic application.
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2.19.1 Eddy Viscosity

A turbulent closure provides an approximation to the ’eddy’ terms on the right of the preceding equations. The simplest
form of LES is just to increase the viscosity and diffusivity until the viscous and diffusive scales are resolved. That is,
we approximate (2.155) - (2.158):

= —_~ 9= 82u
Du _Duy Vil oz (2.160)
Dt Dt Rer,  Rey,
— -~ 9 %%
Do _Dv) Vil | o2 2.161)
Dt Dt Reh Reu
Dw Dw\ V2w 2%
Dw _Dw)  Vi0 | o (2.162)
Dt Dt Rey, Re,
- R - 62E
Db _ Db\  Vib . &7 (2.163)
Dt Dt PrRe, PrRe,

2.19.1.1 Reynolds-Number Limited Eddy Viscosity

One way of ensuring that the gridscale is sufficiently viscous (i.e., resolved) is to choose the eddy viscosity Ay, so that
the gridscale horizontal Reynolds number based on this eddy viscosity, Rep, is O(1). That is, if the gridscale is to be
viscous, then the viscosity should be chosen to make the viscous terms as large as the advective ones. Bryan et al.
(1975) [BMP75] notes that a computational mode is squelched by using Re;, <2.

MITgcm users can select horizontal eddy viscosities based on Rej, using two methods. 1) The user may estimate the
velocity scale expected from the calculation and grid spacing and set viscAh to satisfy Re;, < 2. 2) The user may
use viscAhReMax, which ensures that the viscosity is always chosen so that Re;, < viscAhReMax. This last option
should be used with caution, however, since it effectively implies that viscous terms are fixed in magnitude relative to
advective terms. While it may be a useful method for specifying a minimum viscosity with little effort, tests Bryan et
al. (1975) [BMP75] have shown that setting viscAhReMax =2 often tends to increase the viscosity substantially over
other more ’physical’ parameterizations below, especially in regions where gradients of velocity are small (and thus
turbulence may be weak), so perhaps a more liberal value should be used, e.g. viscAhReMax =10.

While it is certainly necessary that viscosity be active at the gridscale, the wavelength where dissipation of energy or
enstrophy occurs is not necessarily L = Ay /U. In fact, it is by ensuring that either the dissipation of energy in a 3-d
turbulent cascade (Smagorinsky) or dissipation of enstrophy in a 2-d turbulent cascade (Leith) is resolved that these
parameterizations derive their physical meaning.

2.19.1.2 Vertical Eddy Viscosities

Vertical eddy viscosities are often chosen in a more subjective way, as model stability is not usually as sensitive to
vertical viscosity. Usually the "observed’ value from finescale measurements is used (e.g. viscAra 1 x 10~4m?/s).
However, Smagorinsky (1993) [Sma93] notes that the Smagorinsky parameterization of isotropic turbulence implies a
value of the vertical viscosity as well as the horizontal viscosity (see below).
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2.19.1.3 Smagorinsky Viscosity

Some suggest (see Smagorinsky 1963 [Sma63]; Smagorinsky 1993 [Sma93]) choosing a viscosity that depends on the
resolved motions. Thus, the overall viscous operator has a nonlinear dependence on velocity. Smagorinsky chose his
form of viscosity by considering Kolmogorov’s ideas about the energy spectrum of 3-d isotropic turbulence.

Kolmogorov supposed that energy is injected into the flow at large scales (small k) and is ’cascaded’ or transferred
conservatively by nonlinear processes to smaller and smaller scales until it is dissipated near the viscous scale. By
setting the energy flux through a particular wavenumber k, €, to be a constant in k, there is only one combination
of viscosity and energy flux that has the units of length, the Kolmogorov wavelength. It is L(v) oc we1/413/4
(the 7 stems from conversion from wavenumber to wavelength). To ensure that this viscous scale is resolved in a
numerical model, the gridscale should be decreased until L.(v) > L (so-called Direct Numerical Simulation, or
DNS). Alternatively, an eddy viscosity can be used and the corresponding Kolmogorov length can be made larger than

the gridscale, L (Ay,) oc e~/ 4A:;’L/ * (for Large Eddy Simulation or LES).

There are two methods of ensuring that the Kolmogorov length is resolved in MITgecm. 1) The user can estimate the flux
of energy through spectral space for a given simulation and adjust grid spacing or viscAh to ensure that L.(Ap) > L;
2) The user may use the approach of Smagorinsky with viscC2Smag, which estimates the energy flux at every grid
point, and adjusts the viscosity accordingly.

Smagorinsky formed the energy equation from the momentum equations by dotting them with velocity. There are some
complications when using the hydrostatic approximation as described by Smagorinsky (1993) [Sma93]. The positive
definite energy dissipation by horizontal viscosity in a hydrostatic flow is ¥ D?, where D is the deformation rate at
the viscous scale. According to Kolmogorov’s theory, this should be a good approximation to the energy flux at any
wavenumber € ~ vD?. Kolmogorov and Smagorinsky noted that using an eddy viscosity that exceeds the molecular
value v should ensure that the energy flux through viscous scale set by the eddy viscosity is the same as it would have

been had we resolved all the way to the true viscous scale. That is, € &= ApsmagD . If we use this approximation to
estimate the Kolmogorov viscous length, then

_ —2. ——1/2
Le(Ansmag) o we VAL -~ n(Apsumag D)4 AYE = w A2 DY (2.164)
To make L.(Apsmag) scale with the gridscale, then
iscC2Smag\? , —
AbSmag = (V' - g) L*D| (2.165)

Where the deformation rate appropriate for hydrostatic flows with shallow-water scaling is

— — 2 — — 2
— oun 0v oun O
— or 9 o v (2.166)
Dl \/(317 5‘y> + <8y + 89:)

The coefficient viscC2Smag is what an MITgcm user sets, and it replaces the proportionality in the Kolmogorov length
with an equality. Others (Griffies and Hallberg, 2000 [GHOO]) suggest values of viscC2Smag from 2.2 to 4 for oceanic
problems. Smagorinsky (1993) [Sma93] shows that values from 0.2 to 0.9 have been used in atmospheric modeling.

Smagorinsky (1993) [Sma93] shows that a corresponding vertical viscosity should be used:

. 2 —\ 2 — 2
Avsmag _ VISCC2smag H2 @ + @ (2167)
T 0z 0z

This vertical viscosity is currently not implemented in MITgcm.
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2.19.1.4 Leith Viscosity

Leith (1968, 1996) [Lei68] [Lei96] notes that 2-D turbulence is quite different from 3-D. In 2-D turbulence, energy
cascades to larger scales, so there is no concern about resolving the scales of energy dissipation. Instead, another quan-
tity, enstrophy, (which is the vertical component of vorticity squared) is conserved in 2-D turbulence, and it cascades
to smaller scales where it is dissipated.

Following a similar argument to that above about energy flux, the enstrophy flux is estimated to be equal to the positive-
definite gridscale dissipation rate of enstrophy 1 & Ap1citn| V3|2, By dimensional analysis, the enstrophy-dissipation
scale is Ln(AhLeith) o wAi/LQeithn’l/ 6. Thus, the Leith-estimated length scale of enstrophy-dissipation and the result-
ing eddy viscosity are

Ly (ApLeitn) o< WAilzézeithnil/G = 71'All~f;ith|vw3|71/3 (2.168)
. . 3
ApLeith = (‘”Sccere'th) LP|Vaws| (2.169)
o (05 oa\l® [0 (a5 oda\]
_ /|2 (9v _ou 9 (0v _0Ou (2.170)
[Veas \/[596 (3x ayﬂ - [531 (396 51/”

The runtime flag useFullLeith controls whether or not to calculate the full gradients for the Leith viscosity (.TRUE.)
or to use an approximation (.FALSE.). The only reason to set useFullLeith = FALSE. is if your simulation fails when
computing the gradients. This can occur when using the cubed sphere and other complex grids.

2.19.1.5 Modified Leith Viscosity

The argument above for the Leith viscosity parameterization uses concepts from purely 2-dimensional turbulence,
where the horizontal flow field is assumed to be non-divergent. However, oceanic flows are only quasi-two dimensional.
While the barotropic flow, or the flow within isopycnal layers may behave nearly as two-dimensional turbulence, there
is a possibility that these flows will be divergent. In a high-resolution numerical model, these flows may be substantially
divergent near the grid scale, and in fact, numerical instabilities exist which are only horizontally divergent and have
little vertical vorticity. This causes a difficulty with the Leith viscosity, which can only respond to buildup of vorticity
at the grid scale.

MITgem offers two options for dealing with this problem. 1) The Smagorinsky viscosity can be used instead of
Leith, or in conjunction with Leith — a purely divergent flow does cause an increase in Smagorinsky viscosity; 2)
The viscC2LeithD parameter can be set. This is a damping specifically targeting purely divergent instabilities near the
gridscale. The combined viscosity has the form:

iscC2Leith\ ° iscC2LeithD \ ° _
ApLeith = Lg\/(wscce't) |Vios)? + (‘llsccelt> IV(V - @) |? (2.171)
iy iy

_ o (8a o5\1> [0 [oa &5\
FoV =] (o, oY o (ou ov (2.172)
IVV-a)l = \/[fh <5w * ayﬂ * [ay (f% * 51/)}

Whether there is any physical rationale for this correction is unclear, but the numerical consequences are good. The
divergence in flows with the grid scale larger or comparable to the Rossby radius is typically much smaller than the
vorticity, so this adjustment only rarely adjusts the viscosity if viscC2LeithD = viscC2Leith. However, the rare regions
where this viscosity acts are often the locations for the largest vales of vertical velocity in the domain. Since the
CFL condition on vertical velocity is often what sets the maximum timestep, this viscosity may substantially increase
the allowable timestep without severely compromising the verity of the simulation. Tests have shown that in some
calculations, a timestep three times larger was allowed when viscC2LeithD = viscC2Leith.
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2.19.1.6 Quasi-Geostrophic Leith Viscosity

A variant of Leith viscosity can be derived for quasi-geostrophic dynamics. This leads to a slightly different equation
for the viscosity that includes a contribution from quasigeostrophic vortex stretching (Bachman et al. 2017 [BFKP17]).

The viscosity is given by
<AA5> °
Vi =
0

where A is a tunable parameter of O(1), As = v/AzAy is the grid scale, fZ is the vertical component of the Coriolis
parameter, vy, is the horizontal velocity, N? is the Brunt-Viisili frequency, and b is the buoyancy.

Vi(fz) + Vi(V X Vi) + 8Z%Vhb (2.173)

However, the viscosity given by (2.173) does not constrain purely divergent motions. As such, a small O(¢) correction
is added

AAs 3 . f 2
Vi = ( - ) Va(f2) + Vi(V X Vie) + 0. 55 Vib| + [V(V - vi) 2 (2.174)

This form is, however, numerically awkward; as the Brunt-Véiséld Frequency becomes very small in regions of weak
or vanishing stratification, the vortex stretching term becomes very large. The resulting large viscosities can lead to
numerical instabilities. Bachman et al. (2017) [BFKP17] present two limiting forms for the viscosity based on flow
parameters such as F'r,, the Froude number, and Ro,, the Rossby number. The second of which,

(AAS)S
Ve =
'/T
f2
min (‘vth* + azmvhb

has been implemented and is active when #define ALLOW_LEITH_QG is included in a copy of
MOM_COMMON_OPTIONS.h in a code mods directory (specified through -mods command line option in
genmake?).

(2.175)

Fr? 2
(14 4 1) ]} + 9T i)

LeithQG viscosity is designed to work best in simulations that resolve some mesoscale features. In simulations that
are too coarse to permit eddies or fine enough to resolve submesoscale features, it should fail gracefully. The non-
dimensional parameter viscC2LeithQG corresponds to A in the above equations and scales the viscosity; the recom-
mended value is 1.

There is no reason to use the quasi-geostrophic form of Leith at the same time as either standard Leith or modified
Leith. Therefore, the model will not run if non-zero values have been set for these coefficients; the model will stop
during the configuration check. LeithQG can be used regardless of the setting for useFullLeith. Just as for the other
forms of Leith viscosity, this flag determines whether or not the full gradients are used. The simplified gradients were
originally intended for use on complex grids, but have been shown to produce better kinetic energy spectra even on
very straightforward grids.

To add the LeithQG viscosity to the GMRedi coefficient, as was done in some of the simulations in Bachman et al.
(2017) [BFKP17], #define ALLOW_LEITH_QG must be specified, as described above. In addition to this, the
compile-time flag ALLOW_GM_LEITH_QG must also be defined in a (-mods) copy of GMREDI_OPTIONS.h when
the model is compiled, and the runtime parameter GM_useLeithQG set to .TRUE. in data.gmredi. This will use the
value of viscC2LeithQG specified in the data input file to compute the coefficient.
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2.19.1.7 Courant-Freidrichs—Lewy Constraint on Viscosity

Whatever viscosities are used in the model, the choice is constrained by gridscale and timestep by the
Courant—Freidrichs—-Lewy (CFL) constraint on stability:

L2
M 1A
L4
32At

A

Ay <

The viscosities may be automatically limited to be no greater than these values in MITgcm by specifying viscAhGrid-
Max < 1 and viscA4GridMax < 1. Similarly-scaled minimum values of viscosities are provided by viscAhGridMin
and viscA4GridMin, which if used, should be set to values < 1. L is roughly the gridscale (see below).

Following Griffies and Hallberg (2000) [GHO0], we note that there is a factor of Ax? /8 difference between the harmonic
and biharmonic viscosities. Thus, whenever a non-dimensional harmonic coefficient is used in the MITgcm (e.g.
viscAhGridMax < 1), the biharmonic equivalent is scaled so that the same non-dimensional value can be used (e.g.
viscA4GridMax < 1).

2.19.1.8 Biharmonic Viscosity

Holland (1978) [Hol78] suggested that eddy viscosities ought to be focused on the dynamics at the grid scale, as larger
motions would be 'resolved’. To enhance the scale selectivity of the viscous operator, he suggested a biharmonic eddy
viscosity instead of a harmonic (or Laplacian) viscosity:

—_— —_~ ~ 0%u
Dua _Du\  -Vyu  g# (2.176)
Dt Dt Rey Re,

— —= 4= %%

Do Dv) ViU | a2 2.177)
Dt Dt Rey Re,

- T 4— 9w

Dw _Dw)  —Vi0 | 57 (2.178)
Dt Dt Re4 ReU

5 D 5 o

~ Pr Reys PrRe,

Griffies and Hallberg (2000) [GHOO] propose that if one scales the biharmonic viscosity by stability considerations,
then the biharmonic viscous terms will be similarly active to harmonic viscous terms at the gridscale of the model, but
much less active on larger scale motions. Similarly, a biharmonic diffusivity can be used for less diffusive flows.

Dt Dt

In practice, biharmonic viscosity and diffusivity allow a less viscous, yet numerically stable, simulation than harmonic
viscosity and diffusivity. However, there is no physical rationale for such operators being of leading order, and more
boundary conditions must be specified than for the harmonic operators. If one considers the approximations of (2.160)
- (2.163) and (2.176) - (2.179) to be terms in the Taylor series expansions of the eddy terms as functions of the large-
scale gradient, then one can argue that both harmonic and biharmonic terms would occur in the series, and the only
question is the choice of coefficients. Using biharmonic viscosity alone implies that one zeros the first non-vanishing
term in the Taylor series, which is unsupported by any fluid theory or observation.

Nonetheless, MITgcm supports a plethora of biharmonic viscosities and diffusivities, which are controlled with param-
eters named similarly to the harmonic viscosities and diffusivities with the substitution h — 4 in the MITgcm parameter
name. MITgcm also supports biharmonic Leith and Smagorinsky viscosities:

iscC4S 24
Adsmag = | ="2M38 ) 2 ) (2.180)
T 8
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5 . . 6 . . 6
Auteion = % (V'SCO"Le'th) V@2 + (‘“SCC“Le'thD> V(Y -T2 (2.181)
™ 7T

However, it should be noted that unlike the harmonic forms, the biharmonic scaling does not easily relate to whether
energy-dissipation or enstrophy-dissipation scales are resolved. If similar arguments are used to estimate these scales
and scale them to the gridscale, the resulting biharmonic viscosities should be:

iscC4 e am
AtSmag = <V'Scsmag) L7|V2T,| (2.182)
™
o [ viscCLeith\'* _ viscC4LeithD\ '? = )
A4reith = L — |V2ws|2 + — |V2(V - 1) |2 (2.183)
Thus, the biharmonic scaling suggested by Griffies and Hallberg (2000) [GHOO] implies:
D]  LIV*Ty
|Vws| oc L|V2ws)

It is not at all clear that these assumptions ought to hold. Only the Griffies and Hallberg (2000) [GHOO] forms are
currently implemented in MITgcm.

2.19.1.9 Selection of Length Scale

Above, the length scale of the grid has been denoted L. However, in strongly anisotropic grids, L, and L,, will be quite
different in some locations. In that case, the CFL condition suggests that the minimum of L, and L, be used. On the
other hand, other viscosities which involve whether a particular wavelength is "resolved’ might be better suited to use
the maximum of L, and L,. Currently, MITgcm uses useAreaViscLength to select between two options. If false, the
square root of the harmonic mean of Li and Lf/ is used for all viscosities, which is closer to the minimum and occurs
naturally in the CFL constraint. If useAreaViscLength is true, then the square root of the area of the grid cell is used.

2.19.2 Mercator, Nondimensional Equations

The rotating, incompressible, Boussinesq equations of motion (Gill, 1982) [Gil82] on a sphere can be written in Mer-
cator projection about a latitude 6y and geopotential height z = r — ry. The nondimensional form of these equations
is:

Di ¥sin6 or  AFr’Mpg, cos 6 Fr’Mpg,iw  Rok - VZu
RoY _ Usin? SO AT MRoCOSY, 2.184
°Dt sin 0 +Mr ox * L sin By v r/H * Re ( )
Dv  usinf on pRotan@(a? + %)  Fr’Mpg,ow  Roy - Vu
Ro=—— Mpy— = — - 2.185
°Di T sing, TR0y /L H  Re (2-185)
~ 272 | 52 2125 T2
Fr2)\2%—b+a—7r—)\wt90u:/\u (@*+v%)  FreA?z-Viu (2.186)
Dt 0z MRo MRO(T/L) Re
Db w— Vb
Dt ~ PrRe
ou 0V ow
2
ou  ov) ow _, 2.187
a <8:c + 8y> + 0z ( )
Where
cosfp . wr . wF
H="cosg 7 Vu’ v Vi
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Dimensional variables are denoted by an asterisk where necessary. If we filter over a grid scale typical for ocean models:

Im < L < 100km

0.0001 < A <1

0.00lm/s < V < 1 m/s

fo < 0.0001 s !

0.01s' < N <0.0001s !

these equations are very well approximated by

FrQ)\Z%l: —b+ % = ch\jﬁoa + Frzﬁevzw (2.190)
u? (gz + gD g—f =0 (2.192)
\VARN (88; + ;; + )\28812>

Neglecting the non-frictional terms on the right-hand side is usually called the ’traditional’ approximation. It is appro-
priate, with either large aspect ratio or far from the tropics. This approximation is used here, as it does not affect the
form of the eddy stresses which is the main topic. The frictional terms are preserved in this approximate form for later

comparison with eddy stresses.
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CHAPTER
THREE

GETTING STARTED WITH MITGCM

This chapter is divided into two main parts. The first part, which is covered in sections Section 3.1 through Section 3.6,
contains information about how to download, build and run MITgcm. We believe the best way to familiarize yourself
with the model is to run one of the tutorial examples provided in the MITgcm repository (see Section 4), so would
suggest newer MITgcm users jump there following a read-through of the first part of this chapter. Information is also
provided in this chapter on how to customize the code when you are ready to try implementing the configuration you
have in mind, in the second part (Section 3.8). The code and algorithm are described more fully in Section 2 and
Section 6 and chapters thereafter.

In this chapter and others (e.g., chapter Contributing to the MITgcm), for arguments where the user is expected to
replace the text with a user-chosen name, userid, etc., our convention is to show these as upper-case text surrounded by
« », such as «<USER_MUST_REPLACE_TEXT_HERE». The « and » characters are NOT typed when the text is replaced.

3.1 Where to find information

There is a web-archived support mailing list for the model that you can email at MITgcm-support@mitgecm.org once
you have subscribed.

To sign up (subscribe) for the mailing list (highly recommended), click here

To browse through the support archive, click here

3.2 Obtaining the code

The MITgcem code and documentation are under continuous development and we generally recommend that one down-
loads the latest version of the code. You will need to decide if you want to work in a “git-aware” environment (Method
1) or with a one-time “stagnant” download (Method 2). We generally recommend method 1, as it is more flexible and
allows your version of the code to be regularly updated as MITgcm developers check in bug fixes and new features.
However, this typically requires at minimum a rudimentary understanding of git in order to make it worth one’s while.

Periodically we release an official checkpoint (or “tag”). We recommend one download the latest code, unless there are
reasons for obtaining a specific checkpoint (e.g. duplicating older results, collaborating with someone using an older
release, etc.)
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3.2.1 Method 1

This section describes how to download git-aware copies of the repository. In a terminal window, cd to the directory
where you want your code to reside. Type:

% git clone https://github.com/MITgcm/MITgcm.git

This will download the latest available code. If you now want to revert this code to a specific checkpoint release, first
cd into the MITgcm directory you just downloaded, then type git checkout checkpoint«XXX» where «XXX» is the
checkpoint version.

Alternatively, if you prefer to use ssh keys (say for example, you have a firewall which won’t allow a https download),
type:

% git clone git@github.com:MITgcm/MITgcm.git

You will need a GitHub account for this, and will have to generate a ssh key though your GitHub account user settings.

The fully git-aware download is over several hundred MB, which is considerable if one has limited internet download
speed. In comparison, the one-time download zip file (Method 2, below) is order 100 MB. However, one can obtain
a truncated, yet still git-aware copy of the current code by adding the option --depth=1 to the git clone command
above; all files will be present, but it will not include the full git history. However, the repository can be updated going
forward.

3.2.2 Method 2

This section describes how to do a one-time download of MITgcm, NOT git-aware. In a terminal window, cd to the
directory where you want your code to reside. To obtain the current code, type:

% wget https://github.com/MITgcm/MITgcm/archive/master.zip

For specific checkpoint release XXX, instead type:

% wget https://github.com/MITgcm/MITgcm/archive/checkpoint«XXX».zip

3.3 Updating the code

There are several different approaches one can use to obtain updates to MITgcm; which is best for you depends a bit
on how you intend to use MITgcm and your knowledge of git (and/or willingness to learn). Below we outline three
suggested update pathways:

1. Fresh Download of MITgcm

This approach is the most simple, and virtually foolproof. Whether you downloaded the code from a static zip file
(Method 2) or used the git clone command (Method 1), create a new directory and repeat this procedure to download a
current copy of MITgecm. Say for example you are starting a new research project, this would be a great time to grab
the most recent code repository and keep this new work entirely separate from any past simulations. This approach
requires no understanding of git, and you are free to make changes to any files in the MIT repo tree (although we
generally recommend that you avoid doing so, instead working in new subdirectories or on separate scratch disks as
described here, for example).

2. Using git pull to update the (unmodified) MITgem repo tree
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If you have downloaded the code through a git clone command (Method I above), you can incorporate any changes to
the source code (including any changes to any files in the MITgcm repository, new packages or analysis routines, etc.)
that may have occurred since your original download. There is a simple command to bring all code in the repository
to a ‘current release’ state. From the MITgcm top directory or any of its subdirectories, type:

% git pull

and all files will be updated to match the current state of the code repository, as it exists at GitHub. (Note: if you plan
to contribute to MITgcm and followed the steps to download the code as described in Section 5, you will need to type
git pull upstream instead.)

This update pathway is ideal if you are in the midst of a project and you want to incorporate new MITgcm features into
your executable(s), or take advantage of recently added analysis utilties, etc. After the git pull, any changes in model
source code and include files will be updated, so you can repeat the build procedure (Section 3.5) and you will include
all these new features in your new executable.

Be forewarned, this will only work if you have not modified ANY of the files in the MITgcm repository (adding new
files is ok; also, all verification run subdirectories build and run are also ignored by git). If you have modified files
and the git pull fails with errors, there is no easy fix other than to learn something about git (continue reading...)

3. Fully embracing the power of git!

Git offers many tools to help organize and track changes in your work. For example, one might keep separate projects
on different branches, and update the code separately (using git pull) on these separate branches. You can even make
changes to code in the MIT repo tree; when git then tries to update code from upstream (see Figure 5.1), it will notify
you about possible conflicts and even merge the code changes together if it can. You can also use git commit to help
you track what you are modifying in your simulations over time. If you’re planning to submit a pull request to include
your changes, you should read the contributing guide in Section 5, and we suggest you do this model development in a
separate, fresh copy of the code. See Section 5.2 for more information and how to use git effectively to manage your
workflow.

3.4 Model and directory structure

The “numerical” model is contained within a execution environment support wrapper. This wrapper is designed to
provide a general framework for grid-point models; MITgcm is a specific numerical model that makes use of this
framework (see Section 6.2 for additional detail). Under this structure, the model is split into execution environment
support code and conventional numerical model code. The execution environment support code is held under the
eesupp directory. The grid point model code is held under the model directory. Code execution actually starts in the
eesupp routines and not in the model routines. For this reason the top-level main.F is in the eesupp/src directory. In
general, end-users should not need to worry about the wrapper support code. The top-level routine for the numerical
part of the code is in model/src/the_model_main.F. Here is a brief description of the directory structure of the model
under the root tree.

e model: this directory contains the main source code. Also subdivided into two subdirectories: model/inc (in-
cludes files) and model/src (source code).

* eesupp: contains the execution environment source code. Also subdivided into two subdirectories: eesupp/inc
and eesupp/src.

* pkg: contains the source code for the packages. Each package corresponds to a subdirectory. For example,
pkg/gmredi contains the code related to the Gent-McWilliams/Redi scheme, pkg/seaice the code for a dynamic
seaice model which can be coupled to the ocean model. The packages are described in detail in Section 8 and
Section 9].

¢ doc: contains MITgem documentation in reStructured Text (rst) format.
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* tools: this directory contains various useful tools. For example, genmake? is a script written in bash that should
be used to generate your makefile. The subdirectory tools/build_options contains ‘optfiles’ with the compiler
options for many different compilers and machines that can run MITgcm (see Section 3.5.2.2). This directory
also contains subdirectories tools/adjoint_options and tools/OAD_support that are used to generate the tangent
linear and adjoint model (see details in Section 7).

* utils: this directory contains various utilities. The utils/matlab subdirectory contains matlab scripts for reading
model output directly into matlab. The subdirectory utils/python contains similar routines for python. utils/scripts
contains C-shell post-processing scripts for joining processor-based and tiled-based model output.

* verification: this directory contains the model examples. See Section 4.
* jobs: contains sample job scripts for running MITgcm.
* Isopt: Line search code used for optimization.

* optim: Interface between MITgcm and line search code.

3.5 Building the model

3.5.1 Quickstart Guide

To compile the code, we use the make program. This uses a file (Makefile) that allows us to pre-process source files,
specify compiler and optimization options and also figures out any file dependencies. We supply a script (genmake?),
described in section Section 3.5.2, that automatically generates the Makefile for you. You then need to build the
dependencies and compile the code (Section 3.5.3).

As an example, assume that you want to build and run experiment verification/exp2. Let’s build the code in verifica-
tion/exp2/build:

% cd verification/exp2/build

First, generate the Makefile:

% ../../../tools/genmake2 -mods ../code -optfile «/PATH/TO/OPTFILE»

The -mods command line option tells genmake?2 to override model source code with any files in the subdirectory . ./
code (here, you need to configure the size of the model domain by overriding MITgcm’s default SIZE.h with an edited
copy ../code/SIZE.h containing the specific domain size for exp2).

The -optfile command line option tells genmake?2 to run the specified optfile, a bash shell script, during genmake?2’s
execution. An optfile typically contains definitions of environment variables, paths, compiler options, and anything else
that needs to be set in order to compile on your local computer system or cluster with your specific Fortan compiler.
As an example, we might replace «/PATH/TO/OPTFILE» with ../../../tools/build_options/linux_amd64_ifort11 for use
with the Intel Fortran compiler (version 11 and above) on a linux x86_64 platform. This and many other optfiles for
common systems and Fortran compilers are located in tools/build_options.

-mods, -optfile, and many additional genmake2 command line options are described more fully in Section 3.5.2.1.
Detailed instructions on building with MPI are given in Section 3.5.4.

Once a Makefile has been generated, we create the dependencies with the command:

% make depend

It is important to note that the make depend stage will occasionally produce warnings or errors if the dependency
parsing tool is unable to find all of the necessary header files (e.g., netcdf.inc, or worse, say it cannot find a Fortran
compiler in your path). In some cases you may need to obtain help from your system administrator to locate these files.
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Next, one can compile the code using:

% make

Assuming no errors occurred, the make command creates an executable called mitgcmuv.
Now you are ready to run the model. General instructions for doing so are given in section Section 3.6.

3.5.2 Generating a Makefile using genmake2

A shell script called genmake2 for generating a Makefile is included as part of MITgcm. Typically genmake2 is used
in a sequence of steps as shown below:

% ../../../tools/genmake2 -mods ../code -optfile «/PATH/TO/OPTFILE»
% make depend
% make

The first step above creates a unix-style Makefile. The Makefile is used by make to specify how to compile the
MITgcm source files (for more detailed descriptions of what the make tools are, and how they are used, see here).

This section describes details and capabilities of genmake2, located in the tools directory. genmake? is a shell script
written to work in bash (and with all “sh”—compatible shells including Bourne shells). Like many unix tools, there is a
help option that is invoked thru genmake2 -h. genmake?2 parses information from the following sources, in this order:

1. Command-line options (see Section 3.5.2.1)

2. A genmake_local file if one is found in the current directory. This is a bash shell script that is executed prior
to the optfile (see step #3), used in some special model configurations and/or to set some options that can affect
which lines of the optfile are executed. For example, this genmake_local file is required for a special setup,
building a ‘MITgcm coupler’ executable; in a more typical setup, one will not require a genmake_local file.

3. An “options file” a.k.a. optfile (a bash shell script) specified by the command-line option -optfile «/PATH/
TO/OPTFILE», as mentioned briefly in Section 3.5.1 and described in detail in Section 3.5.2.2.

4. A packages.conf file (if one is found) with the specific list of packages to compile (see Section 8.1.1). The
search path for file packages. conf is first the current directory, and then each of the -mods directories in the
given order (as described here).

When you run the genmake?2 script, typical output might be as follows:

% ../../../tools/genmake2 -mods ../code -optfile ../../../tools/build_options/linux_
—.amd64_gfortran

GENMAKE :

A program for GENerating MAKEfiles for the MITgcm project.
For a quick list of options, use "genmake2 -h"

or for more detail see the documentation, section "Building the model”
(under "Getting Started") at: https://mitgcm.readthedocs.io/

=== Processing options files and arguments ===
getting local config information: none found
Warning: ROOTDIR was not specified ; try using a local copy of MITgcm found at "../../.."
getting OPTFILE information:
using OPTFILE="../../../tools/build_options/linux_amd64_gfortran"
getting AD_OPTFILE information:

(continues on next page)
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(continued from previous page)

using AD_OPTFILE="../../../tools/adjoint_options/adjoint_default"
check Fortran Compiler... pass (set FC_CHECK=5/5)
check makedepend (local: 0, system: 1, 1)

=== Checking system libraries ===

Do we have the system() command using gfortran... yes
Do we have the fdate() command using gfortran... yes
Do we have the etime() command using gfortran... c,r: yes (SbR)
Can we call simple C routines (here, "cloc()") using gfortran... yes
Can we unlimit the stack size using gfortran... yes
Can we register a signal handler using gfortran... vyes
Can we use stat() through C calls... vyes
Can we create NetCDF-enabled binaries... yes
skip check for LAPACK Libs
Can we call FLUSH intrinsic subroutine... yes

=== Setting defaults ===
Adding MODS directories: ../code
Making source files in eesupp from templates
Making source files in pkg/exch2 from templates
Making source files in pkg/regrid from templates

=== Determining package settings ===
getting package dependency info from ../../../pkg/pkg_depend
getting package groups info from ../../../pkg/pkg_groups
checking list of packages to compile:
using PKG_LIST="../code/packages.conf"
before group expansion packages are: oceanic -kpp -gmredi cd_code
replacing "oceanic" with: gfd gmredi kpp
replacing "gfd" with: mom_common mom_fluxform mom_vecinv generic_advdiff debug.
—mdsio rw monitor
after group expansion packages are: mom_common mom_fluxform mom_vecinv generic_
—advdiff debug mdsio rw monitor gmredi kpp -kpp -gmredi cd_code
applying DISABLE settings
applying ENABLE settings
packages are: cd_code debug generic_advdiff mdsio mom_common mom_fluxform mom_
—vecinv monitor rw
applying package dependency rules
packages are: cd_code debug generic_advdiff mdsio mom_common mom_fluxform mom_
—vecinv monitor rw
Adding STANDARDDIRS='eesupp model'
Searching for *OPTIONS.h files in order to warn about the presence
of "#define "-type statements that are no longer allowed:
found CPP_EEOPTIONS="../../../eesupp/inc/CPP_EEOPTIONS.h"
found CPP_OPTIONS="../../../model/inc/CPP_OPTIONS.h"
Creating the list of files for the adjoint compiler.

=== (reating the Makefile ===
setting INCLUDES
Determining the list of source and include files
Writing makefile: Makefile
Add the source list for AD code generation

(continues on next page)
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Making list of "exceptions" that need ".p" files
Making list of NOOPTFILES

Add rules for links

Adding makedepend marker

Done ===

original 'Makefile' generated successfully
=> next steps:

> make depend

> make (<-- to generate executable)

In the above, notice:

we did not specify ROOTDIR, i.e., a path to your MITgcm repository, but here we are building code from within
the repository (specifically, in one of the verification subdirectory experiments). As such, genmake2 was smart
enough to locate all necessary files on its own. To specify a remote ROOTDIR, see /ere.

we specified the optfile linux_amd64_gfortran based on the computer system and Fortran compiler we used (here,
a linux 64-bit machine with gfortran installed).

genmake? did some simple checking on availability of certain system libraries; all were found (except LAPACK,
which was not checked since it is not needed here). NetCDF only requires a ‘yes’ if you want to write netCDF
output; more specifically, a ‘no’ response to “Can we create NetCDF-enabled binaries” will disable including
pkg/mnc and switch to output plain binary files. While the makefile can still be built with other ‘no’ responses,
sometimes this will foretell errors during the make depend or make commands.

any .F or .h files in the -mods directory . ./code will also be compiled, overriding any MITgcm repository
versions of files, if they exist.

a handful of packages are being used in this build; see Section 8.1.1 for more detail about how to enable and
disable packages.

genmake? terminated without error (note output at end after === Done ===), generating Makefile and alog file
genmake.log. As mentioned, this does not guarantee that your setup will compile properly, but if there are errors
during make depend or make, these error messages and/or the standard output from genmake2 or genmake.
log may provide clues as to the problem. If instead genmake?2 finishes with a warning message Warning:
FORTRAN compiler test failed, this means that genmake?2 is unable to locate the Fortran compiler or pass
a trivial “hello world” Fortran compilation test. In this case, you should see genmake . 1og for errors and/or seek
assistance from your system administrator; these tests need to pass in order to proceed to the make steps.

3.5.2.1 Command-line options:

genmake? supports a number of helpful command-line options. A complete list of these options can be obtained by:

% genmake2 -h

The most important command-line options are:

-optfile «/PATH/TO/OPTFILE»

(or shorter: -of ) specifies the optfile that should be used for a particular build.

If no optfile is specified through the command line, genmake?2 will try to make a reasonable guess from the list
provided in tools/build_options. The method used for making this guess is to first determine the combination
of operating system and hardware and then find a working Fortran compiler within the user’s path. When these
three items have been identified, genmake2 will try to find an optfile that has a matching name. See Section
3.5.2.2.
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-mods '«DIR1 DIR2 DIR3 ...»'
specifies a list of directories containing “modifications”. These directories contain files with names that may (or
may not) exist in the main MITgcm source tree but will be overridden by any identically-named sources within
the -mods directories. Note the quotes around the list of directories, necessary given multiple arguments.

The order of precedence for versions of files with identical names:
* “mods” directories in the order given (e.g., will use copy of file located in DIR1 instead of DIR2)
» Packages either explicitly specified or included by default
» Packages included due to package dependencies
* The “standard dirs” (which may have been specified by the -standarddirs option below)

-rootdir «/PATH/TO/MITGCMDIR»
specify the location of the MITgcm repository top directory (ROOTDIR). By default, genmake2 will try to find
this location by looking in parent directories from where genmake? is executed (up to 5 directory levels above
the current directory).

In the quickstart example above (Section 3.5.1) we built the executable in the build directory of the experiment.
Below, we show how to configure and compile the code on a scratch disk, without having to copy the entire
source tree. The only requirement is that you have genmake2 in your $PATH, or you know the absolute path to
genmake?. In general, one can compile the code in any given directory by following this procedure. Assuming
the model source is in ~/MITgcm, then the following commands will build the model in /scratch/exp2-runl:

% cd /scratch/exp2-runl

% ~/MITgcm/tools/genmake2 -rootdir ~/MITgcm -mods ~/MITgcm/verification/exp2/code
% make depend

% make

As an alternative to specifying the MITgcm repository location through the -rootdir command-line option,
genmake? recognizes the environment variable $MITGCM_ROOTDIR.

-standarddirs «/PATH/TO/STANDARDDIR»
specify a path to the standard MITgcm directories for source and includes files. By default, model and eesupp
directories (src and inc) are the “standard dirs”. This command can be used to reset these default standard
directories, or instead NOT include either model or eesupp as done in some specialized configurations.

-oad
generates a makefile for an OpenAD build (see Section 7.5)

-adoptfile «/PATH/TO/FILE»
(or shorter: -adof ) specifies the “adjoint” or automatic differentiation options file to be used. The file is analo-
gous to the optfile defined above but it specifies information for the AD build process. See Section 7.2.3.4.

The default file is located in tools/adjoint_options/adjoint_default and it defines the “TAF” and “TAMC” com-
piler options.

-mpi
enables certain MPI features (using CPP #define) within the code and is necessary for MPI builds (see Section
3.5.4).

-omp
enables OpenMP code and compiler flag OMPFLAG (see Section 3.5.5).

-ieee
use IEEE numerics (requires support in optfile). This option is typically a good choice if one wants to compare
output from different machines running the same code. Note using IEEE disables all compiler optimizations.
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-devel
use IEEE numerics (requires support in optfile) and add additional compiler options to check array bounds and
add other additional warning and debugging flags.

-make «/PATH/TO/GMAKE»
due to the poor handling of soft-links and other bugs common with the make versions provided by commer-
cial unix vendors, GNU make (sometimes called gmake) may be preferred. This option provides a means for
specifying the make executable to be used.

While it is possible to use genmake2 command-line options to set the Fortran or C compiler name (-fc and -cc
respectively), we generally recommend setting these through an optfile, as discussed in Section 3.5.2.2. Other genmake?2
options are available to enable performance/timing analyses, etc.; see genmake2 -h for more info.

3.5.2.2 Optfiles in tools/build_options directory:

The purpose of the optfiles is to provide all the compilation options for particular “platforms” (where “platform” roughly
means the combination of the hardware and the compiler) and code configurations. Given the combinations of possible
compilers and library dependencies (e.g., MPI or netCDF) there may be numerous optfiles available for a single ma-
chine. The naming scheme for the majority of the optfiles shipped with the code is OS_HARDWARE_COMPILER
where

(0N

is the name of the operating system (generally the lower-case output of a linux terminal uname command)
HARDWARE

is a string that describes the CPU type and corresponds to output from a uname -m command. Some common

CPU types:

amd64

use this code for x86_64 systems (most common, including AMD and Intel 64-bit CPUs)
ia64

is for Intel IA64 systems (eg. Itanium, Itanium?2)

ppc
is for (old) Mac PowerPC systems

COMPILER
is the compiler name (generally, the name of the Fortran compiler executable). MITgcm is primarily written in
FORTRAN 77. Compiling the code requires a FORTRAN 77 compiler. Any more recent compiler which is
backwards compatible with FORTRAN 77 can also be used; for example, the model will build successfully with
a Fortran 90 or Fortran 95 compiler. A C99 compatible compiler is also need, together with a C preprocessor
. Some optional packages make use of Fortran 90 constructs (either free-form formatting, or dynamic memory
allocation); as such, setups which use these packages require a Fortran 90 or later compiler build.

There are existing optfiles that work with many common hardware/compiler configurations; we first suggest you peruse
the list in tools/build_options and try to find your platform/compiler configuration. These are the most common:

* linux_amd64_gfortran

¢ linux_amd64_ifortl1

¢ linux_amd64_ifort+impi
e linux_amd64_pgf77

The above optfiles are all for linux x86_64 (64-bit) systems, utilized in many large high-performance computing centers.
All of the above will work with single-threaded, MPI, or shared memory (OpenMP) code configurations. gfortran
is GNU Fortran, ifort is Intel Fortran, pgf77 is PGI Fortran (formerly known as “The Portland Group”). Note in
the above list there are two ifort optfiles: linux_amd64_ifort+impi is for a specific case of using ifort with the

3.5. Building the model 107


https://github.com/MITgcm/MITgcm/blob/master/tools/genmake2
https://github.com/MITgcm/MITgcm/blob/master/tools/genmake2
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.unidata.ucar.edu/software/netcdf
https://en.wikipedia.org/wiki/Fortran#FORTRAN_77
https://en.wikipedia.org/wiki/Fortran#FORTRAN_77
https://en.wikipedia.org/wiki/Fortran#FORTRAN_77
https://en.wikipedia.org/wiki/Fortran#Fortran_90
https://en.wikipedia.org/wiki/Fortran#Fortran_95
https://en.wikipedia.org/wiki/C99
https://en.wikipedia.org/wiki/C_preprocessor
https://en.wikipedia.org/wiki/Fortran#Fortran_90
https://en.wikipedia.org/wiki/Free-form_language
https://en.wikipedia.org/wiki/Memory_management#DYNAMIC
https://en.wikipedia.org/wiki/Memory_management#DYNAMIC
https://en.wikipedia.org/wiki/Fortran#Fortran_90
https://github.com/MITgcm/MITgcm/blob/master/tools/build_options
https://github.com/MITgcm/MITgcm/blob/master/tools/build_options/linux_amd64_gfortran
https://github.com/MITgcm/MITgcm/blob/master/tools/build_options/linux_amd64_ifort11
https://github.com/MITgcm/MITgcm/blob/master/tools/build_options/linux_amd64_ifort+impi
https://github.com/MITgcm/MITgcm/blob/master/tools/build_options/linux_amd64_pgf77
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/OpenMP
https://gcc.gnu.org/fortran
https://software.intel.com/en-us/fortran-compilers
https://www.pgroup.com/
https://github.com/MITgcm/MITgcm/blob/master/tools/build_options/linux_amd64_ifort+impi

MITgcm Documentation, Release 2d7a4a2

Intel MPI library (a.k.a. impi), which requires special define statements in the optfile (in contrast with Open MPI or
MVAPICH?2 libraries; see Section 3.5.4). Note that both ifort optfiles require ifort version 11 or higher. Many clusters
nowadays use environment modules, which allows one to easily choose which compiler to use through module load
«MODULENAME», automatically configuring your environment for a specific compiler choice (type echo $PATH to see
where genmake?2 will look for compilers and system software).

In most cases, your platform configuration will be included in the available optfiles list and will result in a usable
Makefile being generated. If you are unsure which optfile is correct for your configuration, you can try not specifying
an optfile; on some systems the genmake?2 program will be able to automatically recognize the hardware, find a compiler
and other tools within the user’s path, and then make a best guess as to an appropriate optfile from the list in the
tools/build_options directory. However, for some platforms and code configurations, new optfiles must be written. To
create a new optfile, it is generally best to start with one of the defaults and modify it to suit your needs. Like genmake?2,
the optfiles are all written in bash (or using a simple sh—compatible syntax). While nearly all environment variables
used within genmake?2 may be specified in the optfiles, the critical ones that should be defined are:

FC
the Fortran compiler (executable) to use on . F files, e.g., ifort or gfortran, or if using MPI, the mpi-wrapper
equivalent, e.g., mpif77

F90C
the Fortran compiler to use on .F90 files (only necessary if your setup includes a package which contains .F90
source code)

cC
similarly, the C compiler to use, e.g., icc or gcc, or if using MPI, the mpi-wrapper equivalent, e.g., mpicc

DEFINES
command-line options passed to the compiler

CPP
the C preprocessor to use, and any necessary command-line options, e.g. cpp -traditional -P

CFLAGS, FFLAGS
command-line compiler flags required for your C and Fortran compilers, respectively, to compile and execute
properly. See your C and Fortran compiler documentation for specific options and syntax.

FOPTIM
command-line optimization Fortran compiler settings. See your Fortran compiler documentation for specific
options and syntax.

NOOPTFLAGS
command-line settings for special files that should not be optimized using the FOPTIM flags

NOOPTFILES
list of source code files that should be compiled using NOOPTFLAGS settings

INCLUDES
path for additional files (e.g., netcdf.inc, mpif.h) to include in the compilation using the command-line -I
option

INCLUDEDIRS
path for additional files to be included in the compilation

LIBS
path for additional library files that need to be linked to generate the final executable, e.g., libnetcdf.a

For example, an excerpt from an optfile which specifies several of these variables (here, for the linux-amd64 architecture
using the PGI Fortran compiler) is as follows:
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if test "x$MPI" = xtrue ; then
CC=mpicc
FC=mpif77
F90C=mpif90
else
CC=pgcc
FC=pgf77
F90C=pgf90
fi

DEFINES="-DWORDLENGTH=4"
if test "x$ALWAYS_USE_F90" = x1 ; then
FC=$F90C
else
DEFINES="$DEFINES -DNML_EXTENDED_F77 -DEXCLUDE_OPEN_ACTION"
fi
CPP="'cpp -traditional -P'
F9OFIXEDFORMAT="-Mfixed'
EXTENDED_SRC_FLAG="'-Mextend'
GET_FC_VERSION="-V"
OMPFLAG="-mp"

NOOPTFLAGS="-00"
NOOPTFILES=""

FFLAGS="$FFLAGS -byteswapio -Ktrap=fp"
#- might want to use '-r8' for fizhi pkg:
#FFLAGS="$FFLAGS -r8"

if test "x$IEEE" = x ; then #- with optimisation:
FOPTIM='-tp k8-64 -pc=64 -02 -Mvect=sse'
#FOPTIM="$FOPTIM -fastsse -03 -Msmart -Mvect=cachesize:1048576,transform"
else #- no optimisation + IEEE :
#FFLAGS="$FFLAGS -Mdclchk" #- pkg/zonal_filt does not pass with declaration-check
FOPTIM="'-pc=64 -00 -Kieee'
fi

FIOFLAGS=$FFLAGS
F900PTIM=$FOPTIM

The above list of environment variables typically specified in an optfile is by no means complete; additional variables
may be required for your specific setup and/or your specific Fortran (or C) compiler.

If you write an optfile for an unrepresented machine or compiler, you are strongly encouraged to submit the optfile to
the MITgem project for inclusion. MITgem developers are willing to provide help writing or modifing optfiles. Please
submit the file through the GitHub issue tracker or email the MITgcm-support@mitgecm.org list.

Instructions on how to use optfiles to build MPI-enabled executables is presented in Section 3.5.4.
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3.5.3 make commands

Following a successful build of Makefile, type make depend. This command modifies the Makefile by attaching a
(usually, long) list of files upon which other files depend. The purpose of this is to reduce re-compilation if and when
you start to modify the code. The make depend command also creates local links for all source files from the source
directories (see “-mods” description in Section 3.5.2.1), so that all source files to be used are visible from the local
build directory, either as hardcopy or as symbolic link.

IMPORTANT NOTE: Editing the source code files in the build directory will not edit a local copy (since these are
just links) but will edit the original files in model/src (or model/inc) or in the specified -mods directory. While the
latter might be what you intend, editing the master copy in model/src is usually NOT what is intended and may cause
grief somewhere down the road. Rather, if you need to add to the list of modified source code files, place a copy of the
file(s) to edit in the -mods directory, make the edits to these -mods directory files, go back to the build directory and
type make Clean, and then re-build the makefile (these latter steps critical or the makefile will not link to this newly
edited file).

The final make invokes the C preprocessor to produce the “little f files (*.f and *.£90) and then compiles them
to object code using the specified Fortran compiler and options. The C preprocessor step converts a number of CPP
macros and #ifdef statements to actual Fortran and expands C-style #include statements to incorporate header files
into the “little f” files. CPP style macros and #1ifdef statements are used to support generating different compile code
for different model configurations. The result of the build process is an executable with the name mitgcmuv.

Additional make “targets” are defined within the makefile to aid in the production of adjoint (Section 7.2.2) and other
versions of MITgcm.

On computers with multiple processor cores, the build process can often be sped up appreciably using the command:

% make -j 2

where the “2” can be replaced with a number that corresponds to the number of cores (or discrete CPUs) available.
In addition, there are several housekeeping make clean options that might be useful:
* make clean removes files that make generates (e.g., *.0 and *.f files)

* make Clean removes files and links generated by make and make depend; strongly recommended for “un-
clean” directories which may contain the (perhaps partial) results of previous builds

* make CLEAN removes pretty much everything, including any executables and output from genmake?2

3.5.4 Building with MPI

Building MITgem to use MPI libraries can be complicated due to the variety of different MPI implementations available,
their dependencies or interactions with different compilers, and their often ad-hoc locations within file systems. For
these reasons, its generally a good idea to start by finding and reading the documentation for your machine(s) and, if
necessary, seeking help from your local systems administrator.

The steps for building MITgcm with MPI support are:

1. Make sure you have MPI libraries installed on your computer system or cluster. Different Fortran compilers
(and different versions of a specific compiler) will generally require a custom version (of a MPI library) built
specifically for it. On environment module-enabled clusters, one typically must first load a Fortran compiler,
then specific MPI libraries for that compiler will become available to load. If libraries are not installed, MPI
implementations and related tools are available including:

* Open MPI
e MVAPICH2
* MPICH
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* Intel MPI
Ask you systems administrator for assistance in installing these libraries.

2. Determine the location of your MPI library “wrapper” Fortran compiler, e.g., mpif77 or mpifort etc.
which will be used instead of the name of the fortran compiler (gfortran, ifort, pgi77 etc.) to com-
pile your code. Often the directory in which these wrappers are located will be automatically added to
your $PATH environment variable when you perform a module load «SOME_MPI_MODULE»; thus, you
will not need to do anything beyond the module load itself. If you are on a cluster that does not
support environment modules, you may have to manually add this directory to your path, e.g., type
PATH=$PATH: «ADD_ADDITIONAL_PATH_TO_MPI_WRAPPER_HERE» in a bash shell.

3. Determine the location of the includes file mpif.h and any other MPI-related includes files. Often these files
will be located in a subdirectory off the main MPI library include/. In all optfiles in tools/build_options, it
is assumed environment variable $MPI_INC_DIR specifies this location; $MPI_INC_DIR should be set in your
terminal session prior to generating a Makefile.

4. Determine how many processors (i.e., CPU cores) you will be using in your run, and modify your configuration’s
SIZE.h (located in a “modified code” directory, as specified in your genmake?2 command-line). In SIZE.h, you
will need to set variables nPx*nPy to match the number of processors you will specify in your run script’s MITgem
execution statement (i.e., typically mpirun or some similar command, see Section 3.6.1). Note that MITgcm does
not use dynamic memory allocation (a feature of Fortran 90, not FORTRAN 77), so all array sizes, and hence
the number of processors to be used in your MPI run, must be specified at compile-time in addition to run-time.
More information about the MITgcm WRAPPER, domain decomposition, and how to configure SIZE.h can be
found in Section 6.3.

5. Build the code with the genmake2 -mpi option using commands such as:

% ../../../tools/genmake2 -mods=../code -mpi -of=«/PATH/TO/OPTFILE»
% make depend
% make

3.5.5 Building with OpenMP

Unlike MPI, which requires installation of additional software support libraries, using shared memory (OpenMP) for
multi-threaded executable builds can be accomplished simply through the genmake2 command-line option -omp:

% ../../../tools/genmake2 -mods=../code -omp -of=«/PATH/TO/OPTFILE»
% make depend
% make

While the most common optfiles specified in Section 3.5.2.2 include support for the -omp option, some optfiles in
tools/build_options do not include support for multi-threaded executable builds. Before using one of the less common
optfiles, check whether OMPFLAG is defined.

Note that one does not need to specify the number of threads until runtime (see Section 3.6.2). However, the default
maximum number of threads in MITgem is set to a (low) value of 4, so if you plan on more you will need to change
this value in eesupp/inc/EEPARAMS.h in your modified code directory.
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3.6 Running the model

If compilation finished successfully (Section 3.5) then an executable called mitgcmuv will now exist in the local
(build) directory.

To run the model as a single process (i.e., not in parallel) simply type (assuming you are still in the build directory):

% cd ../run

% In -s ../input/* .

% cp ../build/mitgcmuv .
% ./mitgcmuv

Here, we are making a link to all the support data files (in ../input/) needed by the MITgcm for this experiment,
and then copying the executable from the the build directory. The ./ in the last step is a safe-guard to make sure you
use the local executable in case you have others that might exist in your $PATH. The above command will spew out
many lines of text output to your screen. This output contains details such as parameter values as well as diagnostics
such as mean kinetic energy, largest CFL number, etc. It is worth keeping this text output with the binary output so we
normally re-direct the stdout stream as follows:

% ./mitgcmuv > output.txt

In the event that the model encounters an error and stops, it is very helpful to include the last few line of this output. txt
file along with the (stderr) error message within any bug reports.

For the example experiment in verification/exp2, an example of the output is kept in verification/exp2/results/output.txt
for comparison. You can compare your output . txt with the corresponding one for that experiment to check that your
set-up indeed works. Congratulations!

3.6.1 Running with MPI

Run the code with the appropriate MPI “run” or “exec” program provided with your particular implementation of MPI.
Typical MPI packages such as Open MPI will use something like:

% mpirun -np 4 ./mitgcmuv

Sightly more complicated scripts may be needed for many machines since execution of the code may be controlled by
both the MPI library and a job scheduling and queueing system such as Slurm, PBS/TORQUE, LoadLeveler, or any of
anumber of similar tools. See your local cluster documentation or system administrator for the specific syntax required
to run on your computing facility.

3.6.2 Running with OpenMP

Assuming the executable mitgcmuv was built with OpenMP (see Section 3.5.5), the syntax to run a multi-threaded
simulation is the same as running single-threaded (see Section 3.6), except that the following additional steps are
required beforehand:

1. Environment variables for the number of threads and the stacksize need to be set prior to executing the model.
The exact names of these environment variables differ by Fortran compiler, but are typically some variant
of OMP_NUM_THREADS and OMP_STACKSIZE, respectively. For the latter, in your run script we recommend
adding the line export OMP_STACKSIZE=400M (or for a C shell-variant, setenv OMP_STACKSIZE 400M). If
this stacksize setting is insufficient, MITgcm will crash, in which case a larger number can be used. Similarly,
OMP_NUM_THREADS should be set to the exact number of threads you require.
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2. In file eedata you will need to change namelist parameters nTx and nTy to reflect the number of threads in
x and y, respectively (for a single-threaded run, nTx =nTy=1). The value of nTx *nTy must equal the value
of environment variable OMP_NUM_THREADS (or its name-equivalent for your Fortan compiler) or MITgecm will
terminate during its initialization with an error message.

MITgem will take the number of tiles used in the model (as specified in SIZE.h) and the number of threads (nTx and
nTy from file eedata), and in running will spread the tiles out evenly across the threads. This is done independently
for x and y. As such, the number of tiles in x (variable nSx as defined in SIZE.h) must divide evenly by the number
of threads in x (namelist parameter nTx), and similarly for nSy and nTy, else MITgcm will terminate on initialization.
More information about the MITgcm WRAPPER, domain decomposition, and how to configure SIZE.h can be found
in Section 6.3.

3.6.3 Output files

The model produces various output files and, when using pkg/mnc (i.e., netCDF), sometimes even directories. De-
pending upon the I/O package(s) selected at compile time (either pkg/mdsio, pkg/mnc, or both as determined by
packages.conf) and the run-time flags set (in data.pkg), the following output may appear. More complete in-
formation describing output files and model diagnostics is described in Section 9.

3.6.3.1 Raw binary output files

The “traditional” output files are generated by the pkg/mdsio (see Section 9.2).The pkg/mdsio model data are written
according to a “meta/data” file format. Each variable is associated with two files with suffix names .data and .meta.
The .data file contains the data written in binary form (big endian by default). The .meta file is a “header” file that
contains information about the size and the structure of the . data file. This way of organizing the output is particularly
useful when running multi-processors calculations.

At a minimum, the instantaneous “state” of the model is written out, which is made of the following files:

e U.00000nIter - zonal component of velocity field (m/s and positive eastward).

V.00000nIter - meridional component of velocity field (m/s and positive northward).

W.00000nIter - vertical component of velocity field (ocean: m/s and positive upward, atmosphere: Pa/s and
positive towards increasing pressure i.e., downward).

T.00000nIter - potential temperature (ocean: °C, atmosphere: K).

S.00000nIter - ocean: salinity (g/kg), atmosphere: water vapor (g/kg).

Eta.00000nIter - ocean: surface elevation (m), atmosphere: surface pressure anomaly (Pa).

The chain 00000nIter consists of ten figures that specify the iteration number at which the output is written out. For
example, U. 0000000300 is the zonal velocity at iteration 300.

In addition, a “pickup” or “checkpoint” file called:
e pickup.00000nIter

is written out. This file represents the state of the model in a condensed form and is used for restarting the integration
(at the specific iteration number). Some additional parameterizations and packages also produce separate pickup files,

e.g.,
e pickup_cd.00000nIter if the C-D scheme is used (see C_D Scheme)
* pickup_seaice.00000nIter if the seaice package is turned on (see SEAICE Package)

e pickup_ptracers.00000nIter if passive tracers are included in the simulation (see PTRACERS Package)
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Rolling checkpoint files are the same as the pickup files but are named differently. Their name contain the chain ckptA
or ckptB instead of 00000nIter. They can be used to restart the model but are overwritten every other time they are
output to save disk space during long integrations.

3.6.3.2 NetCDF output files

pkg/mnc is a set of routines written to read, write, and append netCDF files. Unlike the pkg/mdsio output, the
pkg/mnc—generated output is usually placed within a subdirectory with a name such as mnc_output_ (by default,
netCDF tries to append, rather than overwrite, existing files, so a unique output directory is helpful for each separate
run).

The pkg/mnc output files are all in the “self-describing” netCDF format and can thus be browsed and/or plotted using
tools such as:

» ncdump is a utility which is typically included with every netCDF install, and converts the netCDF binaries into
formatted ASCII text files.

e ncview is a very convenient and quick way to plot netCDF data and it runs on most platforms. Panoply is a
similar alternative.

* MATLAB, GrADS, IDL and other common post-processing environments provide built-in netCDF interfaces.

3.6.4 Looking at the output

3.6.4.1 MATLAB

Raw binary output

The repository includes a few MATLAB utilities to read binary output files written in the /pkg/mdsio format. The
MATLAB scripts are located in the directory utils/matlab under the root tree. The script utils/matlab/rdmds.m reads
the data. Look at the comments inside the script to see how to use it.

Some examples of reading and visualizing some output in MATLAB:

% matlab

>> H=rdmds('Depth');

>> contourf(H');colorbar;

>> title('Depth of fluid as used by model');

>> eta=rdmds('Eta',10);
>> imagesc(eta');axis ij;colorbar;
>> title('Surface height at iter=10');

>> [eta,iters,M]=rdmds('Eta',NaN); % this will read all dumped iterations
>> % iter numbers put in variable 'iters'; 'M' is a character string w/metadata
>> for n=1:length(iters); imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end

Typing help rdmds in MATLAB will pull up further information on how to use the rdmds utility.
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NetCDF output

Similar scripts for netCDF output (e.g., utils/matlab/rdmnc.m) are available and they are described in Section 9.3.

3.6.4.2 Python

Install the MITgcmutils python package following the instructions in Section 11.1.

Raw binary output

The following example shows how to load in some data:

# python
from MITgcmutils import mds

Eta = mds.rdmds('Eta', itrs=10)

For more information about this function and its options, see the API docs, MITgcmutils.mds. rdmds().

NetCDF output

The netCDF output is currently produced with one file per processor. This means the individual tiles
need to be stitched together to create a single netCDF file that spans the model domain. The script
utils/python/MITgcemutils/scripts/gluemncbig can do this efficiently from the command line. If you have installed the
MITgcmutils package, a copy of gluemncbig should be on your path. For usage information, see Section 11.1.9.

The following example shows how to use the xarray python package to read the resulting netCDF file into Python:

# python
import xarray as Xr

Eta = xr.open_dataset('Eta.nc')

3.7 Customizing the Model Configuration - Code Parameters and
Compilation Options

3.7.1 Model Array Dimensions

MITgem’s array dimensions need to be configured for each unique model domain. The size of each tile (in dimensions x,
vy, and vertical coordinate r) the “overlap” region of each tile (in z and y), the number of tiles in the = and y dimensions,
and the number of processes (using MPI) in the  and y dimensions all need to be specified in SIZE.h. From these
parameters, global domain-size variables Nx, Ny are computed by the model. See a more technical discussion of
SIZE.h parameters in in Section 6.3.1, and a detailed explanation of an example SIZE.h setup in tutorial Baroclinic
Ocean Gyre.
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Parameter | Default SIZE.h | Description

sNx 30 number of points in x dimension in a single tile
sNy 15 number of points in ¥ dimension in a single tile

Nr 4 number of points in r dimension

OLx 2 number of “overlap” points in 2 dimension for a tile
OLy 2 number of “overlap” points in y dimension for a tile
nSx 2 number of tile per process in  dimension

nSy 4 number of tile per process in y dimension

nPx 1 number of processes in z dimension

nPy 1 number of processes in y dimension

Note the repository version of SIZE.h includes several lines of text at the top that will halt compilation with errors.
Thus, to use MITgecm you will need to copy SIZE.h to a code modification directory and make edits, including deleting
or commenting out the offending lines of text.

3.7.2 C Preprocessor Options

The CPP flags relative to the “numerical model” part of the code are defined and set in the file CPP_OPTIONS.h in
the directory model/inc/. In the parameter tables in Section 3.8 we have noted CPP options that need to be changed
from the default to enable specific runtime parameter to be used properly. Also note many of the options below are
for less-common situations or are somewhat obscure, so newer users of the MITgcm are encouraged to jump to Section
3.8 where more basic runtime parameters are discussed.

CPP Flag Name Default | Description

SHORTWAVE_HEATING #undef provide separate shortwave heating file, allowing
shortwave to penetrate below surface layer

ALLOW_GEOTHERMAL_FLUX #undef include code for applying geothermal heat flux at
the bottom of the ocean

ALLOW_FRICTION_HEATING #undef include code to allow heating due to friction (and
momentum dissipation)

ALLOW_ADDFLUID #undef allow mass source or sink of fluid in the inte-
rior (3D generalization of oceanic real-fresh water
flux)

ATMOSPHERIC_LOADING #define | include code for atmospheric pressure-loading
(and seaice-loading) on ocean surface

ALLOW_BALANCE_FLUXES #undef include balancing surface forcing fluxes code

ALLOW_BALANCE_RELAX #undef include balancing surface forcing relaxation code

CHECK_SALINITY_FOR_NEGATIVE_VALUES | #undef include code checking for negative salinity

EXCLUDE_FFIELDS_LOAD #undef exclude external forcing-fields load; code allows

reading and simple linear time interpolation of
oceanic forcing fields, if no specific pkg (e.g.,
pkg/exf) is used to compute them

INCLUDE_PHIHYD_CALCULATION_CODE #define include code to calculate ¢pyq

INCLUDE_CONVECT_CALL #define include code for convective adjustment mixing al-
gorithm

INCLUDE_CALC_DIFFUSIVITY_CALL #define include codes that calculates (tracer) diffusivities
and viscosities

ALLOW_3D DIFFKR #undef allow full 3D specification of vertical diffusivity

ALLOW_BL79_LAT_VARY #undef allow latitudinally varying Bryan and Lewis 1979

[BL79] vertical diffusivity

continues on next page
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Table 3.1 — continued from previous page

CPP Flag Name

Default

Description

EXCLUDE_PCELL_MIX_CODE

#undef

exclude code for partial-cell effect (physical or en-
hanced) in vertical mixing; this allows accounting
for partial-cell in vertical viscosity and diffusion,
either from grid-spacing reduction effect or as ar-
tificially enhanced mixing near surface & bottom
for too thin grid-cell

ALLOW_SMAG_3D_DIFFUSIVITY

#undef

include code for isotropic 3-D Smagorinsky dif-
fusivity for tracers (viscosity scaled by constant
Prandt]l number)

ALLOW_SOLVE4_PS_AND_DRAG

#undef

include code for combined surface pressure and
drag implicit solver

INCLUDE_IMPLVERTADV_CODE

#define

include code for implicit vertical advection

ALLOW_ADAMSBASHFORTH_3

#undef

include code for Adams-Bashforth 3rd-order

ALLOW_QHYD_STAGGER_TS

#undef

include code for quasi-hydrostatic stagger time-
step Adams-Bashforth code

EXACT_CONSERV

#define

include code for “exact conservation” of fluid in
free-surface formulation (recompute divergence
after pressure solver)

NONLIN_FRSURF

#undef

allow the use of non-linear free-surface formu-
lation; implies that grid-cell thickness (hFactors)
varies with time

ALLOW_NONHYDROSTATIC

#undef

include non-hydrostatic and 3D pressure solver
codes

ALLOW_EDDYPSI

#undef

include GM-like eddy stress in momentum code
(untested, not recommended)

ALLOW_CG2D_NSA

#undef

use non-self-adjoint (NSA) conjugate-gradient
solver

ALLOW_SRCG

#define

include code for single reduction conjugate gradi-
ent solver

SOLVE_DIAGONAL_LOWMEMORY

#undef

low memory footprint (not suitable for AD) choice
for implicit solver routines solve_*diagonal.F

SOLVE_DIAGONAL_KINNER

#undef

choice for implicit solver routines
solve_*diagonal .F suitable for AD

COSINEMETH_III

#define

selects implementation form of cos ¢ scaling of
bi-harmonic term for viscosity (note, CPP op-
tion for tracer diffusivity set independently in
GAD_OPTIONS.h)

ISOTROPIC_COS_SCALING

#undef

selects isotropic scaling of harmonic and bi-
harmonic viscous terms when using the cos  scal-
ing (note, CPP option for tracer diffusivity set in-
dependently in GAD_OPTIONS.h)

By default, MITgcm includes several core packages, i.e., these packages are enabled during genmake?2 execution if a file
packages. conf is not found. See Section 8.1.1 for more information about packages. conf, and see pkg/pkg_groups
for more information about default packages and package groups. These default packages are as follows:

* pkg/mom_common
* pkg/mom_fluxform
e pkg/mom_vecinv

* pkg/generic_advdiff
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* pkg/debug
* pkg/mdsio
* pkg/rw

* pkg/monitor

Additional CPP options that affect the model core code are set in files ${PKG}_OPTIONS.h located in these packages’
directories. Similarly, optional (non-default) packages also include package-specific CPP options that must be set in
files ${PKG}_OPTIONS.h.

3.7.3 Preprocessor Execution Environment Options

Most MITgcem users can skip this section; many of these flags were intended for very specific platform environments,
and not meant to be changed for more general environments (an exception being if you are using a coupled setup, see
below).

The file CPP_EEOPTIONS.h in the directory eesupp/inc/ contains a number of CPP flags related to the execution
environment where the model will run. Below we describe the subset of user-editable CPP flags:

CPP Flag Name Default | Description

GLOBAL_SUM_ORDER_TILES #define always cumulate tile local-sum in the same order
by applying MPI allreduce to array of tiles

CG2D_SINGLECPU_SUM #undef alternative way of doing global sum on a single
CPU to eliminate tiling-dependent roundoff errors

SINGLE_DISK_IO #undef to write STDOUT, STDERR and scratch files from
process 0 only

USE_FORTRAN_SCRATCH_FILES #undef flag to turn on old default of opening scratch files
with the STATUS="SCRATCH’ option

COMPONENT _MODULE #undef control use of communication with other compo-
nents, i.e., sets component to work with a coupler
interface

DISCONNECTED_TILES #undef use disconnected tiles (no exchange between tiles,
just fill-in edges assuming locally periodic subdo-
main)

REAL4 IS _SLOW #define if undefined, force _RS variables to be declared as
real*4

The default setting of #define GLOBAL_SUM_ORDER_TILES in CPP_EEOPTIONS.h provides a way to achieve
numerically reproducible global sums for a given tile domain decomposition. As implemented however, this ap-
proach will increase the volume of network traffic in a way that scales with the total number of tiles. Profiling
has shown that letting the code fall through to a baseline approach that simply uses MPI_Allreduce() can pro-
vide significantly improved performance for certain simulations'. The fall-though approach is activated by #undef
GLOBAL_SUM_ORDER_TILES.

In order to get bit-wise reproducible results between different tile domain decompositions (e.g., single tile on sin-
gle processor versus multiple tiles either on single or multiple processors), one can choose to #define option
CG2D_SINGLECPU_SUM to use the MUCH slower global_sum_singlecpu.F for the key part of MITgem algorithm

! One example is the llc_540 case located at https://github.com/MITgcm-contrib/llc_hires/tree/master/llc_540. This case was run on the Pleiades
computer for 20 simulated days using 767 and 2919 MPI ranks. At 767 ranks, the fall-through approach provided a throughput of to 799.0 simulated
days per calendar day (dd/d) while the default approach gave 781.0. The profiler showed the speedup was directly attributable to spending less time
in MPI_Allreduce. The volume of memory traffic associated with MPI_Allreduce dropped by 3 orders (22.456T -> 32.596G). At 2819 MPI ranks
the fall-through approach gave a throughput of 1300 dd/d while the default approach gave 800.0 dd/d. Put another way, this case did not scale at all
from 767p to 2819p unless the fall-though approach was utilized. The profiler showed the speedup was directly attributable to spending less time in
MPI_Allreduce. The volume of memory traffic associated with MPI_Allreduce dropped by 3 orders (303.70T ->121.08G ).
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CG2D that relies on global sum. This option is not only much slower but also requires a large volume of communica-
tions so it is practically unusable for a large set-up; furthermore, it does not address reproducibility when global sum
is used outside CG2D, e.g., in non-hydrostatic simulations.

In a default multi-processor configuration, each process opens and reads its own set of namelist files and open and
writes its own standard output. This can be slow or even problematic for very large processor counts. Defining the
CPP-flag SINGLE_DISK_IO suppresses this behavior and lets only the master process (process 0) read namelist files
and write a standard output stream. This may seem advantageous, because it reduces the amount of seemingly redundant
output, but use this option with caution and only when absolutely confident that the setup is working since any message
(error/warning/print) from any processor # 0 will be lost.

The way the namelist files are read requires temporary (scratch) files in the initialization phase. By default, the MITgcm
does not use intrinsic Fortran scratch files (STATUS="scratch") because they can lead to conflicts in multi-processor
simulations on some HPC-platforms, when the processors do not open scratch files with reserved names. However,
the implemented default scheme for the scratch files can be slow for large processor counts. If this is a problem in a
given configuration, defining the CPP-flag USE_ FORTRAN_SCRATCH_FILES may help by making the code use the
intrinsic Fortran scratch files.

The CPP-flag COMPONENT_MODULE needs to be set to #define only for builds in which the MITgcm executable
(for either an oceanic or atmospheric simulation) is configured to communicate with a coupler. This coupler can be a
specially configured build of MITgcm itself; see, for example, verification experiment cpl_aim+ocn.

The CPP-flag DISCONNECTED_TILES should not be #define unless one wants to run simultaneously several small,
single-tile ensemble members from a single process, as each tile will be disconnected from the others and considered
locally as a doubly periodic patch.

MITgcm _RS variables are forced to be declared as real*4 if CPP-flag REAL4_IS_SLOW to is set to #undef in
CPP_EEOPTIONS.h (_RS is a macro used in declaring real variables that, in principle, do not require double pre-
cision). However, this option is not recommended except for computational benchmarking or for testing the trade-
off between memory footprint and model precision. And even for these specialized tests, there is no need to edit
CPP_EEOPTIONS.h since this feature can be activated using the genmake2 command line option -use_r4, as done
in some regression tests (see testing results page tests with optfile suffix .use_r4).

3.8 Customizing the Model Configuration - Runtime Parameters

When you are ready to run the model in the configuration you want, the most straightforward approach is to use and
adapt the setup of a tutorial or verification experiment (described in Section 4) that is the closest to your configu-
ration. Then, the amount of setup will be minimized. In this section, we document the complete list of MITgcm
model namelist runtime parameters set in file data, which needs to be located in the directory where you will run
the model. Model parameters are defined and declared in the file PARAMS.h and their default values are generally
set in the routine set_defaults.F, otherwise when initialized in the routine ini_parms.F. Section 3.8.9 documents the
“execution environment” namelist parameters in file eedata, which must also reside in the current run directory. Note
that runtime parameters used by (non-default) MITgecm packages are not documented here but rather in Section 8
and Section 9, and prescribed in package-specific data. ${pkg} namelist files which are read in via package-specific
${pkg}_readparms.F where ${pkg} is the package name (see Section 8.1.1).

In what follows, model parameters are grouped into categories related to configuration/computational domain, algo-
rithmic parameters, equations solved in the model, parameters related to model forcing, and simulation controls. The
tables below specify the namelist parameter name, the namelist parameter group in data (and eedata in Section 3.8.9),
the default value, and a short description of its function. Runtime parameters that require non-default CPP options to
be set prior to compilation (see Section 3.7) for proper use are noted.
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3.8.1 Parameters: Configuration, Computational Domain, Geometry, and Time-
Discretization

3.8.1.1 Model Configuration

buoyancyRelation is set to OCEANIC by default, which employes a z-coordinate vertical axis. To simulate an ocean
using pressure coordinates in the vertical, set it to OCEANICP. For atmospheric simulations, buoyancyRelation needs
to be set to ATMOSPHERIC, which also uses pressure as the vertical coordinate. The default model configuration is
hydrostatic; to run a non-hydrostatic simulation, set the logical variable nonHydrostatic to . TRUE..

Parameter Group Default Description

buoyancyRelation PARMOI1 | OCEANIC | buoyancy relation (OCEANIC, OCEANICP, or ATMOSPHERIC)

quasiHydrostatic PARMO1 | FALSE quasi-hydrostatic formulation on/off flag

rhoRefFile PARMO1 | " ' filename for reference density profile (kg/m’); activates anelastic
form of model

nonHydrostatic PARMO1 | FALSE non-hydrostatic formulation on/off flag; requires #define AL-
LOW_NONHYDROSTATIC

3.8.1.2 Grid

Four different grids are available: Cartesian, spherical polar, cylindrical, and curvilinear (which includes the cubed
sphere). The grid is set through the logical variables usingCartesianGrid, usingSphericalPolarGrid, usingCylindrical-
Grid, and usingCurvilinearGrid. Note that the cylindrical grid is designed for modeling a rotating tank, so that x is the
azimuthual direction, y is the radial direction, and r is vertical coordinate (see tutorial rorating tank).

The variable xgOrigin sets the position of the western most gridcell face in the x dimension (Cartesian, meters; spherical
and cyclindrical, degrees). For a Cartesian or spherical grid, the southern boundary is defined through the variable
ygOrigin which corresponds to the latitude of the southern most gridcell face (Cartesian, meters; spherical, degrees).
For a cyclindrical grid, a positive ygOrigin (m) adds an inner cylindrical boundary at the center of the tank. The
resolution along the x and y directions is controlled by the 1-D arrays delX (meters for a Cartesian grid, degrees
otherwise) and delY (meters for Cartesian and cyclindrical grids, degrees spherical). On a spherical polar grid, you
might decide to set the variable cosPower which is set to 0 by default and which represents n in (cos )", the power of
cosine of latitude to multiply horizontal viscosity and tracer diffusivity. The vertical grid spacing is set through the 1-D
array delR (z-coordinates: in meters; p-coordinates, in Pa). Using a curvilinear grid requires complete specification
of all horizontal MITgcm grid variables, either through a default filename (link to new doc section) or as specified by
horizGridFile.

The variable sealev_Z represents the standard position of sea level, in meters. This is typically set to O m for the ocean
(default value). If instead pressure is used as the vertical coordinate, the pressure at the top (of the atmosphere or ocean)
is set through top_Pres, typically O Pa. As such, these variables are analogous to xgOrigin and ygOrigin to define the
vertical grid axis. But they also are used for a second purpose: in a z-coordinate setup, top_Pres sets a reference
top pressure (required in a non-linear equation of state computation, for example); note that 1 bar (i.e., typical Earth
atmospheric sea-level pressure) is added already, so the default is O Pa. Similarly, for a p-coordinate setup, sealLev_Z
is used to set a reference geopotential (after gravity scaling) at the top of the ocean or bottom of the atmosphere.

Parameter Group Default Description

usingCartesianGrid PARMO04 | TRUE use Cartesian grid/coordinates on/off flag

usingSphericalPolarGrid PARMO04 | FALSE use spherical grid/coordinates on/off flag

usingCylindrical Grid PARMO4 | FALSE use cylindrical grid/coordinates on/off flag

usingCurvilinearGrid PARMO4 | FALSE use curvilinear grid/coordinates on/off flag

xgOrigin PARMO4 | 0.0 west edge z-axis origin (Cartesian: m; spherical and cy-
clindrical: degrees longitude)

continues on next page
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Table 3.3 — continued from previous page

Parameter Group Default Description
ygOrigin PARMO4 | 0.0 South edge y-axis origin (Cartesian and cyclindrical: m;
spherical: degrees latitude)
dxSpacing PARMO4 | unset z-axis uniform grid spacing, separation between cell faces
(Cartesian: m; spherical and cyclindrical: degrees)
delX PARMO4 | dxSpacing 1D array of x-axis grid spacing, separation between cell
faces (Cartesian: m; spherical and cyclindrical: degrees)
delXFile PARMO4 | ' ' filename containing 1D array of x-axis grid spacing
dySpacing PARMO4 | unset y-axis uniform grid spacing, separation between cell faces
(Cartesian and cyclindrical: m; spherical: degrees)
delY PARMO04 | dySpacing | 1D array of x-axis grid spacing, separation between cell
faces (Cartesian and cyclindrical: m; spherical: degrees)
delYFile PARMO4 | " ' filename containing 1D array of y-axis grid spacing
cosPower PARMOL1 | 0.0 power law n in (cos )™ factor for horizontal (harmonic or
biharmonic) viscosity and tracer diffusivity (spherical po-
lar)
delR PARMO4 | computed vertical grid spacing 1D array ([r] unit)
using
delRc
delRc PARMO4 | computed vertical cell center spacing 1D array ([r] unit)
using delR
delRFile PARMO4 | ' filename for vertical grid spacing 1D array ([r] unit)
delRcFile PARMO4 | ' ' filename for vertical cell center spacing 1D array ([r] unit)
rSphere PARMO04 | 6.37E+06 radius of sphere for spherical polar or curvilinear grid (m)
sealev_Z PARMO4 | 0.0 reference height of sea level (m)
top_Pres PARMO4 | 0.0 top pressure (p-coordinates) or top reference pressure (z-
coordinates) (Pa)
selectFindRoSurf PARMO1 | 0 select method to determine surface reference pressure from
orography (atmos.-only)
horizGridFile PARMO4 | " ' filename containing full set of horizontal grid variables
(curvilinear)
radius_fromHorizGrid PARMO04 | rSphere radius of sphere used in input curvilinear horizontal grid
file (m)
phiEuler PARMO4 | 0.0 Euler angle, rotation about original z-axis (spherical polar)
(degrees)
thetaEuler PARMO4 | 0.0 Euler angle, rotation about new x-axis (spherical polar) (de-
grees)
psiEuler PARMO4 | 0.0 Euler angle, rotation about new z-axis (spherical polar) (de-

grees)

3.8.1.3 Topography - Full and Partial Cells

For the ocean, the topography is read from a file that contains a 2-D(z, y) map of bathymetry, in meters for z-coordinates,
in pascals for p-coordinates. The bathymetry is specified by entering the vertical position of the ocean floor relative
to the surface, so by convention in z-coordinates bathymetry is specified as negative numbers (“depth” is defined as
positive-definite) whereas in p-coordinates bathymetry data is positive. The file name is represented by the variable
bathyFile. See our introductory tutorial setup Section 4.1 for additional details on the file format. Note no changes are
required in the model source code to represent enclosed, periodic, or double periodic domains: periodicity is assumed
by default and is suppressed by setting the depths to O m for the cells at the limits of the computational domain.

To use the partial cell capability, the variable hFacMin needs to be set to a value between 0.0 and 1.0 (it is set to 1.0
by default) corresponding to the minimum fractional size of a gridcell. For example, if a gridcell is 500 m thick and
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hFacMin is set to 0.1, the minimum thickness for a “thin-cell” for this specific gridcell is 50 m. Thus, if the specified
bathymetry depth were to fall exactly in the middle of this 500m thick gridcell, the initial model variable hFacC(z, y, r)
would be set to 0.5. If the specified bathymetry depth fell within the top 50m of this gridcell (i.e., less than hFacMin),
the model bathymetry would snap to the nearest legal value (i.e., initial hFacC(x, y, ) would be equal to 0.0 or 0.1
depending if the depth was within 0-25 m or 25-50 m, respectively). Also note while specified bathymetry bottom
depths (or pressures) need not coincide with the model’s levels as deduced from delR, any depth falling below the
model’s defined vertical axis is truncated.

Parameter Group Default Description

bathyFile PARMOS | " ' filename for 2D bathymetry (ocean) (z-coor.: m, negative; p-
coor.: Pa, positive)

topoFile PARMOS | ' ' filename for 2D surface topography (atmosphere) (m)

addWwallFile PARMOS | ' ! filename for 2D western cell-edge “thin-wall”

addSwallFile PARMOS | ' ' filename for 2D southern cell-edge “thin-wall”

hFacMin PARMO1 | 1.0E+00 minimum fraction size of a cell

hFacMinDr PARMO1 | 1.0E+00 minimum dimensional size of a cell ([r] unit)

hFacInf PARMOI1 | 2.0E-01 lower threshold fraction for surface cell; for non-linear free sur-
face only, see parameter nonlinFreeSurf

hFacSup PARMO1 | 2.0E+00 upper threshold fraction for surface cell; for non-linear free sur-
face, only see parameter nonlinFreeSurf

useMin4hFacEdges PARMO4 | FALSE set hFacW, hFacS as minimum of adjacent hFacC on/off flag

pCellMix_select PARMO4 | 0 option/factor to enhance mixing at the surface or bottom (0- 99)

pCellMix_maxFac PARMO04 | 1.0E+04 maximum enhanced mixing factor for too thin partial-cell (non-
dim.)

pCellMix_delR PARMO4 | 0.0 thickness criteria for too thin partial-cell ([] unit)

3.8.1.4 Physical Constants

Parameter Group Default Description

rhoConst PARMOLI | rhoNil vertically constant reference density (Boussinesq) (kg/m?)

gravity PARMO1 | 9.81E+00 gravitational acceleration (m/s?)

gravityFile PARMO1 | " filename for 1D gravity vertical profile (m/s”)

gBaro PARMOL1 | gravity gravity constant in barotropic equation (m/s’)

3.8.1.5 Rotation

For a Cartesian or cylindical grid, the Coriolis parameter f is set through the variables fO (in s™') and beta (%; in
m~'s™"), which corresponds to a Coriolis parameter f = f, + By (the so-called 3-plane).

122
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Parameter Group Default Description
rotationPeriod PARMO1 | 8.6164E+04 rotation period (s)
omega PARMOI | 27 /rotationPeriod angular velocity (rad/s)
selectCoriMap PARMO1 | depends on grid | Coriolis map options
(Cartesian and * 0: f-plane
cylindrical=1, * 1: beta-plane
spherical and curvi- * 2: spherical Coriolis (= 22 sin )
linear=2) e 3: read 2D field from file
0 PARMO1 | 1.0E-04 reference Coriolis parameter (Cartesian or cylindrical grid)
(1/8)
beta PARMOI1 | 1.0E-11 3 (Cartesian or cylindrical grid) (m™'s™")
fPrime PARMO1 | 0.0 2() cos ¢ parameter (Cartesian or cylindical grid) (1/s); i.e.,

for cos ¢ Coriolis terms from horizontal component of ro-
tation vector (also sometimes referred to as reciprocal Cori-
olis parm.)

3.8.1.6 Free Surface

The logical variables rigidLid and implicitFreeSurface specify your choice for ocean upper boundary (or lower bound-
ary if using p-coordinates); set one to . TRUE. and the other to . FALSE. . These settings affect the calculations of surface
pressure (for the ocean) or surface geopotential (for the atmosphere); see Section 3.8.2.

Parameter Group Default Description
implicitFreeSurface PARMO1 | TRUE implicit free surface on/off flag
rigidLid PARMO1 | FALSE rigid lid on/off flag
useRealFreshWater- PARMO1 | FALSE use true E-P-R freshwater flux (changes free surface/sea
Flux level) on/off flag
implicSurfPress PARMO1 | 1.0E+00 implicit fraction of the surface pressure gradient (0-1)
implicDiv2Dflow PARMO1 | 1.0E+00 implicit fraction of the barotropic flow divergence (0-1)
implicitNHPress PARMOL1 | implicSurfPress implicit fraction of the non-hydrostatic pressure gradient
(0-1); for non-hydrostatic only, see parameter nonHydro-
static
nonlinFreeSurf PARMO1 | O non-linear free surface options (-1,0,1,2,3; see Table 2.1);
requires #define NONLIN_FRSURF
select_rStar PARMO1 | 0 vertical coordinate option
* O:user
* >0: use r*
see Table 2.1; requires #define NONLIN_FRSURF
selectNHfreeSurf PARMO1 | 0 non-hydrostatic free surface formulation option
* 0: don’t use
* >0: use
requires non-hydrostatic formulation, see parameter non-
Hydrostatic
exactConserv PARMO1 | FALSE exact total volume conservation (recompute divergence af-
ter pressure solver) on/off flag

3.8. Customizing the Model Configuration - Runtime Parameters
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3.8.1.7 Time-Discretization

The time steps are set through the real variables deltaTMom and deltaTtracer (in seconds) which represent the time
step for the momentum and tracer equations, respectively (or you can prescribe a single time step value for all param-
eters using deltaT). The model “clock” is defined by the variable deltaTClock (in seconds) which determines the /O
frequencies and is used in tagging output. Time in the model is thus computed as:

model time = baseTime + iteration number * deltaTClock

Parameter Group Default Description
deltaT PARMO3 | 0.0 default value used for model time step parameters (s)
deltaTClock PARMO3 | deltaT timestep used for model clock (s): used for I/O frequency and
tagging output and checkpoints
deltaTmom PARMO3 | deltaT momentum equation timestep (s)
deltaTtracer PARMO3 | deltaT tracer equation timestep (s)
dTtracerLev PARMO3 | deltaT- tracer equation timestep specified at each vertical level (s)
tracer
deltaTfreesurf PARMO3 | deltaTmom | free-surface equation timestep (s)
baseTime PARMO3 | 0.0 model base time corresponding to iteration O (s)

3.8.2 Parameters: Main Algorithmic Parameters

3.8.2.1 Pressure Solver

By default, a hydrostatic simulation is assumed and a 2-D elliptic equation is used to invert the pressure field. If using
a non-hydrostatic configuration, the pressure field is inverted through a 3-D elliptic equation (note this capability is
not yet available for the atmosphere). The parameters controlling the behavior of the elliptic solvers are the variables
cg2dMaxlters and cg2dTargetResidual for the 2-D case and cg3dMaxIters and cg3dTargetResidual for the 3-D case.

Parameter Group Default Description
cg2dMaxlters PARMO2 | 150 upper limit on 2D conjugate gradient solver iterations
cg2dTargetResidual | PARMO2 | 1.0E-07 2D conjugate gradient target residual (non-dim. due to RHS
normalization )
cg2dTargetResWunit | PARMO2 | -1.0E+00 2D conjugate gradient target residual (7 units); <0: use
RHS normalization, i.e., cg2dTargetResidual instead
cg2dPreCondFreq PARMO2 | 1 frequency (in number of iterations) for updating cg2d pre-
conditioner; for non-linear free surface only, see parameter
nonlinFreeSurf
cg2dUseMinResSol | PARMO2 | 0 unless flat-bottom,
Cartesian * 0: use last-iteration/converged cg2d solution
* 1: use solver minimum-residual solution
cg3dMaxlters PARMO2 | 150 upper limit on 3D conjugate gradient solver iterations; re-
quires #define ALLOW_NONHYDROSTATIC
cg3dTargetResidual | PARMO2 | 1.0E-07 3D conjugate gradient target residual (non-dim.
due to RHS normalization ); requires #define AL-
LOW_NONHYDROSTATIC
continues on next page
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Table 3.6 — continued from previous page

Parameter Group Default Description
useSRCGSolver PARMO2 | FALSE use conjugate gradient solver with single reduction (single
call of mpi_allreduce)
printResidualFreq PARMO?2 | I unless debuglevel | frequency (in number of iterations) of printing conjugate
>4 gradient residual
integr_GeoPot PARMO1 | 2 select method to integrate geopotential
* 1: finite volume
» #£1: finite difference
uniform- PARMO1 | TRUE use uniform b, relation for ¢4 on/off flag
Lin_PhiSurf
deepAtmosphere PARMO04 | FALSE don’t make the thin shell/shallow water approximation
nh_Am?2 PARMO1 | 1.0E+00 non-hydrostatic terms scaling factor; requires #define AL-

LOW_NONHYDROSTATIC

3.8.2.2 Time-Stepping Algorithm

The Adams-Bashforth stabilizing parameter is set through the variable abEps (dimensionless). The stagger baroclinic
time stepping algorithm can be activated by setting the logical variable staggerTimeStep to . TRUE..

Parameter Group Default Description

abEps PARMO3 | 1.0E-02 Adams-Bashforth-2 stabilizing weight (non-dim.)

alph_AB PARMO3 | 0.5E+00 Adams-Bashforth-3 primary factor (non-dim.); requires #define
ALLOW_ADAMSBASHFORTH_3

beta_AB PARMO3 | 5/12 Adams-Bashforth-3 secondary factor (non-dim.); requires #de-
fine ALLOW_ADAMSBASHFORTH_3

staggerTimeStep PARMO1 | FALSE use staggered time stepping (thermodynamic vs. flow variables)
on/off flag

multiDimAdvection PARMO1 | TRUE use multi-dim. advection algorithm in schemes where non multi-
dim. is possible on/off flag

implicitIntGravWave PARMO1 | FALSE treat internal gravity waves implicitly on/off flag; requires #define
ALLOW_NONHYDROSTATIC

3.8.3 Parameters: Equation of State

The form of the equation of state is controlled by the model configuration and eosType.

For the atmosphere, eosType must be set to IDEALGAS.

For the ocean, several forms of the equation of state are available:

* For alinear approximation, set eosType to LINEAR), and you will need to specify the thermal and haline expansion
coefficients, represented by the variables tAlpha (in K™') and sBeta (in (g/kg)™"). Because the model equations
are written in terms of perturbations, a reference thermodynamic state needs to be specified. This is done through
the 1-D arrays tRef and sRef. tRef specifies the reference potential temperature profile (in °C for the ocean and
K for the atmosphere) starting from the level k=1. Similarly, sRef specifies the reference salinity profile (in g/kg)
for the ocean or the reference specific humidity profile (in g/kg) for the atmosphere.

* MITgcm offers several approximations to the full (oceanic) non-linear equation of state that can be selected as

eosType:

'"POLYNOMIAL':
This approximation is based on the Knudsen formula (see Bryan and Cox 1972 [BC72]). For
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this option you need to generate a file of polynomial coefficients called POLY3.COEFFS. To do
this, use the program utils/knudsen2/knudsen2.f under the model tree (a Makefile is available
in the same directory; you will need to edit the number and the values of the vertical levels in
knudsen2.f so that they match those of your configuration).

"UNESCO’:
The UNESCO equation of state formula (IES80) of Fofonoff and Millard (1983) [FRMS83]. This
equation of state assumes in-situ temperature, which is not a model variable; its use is therefore
discouraged.

’JMD95Z’:
A modified UNESCO formula by Jackett and McDougall (1995) [JM95], which uses the model
variable potential temperature as input. The *Z’ indicates that this equation of state uses a hori-
zontally and temporally constant pressure pg = —gpgz.

> JMDO5P’:
A modified UNESCO formula by Jackett and McDougall (1995) [JM95], which uses the model
variable potential temperature as input. The "P’ indicates that this equation of state uses the actual
hydrostatic pressure of the last time step. Lagging the pressure in this way requires an additional
pickup file for restarts.

"MDIWF’:
A more accurate and less expensive equation of state than UNESCO by McDougall et al. (2003)
[MJWFO03], also using the model variable potential temperature as input. It also requires lagging
the pressure and therefore an additional pickup file for restarts.

’TE0S10’:

TEOS-10 is based on a Gibbs function formulation from which all thermodynamic properties of
seawater (density, enthalpy, entropy sound speed, etc.) can be derived in a thermodynamically
consistent manner; see http://www.teos-10.org. See IOC et al. (2010) [ISI10], McDougall and
Parker (2011) [MB11], and Roquet et al. (2015) [RMMB 15] for implementation details. It also
requires lagging the pressure and therefore an additional pickup file for restarts. Note at this time
a full implementation of TEOS10 (i.e., ocean variables of conservative temperature and practical
salinity, including consideration of surface forcings) has not been implemented; also note the
original 48-term polynomial term is used, not the newer, preferred 75-term polynomial.

For these non-linear approximations, neither a reference profile of temperature or salinity is required,

except for a setup where implicitIntGravWave is set to . TRUE. or selectP_inEOS_Zc=1.

Note that for simplicity, salinity is expressed as a ratio in g/kg (thus effectively unitless) regardless of the choice of
equation of state, despite “Practical Salinity” not precisely equal to salinity expressed as a dissolved mass fraction. If
TEOS-10 is selected, the model variable salt can be interpreted as “Absolute Salinity”. See Millero (2010) [Mil10]
and Pawlowicz (2013) [Paw13] for detailed discussion of salinity measurements, and why being expressed as g/kg is
preferred, in the context of the ocean equation of state.

Parameter Group Default Description
eosType PARMO1 | LINEAR equation of state form
tRef PARMO1 | 20.0 °C (ocn) or | 1D vertical reference temperature profile (°C or K)
300.0 K (atm)
tRefFile PARMO1 | " filename for reference temperature profile (°C or K)
thetaConst PARMOL1 | tRef(k=1) vertically constant reference temp. for atmosphere p* coor-
dinates (°K); for ocean, specify instead of tRef or tRefFile
for vertically constant reference temp. (°C )
sRef PARMO1 | 30.0 (g/kg) (ocn) or | 1D vertical reference salinity profile (g/kg)
0.0 (atm)
sRefFile PARMO1 | " filename for reference salinity profile (g/kg)
continues on next page
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Table 3.7 — contin

ued from previous page

Parameter Group Default Description
selectP_inEOS_Zc PARMO1 | depends on eosType | select which pressure to use in EOS for z-coor.
* 0: use —gpc.z
* 1:use Dref = — f _gp(T’ref; Srefzpref)dz
 2: hydrostatic dynamical pressure
* 3: use full hyd.+non-hyd. pressure
for JMD95P, UNESCO, MDJWF, TEOS10 default=2, otherwise
default =0
rhonil PARMO1 | 9.998E+02 reference density for linear EOS (kg/m°)
tAlpha PARMO1 | 2.0E-04 linear EOS thermal expansion coefficient (1/°C)
sBeta PARMO1 | 7.4E-04 linear EOS haline contraction coefficient ((g/kg)™)

3.8.3.1 Thermodynamic Constants

Parameter Group Default Description

HeatCapacity_Cp PARMO1 | 3.994E+03 specific heat capacity C, (ocean) (J/kg/K)

celsius2K PARMO1 | 2.7315E+02 conversion constant °C to Kelvin

atm_Cp PARMO1 | 1.004E+03 specific heat capacity C, dry air at const. press. (J/kg/K)

atm_Rd PARMOL1 | atm_Cp*(2/7) gas constant for dry air (J/kg/K)

atm_Rq PARMO1 | 0.0 water vapor specific volume anomaly relative to dry air (g/kg)

atm_Po PARMO1 | 1.0E+05 atmosphere standard reference pressure (for potential temp.
defn.) (Pa)

3.8.4 Parameters: Momentum Equations

3.8.4.1 Configuration

There are a few logical variables that allow you to turn on/off various terms in the momentum equation. These variables
are called momViscosity, momAdvection, useCoriolis, momStepping, metricTerms, and momPressureForcing and by
default are set to .TRUE.. Vertical diffusive fluxes of momentum can be computed implicitly by setting the logical
variable implicitViscosity to . TRUE.. The details relevant to both the momentum flux-form and the vector-invariant
form of the equations and the various (momentum) advection schemes are covered in Section 2.

Parameter Group Default Description

momStepping PARMO1 | TRUE momentum equation time-stepping on/off flag

mom Viscosity PARMO1 | TRUE momentum friction terms on/off flag

momAdvection PARMO1 | TRUE advection of momentum on/off flag

momPressureForcing PARMO1 | TRUE pressure term in momentum equation on/off flag

metricTerms PARMO1 | TRUE include metric terms (spherical polar, momentum flux-
form) on/off flag

useNHMTerms PARMO1 | FALSE use “non-hydrostatic form” of metric terms on/off flag;
(see Section 2.14.4; note these terms are non-zero in many
model configurations beside non-hydrostatic)

momImplVertAdv PARMO1 | FALSE momentum implicit vertical advection on/off flag; requires
#define INCLUDE_IMPLVERTADV_CODE

implicitViscosity PARMO1 | FALSE implicit vertical viscosity on/off flag

interViscAr_pCell PARMO04 | FALSE account for partial-cell in interior vertical viscosity on/off
flag

continues on next page
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Table 3.8 — continued from previous page

Parameter Group Default Description
momDissip_In_AB PARMO3 | TRUE use Adams-Bashforth time stepping for dissipation ten-
dency
useCoriolis PARMO1 | TRUE include Coriolis terms on/off flag
use3dCoriolis PARMO1 | TRUE include cos ¢ Coriolis terms on/off flag
selectCoriScheme PARMO1 | O Coriolis scheme selector
* 0: original scheme
* 1: wet-point averaging method
* 2: Flux-Form: energy conserving; Vector-Inv: hFac
weighted average
* 3: Flux-Form: energy conserving using wet-point
method; Vector-Inv: energy conserving with hFac
weight
vectorInvariantMomentum PARMO1 | FALSE use vector-invariant form of momentum equations flag
useJamartMomAdv PARMO1 | FALSE use Jamart wetpoints method for relative vorticity advection
(vector invariant form) on/off flag
selectVortScheme PARMO1 | 1 vorticity scheme (vector invariant form) options
* 0,1: enstrophy conserving forms
* 2: energy conserving form
* 3: energy and enstrophy conserving form
see Sadourny 1975 [Sad75] and Burridge & Haseler 1977
[BH77]
upwind Vorticity PARMO1 | FALSE bias interpolation of vorticity in the Coriolis term (vector
invariant form) on/off flag
useAbsVorticity PARMOI1 | FALSE use f + ( in Coriolis terms (vector invariant form) on/off
flag
highOrderVorticity PARMO1 | FALSE use 3rd/4th order interpolation of vorticity (vector invariant
form) on/off flag
upwindShear PARMO1 | FALSE use st order upwind for vertical advection (vector invariant
form) on/off flag
selectKEscheme PARMO1 | O kinetic energy computation in Bernoulli function (vector

invariant form) options
* 0: standard form
* 1: area-weighted standard form
* 2: as 0 but account for partial cells
* 3: as 1 w/partial cells
see mom_calc_ke.F

3.8.4.2 Initialization

The initial horizontal velocity components can be specified from binary files uVellnitFile and vVellnitFile. These files
should contain 3-D data ordered in an (x,y, r) fashion with k=1 as the first vertical level (surface level). If no file
names are provided, the velocity is initialized to zero. The initial vertical velocity is always derived from the horizontal
velocity using the continuity equation. In the case of a restart (from the end of a previous simulation), the velocity field
is read from a pickup file (see Section 3.8.7) and the initial velocity files are ignored.
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Parameter Group Default Description

uVellnitFile PARMOS | ' ! filename for 3D specification of initial zonal velocity field (m/s)

vVellnitFile PARMOS | ' ' filename for 3D specification of initial meridional velocity field
(m/s)

pSurfInitFile PARMOS | ' filename for 2D specification of initial free surface position ([r]

unit)

3.8.4.3 General Dissipation Scheme

The lateral eddy viscosity coefficient is specified through the variable viscAh (in m*s™"). The vertical eddy viscosity
coeflicient is specified through the variable viscAr (in [r]2s™", where [r] is the dimension of the vertical coordinate).
In addition, biharmonic mixing can be added as well through the variable viscA4 (in m*s™!).

Parameter Group Default Description

viscAh PARMO1 | 0.0 lateral eddy viscosity (m?/s)

viscAhD PARMO1 | viscAh lateral eddy viscosity acts on divergence part (m?/s)

viscAhZ PARMO1 | viscAh lateral eddy viscosity acts on vorticity part (¢ points) (m?/s)

viscAhW PARMO1 | viscAhD lateral eddy viscosity for mixing vertical momentum (non-
hydrostatic form) (m?/s); for non-hydrostatic only, see parameter
nonHydrostatic

viscAhDfile PARMOS | ' ' filename for 3D specification of lateral eddy viscosity (diver-
gence part) (m?/s); requires #define ALLOW_3D_VISCAH in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscAhZfile PARMOS | ' ' filename for 3D specification of lateral eddy viscosity (vortic-
ity part, ¢ points); requires #define ALLOW_3D_VISCAH in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscAhGrid PARMO1 | 0.0 grid-dependent lateral eddy viscosity (non-dim.)

viscAhMax PARMO1 | 1.0E+21 maximum lateral eddy viscosity (m?/s)

viscAhGridMax PARMO1 | 1.0E+21 maximum lateral eddy (grid-dependent) viscosity (non-dim.)

viscAhGridMin PARMO1 | 0.0 minimum lateral eddy (grid-dependent) viscosity (non-dim.)

viscAhReMax PARMO1 | 0.0 minimum lateral eddy viscosity based on Reynolds number (non-
dim.)

viscC2leith PARMO1 | 0.0 Leith harmonic viscosity factor (vorticity part, { points) (non-dim.)

viscC2leithD PARMO1 | 0.0 Leith harmonic viscosity factor (divergence part) (non-dim.)

viscC2LeithQG PARMO1 | 0.0 Quasi-geostrophic Leith viscosity factor (non-dim.)

viscC2smag PARMO1 | 0.0 Smagorinsky harmonic viscosity factor (non-dim.)

viscA4 PARMO1 | 0.0 lateral biharmonic viscosity (m*/s)

viscA4D PARMOL1 | viscA4 lateral biharmonic viscosity (divergence part) (m*/s)

viscA4Z PARMO1 | viscA4 lateral biharmonic viscosity (vorticity part, ¢ points) (m*/s)

viscA4W PARMO1 | viscA4D lateral biharmonic viscosity for mixing vertical momentum (non-
hydrostatic form) (m*/s); for non-hydrostatic only, see parameter
nonHydrostatic

viscA4Dfile PARMOS | " ! filename for 3D specification of lateral biharmonic viscosity (di-
vergence part) (m4/s); requires #define ALLOW_3D_VISCA4 in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscAdZfile PARMOS | ' ' filename for 3D specification of lateral biharmonic viscosity (vor-
ticity part, ¢ points); requires #define ALLOW_3D_VISCA4 in
pkg/mom_common/MOM_COMMON_OPTIONS.h

viscA4Grid PARMO1 | 0.0 grid dependent biharmonic viscosity (non-dim.)

viscA4Max PARMO1 | 1.0E+21 maximum biharmonic viscosity (m?/s)

continues on next page
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Table 3.9 — continued from previous page

Parameter Group Default Description

viscA4GridMax PARMO1 | 1.0E+21 maximum biharmonic (grid-dependent) viscosity (non-dim.)

viscA4GridMin PARMO1 | 0.0 minimum biharmonic (grid-dependent) viscosity (mon-dim.)

viscA4ReMax PARMO1 | 0.0 minimum biharmonic viscosity based on Reynolds number (non-
dim.)

viscC4leith PARMO1 | 0.0 Leith biharmonic viscosity factor (vorticity part, ( points) (non-
dim.)

viscC4leithD PARMO1 | 0.0 Leith biharmonic viscosity factor (divergence part) (non-dim.)

viscC4smag PARMO1 | 0.0 Smagorinsky biharmonic viscosity factor (non-dim.)

useFullLeith PARMO1 | FALSE use full form of Leith viscosities on/off flag

useSmag3D PARMOI1 | FALSE use isotropic 3D  Smagorinsky  harmonic  viscosi-
ties flag; requires  #define ALLOW_SMAG_3D in
pkg/mom_common/MOM_COMMON_OPTIONS.h

smag3D_coeff PARMO1 | 1.0E-02 isotropic 3D Smagorinsky coefficient (non-
dim.); requires #define ALLOW_SMAG_3D in
pkg/mom_common/MOM_COMMON_OPTIONS.h

useStrainTensionVisc | PARMO1 | FALSE flag to use strain-tension form of viscous operator

useAreaViscLength PARMO1 | FALSE flag to use area for viscous L? instead of harmonic mean of L, Lyz

viscAr PARMO1 | 0.0 vertical eddy viscosity ([r]*/s)

VisCArNr PARMO1 | 0.0 vertical profile of vertical eddy viscosity ([7]*/s)

pCellMix_viscAr PARMO4 | viscArNr | vertical viscosity for too thin partial-cell ([]*/s)

3.8.4.4 Sidewall/Bottom Dissipation

Slip or no-slip conditions at lateral and bottom boundaries are specified through the logical variables no_slip_sides
and no_slip_bottom. If set to .FALSE., free-slip boundary conditions are applied. If no-slip boundary conditions
are applied at the bottom, a bottom drag can be applied as well. Two forms are available: linear (set the variable
bottomDraglinear in [r]/s, ) and quadratic (set the variable bottomDragQuadratic, [r]/m).

Parameter Group Default Description
no_slip_sides PARMO1 | TRUE viscous BCs: no-slip sides on/off flag
sideDragFactor PARMO1 | 2.0E+00 side-drag scaling factor (2.0: full drag) (non-dim.)
no_slip_bottom PARMO1 | TRUE viscous BCs: no-slip bottom on/off flag
bottomDragLinear PARMO1 | 0.0 linear bottom-drag coefficient ([]/s)
bottomDragQuadratic PARMO1 | 0.0 quadratic bottom-drag coefficient ([r]/m)
zRoughBot PARMO1 | 0.0 roughness length for quadratic bottom friction coefficient (m)
selectBotDragQuadr PARMOL1 | -1 select quadratic bottom drag discretization option

e -1: not used

* 0: average KE from grid center to u, v location

¢ 1: use local velocity norm @ u, v location

e 2: as 1 with wet-point averaging of other velocity compo-

nent
if bottomDragQuadratic # 0. then default is 0

selectImplicitDrag PARMO1 | O top/bottom drag implicit treatment options

* 0: fully explicit

* 1: implicit on provisional velocity, i.e., before V7 incre-

ment
e 2: fully implicit
if =2, requires #define ALLOW_SOLVE4_PS_AND_DRAG

bottomVisc_pCell PARMO1 | FALSE account for partial-cell in bottom viscosity (using no_slip_bottom

= .TRUE.) on/off flag
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3.8.5 Parameters: Tracer Equations

This section covers the tracer equations, i.e., the potential temperature equation and the salinity (for the ocean) or
specific humidity (for the atmosphere) equation.

3.8.5.1 Configuration

The logical variables tempAdvection, and tempStepping allow you to turn on/off terms in the temperature equation
(similarly for salinity or specific humidity with variables saltAdvection etc.). These variables all default to a value of
.TRUE.. The vertical diffusive fluxes can be computed implicitly by setting the logical variable implicitDiffusion to
.TRUE..

Parameter Group Default Description

tempStepping PARMO1 | TRUE temperature equation time-stepping on/off flag

tempAdvection PARMO1 | TRUE advection of temperature on/off flag

tempAdvScheme PARMO1 | 2 temperature horizontal advection scheme selector (see Ta-
ble 2.2)

tempVertAdvScheme PARMO1 | tempAdvScheme | temperature vertical advection scheme selector (see Table
2.2)

tempImpl VertAdv PARMOI1 | FALSE temperature implicit vertical advection on/off flag

addFrictionHeating PARMO1 | FALSE include frictional heating in temperature equation on/off
flag; requires #define ALLOW_FRICTION_HEATING

temp_stayPositive PARMO1 | FALSE use Smolarkiewicz hack to ensure tempera-
ture stays positive on/off flag; requires #de-
fine GAD_SMOLARKIEWICZ_HACK in
pkg/generic_advdiff/GAD_OPTIONS.h

saltStepping PARMO1 | TRUE salinity equation time-stepping on/off flag

saltAdvection PARMO1 | TRUE advection of salinity on/off flag

saltAdvScheme PARMO1 | 2 salinity horizontal advection scheme selector (see Table
2.2)

saltVertAdvScheme PARMOI1 | saltAdvScheme salinity vertical advection scheme selector (see Table 2.2)

saltlmpl VertAdv PARMOI1 | FALSE salinity implicit vertical advection on/off flag

salt_stayPositive PARMO1 | FALSE use Smolarkiewicz hack to ensure salin-
ity stays positive on/off flag; requires  #de-
fine GAD_SMOLARKIEWICZ_HACK in
pkg/generic_advdift/GAD_OPTIONS.h

implicitDiffusion PARMO1 | FALSE implicit vertical diffusion on/off flag

interDiffKr_pCell PARMO04 | FALSE account for partial-cell in interior vertical diffusion on/off
flag

linFSConserveTr PARMO1 | FALSE correct source/sink of tracer due to use of linear free surface
on/off flag

doAB_onGtGs PARMO3 | TRUE apply Adams-Bashforth on tendencies (rather than on T,S)
on/off flag
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3.8.5.2 Initialization

The initial tracer data can be contained in the binary files hydrogThetaFile and hydrogSaltFile. These files should
contain 3-D data ordered in an (x, y, ) fashion with k=1 as the first vertical level. If no file names are provided, the
tracers are then initialized with the values of tRef and sRef discussed in Section 3.8.3. In this case, the initial tracer
data are uniform in = and y for each depth level.

Parameter Group Default Description
hydrogThetaFile PARMOS | ' ! filename for 3D specification of initial potential temperature (°C)
hydrogSaltFile PARMOS | ' ! filename for 3D specification of initial salinity (g/kg)

maskIniTemp

PARMOS5 | TRUE

apply (center-point) mask to initial hydrographic theta data on/off
flag

maskIniSalt PARMOS5 | TRUE apply (center-point) mask to initial hydrographic salinity on/off
flag
checkIniTemp PARMOS | TRUE check if initial theta (at wet-point) identically zero on/off flag

checkIniSalt

PARMOS5 | TRUE

check if initial salinity (at wet-point) identically zero on/off flag

3.8.5.3 Tracer Diffusivities

Lateral eddy diffusivities for temperature and salinity/specific humidity are specified through the variables diffKhT
and diffKhS (in m?/s). Vertical eddy diffusivities are specified through the variables diffKrT and diffKrS. In addition,
biharmonic diffusivities can be specified as well through the coefficients diffK4T and diffK4S (in m*/s). The Gent and
McWilliams parameterization for advection and mixing of oceanic tracers is described in Section 8.4.1.

Parameter Group Default Description

diffKhT PARMO1 | 0.0 Laplacian diffusivity of heat laterally (m*/s)

diffK4T PARMO1 | 0.0 biharmonic diffusivity of heat laterally (m®*/s)

diffK«T PARMO1 | 0.0 Laplacian diffusivity of heat vertically (m?/s)

diffKr4T PARMO1 | 0.0 biharmonic diffusivity of heat vertically (m?/s)

diffKrNr'T PARMO1 | 0.0 at k=top vertical profile of vertical diffusivity of temperature (m?/s)

pCellMix_diffKr PARMO4 | diffKrNr vertical diffusivity for too thin partial-cell ([r]*/s)

diffKhS PARMO1 | 0.0 Laplacian diffusivity of salt laterally (m*/s)

diffK4S PARMO1 | 0.0 biharmonic diffusivity of salt laterally (m*/s)

diffKrS PARMO1 | 0.0 Laplacian diffusivity of salt vertically (m?*/s)

diffKr4S PARMO1 | 0.0 biharmonic diffusivity of salt vertically (m?*/s)

diffKrNrS PARMO1 | 0.0 at k=top vertical profile of vertical diffusivity of salt (m?/s)

diffKrFile PARMOS | ' filename for 3D specification of vertical diffusivity (m?/s); re-
quires #define ALLOW_3D_DIFFKR

diff KrBL79surf PARMO1 | 0.0 surface diffusivity for Bryan & Lewis 1979 [BL79] (m?/s)

diffKrBL79deep PARMO1 | 0.0 deep diffusivity for Bryan & Lewis 1979 [BL79] (m?/s)

diffKrBL79scl PARMO1 | 2.0E+02 depth scale for Bryan & Lewis 1979 [BL79] (m)

diffKrBL79Ho PARMO1 | -2.0E+03 turning depth for Bryan & Lewis 1979 [BL79] (m)

diff KrBLEQsurf PARMO1 | 0.0 same as diffKrBL79surf but at equator; requires #define AL-
LOW_BL79_LAT_VARY

diff KrBLEQdeep PARMO1 | 0.0 same as diffKrBL79deep but at equator; requires #define AL-
LOW_BL79_LAT_VARY

diffKrBLEQscl PARMO1 | 2.0E+02 same as diffKrBL79scl but at equator; requires #define AL-
LOW_BL79_LAT_VARY

diffKrBLEQHo PARMO1 | -2.0E+03 same as diffKrBL79Ho but at equator; requires #define AL-
LOW_BL79_LAT_VARY

continues on next page
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Table 3.11 — continued from previous page

Parameter Group Default Description

BL79LatVary PARMO1 | 3.0E+01 transition from diff KrBLEQ to diffKrBL79 parms at this latitude;
requires #define ALLOW_BL79 LAT VARY

3.8.5.4 Ocean Convection

In addition to specific packages that parameterize ocean convection, two main model options are available. To use the
first option, a convective adjustment scheme, you need to set the variable cadjFreq, the frequency (in seconds) with
which the adjustment algorithm is called, to a non-zero value (note, if cadjFreq set to a negative value by the user,
the model will set it to the model clock time step). The second option is to parameterize convection with implicit
vertical diffusion. To do this, set the logical variable implicitDiffusion to . TRUE. and the real variable ivdc_kappa (in
m?/s) to an appropriate tracer vertical diffusivity value for mixing due to static instabilities (typically, several orders of
magnitude above the background vertical diffusivity). Note that cadjFreq and ivdc_kappa cannot both have non-zero
value.

Parameter Group Default Description
ivdc_kappa PARMO1 | 0.0 implicit vertical diffusivity for convection (m?/s)
cAdjFreq PARMO3 | O frequency of convective adj. scheme; <0: sets value to deltaTclock
(s)
hMixCeriteri PARMO1 | -0.8E+00
e * * <0: specifies AT (°C) to define ML depth where Ap = AT
dp/dT occurs

* >1: define ML depth where local strat. exceeds mean strat. by
this factor (non-dim.)

hMixSmooth PARMO1 | 0.0 use this fraction of neighboring points (for smoothing) in ML calcu-
lation (0-1; O: no smoothing)

3.8.6 Parameters: Model Forcing

The forcing options that can be prescribed through runtime parameters in data are easy to use but somewhat limited
in scope. More complex forcing setups are possible with optional packages such as pkg/exf or pkg/rbcs, in which case
most or all of the parameters in this section can simply be left at their default value.

3.8.6.1 Momentum Forcing

This section only applies to the ocean. You need to generate wind-stress data into two files zonalWindFile and merid-
WindFile corresponding to the zonal and meridional components of the wind stress, respectively (if you want the stress
to be along the direction of only one of the model horizontal axes, you only need to generate one file). The format of
the files is similar to the bathymetry file. The zonal (meridional) stress data are assumed to be in pascals and located at
U-points (V-points). See the MATLAB program gendata.m in the input directories of verification for several
tutorial example (e.g. gendata.m in the barotropic gyre tutorial) to see how simple analytical wind forcing data are
generated for the case study experiments.
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Parameter Group Default Description

momForcing PARMO1 | TRUE included external forcing of momentum on/off flag

zonalWindFile PARMOS | ' ! filename for 2D specification of zonal component of wind forcing
(N/m?)

meridWindFile PARMOS | ' filename for 2D specification of meridional component of wind
forcing (N/m?)

momForcingOutAB PARMO3 | 0 1: take momentum forcing out of Adams-Bashforth time stepping

momTidalForcing PARMO1 | TRUE tidal forcing of momentum equation on/off flag (requires tidal
forcing files)

ploadFile PARMOS | ' ' filename for 2D specification of atmospheric pressure loading
(ocean z-coor. only) (Pa)

3.8.6.2 Tracer Forcing

A combination of flux data and relaxation terms can be used for driving the tracer equations. For potential temperature,
heat flux data (in W/m?) can be stored in the 2-D binary file surfQnetfile. Alternatively or in addition, the forcing
can be specified through a relaxation term. The SST data to which the model surface temperatures are restored are
stored in the 2-D binary file thetaClimFile. The corresponding relaxation time scale coefficient is set through the
variable tauThetaClimRelax (in seconds). The same procedure applies for salinity with the variable names EmPmRfile,
saltClimFile, and tauSaltClimRelax for freshwater flux (in m/s) and surface salinity (in g/kg) data files and relaxation
timescale coefficient (in seconds), respectively.

Parameter Group Default Description

tempForcing PARMO1 | TRUE external forcing of temperature forcing on/off flag

surfQnetFile PARMOS | ' ' filename for 2D specification of net total heat flux (W/m?)

surfQswFile PARMOS | ' ' filename for 2D specification of net shortwave flux (W/m?);
requires #define SHORTWAVE_HEATING

tauThetaClimRelax PARMO3 | 0.0 temperature (surface) relaxation time scale (s)

lambdaThetaFile PARMOS | ' filename for 2D specification of inverse temperature (sur-
face) relaxation time scale (1/s)

ThetaClimFile PARMOS | " ! filename for specification of (surface) temperature relaxation
values (°C)

balanceThetaClimRelax | PARMO1 | FALSE subtract global mean heat flux due to temp. relaxation
flux every time step on/off flag; requires #define AL-
LOW_BALANCE_RELAX

balanceQnet PARMO1 | FALSE subtract global mean Qnet every time step on/off flag; re-
quires #define ALLOW_BALANCE_FLUXES

geothermalFile PARMOS | ' filename for 2D specification of geothermal heating
flux through bottom (W/m?); requires #define AL-
LOW_GEOTHERMAL_FLUX

temp_EvPrRn PARMO1 | UNSET temperature of rain and evaporated water (unset, use local
temp.) (°C)

allowFreezing PARMO1 | FALSE limit (ocean) temperature at surface to >=-1.9°C

saltForcing PARMO1 | TRUE external forcing of salinity forcing on/off flag

convertFW2Salt PARMO1 | 3.5E+01 salinity used to convert freshwater flux to salt flux (-1: use
local S) (g/kg) (note default is -1 if useRealFreshWaterFlux=
.TRUE.)

rhoConstFresh PARMOL1 | rhoConst constant reference density for fresh water (rain) (kg/m>)

EmPmRFile PARMOS | ' ' filename for 2D specification of net freshwater flux (m/s)

continues on next page
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Table 3.12 — continued from previous page

Parameter Group Default Description
saltFluxFile PARMOS | ' ' filename for 2D specification of salt flux (from seaice)
((g/kg) kg/m?/s)
tauSaltClimRelax PARMO3 | 0.0 salinity (surface) relaxation time scale (s)
lambdaSaltFile PARMOS | ' ! filename for 2D specification of inverse salinity (surface) re-
laxation time scale (1/s)
saltClimFile PARMOS | ' filename for specification of (surface) salinity relaxation val-
ues (g/kg)
balanceSaltClimRelax PARMO1 | FALSE subtract global mean flux due to salt relaxation every time
step on/off flag
selectBalanceEmPmR PARMO1 | O option to balance net surface freshwater flux every time step
e 0: off
* 1: uniform surface correction
* 2: non-uniform surface correction, scaled using wght-
BalancedFile for local weighting
if =1 or 2, requires #define ALLOW_BALANCE_FLUXES
wghtBalanceFile PARMOS | " ! filename for 2D specification of weights used in selectBal-
anceEmPmR =2 correction
salt_EvPrRn PARMO1 | 0.0 salinity of rain and evaporated water (g/kg)
selectAddFluid PARMO1 | O add fluid to ocean interior options (-1, O: off, or 1); requires
#define ALLOW_ADDFLUID
temp_addMass PARMO1 | temp_EvPrRn | temp. of added or removed (interior) water (°C); requires
#define ALLOW_ADDFLUID
salt_addMass PARMO1 | salt_EvPrRn salinity of added or removed (interior) water (°C); requires
#define ALLOW_ADDFLUID
addMassFile PARMOS | " ' filename for 3D specification of mass source/sink (+=source,
kg/s); requires #define ALLOW_ADDFLUID
balancePrintMean PARMO1 | FALSE print subtracted balancing means to STDOUT on/off flag; re-
quires #define ALLOW_BALANCE_FLUXES and/or #de-
fine ALLOW_BALANCE_RELAX
latBandClimRelax PARMO3 | whole domain | relaxation to (T,S) climatology equatorward of this latitude
band is applied
tracForcingOutAB PARMO3 | O 1: take T, S, and pTracer forcing out of Adams-Bashforth
time stepping

3.8.6.3 Periodic Forcing

To prescribe time-dependent periodic forcing, concatenate successive time records into a single file ordered in a
(z, y,time) fashion and set the following variables: periodicExternalForcing to .TRUE., externForcingPeriod to the
period (in seconds between two records in input files) with which the forcing varies (e.g., 1 month), and externForc-
ingCycle to the repeat time (in seconds) of the forcing (e.g., 1 year; note externForcingCycle must be a multiple of
externForcingPeriod). With these variables specified, the model will interpolate the forcing linearly at each iteration.

Parameter Group Default Description

periodicExternalForcing PARMO3 | FALSE allow time-dependent periodic forcing on/off flag
externForcingPeriod PARMO3| 0.0 period over which forcing varies (e.g. monthly) (s)
externForcingCycle PARMO3| 0.0 period over which the forcing cycle repeats (e.g. one year) (s)
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3.8.7 Parameters: Simulation Controls

3.8.7.1 Run Start and Duration

The beginning of a simulation is set by specifying a start time (in seconds) through the real variable startTime or by
specifying an initial iteration number through the integer variable nlterQ. If these variables are set to non-zero values,
the model will look for a "pickup” file (by default, pickup.®000nIter®) to restart the integration. The end of a
simulation is set through the real variable endTime (in seconds). Alternatively, one can instead specify the number
of time steps to execute through the integer variable nTimeSteps. Iterations are referenced to deltaTClock, i.e., each
iteration is deltaTClock seconds of model time.

Parameter Group Default Description

nlterO PARMO3 | 0 starting timestep iteration number for this integration

nTimeSteps PARMO3 | 0 number of (model clock) timesteps to execute

nEndlIter PARMO3 | 0 run ending timestep iteration number (alternate way to prescribe
nTimeSteps)

startTime PARMO3 | baseTime run start time for this integration (s) (alternate way to prescribe
nlter0)

endTime PARMO3 | 0.0 run ending time (s) (with startTime, alternate way to prescribe
nTimeSteps)

3.8.7.2 Input/Output Files

The precision with which to read binary data is controlled by the integer variable readBinaryPrec, which can take
the value 32 (single precision) or 64 (double precision). Similarly, the precision with which to write binary data is
controlled by the integer variable writeBinaryPrec. By default, MITgcm writes output (snapshots, diagnostics, and
pickups) separately for individual tiles, leaving it to the user to reassemble these into global files, if needed (scripts are
available in utils/). There are two options however to have the model do this for you. Setting globalFiles to . TRUE.
should always work in a single process setup (including multi-threaded processes), but for MPI runs this will depend
on the platform — it requires simultaneous write access to a common file (permissible in typical Lustre setups, but not
on all file systems). Alternatively, one can set useSingleCpulO to . TRUE. to generate global files, which should always
work, but requires additional mpi-passing of data and may result in slower execution.

Parameter Group Default Description
globalFiles PARMO1 | FALSE write output “global” (i.e. not per tile) files on/off flag
useSingleCpulO PARMO1 | FALSE only master MPI process does I/O (producing global output files)
the_run_name PARMOS | " ' string identifying the name of the model “run” for meta files
readBinaryPrec PARMO1 | 32 precision used for reading binary files (32 or 64)
writeBinaryPrec PARMO1 | 32 precision used for writing binary files (32 or 64)
outputTypesInclusive PARMO3 | FALSE allows writing of output files in multiple formats (i.e. pkg/mdsio
and pkg/mnc)
rwSuffixType PARMO3 | 0 controls the format of the pkg/mdsio binary file “suffix”
* 0: use iteration number (mylter, 110.10)
e 1: 100*myTime
e 2: myTime
* 3: myTime/360
* 4: myTime/3600
where myTime is model time in seconds
mdsioLocalDir PARMOS | ' ' if not blank, read-write output tiled files from/to this directory
name (+four-digit processor-rank code)
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3.8.7.3 Frequency/Amount of Output

The frequency (in seconds) with which output is written to disk needs to be specified. dumpFreq controls the frequency
with which the instantaneous state of the model is written. monitorFreq controls the frequency with which monitor
output is dumped to the standard output file(s). The frequency of output is referenced to deltaTClock.

Parameter Group Default Description
dumpFreq PARMO3 | 0.0 interval to write model state/snapshot data (s)
dumplnitAndLast | PARMO3 | TRUE write out initial and last iteration model state on/off flag
diagFreq PARMO3 | 0.0 interval to write additional intermediate (debugging cg2d/3d)
output (s)
monitorFreq PARMO3 | lowest of other out- | interval to write monitor output (s)
put *Freq parms
monitorSelect PARMO3 | 2 (3 if fluid is water) | select group of monitor variables to output
* 1: dynamic variables only
* 2: add vorticity variables
* 3: add surface variables
debugLevel PARMO1 | depends on debug- | level of printing of MITgcm activity messages/statistics (1-5,
Mode higher -> more activity messages)
plotLevel PARMO1 | debuglevel controls printing of field maps (1-5, higher -> more fields)

3.8.7.4 Restart/Pickup Files

chkPtFreq and pchkPtFreq control the output frequency of rolling and permanent pickup (a.k.a. checkpoint) files,
respectively. These frequencies are referenced to deltaTClock.

Parameter Group Default Description

pChkPtFreq PARMO3 | 0.0 permanent restart/pickup checkpoint file write interval ( s )

chkPtFreq PARMO3 | 0.0 rolling restart/pickup checkpoint file write interval (s )

pickupSuft PARMO3 | ' ' force run to use pickups (even if nlterO =0) and read files with this
suffix (10 char. max)

pickupStrictlyMatch PARMO3 | TRUE force pickup (meta) file formats to exactly match (or terminate
with error) on/off flag

writePickupAtEnd PARMO3 | FALSE write a (rolling) pickup file at run completion on/off flag

usePickupBeforeC54 PARMO1 | FALSE initialize run using old pickup format from code prior to check-
point54a

startFromPickupAB2 PARMO3 | FALSE using Adams-Bashforth-3, start using Adams-Bashforth-2 pickup
format; requires #define ALLOW_ADAMSBASHFORTH_3

3.8.8 Parameters Used In Optional Packages

Some optional packages were not written with package-specific namelist parameters in a data. ${pkg} file; or for
historical and/or other reasons, several package-specific namelist parameters remain in data.
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3.8.8.1 C-D Scheme

(package pkg/cd_code)

If you run at a sufficiently coarse resolution, you might choose to enable the C-D scheme for the computation of the
Coriolis terms. The variable tauCD, which represents the C-D scheme coupling timescale (in seconds) needs to be set.

Parameter Group Default Description

useCDscheme PARMO1 | FALSE use C-D scheme for Coriolis terms on/off flag

tauCD PARMO3 | deltaTMom C-D scheme coupling timescale (s)

CD PARMO3 | 1 - deltaTMom/tauCD | C-D scheme normalized coupling parameter (non-dim.)
epsAB_CD PARMO3 | abEps Adams-Bashforth-2 stabilizing weight used in C-D scheme

3.8.8.2 Automatic Differentiation

(package pkg/autodiff; see Section 7)

Parameter Group Default Description

nTimeSteps_12 PARMO3 | 4 number of inner timesteps to execute per timestep

adjdumpFreq PARMO3 | 0.0 interval to write model state/snapshot data adjoint run (s)

adjMonitorFreq PARMO3 | 0.0 interval to write monitor output adjoint run (s)

adTapeDir PARMOS | ' ' if not blank, read-write checkpointing files from/to this directory
name

3.8.9 Execution Environment Parameters

If running multi-threaded (i.e., using shared memory/OpenMP), you will need to set n'Tx and/or nTy so that nTx*nTy
is the total number of threads (per process).

The parameter useCubedSphereExchange needs to be changed to . TRUE. if you are using any type of grid composed
of interconnected individual faces, including the cubed sphere topology or a lat-lon cap grid. See (needs section to be
written).

Note that setting flag debugMode to .TRUE. activates a separate set of debugging print statements than parameter
debuglevel (see Section 3.8.7.3). The latter controls print statements that monitor model activity (such as opening
files, etc.), whereas the former produces a more coding-oriented set of print statements (e.g., entering and exiting
subroutines, etc.)
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Parameter Group Default Description

useCubedSphereEx- EEPARMS | FALSE use cubed-sphere topology domain on/off flag

change

nTx EEPARMS | 1 number of threads in the x direction

nTy EEPARMS | 1 number of threads in the y direction

useCoupler EEPARMS | FALSE communicate with other model components through a cou-
pler on/off flag

useSETRLSTK EEPARMS | FALSE call C routine to set environment stacksize to ‘unlimited’

useSIGREG EEPARMS | FALSE enable signal handler to receive signal to terminate run
cleanly on/off flag

debugMode EEPARMS | FALSE print additional debugging messages; also “flush” STD-
OUT file unit after each print

printMaplIncludesZeros EEPARMS | FALSE text map plots of fields should ignore exact zero values
on/off flag

maxLengthPrt1D EEPARMS | 65 maximum number of 1D array elements to print to standard
output

3.9

MIiTgcm Input Data File Format

MITgcm input files for grid-related data (e.g., delXFile), forcing fields (e.g., tauThetaClimRelax), parameter fields
(e.g., viscAhZfile), etc. are assumed to be in “flat” or “unblocked” binary format. For historical reasons, MITgcm files
use big-endian byte ordering, NOT little-endian which is the more common default for today’s computers. Thus, some
care is required to create MITgcm-readable input files.

Using MATLAB: When writing binary files, MATLAB’s fopen command includes a MACHINEFORMAT op-
tion 'b"' which instructs MATLAB to read or write using big-endian byte ordering. 2-D arrays should be index-
ordered in MATLAB as (x, y) and 3-D arrays as (z, y, z); data is ordered from low to high in each index, with
x varying most rapidly.

An example to create a bathymetry file of single-precision, floating point values (from tutorial Barotropic Ocean
Gyre, a simple enclosed, flat-bottom domain) is as follows:

ieee = 'b’'; % big-endian format
accuracy = 'float32'; % this is single-precision (='real*4')

Ho=5000; % ocean depth in meters
nx=62; % number of gridpoints in x-direction
ny=62; % number of gridpoints in y-direction

% Flat bottom at z = -Ho
h = -Ho * ones(nx, ny);

% Walls (surrounding domain)
h([1 end], :) = 0; % set ocean depth to zero at east and west walls
h(:, [1 end]) = 0; % set ocean depth to zero at south and north walls

% save as single-precision (float32) with big-endian byte ordering
fid = fopen('bathy.bin', 'w', ieee);

fwrite(fid, h, accuracy);

fclose(fid);

To read this bathymetry file back into MATLAB, reshaped back to (nx, ny):
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fid = fopen('bathy.bin', 'r', ieee);
h = reshape(fread(fid, Inf, accuracy), nx, ny);
fclose(fid);

» Using Python:

A python version of the above script to create a bathymetry file is as follows:

import numpy as np

Ho = 5000 # ocean depth in meters
nx = 62 # number of gridpoints in x-direction
ny = 62 # number of gridpoints in y-direction

# Flat bottom at z = -Ho
h = -Ho * np.ones((ny, nx))

# Walls (surrounding domain)
h{:, [0,-1]] = ® # set ocean depth to zero at east and west walls
h[[0,-1], :1 =0 # set ocean depth to zero at south and north walls

# save as single-precision (NumPy type float32) with big-endian byte ordering
h.astype('>f4').tofile('bathy.bin')

The dtype specification '>f4" above instructs Python to write the file with big-endian byte ordering (specifically,
due to the ‘>’) as single-precision real numbers (due to the ‘f4’ which is NumPy float32 or equivalently, Fortran
real*4 format).

To read this bathymetry file back into Python, reshaped back to (ny, nx):

h = np.fromfile('bathy.bin', '>f4').reshape(ny, nx)

where again the dtype spec instructs Python to read a big-endian file of single-precision, floating point values.

Note that 2-D and 3-D arrays should be index-ordered as (y, x) and (z, y, x), respectively, to be written in proper
ordering for MITgcm.

A more complicated example of using Python to generate input date is provided in verifica-
tion/tutorial_baroclinic_gyre/input/gendata.py.

 Using Fortran: To create flat binary files in Fortran, open with syntax OPEN(..., ACCESS='DIRECT', ...)

(i.e., NOT ACCESS="'SEQUENTIAL' which includes additional metadata). By default Fortran will use the local
computer system’s native byte ordering for reading and writing binary files, which for most systems will be little-
endian. One therefore has two options: after creating a binary file in Fortran, use MATLAB or Python (or some
other utility) to read in and swap the bytes in the process of writing a new file; or, determine if your local Fortran
has a compiler flag to control byte-ordering of binary files. Similar to MATLAB, 2-D and 3-D arrays in Fortran
should be index-ordered as (z, y) and (z, y, 2), respectively.

Using NetCDF format for input files is only partially implemented at present in MITgcm, and use is thus discouraged.

Input files are by default single-precision real numbers (32-bit, real*4), but can be switched to double precision by
setting namelist parameter readBinaryPrec (PARMO1 in file data) to a value of 64.
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CHAPTER
FOUR

MITGCM TUTORIAL EXAMPLE EXPERIMENTS

The full MITgem distribution comes with a set of pre-configured numerical experiments. Some of these example exper-
iments are tests of individual parts of the model code, but many are fully fledged numerical simulations. Full tutorials
exist for a few of the examples, and are documented in sections Section 4.1 - Section 4.14. The other examples follow
the same general structure as the tutorial examples, see below. All example experiments are located in subdirectories
under the directory verification. A list of additional experiments (i.e, not documented as full tutorials), with brief
description, is provided in Section 4.15 and Section 4.16.

Each example experiment directory has the following subdirectories:
* code: contains code specific to the example. At a minimum, this directory includes the following files:

— code/packages.conf: declares the list of packages or package groups to be used. If not included, the
default set of packages is located in pkg/pkg_groups. Package groups are simply convenient collections
of commonly used packages which are defined in pkg/pkg_groups (see Using MITgcm Packages). Some
packages may require other packages or may require their absence (that is, they are incompatible) and these
package dependencies are listed in pkg/pkg_depend.

— code/SIZE.h: declares the size of underlying computational grid. This file is compiled instead of the
MITgcem repository version model/inc/SIZE.h.

— The code/ directory may include other files and subroutines specific to the experiment, i.e., containing
changes from the standard repository version. For example, some experiments contains CPP header op-
tions files to enable or disable some parts of the code at compile time; the most common ones would be
model/inc/CPP_OPTIONS.h for core model options and «PKG»_OPTIONS.h for individual packages.

e input: contains the input data files required to run the example. At a minimum, the input directory contains
the following files:

input/data: this file, written as a namelist, specifies the main parameters for the experiment.

input/data.pkg: contains parameters relative to the packages used in the experiment.

input/eedata: this file contains “execution environment” data. This consists of a specification of the
number of threads to use in = and y. For multi-threaded execution,these will be set to numbers greater than
1.

Forcing and topography file(s), as well as files describing the initial state of the experiment and any other
supporting data. Required support files vary from experiment to experiment, depending on the setup.

e results: this directory contains the output file output. txt produced by the simulation example. This file is
useful for comparison with your own output when you run the experiment.

e build: this directory is initially empty and should be used to compile the model and generate the executable.

e run: this directory is initially empty and should be used to run the executable. From the (empty) run di-
rectory, link files from input using the command 1n -s ../input/* ., then execute the file ../input/
prepare_run if it exists. If you are running one of the experiment variations, i.e., using input . «OTHER», first
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link files from input.«OTHER» (running . ./input.«OTHER»/prepare_run if it exists) and next link files
from input (and run ../input/prepare_run). Following this procedure, file links from input .«OTHER»
will NOT be overwritten by identically named files in input.

4.1 Barotropic Ocean Gyre

(in directory verification/tutorial_barotropic_gyre/)

This example experiment demonstrates using the MITgem to simulate a barotropic, wind-forced, ocean gyre circulation.
The experiment is a numerical rendition of the gyre circulation problem described analytically by Stommel in 1948
[Sto48] and Munk in 1950 [Mun50], and numerically in Bryan (1963) [Bry63]. Note this tutorial assumes a basic
familiarity with ocean dynamics and geophysical fluid dynamics; readers new to the field may which to consult one of
the standard texts on these subjects, such as Vallis (2017) [Val17] or Cushman-Roisin and Beckers (2011) [CRB11].

In this experiment the model is configured to represent a rectangular enclosed box of fluid, 1200 x 1200 km in lateral
extent. The fluid depth H = 5 km. The fluid is forced by a zonal wind stress, 7., that varies sinusoidally in the north-
south direction and is constant in time. Topologically the grid is Cartesian and the Coriolis parameter f is defined
according to a mid-latitude beta-plane equation

fy) = fo+ By

where y is the distance along the ‘north-south’ axis of the simulated domain. For this experiment f is set to 10~%s~!
and 3 = 10"s~im~1

The sinusoidal wind-stress variations are defined according to

T (y) = —7p cos <7Ty>
Ly

where L, is the lateral domain extent and 7y is set to 0.1N m™>

Figure 4.1 summarizes the configuration simulated.

4.1.1 Equations Solved

The model is configured in hydrostatic form (the MITgcm default). The implicit free surface form of the pressure
equation described in Marshall et al. (1997) [MHPA97] is employed. A horizontal Laplacian operator V3 provides
viscous dissipation. The wind-stress momentum input is added to the momentum equation for the ‘zonal flow’, u. This
effectively yields an active set of equations for this configuration as follows:

Du 8 T
i fu —l—ga Ahvhu = 7CH 4.1
Dv
T T Ut g2 a — ApViv =0 4.2)
on
_ 43
o Vi - (Hd) =0 .3)

where u and v are the  and y components of the flow vector U, 7 is the free surface height, Aj, the horizontal Laplacian
viscosity, p. is the fluid density, and g the acceleration due to gravity.
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Figure 4.1: Schematic of simulation domain and wind-stress forcing function for barotropic gyre numerical experiment.
The domain is enclosed by solid walls at z = 0, 1200 km and at y = 0, 1200 km.

4.1.2 Discrete Numerical Configuration

The domain is discretized with a uniform grid spacing in the horizontal set to Az = Ay = 20 km, so that there are
sixty ocean grid cells in the  and y directions. The numerical domain includes a border row of “land” cell surrounding
the ocean cells, so the numerical grid size is 62 x 62 (if these land cells were not included, the domain would be periodic
in both the = and y directions).

Vertically the model is configured using a single layer in depth, Az, of 5000 m.

4.1.2.1 Numerical Stability Criteria

Let’s start with our choice for the model’s time step. To minimize the amount of required computational resources,

typically one opts for as large a time step as possible while keeping the model solution stable. The advective

Courant-Friedrichs—Lewy (CFL) condition (see Adcroft 1995 [Adc95]) for an extreme maximum horizontal flow speed

is:

|u| At
Ax

Sadv = 2 < ) < 0.5 for stability (4.4)

The 2 factor on the left is because we have a 2-D problem (in contrast with the more familiar 1-D canonical stability
analysis); the right hand side is 0.5 due to our default use of Adams-Bashforth2 (see Section 2.5) rather than the more
familiar value of 1 that one would obtain using a forward Euler scheme. In our configuration, let’s assume our solution
will achieve a maximum |u| = 1 ms™' (in reality, current speeds in our solution will be much smaller). To keep At
safely below the stability threshold, let’s choose At = 1200 s (= 20 minutes), which results in S,q, = 0.12.

The numerical stability for inertial oscillations using Adams-Bashforth II (Adcroft 1995 [Adc95])
Sinert = fAL < 0.5 for stability 4.5)

evaluates to 0.12 for our choice of At, which is below the stability threshold.

There are two general rules in choosing a horizontal Laplacian eddy viscosity Ap:
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* the resulting Munk layer width should be at least as large (preferably, larger) than the lateral grid spacing;
* the viscosity should be sufficiently small that the model is stable for horizontal friction, given the time step.

Let’s use this first rule to make our choice for Ay, and check this value using the second rule. The theoretical Munk
boundary layer width (as defined by the solution zero-crossing, see Pedlosky 1987 [Ped87]) is given by:

2 Ah %
M= T (2 4.6)
i (%)

For our configuration we will choose to resolve a boundary layer of ~ 100 km, or roughly across five grid cells, so we
set Ay, = 400 m? s™' (more precisely, this sets the full width at M = 124 km). This choice ensures that the frictional
boundary layer is well resolved.

Given our choice of At, the stability parameter for the horizontal Laplacian friction (Adcroft 1995 [Adc95])

Ap At
Sth =2 <4Ah2) < 0.6 for stability “4.7)
T

evaluates to 0.0096, which is well below the stability threshold. As in (4.4) the above criteria is for a 2D problem using
Adams-Bashforth2 time stepping, with the 0.6 value on the right replacing the more familiar 1 that is obtained using a
forward Euler scheme.

See Section 2.5 for additional details on Adams-Bashforth time-stepping and numerical stability criteria.

4.1.3 Configuration

The model configuration for this experiment resides under the directory verification/tutorial_barotropic_gyre/.
The experiment files

* verification/tutorial_barotropic_gyre/code/SIZE.h

* verification/tutorial_barotropic_gyre/input/data

* verification/tutorial_barotropic_gyre/input/data.pkg

* verification/tutorial_barotropic_gyre/input/eedata

* verification/tutorial_barotropic_gyre/input/bathy.bin

* verification/tutorial_barotropic_gyre/input/windx_cosy.bin

contain the code customizations and parameter settings for this experiment. Below we describe these customizations
in detail.

Note: MITgem’s defaults are configured to simulate an ocean rather than an atmosphere, with vertical z-coordinates.
To model the ocean using pressure coordinates using MITgcm, additional parameter changes are required; see tutorial
ocean_in_p. To switch parameters to model an atmosphere, see tutorial Held_Suarez.

4.1.3.1 Compile-time Configuration

File code/SIZE.h

144 Chapter 4. MITgcm Tutorial Example Experiments


https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/code/SIZE.h
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/input/data
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/input/data.pkg
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_barotropic_gyre/input/eedata

40

41

42

43

44

45

46

47

48

49

51

MITgcm Documentation, Release 2d7a4a2

Listing 4.1: verification/tutorial_barotropic_gyre/code/SIZE.h

e)
w
o
o

NN nNnNnnOnnnnN

IROUTINE: SIZE.h
| INTERFACE:
include SIZE.h
IDESCRIPTION: \bv

| SIZE.h Declare size of underlying computational grid.

The design here supports a three-dimensional model grid
with indices I,] and K. The three-dimensional domain
is comprised of nPx*nSx blocks (or tiles) of size sNx
along the first (left-most index) axis, nPy*nSy blocks

Nr along the vertical (third) axis.
Blocks/tiles have overlap regions of size OLx and OLy
along the dimensions that are subdivided.

I
I
I
|
| of size sNy along the second axis and one block of size
I
I
I

\ev

Voodoo numbers controlling data layout:

sNx :: Number of X points in tile.

sNy :: Number of Y points in tile.

OLx :: Tile overlap extent in X.

OLy :: Tile overlap extent in Y.

nSx :: Number of tiles per process in X.

nSy :: Number of tiles per process in Y.

nPx :: Number of processes to use in X.

nPy :: Number of processes to use in Y.

Nx :: Number of points in X for the full domain.
Ny :: Number of points in Y for the full domain.
Nr :: Number of points in vertical direction.

CEOP

INTEGER sNx

INTEGER sNy

INTEGER OLx

INTEGER OLy

INTEGER nSx

INTEGER nSy

INTEGER nPx

INTEGER nPy

INTEGER Nx

INTEGER Ny

INTEGER Nr

PARAMETER (
& sNx = 62,
& sNy = 62,
& OLx = 2,
& OLy = 2,
& nSx = 1,
& nSy = 1,
& nPx = 1,

(continues on next page)
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(continued from previous page)

& nPy = 1,

& Nx = sNx*nSx*nPx,

& Ny = sNy*nSy*nPy,

& Nr = D
C MAX_OLX :: Set to the maximum overlap region size of any array
C MAX_OLY that will be exchanged. Controls the sizing of exch
C routine buffers.

INTEGER MAX_OLX

INTEGER MAX_OLY

PARAMETER ( MAX_OLX = OLx,
& MAX_OLY = OLy )

Here we show a modified model/inc source code file, customizing MITgem’s array sizes to our model domain. This
file must be uniquely configured for any model setup; using the MITgecm default model/inc/SIZE.h will in fact cause
a compilation error. Note that MITgcm’s storage arrays are allocated as static variables (hence their size must be
declared in the source code), in contrast to some model codes which declare array sizes dynamically, i.e., through
runtime (namelist) parameter settings.

For this first tutorial, our setup and run environment is the most simple possible: we run on a single process (i.e., NOT
MPI and NOT multi-threaded) using a single model “zile”. For a more complete explanation of the parameter choices
to use multiple tiles, see the tutorial Baroclinic Gyre.

* These lines set parameters sNx and sNy, the number of grid points in the x and y directions, respectively.

45 & sNx = 62,
46 & sNy = 62,

* These lines set parameters OLx and OLy in the z and y directions, respectively. These values are the overlap
extent of a model tile, the purpose of which will be explained in later tutorials. Here, we simply specify the
required minimum value (2) in both x and y.

47 & OLx = 2,
48 & OLy = 2,

 These lines set parameters nSx, nSy, nPx, and nPy, the number of model tiles and the number of processes in the
x and y directions, respectively. As discussed above, in this tutorial we configure a single model tile on a single
process, so these parameters are all set to the value one.

49 & nSx = 1,
50 & nSy = 1,
51 & nPx = 1,
52 & nPy = 1,

* This line sets parameter Nr, the number of points in the vertical dimension. Here we use just a single vertical
level.

55 & Nr = 1 )

¢ Note these lines summarize the horizontal size of the model domain (NOT to be edited).

53 & Nx = sNx*nSx*nPx,
54 & Ny sNy*nSy*nPy,
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Further information and examples about how to configure model/inc/SIZE.h are given in Section 6.3.1.

4.1.3.2 Run-time Configuration

File input/data

Listing 4.2: verification/tutorial_barotropic_gyre/input/data

# Model parameters
# Continuous equation parameters
&PARMO1

viscAh=4.E2,

f0=1.E-4,

beta=1.E-11,
rhoConst=1000.,

gBaro=9.81,
rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,
# momAdvection=.FALSE.,
tempStepping=.FALSE.,
saltStepping=.FALSE.,

&

# Elliptic solver parameters
&PARMO?2
cg2dTargetResidual=1.E-7,
cg2dMaxIters=1000,

&

# Time stepping parameters
&PARMO3

nIter0=0,

nTimeSteps=10,
deltaT=1200.0,
pChkptFreq=31104000.0,
chkptFreq=15552000.0,
dumpFreq=15552000.0,
monitorFreq=1200.,
monitorSelect=2,

#-for longer run (3.0 yr):
# nTimeSteps=77760,

# monitorFreq=864000.,

&

# Gridding parameters
&PARNMO4
usingCartesianGrid=.TRUE.,
delX=62*20.E3,
delY=62*20.E3,
xgOrigin=-20.E3,
ygOrigin=-20.E3,
delR=5000.,

(continues on next page)
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(continued from previous page)

&

# Input datasets

&PARMOS5

bathyFile="'bathy.bin'
zonalWindFile="windx_cosy.bin"',
#zonalWindFile="windx_siny.bin',
meridWindFile=,

&

This file, reproduced completely above, specifies the main parameters for the experiment. The parameters that are
significant for this configuration (shown with line numbers to left) are as follows.

PARMO1 - Continuous equation parameters

This line sets parameter viscAh, the horizontal Laplacian viscosity, to 400 m? s~

viscAh=4.E2,

These lines set fy and 3 (the Coriolis parameter fO and the gradient of the Coriolis parameter beta) for our
beta-plane to 1 x 107™% s7" and 1 x 10~ m~'s7!, respectively.

f0=1.E-4,
beta=1.E-11,

This line sets parameter rhoConst, the Boussinesq reference density p,. in (4.1), to 1000 kg/m>.

rhoConst=1000.,

This line sets parameter gBaro, the acceleration due to gravity g (in the free surface terms in (4.1) and (4.2)),
to 9.81 m/s2. This is the MITgcm default value, i.e., the value used if this line were not included in data. One
might alter this parameter for a reduced gravity model, or to simulate a different planet, for example.

gBaro=9.81,

These lines set parameters rigidLid and implicitFreeSurface in order to suppress the rigid lid formulation of the
surface pressure inverter and activate the implicit free surface formulation.

rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,

This line sets parameter momAdvection to suppress the (non-linear) momentum of advection terms in the mo-
mentum equations. However, note the # in column 1: this “comments out” the line, so using the above data file
verbatim will in fact include the momentum advection terms (i.e., MITgem default for this parameter is TRUE).
We’ll explore the linearized solution (i.e., by removing the leading #) in Section 4.1.5. Note the ability to com-
ment out a line in a namelist file is not part of standard Fortran, but this feature is implemented for all MITgcm
namelist files.

# momAdvection=.FALSE.,

These lines set parameters tempStepping and saltStepping to suppress MITgcm’s forward time integration of
temperature and salt in the tracer equations, as these prognostic variables are not relevant for the model solution in
this configuration. By default, MITgcm solves equations governing these two (active) tracers; later tutorials will
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demonstrate how additional passive tracers can be included in the solution. The advantage of NOT solving the
temperature and salinity equations is to eliminate many unnecessary computations. In most typical configurations
however, one will want the model to compute a solution for 7" and S, which typically comprises the majority of
MITgcm’s processing time.

tempStepping=.FALSE.,
saltStepping=.FALSE.,

PARMO2 - Elliptic solver parameters

 The first line sets the tolerance (parameter cg2dTargetResidual) that the 2-D conjugate gradient solver, the it-

erative method used in the pressure method algorithm, will use to test for convergence. The second line sets
parameter cg2dMaxIters, the maximum number of iterations. The solver will iterate until the residual falls be-
low this target value (here, set to 1 x 10~7) or until this maximum number of solver iterations is reached (here,
set to a maximum 1000 iterations). Typically, the solver will converge in far fewer than 1000 iterations, but it
does not hurt to allow for a large number. The chosen value for the target residual happens to be the MITgcm
default, and will serve well in most model configurations.

cg2dTargetResidual=1.E-7,
cg2dMaxIters=1000,

PARMO3 - Time stepping parameters

24

25

32

33

34

26

This line sets the starting (integer) iteration number for the run. Here we set the value to zero, which starts the
model from a new, initialized state. If nlterQ is non-zero, the model would require appropriate pickup files (i.e.,
restart files) in order to continue integration of an existing run.

nlter®=0,

This line sets parameter nTimeSteps, the (integer) number of timesteps the model will integrate forward. Below,
we have set this to integrate for just 10 time steps, for MITgcm automated testing purposes (Section 5.5). To
integrate the solution to near steady state, uncomment the line further down where we set the value to 77760
time steps. When you make this change, be sure to also uncomment the next line that sets monitorFreq (see
below).

nTimeSteps=10,

#-for longer run (3.0 yr):
# nTimeSteps=77760,
# monitorFreq=864000.,

This line sets parameter deltaT, the timestep used in stepping forward the model, to 1200 seconds. In combination
with the larger value of nTimeSteps mentioned above, we have effectively set the model to integrate forward for
77760 x 1200 s = 3.0 years (based on 360-day years), long enough for the solution to approach equilibrium.

deltaT=1200.0,

These lines control the frequency at which restart (a.k.a. pickup) files are dumped by MITgcm. Here the value of
pChkptFreq is set to 31,104,000 seconds (=1.0 years) of model time; this controls the frequency of “permanent”
checkpoint pickup files. With permanent files, the model’s iteration number is part of the file name (as the
filename “suffix”; see Section 4.1.4.2) in order to save it as a labelled, permanent, pickup state. The value of
ChkptFreq is set to 15,552,000 seconds (=0.5 years); the pickup files written at this frequency but will NOT
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27

28

30

31

include the iteration number in the filename, instead toggling between ckptA and ckptB in the filename, and
thus these files will be overwritten with new data every 2 x 15,552,000 seconds. Temporary checkpoint files can
be written more frequently without requiring additional disk space, for example to peruse (or re-run) the model
state prior to an instability, or restart following a computer crash, etc. Either type of checkpoint file can be used
to restart the model.

pChkptFreq=31104000.0,
chkptFreq=15552000.0,

This line sets parameter dumpFreq, frequency of writing model state snapshot diagnostics (of relevance in this
setup: variables u, v, and 7). Here, we opt for a snapshot of model state every 15,552,000 seconds (=0.5 years),
or after every 12960 time steps of integration.

dumpFreq=15552000.0,

* These lines are set to dump monitor output (see Section 9.4) every 1200 seconds (i.e., every time step) to standard

output. While this monitor frequency is needed for MITgcm automated testing, this is too much output for our
tutorial run. Comment out this line and uncomment the line where monitorFreq is set to 864,000 seconds, i.e.,
output every 10 days. Parameter monitorSelect is set to 2 here to reduce output of non-applicable quantities for
this simple example.

monitorFreq=1200.,
monitorSelect=2,

PARMO4 - Gridding parameters

39

40

41

43

44

This line sets parameter usingCartesianGrid, which specifies that the simulation will use a Cartesian coordinate
system.

usingCartesianGrid=.TRUE.,

These lines set the horizontal grid spacing of the model grid, as vectors delX and delY (i.e., Ax and Ay respec-
tively). This syntax indicates that we specify 62 values in both the x and y directions, which matches the domain
size as specified in SIZE.h. Grid spacing is set to 20 x 103 m (=20 km).

delX=62%20.E3,
delY=62%20.E3,

The cartesian grid default origin is (0,0) so here we set the origin with parameters xgOrigin and ygOrigin to
(-20000,-20000), accounting for the bordering solid wall. The centers of the grid boxes will thus be at -10 km,
10 km, 30 km, 50 km, ..., in both = and y directions.

xg0rigin=-20.E3,
ygOrigin=-20.E3,

This line sets parameter delR, the vertical grid spacing in the z-coordinate (i.e., Az), to 5000 m.

delR=5000.,
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PARMOS5 - Input datasets

* This line sets parameter bathyFile, the name of the bathymetry file. See Section 4.1.3.2 for information about
the file format.

19 bathyFile="'bathy.bin'

* These lines specify the names of the files from which the surface wind stress is read. There is a separate file for the
z-direction (zonalWindFile) and the y-direction (meridWindFile). Note, here we have left the latter parameter
blank, as there is no meridional wind stress forcing in our example.

50 zonalWindFile="windx_cosy.bin',
si |#zonalWindFile="windx_siny.bin',
B meridWindFile=,

File input/data.pkg

Listing 4.3: verification/tutorial_barotropic_gyre/input/data.pkg

# Packages
&PACKAGES
&

This file does not set any namelist parameters, yet is necessary to run — only standard packages (i.e., those compiled
in MITgcm by default) are required for this setup, so no other customization is necessary. We will demonstrate how to
include additional packages in other tutorial experiments.

File input/eedata
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Listing 4.4: verification/tutorial_barotropic_gyre/input/eedata

# Example "eedata" file
# Lines beginning "#" are comments

# nTx :: No. threads per process in X

# nTy :: No. threads per process in Y

# debugMode :: print debug msg (sequence of S/R calls)

&EEPARMS

nTx=1,

nTy=1,

&

# Note: Some systems use & as the namelist terminator (as shown here).
# Other systems use a / character.

This file uses standard default values (i.e., MITgcm default is single-threaded) and does not contain customizations for
this experiment.

File input/bathy.bin

This file is a 2-D(«, y) map of bottom bathymetry, specified as the z-coordinate of the solid bottom boundary. Here,
the value is set to -5000 m everywhere except along the N, S, E, and W edges of the array, where the value is set to O
(i.e., “land”). As discussed in Section 4.1.2, the domain in MITgcm is assumed doubly periodic (i.e., periodic in both
z- and y-directions), so boundary walls are necessary to set up our enclosed box domain. The matlab program veri-
fication/tutorial_barotropic_gyre/input/gendata.m was used to generate this bathymetry file (alternatively, see python
equivalent gendata.py). By default, this file is assumed to contain 32-bit (single precision) binary numbers. See Section
3.9 for additional information on MITgcm input data file format specifications.

File input/windx_cosy.bin

Similar to file input/bathy.bin, this file is a 2-D(z, y) map of 7,, wind stress values, formatted in the same manner.
The units are Nm~2. Although 7, is only a function of y in this experiment, this file must still define a complete 2-D
map in order to be compatible with the standard code for loading forcing fields in MITgcm. The matlab program ver-
ification/tutorial_barotropic_gyre/input/gendata.m was used to generate this wind stress file (alternatively, see python
equivalent gendata.py). To run the barotropic jet variation of this tutorial example (see Figure 4.4), you will in fact
need to run one of these programs to generate the file input/windx_siny.bin.

4.1.4 Building and running the model

To configure and compile the code (following the procedure described in Section 3.5.1):

cd build

../../../tools/genmake2 -mods ../code ««-of my_platform optionFile»»
make depend

make

cd ..

To run the model (following the procedure in Section 3.6):

cd run
In -s ../input/* .

(continues on next page)
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(continued from previous page)

In -s ../build/mitgcmuv .
./mitgcmuv > output.txt

4.1.4.1 Standard output
Your run’s standard output file should be similar to verification/tutorial_barotropic_gyre/results/output.txt. The stan-
dard output is essentially a log file of the model run. The following information is included (in rough order):

e startup information including MITgcm checkpoint release number and other execution environment information,
and a list of activated packages (including all default packages, as well as optional packages).

¢ the text from all data. * and other critical files (in our example here, eedata, SIZE.h, data, and data.pkg).

¢ information about the grid and bathymetry, including dumps of all grid variables (only if Cartesian or spherical
polar coordinates used, as is the case here).

* all runtime parameter choices used by the model, including all model defaults as well as user-specified parame-
ters.

* monitor statistics at regular intervals (as specified by parameter monitorFreq in data. See Section 9.4).

* output from the 2-D conjugate gradient solver. More specifically, statistics from the right-hand side of the elliptic
equation — for our linear free-surface, see eq. (2.15) — are dumped for every model time step. If the model solution
blows up, these statistics will increase to infinity, so one can see exactly when the problem occurred (i.e., to aid in
debugging). Additional solver variables, such as number of iterations and residual, are included with the monitor
statistics.

* asummary of end-of-run execution information, including user-, wall- and system-time elapsed during execution,
and tile communication statistics. These statistics are provided for the overall run, and also broken down by time
spent in various subroutines.

Different setups using non-standard packages and/or different parameter choices will include additional or different
output as part of the standard output. It is also possible to select more or less output by changing the parameter
debuglevel in data; see (missing doc for pkg debug).

STDERR. 0000 - if errors (or warnings) occurred during the run, helpful warning and/or error message(s) would appear
in this file.

4.1.4.2 Other output files

In addition to raw binary data files with .data extension, each binary file has a corresponding .meta file. These
plain-text files include information about the array size, precision (i.e., float32 or float64), and if relevant, time
information and/or a list of these fields included in the binary file. The .meta files are used by MITgcm utils when
binary data are read.

The following output files are generated:
Grid Data: see Section 2.11 for definitions and description of the Arakawa C-grid staggering of model variables.
* XC, YC - grid cell center point locations
* XG, YG - locations of grid cell vertices
* RC, RF - vertical cell center and cell faces positions
* DXC, DYC - grid cell center point separations (Figure 2.8 b)

* DXG, DYG - separation of grid cell vertices (Figure 2.8 a)
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* DRC, DRF - separation of vertical cell centers and faces, respectively

e RAC, RAS, RAW, RAZ - areas of the grid “tracer cells”, “southern cells”, “western cells” and “vorticity cells”,
respectively (Figure 2.8)

* hFacC, hFacS, hFacW - fractions of the grid cell in the vertical which are “open” as defined in the center and on the
southern and western boundaries, respectively. These variables effectively contain the configuration bathymetric
(or topographic) information.

* Depth - bathymetry depths

All these files contain 2-D(z, y) data except RC, RF, DRC, DRF, which are 1-D(z), and hFacC, hFacS, hFacW, which
contain 3D(x, y, z) data. Units for the grid files depends on one’s choice of model grid; here, they are all in given in
meters (or m? for areas).

All the 2-D grid data files contain .001.001 in their filename, e.g., DXC.001.001.data — this is the tile number in
.XXX.YYY format. Here, we have just a single tile in both x and y, so both tile numbers are 01. Using multiple tiles, the
default is that the local tile grid information would be output separately for each tile (as an example, see the baroclinic
gyre tutorial, which is set up using multiple tiles), producing multiple files for each 2-D grid variable.

State Variable Snapshot Data:

Eta.0000000000.001.001.data, Eta.0000000000.001.001.meta - this is a binary data snapshot of model dy-
namic variable etaN (the free-surface height) and its meta file, respectively. Note the tile number is included in the
filename, as is the iteration number 0000000000, which is simply the time step (the iteration number here is referred to
as the “suffix” in MITgcm parlance; there are options to change this suffix to something other than iteration number). In
other words, this is a dump of the free-surface height from the initialized state, iteration 0; if you load up this data file,
you will see it is all zeroes. More interesting is the free-surface height after some time steps have occurred. Snapshots
are written according to our parameter choice dumpFreq, here set to 15,552,000 seconds, which is every 12960 time
steps. We will examine the model solutions in Section 4.1.5. The free-surface height is a 2-D(z, y) field.

Snapshot files exist for other prognostic model variables, in particular filenames starting with U (uVel), V (uVel), T
(theta), and S (salt); given our setup, these latter two fields remain uniform in space and time, thus not very interesting
until we explore a baroclinic gyre setup in tutorial_baroclinic_gyre. These are all 3-D(x, y, 2) fields. The format for
the file names is similar to the free-surface height files. Also dumped are snapshots of diagnosed vertical velocity W
(wVel) (note that in non-hydrostatic simulations, W is a fully prognostic model variable).

Checkpoint Files:
The following pickup files are generated:

e pickup.0000025920.001.001.data, pickup.0000025920.001.001.meta, etc. - written at frequency set
by pChkptFreq

e pickup.ckptA.001.001.data, pickup.ckptA.001.001.meta, pickup.ckptB.001.001.data, pickup.
ckptB.001.001.meta - written at frequency set by ChkptFreq

Other Model Output Data: Model output related to reference density and hydrostatic pressure, in files Rhoref,
PHrefC, PHrefF, PH, and PHL, is discussed in depth /ere in tutorial Baroclinic Ocean Gyre (as these data are not
terribly interesting in this single-layer setup).
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4.1.5 Model Solution

After running the model for 77,760 time steps (3.0 years), the solution is near equilibrium. Given an approximate
timescale of one month for barotropic Rossby waves to cross our model domain, one might expect the solution to
require several years to achieve an equilibrium state. The model solution of free-surface height n (proportional to
streamfunction) at ¢ = 3.0 years is shown in Figure 4.2. For further details on this solution, particularly examining
the effect of the non-linear terms with increasing Reynolds number, the reader is referred to Pedlosky (1987) [Ped87]
section 5.11.

MITgcm Barotropic Gyre Free-Surface Height (m)
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Figure 4.2: MITgcm solution to the barotropic gyre example after ¢ = 3.0 years of model integration. Free surface
height is shown in meters.

Using matlab for example, visualizing output using the utils/matlab/rdmds.m utility to load the binary data in Eta.
0000077760.001.001.data is as simple as:

addpath ../../../utils/matlab/

XC=rdmds('XC');

YC=rdmds('YC");

Eta=rdmds('Eta', 77760);

contourf(XC/1000, YC/1000, Eta, [-.04:.01:.04])
colorbar

colormap ((£flipudChot)))

set(gca, 'XLim', [0 1200])

set(gca, 'YLim', [0 1200])

or using python (you will need to install the MITgcmutils package, see Section 11.1):
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from MITgcmutils import mds

import numpy as np

import matplotlib.pyplot as plt

XC = mds.rdmds('XC")

YC = mds.rdmds('YC')

Eta = mds.rdmds('Eta', 77760)

plt.contourf(XC/1000, YC/1000, Eta, np.linspace(-0.02, 0.05,8), cmap="hot_r')
plt.colorbar()

plt.show()

(for a more involved example with detailed explanations how to read in model output, perform calculations using these
data, and make plots, see tutorial Baroclinic Ocean Gyre)

Let’s simplify the example by considering the linear problem where we neglect the advection of momentum terms. In

other words, replace % and % with %7; and %, respectively, in in (4.1) and (4.2). To do so, we uncomment (i.e.,
remove the leading #) in the line # momAdvection=.FALSE., in file data and re-run the model. Any existing output

files will be overwritten.

For the linearized equations, the Munk layer (equilibrium) analytical solution is given by:

T [ x : y —2/(26m) V3z 1 . V3
= 1- =] |1- " —— + —=sin.—
7’](56’;?/) pch 6 ( Lm> 7T S1n (7TLy> [ (& COS 25m \/§S1n 2%

where §,, = (A,/ B)%. Figure 4.3 displays the MITgcm output after switching off momentum advection vs. the
analytical solution to the linearized equations. Success!

MITgcm Barotropic Gyre Linearized Solution Barotropic Gyre Analytical Solution
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Figure 4.3: Comparison of free surface height for the near-equilibrium MITgcm solution (¢ = 3.0 years) with momen-
tum advection switched off (left) and the analytical equilibrium solution to the linearized equation (right).

Finally, let’s examine one additional simulation where we change the cosine profile of wind stress forcing to a
sine profile. First, run the matlab script verification/tutorial_barotropic_gyre/input/gendata.m to generate the al-
ternate sine profile wind stress, and place a copy in your run directory. Then, in file data, replace the line
zonalWindFile="windx_cosy.bin’, with zonalWindFile="windx_siny.bin’,.
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MITgcm Barotropic Jet Free-Surface Height (m)
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Figure 4.4: MITgcm equilibrium solution to the barotropic setup with alternate sine profile of wind stress forcing,
producing a barotropic jet.
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The free surface solution given this forcing is shown in Figure 4.4. Two “half gyres” are separated by a strong jet. We’ll
look more at the solution to this “barotropic jet” setup in later tutorial examples.

4.2 Baroclinic Ocean Gyre

(in directory: verification/tutorial_baroclinic_gyre)

This section describes an example experiment using MITgcm to simulate a baroclinic, wind and buoyancy-forced,
double-gyre ocean circulation. Unlike tutorial Barotropic Ocean Gyre, which used a Cartesian grid and a single vertical
layer, here the grid employs spherical polar coordinates with 15 vertical layers. The configuration is similar to the
double-gyre setup first solved numerically in Cox and Bryan (1984) [CB84]: the model is configured to represent an
enclosed sector of fluid on a sphere, spanning the tropics to mid-latitudes, 60° x 60° in lateral extent. The fluid is
1.8 km deep and is forced by a zonal wind stress which is constant in time, 7, varying sinusoidally in the north-south
direction. The Coriolis parameter, f, is defined according to latitude ¢

f(p) = 2Qsin(p)

with the rotation rate, € set to Sgﬁs_l (i.e., corresponding the to standard Earth rotation rate). The sinusoidal wind-

stress variations are defined according to

a(p) = —7p cos (271'('0 — npo>
L,

where L, is the lateral domain extent (60°), ¢, is set to 15°N and 75 is 0.1 N m~ 2. Figure 4.5 summarizes the

configuration simulated. As indicated by the axes in the lower left of the figure, the model code works internally in a
locally orthogonal coordinate (x, y, z). For this experiment description the local orthogonal model coordinate (z, y, z)
is synonymous with the coordinates (A, ¢,7) shown in Figure 1.20. Initially the fluid is stratified with a reference
potential temperature profile that varies from 8 = 30 °C in the surface layer to § = 2 °C in the bottom layer. The
equation of state used in this experiment is linear:

p=po(l—agld) (4.8)
which is implemented in the model as a density anomaly equation
p' = —poagt 4.9)

with pg = 999.8kgm > and g = 2 x 10~* K~!. Given the linear equation of state, in this configuration the model
state variable for temperature is equivalent to either in-situ temperature, 7', or potential temperature, §. For consistency
with later examples, in which the equation of state is non-linear, here we use the variable 6 to represent temperature.

Temperature is restored in the surface layer to a linear profile:

1 O — Ouni
- (h—p gr — Zmax 7 Ymin o .
Fo Te( )s I (o — ¥o) (4.10)

where the relaxation timescale 79 = 30 days and 60,,,,x = 30° C, O = 0° C.
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Figure 4.5: Schematic of simulation domain and wind-stress forcing function for baroclinic gyre numerical experiment.
The domain is enclosed by solid walls.

4.2.1 Equations solved

For this problem the implicit free surface, HPE form of the equations (see Section 1.3.4.2; Section 2.4) described
in Marshall et al. (1997) [MHPA97] are employed. The flow is three-dimensional with just temperature, 6, as an
active tracer. The viscous and diffusive terms provides viscous dissipation and a diffusive sub-grid scale closure for
the momentum and temperature equations, respectively. A wind-stress momentum forcing is added to the momentum
equation for the zonal flow, u. Other terms in the model are explicitly switched off for this experiment configuration (see
Section 4.2.3). This yields an active set of equations solved in this configuration, written in spherical polar coordinates
as follows:

Du uv 1 op’ 0 ou
Dv u? 1 op 0 ov
- — - (= — (A, — ) = 4.12
Dt+fu+ . tan<p+pcaag0—|—vh ( Ahvhv)+az< Azaz> Fo (4.12)
on 1 OHu OHUcosp
il = 4.1
8t+acos<p< oA + Op ) 0 *-13)
D6 0 00
Ft =+ Vh . (7/€th0) + E <Iﬁ?zaz) = ./T"g (414)
0
P = gpen + / gp'dz (4.15)

where u and v are the components of the horizontal flow vector « on the sphere (u = \o = ), a is the distance
from the center of the Earth, p. is a fluid density (which appears in the momentum equations, and can be set differently
than pg in (4.9)), A;, and A, are horizontal and vertical viscosity, and kj, and &, are horizontal and vertical diffusivity,
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respectively. The terms Hu and Hv are the components of the vertical integral term given in equation (1.35) and
explained in more detail in Section 2.4. However, for the problem presented here, the continuity relation (4.13) differs
from the general form given in Section 2.4, equation (2.10) because the source terms P — £ + R are all zero.

The forcing terms F,,, F,, and Fy are applied as source terms in the model surface layer and are zero in the interior.
The windstress forcing, F,, and F,, is applied in the zonal and meridional momentum equations, respectively; in this
configuration, F,, = 7,./(p:.Azs) (Where Az; is the depth of the surface model gridcell), and F,, = 0. Similarly, Fy is
applied in the temperature equation, as given by (4.10).

In (4.15) the pressure field, p’, is separated into a barotropic part due to variations in sea-surface height, n, and a
hydrostatic part due to variations in density, p’, integrated through the water column. Note the g in the first term on the
right hand side is MITgem parameter gBaro whereas in the seond term g is parameter gravity; allowing for different
gravity constants here is useful, for example, if one wanted to slow down external gravity waves.

In the momentum equations, lateral and vertical boundary conditions for the V7 and 92 operators are specified in the
runtime configuration - see Section 4.2.3. For temperature, the boundary condition along the bottom and sidewalls is
zero-flux.

4.2.2 Discrete Numerical Configuration

The domain is discretized with a uniform grid spacing in latitude and longitude A\ = Ay = 1°, so that there are 60
active ocean grid cells in the zonal and meridional directions. As in tutorial Barotropic Ocean Gyre, a border row of
land cells surrounds the ocean domain, so the full numerical grid size is 62x62 in the horizontal. The domain has 15
levels in the vertical, varying from Az = 50 m deep in the surface layer to 190 m deep in the bottom layer, as shown
by the faint red lines in Figure 4.5. The internal, locally orthogonal, model coordinate variables x and y are initialized
from the values of A, ¢, AX and Ay in radians according to:

x = acos(p)A, Az = acos(p)AX
y = ap, Ay = aly

See Section 1.6.1 for additional description of spherical coordinates.

As described in Section 2.16, the time evolution of potential temperature 6 in (4.14) is evaluated prognostically. The
centered second-order scheme with Adams-Bashforth II time stepping described in Section 2.16.1 is used to step for-
ward the temperature equation.

Prognostic terms in the momentum equations are solved using flux form as described in Section 2.14. The pressure
forces that drive the fluid motions, d,p’ and 0,,p’, are found by summing pressure due to surface elevation 1 and the
hydrostatic pressure, as discussed in Section 4.2.1. The hydrostatic part of the pressure is diagnosed explicitly by
integrating density. The sea-surface height is found by solving implicitly the 2-D (elliptic) surface pressure equation
(see Section 2.4).

4.2.2.1 Numerical Stability Criteria

The analysis in this section is similar to that discussed in tutorial Barotropic Ocean Gyre, albeit with some added
wrinkles. In this experiment, we not only have a larger model domain extent, with greater variation in the Coriolis
parameter between the southernmost and northernmost gridpoints, but also significant variation in the grid Ax spacing.

In order to choose an appropriate time step, note that our smallest gridcells (i.e., in the far north) have Az ~ 29 km,
which is similar to our grid spacing in tutorial Barotropic Ocean Gyre. Thus, using the advective CFL condition, first
assuming our solution will achieve maximum horizontal advection |cpax| ~ 1 ms™)

max At .
Sadv = 2 <|CA:E|> < 0.5 for stability (4.16)

we choose the same time step as in tutorial Barotropic Ocean Gyre, At = 1200 s (= 20 minutes), resulting in S,q, =
0.08. Also note this time step is stable for propagation of internal gravity waves: approximating the propagation speed
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as v/g’h where ¢’ is reduced gravity (our maximum Ap using our linear equation of state is pgag A0 = 6 kg/m?) and h
is the upper layer depth (we’ll assume 150 m), produces an estimated propagation speed generally less than |ciax| = 3
ms~! (see Adcroft 1995 [Adc95] or Gill 1982 [Gil82]), thus still comfortably below the threshold.

Using our chosen value of At, numerical stability for inertial oscillations using Adams-Bashforth IT
Sinert = fAL < 0.5 for stability 4.17)

evaluates to 0.17 for the largest f value in our domain (1.4 x 10~ s7!), below the stability threshold.

To choose a horizontal Laplacian eddy viscosity Ay, note that the largest Az value in our domain (i.e., in the south) is
~ 110 km. With the Munk boundary width as follows,

2T Ah %
M= (L (4.18)
(%)

in order to to have a well resolved boundary current in the subtropical gyre we will set Aj, = 5000 m? s~!. This results
in a boundary current resolved across two to three grid cells in the southern portion of the domain.

Given that our choice for Ay, in this experiment is an order of magnitude larger than in tutorial Barotropic Ocean Gyre,
let’s re-examine the stability of horizontal Laplacian friction:

ApAt

Sih =2 (4}‘2) < 0.6 for stability (4.19)

Ax
evaluates to 0.057 for our smallest Az, which is below the stability threshold. Note this same stability test also applies
to horizontal Laplacian diffusion of tracers, with kj, replacing Ay, but we will choose x;, < Ay, so this should not
pose any stability issues.

Finally, stability of vertical diffusion of momentum:

A, At

Siv =4 Az?

< 0.6 for stability (4.20)

Here we will choose 4, = 1 x 1072 m? 57!, so S}, evaluates to 0.02 for our minimum Az, well below the stability
threshold. Note if we were to use Adams Bashforth II for diffusion of tracers the same check would apply, with ,
replacing A,. However, we will instead choose an implicit scheme for computing vertical diffusion of tracers (see
Section 4.2.3.2), which is unconditionally stable.

4.2.3 Configuration

The model configuration for this experiment resides under the directory verification/tutorial_baroclinic_gyre/.
The experiment files

* verification/tutorial_baroclinic_gyre/code/packages.conf

* verification/tutorial_baroclinic_gyre/code/SIZE.h

* verification/tutorial_baroclinic_gyre/code/DIAGNOSTICS_SIZE.h

* verification/tutorial_baroclinic_gyre/input/data

* verification/tutorial_baroclinic_gyre/input/data.pkg

* verification/tutorial_baroclinic_gyre/input/data.mnc

* verification/tutorial_baroclinic_gyre/input/data.diagnostics

* verification/tutorial_baroclinic_gyre/input/eedata

* verification/tutorial_baroclinic_gyre/input/bathy.bin
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* verification/tutorial_baroclinic_gyre/input/windx_cosy.bin
* verification/tutorial_baroclinic_gyre/input/SST_relax.bin

contain the code customizations, parameter settings, and input data files for this experiment. Below we describe these
customizations in detail.

4.2.3.1 Compile-time Configuration

File code/packages.conf

Listing 4.5: verification/tutorial_baroclinic_gyre/code/packages.conf

#-- list of packages (or group of packages) to compile for this experiment:
gfd

diagnostics

mnc

Here we specify which MITgcm packages we want to include in our configuration. gfd is a pre-defined “package group”
(see Using MITgcm Packages) of standard packages necessary for most setups; it is also the default compiled packages
setting and the minimum set of packages necessary for GFD-type setups. In addition to package group gfd we include
two additional packages (individual packages, not package groups), mnc and diagnostics. Package mnc is required for
output to be dumped in netCDF format. Package diagnostics allows one to choose output from a extensive list of model
diagnostics, and specify output frequency, with multiple time averaging or snapshot options available. Without this
package enabled, output is limited to a small number of snapshot output fields. Subsequent tutorial experiments will
explore the use of packages which expand the physical and scientific capabilities of MITgcm, e.g., such as physical
parameterizations or modeling capabilities for tracers, ice, etc., that are not compiled unless specified.

File code/SIZE.h

Listing 4.6: verification/tutorial_baroclinic_gyre/code/SIZE.h

CBOP

C IROUTINE: SIZE.h

C ! INTERFACE:

C include SIZE.h

C IDESCRIPTION: \bv

C *

C | SIZE.h Declare size of underlying computational grid.

C * *
C | The design here supports a three-dimensional model grid
C | with indices I,J and K. The three-dimensional domain

C | is comprised of nPx*nSx blocks (or tiles) of size sNx

C | along the first (left-most index) axis, nPy*nSy blocks
C | of size sNy along the second axis and one block of size
C | Nr along the vertical (third) axis.

C | Blocks/tiles have overlap regions of size OLx and OLy

C | along the dimensions that are subdivided.

C ”

C \ev

C

C Voodoo numbers controlling data layout:

(continues on next page)
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(continued from previous page)

C sNx :: Number of X points in tile.
C sNy :: Number of Y points in tile.
C OLx :: Tile overlap extent in X.
C OLy :: Tile overlap extent in Y.
C nSx :: Number of tiles per process in X.
C nSy :: Number of tiles per process in Y.
C nPx :: Number of processes to use in X.
C nPy :: Number of processes to use in Y.
C Nx :: Number of points in X for the full domain.
C Ny :: Number of points in Y for the full domain.
C Nr :: Number of points in vertical direction.
CEOP
INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy
INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy
INTEGER Nx
INTEGER Ny
INTEGER Nr
PARAMETER (
& sNx = 31,
& sNy = 31,
& OLx = 2,
& OLy = 2,
& nSx = 2,
& nSy = 2,
& nPx = 1,
& nPy = 1,
& Nx = sNx*nSx*nPx,
& Ny = sNy*nSy*nPy,
& Nr = 15)
C MAX_OLX :: Set to the maximum overlap region size of any array
C MAX_OLY that will be exchanged. Controls the sizing of exch
C routine buffers.

INTEGER MAX_OLX
INTEGER MAX_OLY
PARAMETER ( MAX_OLX = OLx,
& MAX_OLY = OLy )

For this second tutorial, we will break the model domain into multiple tiles. Although initially we will run the model
on a single processor, a multi-tiled setup is required when we demonstrate how to run the model using either MPI or
using multiple threads.

The following lines calculate the horizontal size of the global model domain (NOT to be edited). Our values for SIZE.h
parameters below must multiply so that our horizontal model domain is 62x62:
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53

54

& Nx
& Ny

sNx*nSx*nPx,
sNy*nSy*nPy,

Now let’s look at all individual SIZE.h parameter settings.

45

46

47

48

49

50

51

52

55

Although our model domain is 62 x 62, here we specify the size of a single tile to be one-half that in both = and
y. Thus, the model requires four of these tiles to cover the full ocean sector domain (see below, where we set nSx
and nSy). Note that the grid can only be subdivided into tiles in the horizontal dimensions, not in the vertical.

& sNx = 31,
& sNy = 31,

As in tutorial Barotropic Ocean Gyre, here we set the overlap extent of a model tile to the value 2 in both  and y.
In other words, although our model tiles are sized 31 x31, in MITgcm array storage there are an additional 2 border
rows surrounding each tile which contain model data from neighboring tiles. Some horizontal advection schemes
and other parameter and setup choices require a larger overlap setting (see Table 2.2). In our configuration, we are
using a second-order center-differences advection scheme (the MITgecm default) which does not requires setting
a overlap beyond the MITgcm minimum 2.

& OLx = 2,
& OLy = 2,

These lines set parameters nSx and nSy, the number of model tiles in the x and y directions, respectively, which
execute on a single process. Initially, we will run the model on a single core, thus both nSx and nSy are set to 2
so that all 2 x 2 = 4 tiles are integrated forward in time.

& nSx = 2,
& nSy = 2,

These lines set parameters nPx and nPy, the number of processes to use in the = and y directions, respectively.
As noted, initially we will run using a single process, so for now these parameters are both set to 1.

& nPx = 1,
& nPy = 1,

Here we tell the model we are using 15 vertical levels.

& Nr = 15)

File code/DIAGNOSTICS_SIZE.h

Listing 4.7: verification/tutorial_baroclinic_gyre/code/DIAGNOSTICS_SIZE.h

C Diagnostics Array Dimension
C ___________________________
C ndiagMax :: maximum total number of available diagnostics
C numlists :: maximum number of diagnostics list (in data.diagnostics)
C numperlist :: maximum number of active diagnostics per list (data.diagnostics)
C numLevels :: maximum number of levels to write (data.diagnostics)
C numDiags :: maximum size of the storage array for active 2D/3D diagnostics
C nRegions :: maximum number of regions (statistics-diagnostics)
C sizRegMsk :: maximum size of the regional-mask (statistics-diagnostics)
(continues on next page)
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(continued from previous page)

C nStats :: maximum number of statistics (e.g.: aver,min,max ...)
C diagSt_size:: maximum size of the storage array for statistics-diagnostics
C Note : may need to increase "numDiags" when using several 2D/3D diagnostics,
C and "diagSt_size" (statistics-diags) since values here are deliberately small.
INTEGER ndiagMax
INTEGER numlists, numperlist, numLevels
INTEGER numDiags
INTEGER nRegions, sizReglsk, nStats
INTEGER diagSt_size
PARAMETER( ndiagMax = 500 )
PARAMETER( numlists = 10, numperlist = 50, numLevels=2*Nr )
PARAMETER( numDiags = 20*Nr )
PARAMETER( nRegions = ® , sizReglMsk = 1 , nStats = 4 )
PARAMETER( diagSt_size = 10*Nr )

CEH3 ;;; Local Variables: *¥¥*
CEH3 ;;; mode:fortran **¥*
CEH3 - End: ek

In the default version /pkg/diagnostics/DIAGNOSTICS_SIZE.h the storage array for diagnostics is purposely set quite
small, in other words forcing the user to assess how many diagnostics will be computed and thus choose an appropriate
size for a storage array. In the above file we have modified the value of parameter numDiags:

21 PARAMETER( numDiags = 20*Nr )

from its default value 1*Nr, which would only allow a single 3-D diagnostic to be computed and saved, to 20*Nr,
which will permit up to some combination of up to 20 3-D diagnostics or 300 2-D diagnostic fields.

4.2.3.2 Run-time Configuration

File input/data

Listing 4.8: verification/tutorial_baroclinic_gyre/input/data

# Model parameters
# Continuous equation parameters
&PARMO1

viscAh=5000.,

viscAr=1.E-2,
no_slip_sides=.TRUE.,
no_slip_bottom=.FALSE.,
diffKhT=1000.,

diffKrT=1.E-5,

ivdc_kappa=1.,
implicitDiffusion=.TRUE.,
eosType="'LINEAR',
tRef=30.,27.,24.,21.,18.,15.,13.,11.,9.,7.,6.,5.,4.,3.,2.,
tAlpha=2.E-4,

sBeta=0.,

rhoNil=999.8,

(continues on next page)
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gravity=9.81,
rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,
exactConserv=.TRUE.,
saltStepping=.FALSE.,
# globalFiles=.TRUE.,

&

# Elliptic solver parameters
&PARMO?2
cg2dTargetResidual=1.E-7,
cg2dMaxIters=1000,

&

# Time stepping parameters
&PARMO3
startTime=0.,
endTime=12000.,
deltaT=1200.,
pChkptFreq=622080000.,
chkptFreq=155520000.,
dumpFreq=31104000.,
monitorFreq=1200.,
monitorSelect=2,
tauThetaClimRelax=2592000.,
#-for longer run (100 yrs)
# endTime = 3110400000.,
# monitorFreq=2592000.,
&

# Gridding parameters

&PARNMO4
usingSphericalPolarGrid=.TRUE.,
delX=62*1.

delY=62*1.,

xgOrigin=-1.,

ygOrigin=14.,

delR=50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180.,190.,

&

&PARMO5

bathyFile="'bathy.bin',
zonalWindFile="windx_cosy.bin',
thetaClimFile="SST_relax.bin',
&

Parameters for this configuration are set as follows.
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PARMO1 - Continuous equation parameters

* These lines set parameters viscAh and viscAr, the horizontal and vertical Laplacian viscosities respectively, to
5000 m? s7! and 1 x 10~2 m? s~!. Note the subscript r is used for the vertical, reflecting MITgcm’s generic 7-
vertical coordinate capability (i.e., the model is capable of using either a z-coordinate or a p-coordinate system).

viscAh=5000.,
viscAr=1.E-2,

* These lines set parameters to specify the boundary conditions for momentum on the model domain sidewalls and
bottom. Parameter no_slip_sides is set to .TRUE., i.e., no-slip lateral boundary conditions (the default), which
will yield a Munk (1950) [Mun50] western boundary solution. Parameter no_slip_bottom is set to . FALSE.,i.e.,
free-slip bottom boundary condition (default is true). If instead of a Munk layer we desired a Stommel (1948)
[Sto48] western boundary layer solution, we would opt for free-slip lateral boundary conditions and no-slip
conditions along the bottom.

no_slip_sides=.TRUE.,
no_slip_bottom=.FALSE.,

* These lines set parameters diffKhT and diffKrT, the horizontal and vertical Laplacian temperature diffusivities
respectively, to 1000 m? s™' and 1 x 10~° m? s~!.The boundary condition on this operator is zero-flux at all
boundaries.

diffKhT=1000.,
diffKrT=1.E-5,

¢ By default, MITgcm does not apply any parameterization to mix statically unstable columns of water. In a coarse
resolution, hydrostatic configuration, typically such a parameterization is desired. We recommend a scheme
which simply applies (presumably, large) vertical diffusivity between statically unstable grid cells in the vertical.
This vertical diffusivity is set by parameter ivdc_kappa, which here we set to 1.0 m? s™!. This scheme requires
that implicitDiffusion is set to . TRUE. (see Section 2.6; more specifically, applying a large vertical diffusivity
to represent convective mixing requires the use of an implicit time-stepping method for vertical diffusion, rather
than Adams Bashforth II). Alternatively, a traditional convective adjustment scheme is available; this can be
activated through the cAdjFreq parameter, see Section 3.8.5.4.

ivdc_kappa=1.,
implicitDiffusion=.TRUE.,

* The following parameters tell the model to use a linear equation of state. Note a list of Nr (=15, from SIZE.h)
potential temperature values in °C is specified for parameter tRef, ordered from surface to depth. tRef is used
for two purposes here. First, anomalies in density are computed using this reference 6, ¢’ (z,y, z) = 0(x, y, z) —
Orer(z); see use in (4.8) and (4.9). Second, the model will use these reference temperatures for its initial state,
as we are not providing a pickup file nor specifying an initial temperature hydrographic file (in later tutorials
we will demonstrate how to do so). For each depth level the initial and reference profiles will be uniform in x
and y. Note when checking static stability or computing N2, the density gradient resulting from these specified
reference levels is added to 9p’ /0~ from (4.9). Finally, we set the thermal expansion coefficient g (tAlpha) as
used in (4.8) and (4.9), while setting the haline contraction coefficient (sBeta) to zero (see (4.8), which omits a
salinity contribution to the linear equation of state; like tutorial Barotropic Ocean Gyre, salinity is not included
as a tracer in this very idealized model setup).

eosType="LINEAR',
tRef=30.,27.,24.,21.,18.,15.,13.,11.,9.,7.,6.,5.,4.,3.,2.,
tAlpha=2.E-4,

sBeta=0.,

4.2,
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» This line sets parameter pg (rhoNil) to 999.8 kg/m?, the surface reference density for our linear equation of state,

i.e., the density of water at tRef(k=1). This value will also be used as p. (parameter thoConst) in (4.11)-(4.15),
lacking a separate explicit assignment of rhoConst in data. Note this value is the model default value for rhoNil.

rhoNil1=999.8,

* This line sets parameter gravity, the acceleration due to gravity ¢ in (4.15), and this value will also be used to

set gBaro, the barotopic (i.e., free surface-related) gravity parameter which we set in tutorial Barotropic Ocean
Gyre. This is the MITgcm default value.

gravity=9.81,

* These lines set parameters which prescribe the linearized free surface formulation, similar to tutorial Barotropic

21

Ocean Gyre. Note we have added parameter exactConserv, set to . TRUE. : this instructs the model to recompute
divergence after the pressure solver step, ensuring volume conservation of the free surface solution (the model
default is NOT to recompute divergence, but given the small numerical cost, we typically recommend doing so).

rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,
exactConserv=.TRUE.,

As in tutorial Barotropic Ocean Gyre, we suppress MITgem’s forward time integration of salt in the tracer equa-
tions.

saltStepping=.FALSE.,

PARMO2 - Elliptic solver parameters

These parameters are unchanged from tutorial Barotropic Ocean Gyre.

PARMO3 - Time stepping parameters

33

34

4

43

44

¢ In tutorial Barotropic Ocean Gyre we specified a starting iteration number nlterO and a number of time steps to

integrate, nTimeSteps. Here we opt to use another approach to control run start and duration: we set a startTime
and endTime, both in units of seconds. Given a starting time of 0.0, the model starts from rest using specified
initial values of temperature (here, as previously noted, from the tRef parameter) rather than attempting to restart
from a saved checkpoint file. The specified value for endTime, 12000.0 seconds is equivalent to 10 time steps, set
for testing purposes. To integrate over a longer, more physically relevant period of time, uncomment the endTime
and monitorFreq lines located near the end of this parameter block. Note, for simplicity, our units for these time
choices assume a 360-day “year” and 30-day “month” (although lacking a seasonal cycle in our forcing, defining
a “year” is immaterial; we will demonstrate how to apply time-varying forcings in later tutorials).

startTime=0.,
endTime=12000.,

#-for longer run (100 yrs)
# endTime = 3110400000.,
# monitorFreq=2592000.,

Remaining time stepping parameter choices (specifically, At, checkpoint frequency, output frequency, and mon-
itor settings) are described in tutorial Barotropic Ocean Gyre; refer to the description here.
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deltaT=1200.,
pChkptFreq=622080000. ,
chkptFreq=155520000.,
dumpFreq=31104000.,
monitorFreq=1200.,
monitorSelect=2,

The parameter tauThetaClimRelax sets the time scale, in seconds, for restoring potential temperature in the
model’s top surface layer (see (4.10)). Our choice here of 2,592,000 seconds is equal to 30 days.

tauThetaClimRelax=2592000.,

PARMO4 - Gridding parameters
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This line sets parameter usingSphericalPolarGrid, which specifies that the simulation will use spherical polar
coordinates (and affects the interpretation of other grid coordinate parameters).

usingSphericalPolarGrid=.TRUE.,

These lines set the horizontal grid spacing, as vectors delX and delY (i.e., Ax and Ay respectively), with units
of degrees as dictated by our choice usingSphericalPolarGrid. As before, this syntax indicates that we specify
62 values in both the x and y directions, which matches the global domain size as specified in SIZE.h. Our
ocean sector domain starts at 0° longitude and 15° N; accounting for a surrounding land row of cells, we thus set
the origin in longitude to —1.0° and in latitude to 14.0°. Again note that our origin specifies the southern and
western edges of the gridcell, not the cell center location. Setting the origin in latitude is critical given that it
affects the Coriolis parameter f (which appears in (4.11) and (4.12)); the default value for ygOrigin is 0.0°. Note
that setting xgOrigin is optional, given that absolute longitude does not appear in the equation discretization.

delX=62*1.,
delY=62*1.,
xgOrigin=-1.,
ygOrigin=14.,

This line sets parameter delR, the vertical grid spacing in the z-coordinate (i.e., Az), to a vector of 15 depths
(in meters), from 50 m in the surface layer to a bottom layer depth of 190 m. The sum of these specified depths
equals 1800 m, the full depth H of our idealized ocean sector.

delR=50.,60.,70.,80.,90.,100.,110.,120.,130.,140.,150.,160.,170.,180.,190.,

PARMOS5 - Input datasets

58

59

60

Similar to tutorial Barotropic Ocean Gyre, these lines specify filenames for bathymetry and surface wind stress
forcing files.

bathyFile='bathy.bin',
zonalWindFile="windx_cosy.bin',

This line specifies parameter thetaClimFile, the filename for the (2-D) restoring temperature field.

thetaClimFile="'SST_relax.bin',
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File input/data.pkg

Listing 4.9: verification/tutorial_baroclinic_gyre/input/data.pkg

# Packages (lines beginning "#" are comments)
&PACKAGES

useMNC=.TRUE.,

useDiagnostics=.TRUE.,

&

Here we activate two MITgcm packages that are not included with the model by default: package mnc (see Section
9.3) specifies that model output should be written in netCDF format, and package diagnostics (see Section 9.1) allows
user-selectable diagnostic output. The boolean parameters set are useMNC and useDiagnostics, respectively. Note
these add-on packages also need to be specified when the model is compiled, see Section 4.2.3.1. Apart from these two
additional packages, only standard packages (i.e., those compiled in MITgcm by default) are required for this setup.

File input/data.mnc

Listing 4.10: verification/tutorial_baroclinic_gyre/input/data.mnc

# Example "data.mnc" file
&MNC_01
monitor_mnc=.FALSE.,
mnc_use_outdir=.TRUE.,
mnc_outdir_str="mnc_test_"',
&

This file sets parameters which affect package pkg/mnc behavior; in fact, with pkg/mnc enabled, it is required (many
packages look for file data . «<PACKAGENAME» and will terminate if not present). By setting the parameter monitor_mnc
to .FALSE. we are specifying NOT to create separate netCDF output files for pkg/monitor output, but rather to include
this monitor output in the standard output file (see Section 4.1.4). See Section 9.3.1.2 for a complete listing of pkg/mnc
namelist parameters and their default settings.

Unlike raw binary output, which overwrites any existing files, when using mnc output the model will create new direc-
tories if the parameters mnc_use_outdir and mnc_outdir_str are set, as above; the model will append a 4-digit number
to mnc_outdir_str, starting at 0001, incrementing as needed if existing directories already exist. If these parameters
are NOT set, the model will terminate with an error if one attempts to overwrite an existing .nc file (in other words,
to re-run in an previous run directory, one must delete all *.nc files before restarting). Note that our subdirectory
name choice mnc_test_ is required by MITgcm automated testing protocols, and can be changed to something more
mnemonic, if desired.

In general, it is good practice to write diagnostic output into subdirectories, to keep the top run directory less “cluttered”;
some unix file systems do not respond well when very large numbers of files are produced, which can occur in setups
divided into many tiles and/or when many diagnostics are selected for output.
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File input/data.diagnostics

Listing 4.11: verification/tutorial_baroclinic_gyre/input/data.diagnostics

# Diagnostic Package Choices

# dumpAtLast (logical): always write output at the end of simulation (default=F)
# diag_mnc (logical): write to NetCDF files (default=useMNC)
#--for each output-stream:

# fileName(n) : prefix of the output file name (max 80c long) for outp.stream n
# frequency(n):< 0 : write snap-shot output every |frequency| seconds
# > 0 : write time-average output every frequency seconds
# timePhase(n) : write at time = timePhase + multiple of |frequency|
# averagingFreq : frequency (in s) for periodic averaging interval
# averagingPhase : phase (in s) for periodic averaging interval
# repeatCycle : number of averaging intervals in 1 cycle
# levels(:,n) : list of levels to write to file (Notes: declared as REAL)
# when this entry is missing, select all common levels of this list
# fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n
# (see "available_diagnostics.log" file for the full list of diags)
# missing_value(n) : missing value for real-type fields in output file "n"
# fileFlags(n) : specific code (8c string) for output file "n"
# ____________________
&DIAGNOSTICS_LIST
fields(1:3,1) = 'ETAN ','"TRELAX ', 'MXLDEPTH',

fileName(1l) = 'surfDiag',
frequency(1l) = 31104000.,

fields(1:5,2) = 'THETA ','"PHIHYD ',
'UVEL ', 'VVEL ', "WVEL ',
# did not specify levels => all levels are selected
fileName(2) = 'dynDiag',
frequency(2) = 31104000.,

# diagSt_mnc (logical): write stat-diags to NetCDF files (default=diag_mnc)
# diagSt_regMaskFile : file containing the region-mask to read-in

# nSetReglskFile : number of region-mask sets within the region-mask file
# set_regMask(i) : region-mask set-index that identifies the region "i"
# val_regMask(i) : region "i" identifier value in the region mask

#--for each output-stream:

# stat_fName(n) : prefix of the output file name (max 80c long) for outp.stream n
# stat_freq(n):< 0 : write snap-shot output every |stat_freq| seconds

# > 0 : write time-average output every stat_freq seconds

# stat_phase(n) : write at time = stat_phase + multiple of |stat_freq|

# stat_region(:,n) : list of "regions" (default: 1 region only=global)

# stat_fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n

# (see "available_diagnostics.log" file for the full list of diags)

&DIAG_STATIS_PARMS

(continues on next page)
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(continued from previous page)

stat_fields(1:2,1) = 'THETA ', '"TRELAX ',
stat_fName(1l) = 'dynStDiag',
stat_freq(l) = 2592000.,

&

DIAGNOSTICS_LIST - Diagnostic Package Choices

In this section we specify what diagnostics we want to compute, how frequently to compute them, and the name of output
files. Multiple diagnostic fields can be grouped into individual files (i.e., an individual output file here is associated
with a ‘list” of diagnostics).

fields(1:3,1) = 'ETAN ', '"TRELAX ', 'MXLDEPTH',
fileName(1) = 'surfDiag',
frequency (1) = 31104000.,

The above lines tell MITgem that our first list will consist of three diagnostic variables:
* ETAN - the linearized free surface height (m)
» TRELAX - the heat flux entering the ocean due to surface temperature relaxation (W/m?)

* MXLDEPTH - the depth of the mixed layer (m), as defined here by a given magnitude decrease in density from
the surface (we’ll use the model default for Ap)

Note that all these diagnostic fields are 2-D output. 2-D and 3-D diagnostics CANNOT be mixed in a diagnostics list.
These variables are specified in parameter fields: the first index is specified as 1:«NUMBER_OF_DIAGS», the second
index designates this for diagnostics list 1. Next, the output filename for diagnostics list 1 is specified in variable
fileName. Finally, for this list we specify variable frequency to provide time-averaged output every 31,104,000 seconds,
i.e., once per year. Had we entered a negative value for frequency, MITgcm would have instead written snapshot data
at this interval. Next, we set up a second diagnostics list for several 3-D diagnostics.

fields(1:5,2) = 'THETA ','PHIHYD ',
'UVEL ', 'VVEL ', '"WVEL ',
# did not specify levels => all levels are selected
fileName(2) = 'dynDiag',
frequency(2) = 31104000.,

The diagnostics in list 2 are:
e THETA - potential temperature (°C )
» PHYHYD - hydrostatic pressure potential anomaly (m?/s?)
e UVEL, VVEL, WVEL - the zonal, meridional, and vertical velocity components respectively (m/s)

Here we did not specify parameter levels, so all depth levels will be included in the output. An example of syntax to
limit which depths are outputis levels(1:5,2) = 1.,2.,3.,, which would dump just the top three levels. We again
specify an output file name via parameter fileName, and specify a time-average period of one year through parameter
frequency.
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DIAG_STATIS_PARMS - Diagnostic Per Level Statistics

It is also possible to request output statistics averaged for global mean and by level average (for 3-D diagnostics) over
the full domain, and/or for a pre-defined (z, y) region of the model grid. The statistics computed for each diagnostic
are as follows:

* (area weighted) mean (in both space and time, if time-averaged frequency is selected)

* (area weighted) standard deviation

* minimum value

* maximum value

* volume of the area used in the calculation (multiplied by the number of time steps if time-averaged).

While these statistics could in theory also be calculated (by the user) from 2-D and 3-D DIAGNOSTICS_LIST output,
the advantage is that much higher frequency statistical output can be achieved without filling up copious amounts of
disk space.

Options for namelist DIAG_STATIS_PARMS are set as follows:

stat_fields(1:2,1) = 'THETA ','TRELAX ',
stat_fName(l) = 'dynStDiag',
stat_freq(l) = 2592000.,

The syntax here is analogous with DIAGNOSTICS_LIST namelist parameters, except the parameter names begin with
stat (here, stat_fields, stat_fName, stat_freq). Frequency can be set to snapshot or time-averaged output, and multiple
lists of diagnostics (i.e., separate output files) can be specified. The only major difference from DIAGNOSTICS_LIST
syntax is that 2-D and 3-D diagnostics can be mixed in a list. As noted, it is possible to select limited horizontal regions
of interest, in addition to the full domain calculation.

File input/eedata

Listing 4.12: verification/tutorial_baroclinic_gyre/input/eedata

# Example "eedata" file
# Lines beginning "#" are comments

# nTx :: No. threads per process in X

# nTy :: No. threads per process in Y

# debugMode :: print debug msg (sequence of S/R calls)

&EEPARMS

nTx=1,

nTy=1,

&

# Note: Some systems use & as the namelist terminator (as shown here).
# Other systems use a / character.

As shown, this file is configured for a single-threaded run, but will be modified later in this tutorial for a multi-threaded
setup (Section 4.2.6).

4.2. Baroclinic Ocean Gyre 173



http://mitgcm.org/lxr/ident/MITgcm?_i=DIAGNOSTICS_LIST
http://mitgcm.org/lxr/ident/MITgcm?_i=DIAG_STATIS_PARMS
http://mitgcm.org/lxr/ident/MITgcm?_i=DIAGNOSTICS_LIST
http://mitgcm.org/lxr/ident/MITgcm?_i=stat_fields
http://mitgcm.org/lxr/ident/MITgcm?_i=stat_fName
http://mitgcm.org/lxr/ident/MITgcm?_i=stat_freq
http://mitgcm.org/lxr/ident/MITgcm?_i=DIAGNOSTICS_LIST

MITgcm Documentation, Release 2d7a4a2

Files input/bathy.bin, input/windx_cosy.bin

The purpose and format of these files is similar to tutorial Barotropic Ocean Gyre, and were generated by matlab
script verification/tutorial_baroclinic_gyre/input/gendata.m (alternatively, python script gendata.py). See Section 3.9
for additional information on MITgcm input data file format specifications.

File input/SST_relax.bin

This file specifies a 2-D(z,y) map of surface relaxation temperature values, as generated by verifica-
tion/tutorial_baroclinic_gyre/input/gendata.m or gendata.py.

4.2.4 Building and running the model

To build and run the model on a single processor, follow the procedure outlined in Section 4.1.4. To run the model
for a longer period (i.e., to obtain a reasonable solution; for testing purposes, by default the model is set to run only a
few time steps) uncomment the lines in data which specify larger numbers for parameters endTime and monitorFreq.
This will run the model for 100 years, which will likely take several hours on a single processor (depending on your
computer specs); below we also give instructions for running the model in parallel either using MPI or multi-threaded
(OpenMP), which will cut down run time significantly.

4.2.4.1 Output Files

As in tutorial Barotropic Ocean Gyre, standard output is produced (redirected into file output.txt as specified in
Section 4.1.4); like before, this file includes model startup information, parameters, etc. (see Section 4.1.4.1). And
because we set monitor_mnc =.FALSE. in data.mnc, our standard output file will include all monitor statistics output.
Note monitor statistics and cg2d information are evaluated over the global domain, despite the bifurcation of the grid
into four separate tiles. As before, the file STDERR. 0000 will contain a log of any run-time errors.

With pkg/mnc compiled and activated in data.pkg, other output is in netCDF format: grid information, snapshot
output specified in data, diagnostics output specified in data.diagnostics and separate files containing hydrostatic
pressure data (see below). There are two notable differences from standard binary output. Recall that we specified that
the grid was subdivided into four separate tiles (in SIZE.h); instead of a .XXX.YYY. file naming scheme for different
tiles (as discussed here), with pkg/nmc the file names contain . t«nnn». where «nnn» is the tile number. Secondly,
model data from multiple time snapshots (or periods) is included in a single file. Although an iteration number is still
part of the file name (here, 0000000000), this is the iteration number at the start of the run (instead of marking the
specific iteration number for the data contained in the file, as the case for standard binary output). Note that if you
dump data frequently, standard binary can produce huge quantities of separate files, whereas using netCDF will greatly
reduce the number of files. On the other hand, the netCDF files created can instead become quite large.

To more easily process and plot our results as a single array over the full domain, we will first reassemble the in-
dividual tiles into new netCDF format global data files. To accomplish this, we will make use of utility script
utils/python/MITgemutils/scripts/gluemncbig. From the output run (top) directory, type:

% In -s ../../../utils/python/MITgcmutils/scripts/gluemncbig .
% ./gluemncbig -o grid.nc mnc_test_*/grid.t*.nc

% ./gluemncbig -o state.nc mnc_test_*/state*.t*.nc

% ./gluemncbig -o dynDiag.nc mnc_test_*/dynDiag*.t*.nc

% ./gluemncbig -o surfDiag.nc mnc_test_*/surfDiag*.t*.nc

% ./gluemncbig -o phiHyd.nc mnc_test_*/phiHyd*.t*.nc

% ./gluemncbig -o phiHydLow.nc mnc_test_*/phiHydLow*.t*.nc

% 1ln -s mnc_test_0001/dynStDiag.0000000000.t001.nc dynStDiag.nc
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For help using this utility, type gluemncbig --help (note, this utility requires python). The files grid.nc, state.
nc, etc. are concatenated from the separate t001, t002, t003, t004 files into global grid files of horizontal dimension
62x62. gluemncbigis a fairly intelligent script, and by inserting the wildcards in the path/filename specification, it will
grab the most recent run (in case you have started up runs multiple times in this directory, thus havingmnc_test_0001,
mnc_test_0002, etc. directories present; see Section 4.2.3.2). Note that the last line above is simply making a link to
a file in the mnc_test_0001 output subdirectorys; this is the statistical-dynamical diagnostics output, which is already
assembled over the global domain (and also note here we are required to be specific which mnc_test_ directory to
link from). For convenience we simply place the link at the top level of the run directory, where the other assembled
.nc files are saved by gluemncbig.

Let’s proceed through the netcdf output that is produced.

grid.nc - includes all the model grid variables used by MITgem. This includes the grid cell center points
and separation (XC, YC, dxC, dyC), corner point locations and separation (XG, YG, dxG, dyG), the separation
between velocity points (dyU, dxV), vertical coordinate location and separation (RC, RF, drC, drF), grid cell
areas (rA, rAw, rAs, rAz), and bathymetry information (Depth, HFacC, HFacW, HFacS). See Section 2.11 for
definitions and description of the C grid staggering of these variables. There are also grid variables in vector
form that are not used in the MITgem source code (X, Y, Xpl, Ypl, Z, Zpl, Zu, Z1); see description in grid.nc.
The variables named p1 include an additional data point and are dimensioned +1 larger than the standard array
size; for example, Xp1 is the longitude of the gridcell left corner, and includes an extra data point for the last
gridcell’s right corner longitude.

state.nc - includes snapshots of state variables U, V, W, Temp, S, and Eta at model times T in seconds (variable
iter(T) stores the model iteration corresponding with these model times). Also included are vector forms of grid
variables X, Y, Z, Xpl, Ypl, and ZI. As mentioned, in model output-by-tile files, e.g., state.0000000000.
t001.nc, the iteration number 0000000000 is the parameter nlter( for the model run (recall, we initialized our
model with nlter0 =0). Snapshots of model state are written for model iterations 0, 25920, 51840, ... according
to our data file parameter choice dumpFreq (dumpFreq/deltaT = 25920).

surfDiag.nc - includes output diagnostics as specified from list 1 in data.diagnostics. Here we specified that list
1 include 2-D diagnostics ETAN, TRELAX, and MXLDEPTH. Also includes an array of model times corresponding
to the end of the time-average period, the iteration number corresponding to these model times, and vector forms
of grid variables which describe these data. A Z index is included in the output arrays, even though its dimension
is one (given that this list contains only 2-D fields).

dynDiag.nc - similar to surfDiag.nc except this file contains the time-averaged 3-D diagnostics we specified
in list 2 of data.diagnostics: THETA, PHIHYD, UVEL, VVEL, WVEL.

dynStDiag.nc - includes output statistical-dynamical diagnostics as specified in the DIAG_STATIS_PARUS sec-
tion of data.diagnostics. Like surfDiag.nc it also includes an array of model times and corresponding iteration
numbers for each time-average period end. Output variables are 3-D: (time, region, depth). In data.diagnostics,
we have not defined any additional regions (and by default only global output is produced, “region 1”). Depth-
integrated statistics are computed (in which case the depth subscript has a range of one element; this is also the
case for surface diagnostics such as TRELAX), but output is also tabulated at each depth for some variables (i.e.,
the depth subscript will range from 1 to Nr).

phiHyd.nc, phiHydLow.nc - these files contain a snapshot 3-D field of hydrostatic pressure potential anomaly
(p"/ pe, see Section 1.3.6) and a snapshot 2-D field of bottom hydrostatic pressure potential anomaly, respectively.
These are technically not MITgcm state variables, as they are computed during the time step (normal snapshot
state variables are dumped affer the time step), ergo they are not included in file state.nc. Like state.nc
output however these fields are written at interval according to dumpFreq, except are not written out at time
nlterO (i.e., have one time record fewer than state.nc). Also note when writing standard binary output, these
filenames begin as PH and PHL respectively.

The hydrostatic pressure potential anomaly ¢’ is computed as follows:

1 0
¢ = o <Pc97l +/Z (p— Po)9d2>

c
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following (4.8), (4.9) and (4.15). Note that with the linear free surface approximation, the contribution of the free
surface position 77 to ¢’ involves the constant density p.. and not the density anomaly p’, in contrast with contributions
from below z = 0.

Several additional files are output in standard binary format. These are:

RhoRef.data, RhoRef.meta - thisisa 1-D (k=1...Nr) array of reference density, defined as:
prcf(k) = pPo [1 - O‘G(grcf(k) - Hrcf(l))]

PHrefC.data, PHrefC.meta, PHrefF.data, PHrefF.meta - these are 1-D (k=1...Nr for PHrefC and
k=1...Nr+1 for PHrefF) arrays containing a reference hydrostatic “pressure potential” ¢ = p/p. (see Section 1.3.6).

Using a linear equation of state, PHrefC is simply m, with output computed at the midpoint of each vertical cell,

whereas PHrefF is computed at the surface and bottom of each vertical cell. Note that these quantities are not especially
useful when using a linear equation of state (to compute the full hydrostatic pressure potential, one would use RhoRef
and integrate downward, and add phiHyd, rather than use these fields), but are of greater utility using a non-linear

equation of state.

pickup.ckptA.001.001.data, pickup.ckptA.001.001.meta, pickup.0000518400.001.001.data,
pickup.0000518400.001.001.meta etc. - as described in detail in rutorial Barotropic Gyre, these are tem-
porary and permanent checkpoint files, output in binary format. Note that separate checkpoint files are written for
each model tile.

And finally, because we are using the diagnostics package, upon startup the file available_diagnostics.log will be
generated. This (plain text) file contains a list of all diagnostics available for output in this setup, including a description
of each diagnostic and its units, and the number of levels for which the diagnostic is available (i.e., 2-D or 3-D field).
This list of available diagnostics will change based on what packages are included in the setup. For example, if your
setup includes a seaice package, many seaice diagnostics will be listed in available_diagnostics.log that are not
available for the rutorial Baroclinic Gyre setup.

4.2.5 Running with MPI

In the verification/tutorial_baroclinic_gyre/code  directory there is a  alternate file verifica-
tion/tutorial_baroclinic_gyre/code/SIZE.h_mpi. Overwrite verification/tutorial_baroclinic_gyre/code/SIZE.h
with this file and re-compile the model from scratch (the most simple approach is to create a new build directory
build_mpi; if instead you wanted to re-compile in your existing build directory, you should make CLEAN first, which
will delete any existing files and dependencies you had created previously):

% ../../../tools/genmake2 -mods ../code -mpi -of=«/PATH/TO/OPTFILE»
% make depend
% make

Note we have added the option -mpi to the genmake2 command that generates the makefile. A successful build re-
quires MPI libraries installed on your system, and you may need to add to your $PATH environment variable and/or set
environment variable $MPI_INC_DIR (for more details, see Section 3.5.4). If there is a problem finding MPI libraries,
genmake? output will complain.

Several lines in verification/tutorial_baroclinic_gyre/code/SIZE.h_mpi are different from the standard version. First,
we change nSx and nSy to 1, so that each process integrates the model for a single tile.

49 & nSx = 1,
50 & nSy = 1,

Next, we we change nPx and nPy so that we use two processes in each dimension, for a total of 2 * 2 = 4 processes.
Effectively, we have subdivided the model grid into four separate tiles, and the model equations are solved in parallel
on four separate processes (presumably, on a unique physical processor or core). Because of the overlap regions (i.e.,
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gridpoints along the tile edges are duplicated in two or more tiles), and limitations in the transfer speed of data between
processes, the model will not run 4 x faster, but should be at least 2-3 x faster than running on a single process.

51 & nPx = 2,
52 & nPy = 2,

Finally, to run the model (from your run directory), using four processes running in parallel:

% mpirun -np 4 ../build_mpi/mitgcmuv

On some systems the MPI run command (and the subsequent command-line option -np) might be something other
than mpirun; ask your local system administrator. When using a large HPC cluster, prior steps might be required to
allocate four processor cores to your job, and/or it might be necessary to write this command within a batch scheduler
script; again, check with your local system documentation or system administrator. If four cores are not available when
you execute the above mpirun command, an error will occur.

When running in parallel, pkg/mnc output will create separate output subdirectories for each process, assuming op-
tion mnc_use_outdir is set to TRUE (here, by specifying -np 4 four directories will be created, one for each tile —
mnc_test_00001 through mnc_test_00004 — the first time the model is run). The (global) statistical-dynamical
diagnostics output file will be written in only the first of these directories. The gluemncbig steps outlined above
remain unchanged (if in doubt, one can always tell gluemncbig which specific directories to read, e.g., in bash
mnc_test_{0009..0012} will grab only directories 0009, 0010, 0011, 0012). Also note it is no longer necessary
to redirect standard output to a file such as output. txt; rather, separate STDOUT.xxxx and STDERR. xxxx files are
created by each process, where xxxx is the process number (starting from 0000). Other than some additional MPI-
related information, the standard output content is similar to that from the single-process run.

4.2.6 Running with OpenMP

To run multi-threaded (using shared memory, OpenMP), the original SIZE.h file is used. In our example, for compati-
bility with MITgcm testing protocols, we will run using two separate threads, but the user should feel free to experiment
using four threads if their local machine contains four cores. Like the previous section we must first re-compile the ex-
ecutable from scratch, using a special command line option (for this configuration, -omp). However it is not necessary
to specify how many threads at compile-time (unlike MPI, which requires specific processor count information to be
set in SIZE.h). Create and navigate into a new build directory build_openmp and type:

% ../../../tools/genmake2 -mods ../code -omp -of=«/PATH/TO/OPTFILE»
% make depend
% make

In a run directory, overwrite the contents of eedata with file verification/tutorial_baroclinic_gyre/input/eedata.mth.
The parameter nTy is changed; we now specify to use two threads across the y-domain. Since our model domain is
subdivided into four tiles, each thread will now integrate two tiles in the z-domain. Alternatively, to run a multi-threaded
example using four threads, both lines should be set to 2.

8 nTx=1,
9 nTy=2,

To run the model, we first need to set two environment variables, before invoking the executable:

% export OMP_STACKSIZE=400M
% export OMP_NUM_THREADS=2
% ../build_openmp/mitgcmuv >output.txt

Your system’s environment variables may differ from above; see Section 3.6.2 and/or ask your system administrator
(also note, above is bash shell syntax; different syntax is required for C shell). The important point to note is that we
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must tell the operating system environment how many threads will be used, prior to running the executable. The total
number of threads set in OMP_NUM_THREADS must match nTx * nTy as specified in file eedata. Moreover, the model
domain must be subdivided into sufficient number of tiles in SIZE.h through the choices of nSx and nSy: the number
of tiles (nSx * nSy) must be equal to or greater than the number of threads. More specifically, nSx must be equal to or
an integer multiple of nTx, and nSy must be equal to or an integer multiple of nTy.

Also note that at this time, pkg/mnc is automatically disabled for multi-threaded setups, so output is dumped in
standard binary format (i.e., using pkg/msdio). You will receive a gentle warning message if you run this multi-
threaded setup and keep useMNC set to .TRUE. in data.pkg. The full filenames for grid variables (e.g., XC, YC,
etc.), snapshot output (e.g., Eta, T, PHL) and pkg/diagnostics output (e.g., surfDiag, oceStDiag, etc.) include
a suffix that contains the time iteration number and tile identification (tile 001 includes .001.001 in the filename,
tile 002 .002.001, tile 003 .001.002, and tile 004 .002.002). Unfortunately there is no analogous script to
utils/python/MITgcemutils/scripts/gluemncbig to concatenate raw binary files, but it is relatively straightforward to do
so in matlab (reading in files using utils/matlab/rdmds.m), or equally simple in python — or, one could simply set glob-
alFiles to . TRUE. and the model will output global files for you (note, this global option is not available for pkg/mnc
output). One additional difference between pkg/msdio and pkg/mnc is that Diagnostics Per Level Statistics are written
in plain text, not binary, with pkg/msdio.

4.2.7 Model solution

In this section, we will examine details of the model solution, using monthly and annual mean time average data
provided in diagnostics files dynStDiag.nc, dynDiag.nc, and surfDiag.nc. See companion matlab or python (or
python using xarray) script which shows the code to read output netCDF files and create figures shown in this section.

Our ocean sector model is forced mechanically by wind stress and thermodynamically though temperature relaxation
at the surface. As such, we expect our solution to not only exhibit wind-driven gyres in the upper layers, but also
include a deep, overturning circulation. Our focus in this section will be on the former; this component of the solution
equilibrates on a time scale of decades, more or less, whereas the deep cell depends on a slower, diffusive timescale. We
will begin by examining some of our Diagnostics Per Level Statistics output, to assess how close we are to equilibration
at different ocean model levels. Recall we’ve requested these statistics to be computed monthly.

Load diagnostics TRELAX_ave, THETA_lv_avg, and THETA_1lv_std from file dynStDiag.nc. In Figure 4.6a we
plot the global model surface mean heat flux (TRELAX_ave) as a function of time. At the beginning of the run, we
observe that the ocean is cooling dramatically; this is mainly because our ocean surface layer is initialized to a uniform
30° C (as specified here), which results in very strong relaxation initially in the northern portion of ocean model,
where the restoring temperature is just above 0° C. (As an aside comment, such large initialization shocks are often
best avoided if possible, as they may cause model instability, which may necessitate smaller time steps at model onset
and/or more realistic initial conditions.) However, this initial burst of cooling quickly diminishes over the first decade of
integration, as the surface layer approaches temperature values close to the specified profile; see Figure 4.6b where the
mean temperature at surface, thermocline, and abyssal depth are plotted as a function of time. Note that while the total
heat flux shows that the global heat content is slowly decreasing, even after 100 years, the temperature of the deepest
water is slowly warming. In Figure 4.6¢c we plot standard deviation of temperature (by level) over time. Given that each
level is initialized at uniform temperature, initially the standard deviation is zero, but should tend to level off at some
non-zero value over time, as the solution at each depth equilibrates. Not surprisingly, the largest gradients in temperature
exist at the surface, whereas in the abyss the differences in temperature are quite small. In summary, we conclude that
while the surface appears to approach equilibrium rapidly, even after 100 years there are changes occurring in deep
circulation, presumably related to the meridional overturning circulation. We leave it as an exercise to the reader to
integrate the solution further and/or examine and calculate the meridional overturning circulation strength over time.

Next, let’s examine the effect of wind stress on the ocean’s upper layers. Given the orientation of the wind stress
and its variation over a full sine wave as shown in Figure 4.5 (crudely mimicking easterlies in the tropics, mid-latitude
westerlies, and polar easterlies), we anticipate a double-gyre solution, with a subtropical gyre and a subpolar gyre. Let’s
begin by examining the free surface solution (load diagnostics ETAN and TRELAX from file surfDiag.nc). In Figure
4.7 we show contours of free surface height (ETAN; this is what we plotted in our barotropic gyre tutorial solution)
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Figure 4.6: a) Surface heat flux due to temperature restoring, negative values indicate heat flux out of the ocean; b) and
¢) potential temperature mean and standard deviation by level, respectively.
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overlaying a 2-D color plot of TRELAX (blue is where heat is released from the ocean, red where heat enters the ocean),
averaged over year 100. Note that a subtropical gyre is readily apparent, as suggested by geostropic currents in balance
with the free surface elevation (not shown, but the reader is encouraged to load diagnostics UVEL and VVEL and plot the
circulation at various levels). Heat is entering the ocean mainly along the southern boundary, where upwelling of cold
water is occurring, but also along the boundary current between 50°N and 65°N, where we would expect southward
flow (i.e., advecting water that is colder than the local restoring temperature). Heat is exiting the ocean where the
western boundary current transports warm water northward, before turning eastward into the basin at 40°N, and also
weakly throughout the higher latitude bands, where deeper mixed layers occur (not shown, but variations in mixed layer
depth can be easily visualized by loading diagnostic MXLDEPTH).
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Figure 4.7: Contours of free surface height (m) averaged over year 100; shading is surface heat flux due to temperature
restoring (W/m?), blue indicating cooling.

So what happened to our model solution subpolar gyre? Let’s compute depth-integrated velocity Uy, Vi, (units: m?
s'') and use it calculate the barotropic transport streamfunction:

ov ov
Uy = oy Vot = e

Compute Uy, by summing the diagnostic UVEL multiplied by gridcell depth (grid.nc variable drF, i.e., the separation
between gridcell faces in the vertical). Now do a cumulative sum of —Uy,, times the gridcell spacing the in the y direction
(you will need to load grid.nc variable dyG, the separation between gridcell faces in y). A plot of the resulting ¥
field is shown in Figure 4.8. Note one could also cumulative sum V}, times the grid spacing in the z-direction and
obtain a similar result.

When velocities are integrated over depth, the subpolar gyre is readily apparent, as might be expected given our wind
stress forcing profile. The pattern in Figure 4.8 in fact resembles the double-gyre free surface solution we observed in
Figure 4.4 from tutorial Barotropic Ocean Gyre, when our model grid was only a single layer in the vertical.
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Figure 4.8: Barotropic streamfunction (Sv) as computed over year 100.

Is the magnitude of ¥ we obtain in our solution reasonable? To check this, consider the Sverdrup transport:

. VX7
pupy =k - 3

If we plug in a typical mid-latitude value for 8 (2 x 107! m! s7') and note that 7 varies by 0.1 Nm —2 over 15°
latitude, and multiply by the width of our ocean sector, we obtain an estimate of approximately 20 Sv. This estimate
agrees reasonably well with the strength of the circulation in Figure 4.8.

Finally, let’s examine the model solution potential temperature field averaged over year 100. Read in diagnostic THETA
from the file dynDiag.nc. Figure 4.9a shows a plan view of temperature at 220 m depth (vertical level k=4). Figure
4.9b shows a slice in the zz plane at 28.5°N (y-dimension j=15), through the center of the subtropical gyre.

The dynamics of the subtropical gyre are governed by Ventilated Thermocline Theory (see, for example, Pedlosky
(1996) [Ped96] or Vallis (2017) [Vall7]). Note the presence of warm “mode water” on the western side of the basin;
the contours of the warm water in the southern half of the sector crudely align with the free surface heights we observed
in Figure 4.8. In Figure 4.9b note the presence of a thermocline, i.e., the bunching up of the contours between 200 m
and 400 m depth, with weak stratification below the thermocline. What sets the penetration depth of the subtropical
gyre? Following a simple advective scaling argument (see Vallis (2017) [Val17] or Cushman-Roisin and Beckers (2011)
[CRBI11]; this scaling is obtained via thermal wind and the linearized barotropic vorticity equation), the depth of the
thermocline h should scale as:

h= (wEkszm ) _ <(T/Ly)fLm >
BAb B’

where wgy is a representive value for Ekman pumping, Ab = gp’/py is the variation in buoyancy across the gyre, and
L, and L, are length scales in the x and y directions, respectively. Plugging in applicable values at 30°N, we obtain
an estimate for A of 200 m, which agrees quite well with that observed in Figure 4.9b.
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Figure 4.9: Contour plot of potential temperature at year 100 a) at a depth of 220 m and b) through a section at 28.5°N.
Contour interval is 2K.

4.3 Southern Ocean Reentrant Channel Example

(in directory verification/tutorial_reentrant_channel/)

This example experiment simulates flow through a reentrant channel, crudely mimicking the Antartic Circumpolar
Current. The fluid is forced by a zonal wind stress, 7., that varies sinusoidally in the north-south direction and is
constant in time, and by temperature relaxation at the surface and northern boundary. The grid is Cartesian and the
Coriolis parameter f is defined according to a mid-latitude beta-plane equation f(y) = fo + Sy ; here we choose
fo < 0 to place our domain in the Southern Hemisphere. A linear EOS is used with density only depending on T, and
there is no sea ice.

Although important aspects of the of the Southern Ocean and Antarctic Circumpolar Current were realized in the
early 20th Century (e.g., Sverdrup 1933 [Sve33]), understanding this system has been a major research focus in recent
decades. Many significant breakthroughs in understanding its dynamics, role in the global ocean circulation, and role
in the climate system have been achieved (e.g., Marshall and Radko 2003 [MRO03]; Olbers and Visbeck 2004 [OV04];
Marshall and Speer 2012 [MS12]; Nikurashin and Vallis 2012 [NV 12]; Armour et al. 2016 [AMS+16];Sallée 2018
[Sal18]). Much of this understanding came about using simple, idealized reentrant channel models in the spirit of the
model described in this tutorial. The configuration here is fairly close to that employed in Abernathy et al. (2011)
[AMF11] (using the MITgcm) with some important differences, such as our introduction of a deep north-south ridge.

We assume the reader is familiar with a basic MITgcm setup, as introduced in tutorial Barotropic Ocean Gyre and
tutorial Baroclinic Ocean Gyre. Although the setup here is again quite idealized, we introduce many new features
and capabilities of MITgcm. Novel aspects include using MITgem packages to augment the physical modeling ca-
pabilities, discussion of partial cells to represent topography, and an introduction to the layers diagnostics package
(/pkg/layers). Our initial focus is on running and comparing coarse-resolution solutions with and without activating
the Gent-McWilliams (“GM”) (1990) [GM90] mesoscale eddy parameterization (/pkg/gmredi). As first noted in Dan-
abashoglu et al. (1994) [DMGY4], use of GM in coarse resolution models improves global temperature distribution,
poleward and surface heat fluxes, and locations of deep-water formation (see also the Gent 2011 [Gen11] perspective
on two decades GM usage in ocean models). At the end of this tutorial, we will describe how to increase resolution
to an eddy-permitting regime, detailing the few necessary changes in code and parameters, and examine this high-
resolution solution. In our discussion, our focus will be on highlighting how the representation of mesoscale eddies
plays a significant role in governing the equilibrium state.
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Below we describe the idealized configuration in detail (see Figure 4.10). The sinusoidal wind-stress variations are

defined thus:
T2 (y) = 70 sin Y x
oL, )

where L, is the lateral domain extent and Ty is set to 0.2 N m 2. Surface temperature restoring varies linearly from
10 °C at the northern boundary to -2 °C at the southern end. A wall is placed at the southern boundary of our domain,
thus our setup is only reentrant in the east-west direction. Because MITgcm assumes a periodic domain in both the
east-west and north-south directions, our southern wall effectively functions as a wall at the northern boundary as
well. The full water column in the northern boundary is a “sponge layer”; relaxing temperature though the full water
column will partially constrain the stratification, and in the eddy-permitting solution will absorb any eddies reaching
the northern boundary (truly acting as a “sponge”). As shown in Figure 4.10, a north-south ridge runs through the
bottom topography, which is otherwise flat with a depth H of 3980 m. A sloping notch cuts through the middle of
the ridge; in the latitude band where the notch exists, potential vorticity f/H contours are unblocked, which permits a
vigorous zonal barotropic jet. Shaved cells are used to represent the topography.

S
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Figure 4.10: Schematic of simulation domain, bottom topography, and wind-stress forcing function for the idealized
reentrant channel numerical setup. A full-depth solid wall at y = 0 is not shown; because MITgcm is also periodic in
the north-south direction, this acts as a wall on the north boundary.

Similar to both tutorial Barotropic Ocean Gyre and tutorial Baroclinic Ocean Gyre, we use a linear equation of state
which is a function of temperature only (temperature is our only model tracer field). Figure 4.11 shows initial conditions
in temperature at the northern and southern end of the domain. Initial temperature decreases exponentially from the
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relaxation SST profile to -2 °C at depth H. Note that this same northern boundary profile is used to restore temperature
in the model’s sponge layer, as discussed above.

0 Temperature: Initial Conditions
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Figure 4.11: Initial conditions in temperature at the northern and southern boundaries. Note this same northern bound-
ary profile is used as relaxation temperature in the model’s sponge layer.

4.3.1 Equations Solved

The active set of equations solved is identical to those employed in tutorial Baroclinic Ocean Gyre (i.e., hydrostatic

with an implicit linearized free surface), except here we use standard Cartesian geometry rather than spherical polar
coordinates:

D 1 op' 0 0
ot =V (A + - (A ) = R
Dt pe Ox 0z 0z
Dv 1 0p 0 v “-21)
Di + fu+ E@iy + Vi (—ALVRY) + 7 <—A282) =F,
on =2\
S+ Vi (HE) =0
D6 0 06
Dt + Vi - (—krVi0) + e (—Hzaz) =Fy (4.22)
0
P = gpen+ / gp'dz (4.23)

Forcing term JF,, is applied as a source term in the model surface layer and zero in the interior, and source term F, is
zero everywhere. The forcing term Fy is applied as temperature relaxation in the surface layer and throughout the full
depth in the two northern-most rows (in the coarse resolution setup) of the model domain.
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4.3.2 Discrete Numerical Configuration

The coarse-resolution domain is discretized with a uniform Cartesian grid spacing in the horizontal set to Ax =
Ay = 50 km, so that there are 20 grid cells in the x direction and 40 in the y direction. There are 49 levels in
the vertical, ranging from 5.5 m depth at the surface to 149 m at depth. An “optimal grid” vertical spacing here
was generated using the hyperbolic tangent method of Stewart et al. (2017) [SHG+17], implemented in Python at
https://github.com/kialstewart/vertical _grid_for_ocean_models, based on input parameters of ocean depth (4000 m),
minimum (surface) depth (5 m), and maximum depth (150 m). In ocean modeling, it is generally advantageous to have
finer resolution in the upper ocean (as was also done previously in tutorial Baroclinic Ocean Gyre), but note that the
transition to deeper layers should be done gradually, in the interests of solution fidelity and stability. Although our
topography is idealized, the topography is not a priori discretized to levels matching the vertical grid, and we make
use of MITgcem’s ability to represent “partial cells” (see Section 2.11.6).

Otherwise, the numerical configuration is similar to that of tutorial Baroclinic Ocean Gyre), with an important differ-
ence: we use a high-order advection scheme (“7th order one-step method w/limiter”, tempAdvScheme parameter code
7) for potential temperature instead of center second-ordered differences (which is used in tutorials Barotropic Ocean
Gyre and Baroclinic Ocean Gyre and is the model default). This will enable us to use the same numerical scheme
in both coarse-resolution and eddy-permitting simulations. Note that this advection scheme does NOT use Adams-
Bashforth time stepping for potential temperature, instead using its own time stepping scheme. The fixed flux form of
the momentum equations are solved, as described in Section 2.14, with an implicit linear free surface (Section 2.4).
Laplacian diffusion of tracers and momentum is employed. The pressure forces that drive the fluid motions, d,.p" and
Oyp’, are found by summing pressure due to surface elevation 1 and the hydrostatic pressure, as discussed in Section
4.2.1. The sea-surface height is found by solving implicitly the 2-D (elliptic) surface pressure equation (see Section
2.4).

Additional changes in the numerical configuration for the eddy-permitting simulation are discussed in Section 4.3.5.2.

4.3.2.1 Numerical Stability Criteria

The numerical considerations behind our setup are not trivial. We do not wish the thermocline to be diffused away by
numerics. Accordingly, we employ a vertical diffusivity acting on temperature typical of background values observed
in the ocean, 1 x 10~° m? s™!). We now examine numerical stability criteria to help choose and assess parameters for
our coarse resolution study: parameters used in the eddy-permitting setup are discussed in Section 4.3.5.2.

We anticipate development of a large barotropic flow through the notch in the topographic ridge which will have im-
plications for the length of the timestep we will be able to use. Let us consider the advective CFL condition (4.24) and
the stability of inertial oscillations (4.25):

max At
Sadv = 2 (|CA|> < 0.5 for stability (4.24)
x
Sinert = fAt < 0.5 for stability (4.25)

where |cpax| is the maximum horizontal velocity. We anticipate |cpax| of order ~ 1 ms™'. Note that barotropic currents
of this speed over a jet of order ~ 100 km in lateral scale will result in a barotropic flow of the order of hundreds of
Sverdups. At a resolution of 50 km, (4.24) then implies that the timestep must be less than 12000 s and (4.25) implies
a timestep less than 3500 s. Here we make a conservative choice of At = 1000 s to keep fAt under 0.20.

How shall we set the horizontal viscosity? From the numerical stability criteria:

1 1 .
S n = 4ALAL (sz + Ay2) < 1.0 for stablhty (4.26)

Note that the threshold in (4.26) is < 1.0 instead of < 0.6 due to our specification (in input/data) that momentum
dissipation NOT be solved using Adams-Bashforth, as discussed below. With At = 1000 s, we can choose Ay, to be as
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large as order 1 x 10°> m? s™'. However, such a value would result in a very viscous solution. We anticipate a boundary

current along the deep ridge and sloping notch on a scale given by Munk scaling:

2w Ah %
M= T (AT (4.27)
a(7)

We can set Ay, to as low as 100 m? s~! and still comfortably resolve the Munk boundary layer on our grid. However,
guided by an ensemble of runs exploring parameter space, we found the solution with A;, = 100 s™!, while stable, was
rather noisy. As a compromise, a value of A;, = 2000 m? s™! reduced solution noise whilst also controlling the strength
of the barotropic current. This is the value used here. Also note with this choice A, /Ax gives a velocity scaling of
4 cm/s, a reasonable value.

Regarding the vertical viscosity, we choose to solve this term implicitly (Euler backward time-stepping) by setting
implicitViscosity to .TRUE. in input/data, which results in no additional stability constraint on the model timestep
(see Section 2.6). Otherwise, given that our vertical resolution is quite fine near the surface (approximately 5 m), the
following stability criteria would have applied:

A, At
AZ?

Sty =4

< 1.0 for stability (4.28)

which effectively would limit our choice for A, to very small values. For simplicity, and given that away from the
equator coarse resolution models are typically not very sensitive to the value of vertical viscosity, we pick a constant
value of A, = 3 x 1072 m? s™! over the full domain, somewhere in between (in geometric mean sense) typical values
found in the mixed layer (~ 10~2) and in the deep ocean (~ 10~%) (Roach et al. 2015 [RPBR15]) Note this implicit
scheme is also used for vertical diffusion of tracers, for which it can also be used to represent convective adjustment
(again, because it is unconditionally stable regardless of diffusivity value).

4.3.3 Configuration

The model configuration for this experiment resides under the directory verification/tutorial_reentrant_channel/.
The experiment files

* verification/tutorial_reentrant_channel/code/SIZE.h

e verification/tutorial_reentrant_channel/code/LAYERS_ SIZE.h

e verification/tutorial_reentrant_channel/code/DIAGNOSTICS_SIZE.h

* verification/tutorial_reentrant_channel/input/data

* verification/tutorial_reentrant_channel/input/data.pkg

* verification/tutorial_reentrant_channel/input/data.gmredi

* verification/tutorial_reentrant_channel/input/data.rbcs

* verification/tutorial_reentrant_channel/input/data.layers

* verification/tutorial_reentrant_channel/input/data.diagnostics

* verification/tutorial_reentrant_channel/input/eedata

* verification/tutorial_reentrant_channel/input/bathy.50km.bin

* verification/tutorial_reentrant_channel/input/zonal_wind.50km.bin

* verification/tutorial_reentrant_channel/input/T_surf.50km.bin

* verification/tutorial_reentrant_channel/input/temperature.50km.bin

* verification/tutorial_reentrant_channel/input/T_relax_mask.50km.bin
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contain the code customizations and parameter settings for this experiment. Below we describe these customizations
in detail.

4.3.3.1 Compile-time Configuration

File code/packages.conf

Listing 4.13: verification/tutorial_reentrant_channel/code/packages.conf

#-- list of packages (or group of packages) to compile for this experiment:
gfd

gmredi

rbcs

layers

diagnostics

In addition to the pre-defined standard package group gfd, we define four additional packages.

» Package pkg/gmredi (see GMREDI: Gent-McWilliams/Redi Eddy Parameterization): This implements the Gent
and McWilliams parameterization (as first described in Gent and McWilliams 1990 [GM90]) of geostrophic
eddies. This mixes along sloping neutral surfaces (here, just 7" surfaces). It is used instead of large prescribed
diffusivities aligned in the horizontal plane (parameter diffKh). In Section 4.3.5.1 we will illustrate the marked
improvement in the solution resulting from the use of this parameterization.

 Package pkg/rbes (see RBCS Package): The default MITgem code library permits relaxation boundary conditions
only at the ocean surface; in the setup here, we relax temperature over the full-depth xz plane along our domain’s
northern border. By including the pkg/rbcs code library in our model build, we can relax selected fields (tracers
or horizontal velocities) in any 3-D location.

We also include two packages which augment MITgcm’s diagnostic capabilities.

 Package pkg/layers: This calculates the thickness and transport of layers of specified density (or temperature, or
salinity; here, temperature and density are aligned because of our simple equation of state). Further explanation
of pkg/layers parameter options and output is given below.

» Package pkg/diagnostics: This selects which fields to output, and at what frequencies. This was introduced in

tutorial Baroclinic Ocean Gyre.

File code/SIZE.h

Listing 4.14: verification/tutorial_reentrant_channel/code/SIZE.h

CBOP

C IROUTINE: SIZE.h

C ! INTERFACE:

C include SIZE.h

C IDESCRIPTION: \bv

c * *
C | SIZE.h Declare size of underlying computational grid.

C %

C | The design here supports a three-dimensional model grid
C | with indices I,J] and K. The three-dimensional domain

C | is comprised of nPx*nSx blocks (or tiles) of size sNx

(continues on next page)
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C | along the first (left-most index) axis, nPy*nSy blocks
C | of size sNy along the second axis and one block of size
C | Nr along the vertical (third) axis.
C | Blocks/tiles have overlap regions of size OLx and OLy
C | along the dimensions that are subdivided.
C * *
C \ev
C
C Voodoo numbers controlling data layout:
C sNx :: Number of X points in tile.
C sNy :: Number of Y points in tile.
C OLx :: Tile overlap extent in X.
C OLy :: Tile overlap extent in Y.
C nSx :: Number of tiles per process in X.
C nSy :: Number of tiles per process in Y.
C nPx :: Number of processes to use in X.
C nPy :: Number of processes to use in Y.
C Nx :: Number of points in X for the full domain.
C Ny :: Number of points in Y for the full domain.
C Nr : Number of points in vertical direction.
CEOP
INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy
INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy
INTEGER Nx
INTEGER Ny
INTEGER Nr
PARAMETER (
& sNx = 20,
& sNy = 10,
& OLx = 4,
& OLy = 4,
& nSx = 1,
& nSy = 4,
& nPx = 1,
& nPy = 1,
& Nx = sNx*nSx*nPx,
& Ny = sNy*nSy*nPy,
& Nr = 49)
C MAX_OLX :: Set to the maximum overlap region size of any array
C MAX_OLY that will be exchanged. Controls the sizing of exch
C routine buffers.
INTEGER MAX_OLX
INTEGER MAX_OLY
PARAMETER ( MAX_OLX = OLx,
& MAX_OLY = OLy )
(continues on next page)
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Our model tile size is defined above to be 20 x 10 gridpoints, so four tiles (i.e., nSy =4) are required to span the
full domain in y. Note that our overlap sizes (OLx, OLy) are set to 4 in this tutorial, as required by our choice of
advection scheme (see discussion in Section 4.3.2.1 and Table 2.2 from which this required overlap can be obtained);
in tutorial Baroclinic Ocean Gyre this was set to 2, which is the mimimum required for the default center second-ordered
differences scheme. For this setup we will specify a reasonably high resolution in the vertical, using 49 levels.

File code/LAYERS_SIZE.h

Listing 4.15: verification/tutorial_reentrant_channel/code/LAYERS_SIZE.h

C

C * Compiled-in size options for the LAYERS package *

C

C - Just as you have to define Nr in SIZE.h, you must define the number

C of vertical layers for isopycnal averaging so that the proper array

C sizes can be declared in the LAYERS.h header file.

C

C - Variables -

C NLayers :: the number of isopycnal layers (must match data.layers)
C FineGridFact :: how many fine-grid cells per dF cell

C FineGridMax :: the number of points in the finer vertical grid

C used for interpolation

C layers_maxNum :: max number of tracer fields used for layer averaging

INTEGER Nlayers, FineGridFact, FineGridMax, layers_maxNum
PARAMETER( Nlayers = 37 )

PARAMETER( FineGridFact = 10 )

PARAMETER( FineGridMax = Nr * FineGridFact )

PARAMETER( layers_maxNum = 1 )

As noted above in this file’s comments, we must set the discrete number of layers to use in our diagnostic calculations.
The model default is 20 layers. Here we set PARAMETER ( Nlayers = 37 ) and so choose 37 layers. In making this
choice, one needs to ensure sufficiently fine layer bounds in the density (or temperature) range of interest, while also
possible to specify fairly coarse bounds in other density ranges. The specific temperatures defining layer bounds will
be prescribed in input/data.layers

File code/DIAGNOSTICS_SIZE.h

Listing 4.16: verification/tutorial_reentrant_channel/code/DIAGNOSTICS_SIZE.h

C Diagnostics Array Dimension

C ___________________________

C ndiagMax :: maximum total number of available diagnostics

C numlists :: maximum number of diagnostics list (in data.diagnostics)

C numperlist :: maximum number of active diagnostics per list (data.diagnostics)
C numLevels :: maximum number of levels to write (data.diagnostics)

C numDiags :: maximum size of the storage array for active 2D/3D diagnostics
C nRegions :: maximum number of regions (statistics-diagnostics)

C sizRegMsk :: maximum size of the regional-mask (statistics-diagnostics)

(continues on next page)
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C nStats :: maximum number of statistics (e.g.: aver,min,max ...)
C diagSt_size:: maximum size of the storage array for statistics-diagnostics
C Note : may need to increase "numDiags" when using several 2D/3D diagnostics,
C and "diagSt_size" (statistics-diags) since values here are deliberately small.
INTEGER ndiagMax
INTEGER numlists, numperlist, numLevels
INTEGER numDiags
INTEGER nRegions, sizReglsk, nStats
INTEGER diagSt_size
PARAMETER( ndiagMax = 500 )
PARAMETER( numlists = 10, numperlist = 50, numLevels=2*Nr )
PARAMETER( numDiags = 35*Nr )
PARAMETER( nRegions = ® , sizReglMsk = 1 , nStats = 4 )
PARAMETER( diagSt_size = 10*Nr )

Here the parameter numDiags has been changed to allow a combination of up to 35 3-D diagnostic fields or 1715
(=35%49) 2-D fields.

4.3.3.2 Run-time Configuration

File input/data

Listing 4.17: verification/tutorial_reentrant_channel/input/data

# Model parameters
# Continuous equation parameters
&PARMO 1
# Viscosity
viscAh=2000.,
viscAr=3.E-3,
implicitViscosity=.TRUE.,
# Diffusivity and convection
diffKhT=0.,
diffKrT=1.E-5,
ivdc_kappa=1.,
implicitDiffusion=.TRUE.,
# Coriolis parameter
f0=-1.363e-4,
beta=1.313e-11,
selectCoriScheme=1,
# Density and equation of state
# Temp only active tracer, no salinity
rhoConst=1035.,
rhoNil=1035.,
eosType="LINEAR',

tAlpha=2.E-4,
sBeta =0.E-4,
tRef= 49%5.,

saltStepping=.FALSE.,
# activate partial cells
hFacMinDr=5.,

(continues on next page)
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hFacMin=0.1,

# free surface parameters
rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,
exactConserv=.TRUE.,

# advection scheme
tempAdvScheme=7,
staggerTimeStep=.TRUE.,

#- for non-GM coarse run, set horizontal diffusivity non-zero:
# diffKhT=1000.,

#

#- for eddy-permitting run, uncomment the following:

# viscC2Leith = 1.,

# useFullLeith=.TRUE.,

# viscAhGridMax = 0.5,

# useSingleCpuIO=.TRUE.,

#- and comment out above statement viscAh=2000.,

&

# Elliptic solver parameters
&PARMO2
cg2dTargetResidual=1.E-7,
cg2dMaxIters=1000,

&

# Time stepping parameters
&PARMO3

nIter0=0,

nTimeSteps=10,
deltaT=1000.0,
pChkptFreq=31104000.0,
chkptFreq=15552000.0,
dumpFreq=0,
monitorFreq=1200.,
monitorSelect=2,
tauThetaClimRelax=864000.,
momDissip_In_AB=.FALSE.,

#- change monitor frequency for longer run:
# monitorFreq=864000.,

#

#- nTimesteps for 30 yrs, coarse:

# nTimeSteps=933120,

#

#- nTimesteps for 30 yrs, eddy-permitting:
# nTimeSteps=3732480,

#

#- for eddy-permitting run, also need to change timestep:
# deltaT=250.0,

&

(continues on next page)
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# Gridding parameters
&PARMO4
usingCartesianGrid=.TRUE.,
delX=20%50.E3,
delY=40*50.E3,
delR=  5.48716549, 6.19462098, 6.99291201, 7.89353689,
8.90937723, 10.05483267, 11.34595414, 12.80056778,
14.43837763, 16.28102917, 18.35210877, 20.67704362,
23.28285446, 26.1976981 , 29.45012046, 33.06792588,
37.07656002, 41.496912 , 46.34247864, 51.61592052,
57.30518684, 63.37960847, 69.78661289, 76.44996107,
83.27047568, 90.13003112, 96.89898027, 103.44631852,
109.65099217, 115.4122275 , 120.65692923, 125.34295968,
129.45821977, 133.01641219, 136.05088105, 138.60793752,
140.74074276, 142.50436556, 143.95220912, 145.133724 ,
146.09317287, 146.86917206, 147.49475454, 147.99774783,
148.40131516, 148.72455653, 148.98310489, 149.18968055,
149.35458582,

#- for eddy-permitting run, change delX and delY 50->5 km:
# delX=200%5.E3,
# delY=400*5.E3,

&

# Input datasets

&PARMOS5

bathyFile="bathy.50km.bin'
zonalWindFile="zonal_wind.50km.bin',
thetaClimFile="SST_relax.50km.bin',
hydrogThetaFile="temperature.50km.bin"',

#- for eddy-permitting run, use files generated by gendata_5km.m:
# bathyFile="bathy.5km.bin'

# zonalWindFile='zonal_wind.5km.bin",

# thetaClimFile='SST_relax.5km.bin",

# hydrogThetaFile="temperature.5km.bin",

&

This file, reproduced in its entirety above, specifies the main parameters for the experiment. Parameters for this con-
figuration (shown with line numbers to left) are as follows.

PARMO1 - Continuous equation parameters

» These lines set the horizontal and vertical Laplacian viscosities. As in earlier tutorials, we use a spatially uniform
value for viscosity in both the horizontal and vertical. We set viscosity to be solved implicitly, using the backward
method, as discussed in Section 4.3.2.1.

5 viscAh=2000.,
6 viscAr=3.E-3,
7 implicitViscosity=.TRUE.,

* These lines set the horizontal and vertical diffusivities. In the standard (coarse resolution) configuration the Gent-
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27

28

McWilliams parameterization (pkg/gmredi) is activated, and we set the horizontal diffusivity to zero (which is
the default value). Similar to tutorial Baroclinic Ocean Gyre, we set a large vertical diffusivity (ivdc_kappa) for
mixing unstable water columns, which requires implicit numerical treatment of vertical diffusion.

diffKhT=0.,
diffKrT=1.E-5,
ivdc_kappa=1.,
implicitDiffusion=.TRUE.,

The first two lines below set the model’s Coriolis parameters (fO and beta) to values representative of the lati-
tude band encompassing the Antarctic Circumpolar Current. In the last line we set the model to use the Jamart
and Ozer (1986) [JO86] wet-points averaging method, in lieu of the model default (see Section 2.14.2; parameter
options here are given in Section 3.8.4). The method affects the discretization of the Coriolis terms in the momen-
tum equations. In this setup — as we will show, the jet is dominated by barotropic potential vorticity conservation
— it turns out the solution is rather sensitive to this discretization (particularly adjacent to topography). We tested
both the default and wet-points methods, and found the wet-points method closer to the eddy-permitting solution,
where obviously the discretization of the Coriolis term is better resolved.

f0=-1.363e-4,
beta=1.313e-11,
selectCoriScheme=1,

These lines set parameters related to the density and equation of state. Here we choose the same value for the
Boussinesq reference density rhoConst as our value rhoNil, for the linear equation of state. To keep things simple,
as well as speed up model run-time, we limit ourselves to a single tracer, temperature, and tell the model not to
step salinity forward in time or include salinity in the equation of state. Also note we use a uniform reference
temperature (tRef) throughout the water column. We will be specifying a file for initial conditions of temperature
in our simulation, and so tRef will not be used for this purpose (as it was in tutorial Baroclinic Ocean Gyre).
Thus, tRef is only employed here as a reference to compute density anomalies. In principle, one could define tRef
to a more representative array of values at each level, but for most applications any gain in numerical accuracy
is small, and a single representative value suffices.

rhoConst=1035.,
rhoNil=1035.,
eosType="LINEAR',

tAlpha=2.E-4,
sBeta =0.E-4,
tRef= 49%5.,

saltStepping=.FALSE.,

These lines activate the use of partial cells, as described in Section 2.11.6. hFacMin=0.1 permits partial cells that
are as small as 10% of the full cell depth, but with hFacMinDr=5.0 m this partial cell must also be at least 5 m in
depth. Note that the model default of hFacMin=1.0 disables partial cells, i.e., values from a specified bathymetry
file are rounded up or down to match grid depth interface levels (model variable rF). See also Section 3.8.1.3
for general information on using these parameters and below for additional information about partial cells in this
setup.

hFacMinDr=5.,
hFacMin=0.1,

These lines activate the implicit free surface formulation (Section 2.4) with the exact conservation option enabled,
similar to tutorial Baroclinic Ocean Gyre.
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30

31

32

34

35

rigidLid=.FALSE.,
implicitFreeSurface=.TRUE.,
exactConserv=.TRUE.,

* This instructs the model to use a 7th order monotonicity-preserving advection scheme (code 7) — basically, a
higher-order, more accurate, less noisy advection scheme — instead of the center-differences, 2nd order model
default scheme (code 2). The downside here is additional computations, costly if running with many tracers, and
alarger necessary overlap size in SIZE.h, which may get costly if one parallelizes the model into many small tiles.
We will use the same scheme for both coarse and eddy-permitting resolutions; using the higher-order scheme
is particularly helpful in the high resolution setup. When using non-Adams-Bashforth advection schemes (see
Table 2.2), the flag staggerTimeStep should be set to . TRUE..

tempAdvScheme=7,
staggerTimeStep=.TRUE.,

PARMO2 - Elliptic solver parameters

These parameters are unchanged from tutorials Barotropic Ocean Gyre and Baroclinic Ocean Gyre.

PARMO3 - Time stepping parameters

56

57

71

58

59

60

61

62

63

64

* For testing purposes the tutorial is set to integrate 10 time steps, but uncomment the line futher down in the file
setting nTimeSteps to integrate the solution for 30 years.

nIter0=0,
nTimeSteps=10,

# nTimeSteps=933120,

* Remaining time stepping parameters are as described in earlier tutorials. See Section 4.3.2.1 for a discussion on
our choice of deltaT.

deltaT=1000.0,
pChkptFreq=31104000.0,
chkptFreq=15552000.0,
dumpFreq=0,
monitorFreq=1200.,
monitorSelect=2,

* As in tutorial Baroclinic Ocean Gyre we set the timescale, in seconds, for relaxing potential temperature in the
model’s top layer (note: relaxation timescale for the northern boundary sidewalls is set in data.rbcs, not here).
Our choice of 864,000 seconds is equal to 10 days.

tauThetaClimRelax=864000.,

* This instructs the model to NOT apply Adams-Bashforth scheme to the viscosity tendency and other dissipation
terms (such as side grad and bottom drag) in the momentum equations (the default is to use Adams-Bashforth
for all terms); instead, dissipation is computed using a explicit, forward, first-order scheme. For our coarse
resolution setup with uniform harmonic viscosity, this setting is not strictly necessary (and does not noticeably
change results). However, for our eddy-permitting run we will use a difference scheme for setting viscosity, and
for stability requires this setting.
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65 momDissip_In_AB=.FALSE.,

PARMO4 - Gridding parameters

* We specify a Cartesian coordinate system with 20 gridpoints in « and 40 gridpoints in y, with (default) origin
(0,0).

82 usingCartesianGrid=.TRUE.,
83 delX:2®*5®.E3,
84 delY=40%50.E3,

* We set the vertical grid spacing for 49 vertical levels, ranging from thickness of approximately 5.5 m at the
surface to 149 m at depth. When varying cell thickness in this manner, one must be careful that vertical grid
spacing varies smoothly with depth; see Section 4.3.2 for details on how this specific grid spacing was generated.

85 delR=  5.48716549, 6.19462098, 6.99291201, 7.89353689,
86 8.90937723, 10.05483267, 11.34595414, 12.80056778,
87 14.43837763, 16.28102917, 18.35210877, 20.67704362,
88 23.28285446, 26.1976981 , 29.45012046, 33.06792588,
8 37.07656002, 41.496912 , 46.34247864, 51.61592052,
% 57.30518684, 63.37960847, 69.78661289, 76.44996107,
o1 83.27047568, 90.13003112, 96.89898027, 103.44631852,
92 109.65099217, 115.4122275 , 120.65692923, 125.34295968,
03 129.45821977, 133.01641219, 136.05088105, 138.60793752,
o4 140.74074276, 142.50436556, 143.95220912, 145.133724 ,
95 146.09317287, 146.86917206, 147.49475454, 147.99774783,
%6 148.40131516, 148.72455653, 148.98310489, 149.18968055,
o7 149.35458582,

PARMOS - Input datasets

* The following lines set file names for the bathymetry, zonal wind forcing, and climatological surface temperature
relaxation files (these files are all 2-D fields, see below)

106 bathyFile='bathy.50km.bin’
107 zonalWindFile="'zonal_wind.50km.bin',
108 thetaClimFile="'SST_relax.50km.bin"',

* This last line specifies the name of the 3-D file containing initial conditions for temperature (as noted above, tRef
values specified in namelist PARMO1 are NOT used for the initial state).
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109 hydrogThetaFile="temperature.50km.bin",

File input/data.pkg

Listing 4.18: verification/tutorial_reentrant_channel/input/data.pkg

# Packages

&PACKAGES
useGMRedi=.TRUE.,
useRBCS=.TRUE. ,
uselLayers=.TRUE.,
useDiagnostics=.TRUE.,

#- for non-GM or eddy-permitting run, deactivate GMRedi package:
# useGMRedi=.FALSE.,
&

 These first two lines affect the model physics packages we’ve included in our build, pkg/gmredi and pkg/rbes. In
our standard configuration, we will activate both (but in an second run, we will opt to NOT activate pkg/gmredi).

3 useGMRedi=.TRUE.,
4 useRBCS=.TRUE. ,

» These lines instruct the model to activate both diagnostics packages we’ve included in our build, pkg/layers and
pkg/diagnostics.

5 uselLayers=.TRUE.,
6 useDiagnostics=.TRUE.,

File input/data.gmredi

Listing 4.19: verification/tutorial_reentrant_channel/input. GM/data.gmredi

# GM-Redi package parameters:

# GM_background_K: GM diffusion coefficient
# GM_taper_scheme: slope clipping or one of the tapering schemes
&GM_PARMO1

GM_background_K = 1000.,

GM_taper_scheme = "dm95"',

GM_AdvForm =.TRUE.,

&

Note that this file is ignored with pkg/gmredi disabled (in input/data.pkg, useGMRedi=.FALSE.), but must be present
when enabled. Parameter choices are as follows.

» Parameter background_K sets the Gent-McWilliams “thickness diffusivity”, which determines the strength of the
parameterized geostrophic eddies in flattening sloping isopycnal surfaces. By default, this parameter is also used
as diffusivity for the Redi component of the parameterization, which diffuses tracers along isoneutral surfaces.
It is possible to set the Redi diffusivity to a separate value from the thickness diffusivity by setting parameter
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GM_isopycK in the above list. However, in this setup with a single tracer determining density, it would not serve
any purpose because diffusion of temperature along surfaces of constant temperature has no impact.

GM_background_K = 1000.,

* By default, pkg/gmredi does not select a tapering scheme (see Section 8.4.1.2); however, for best results, one
should be selected. Here we choose the tapering approach described in Danabasoglu and McWilliams (1995)
[DJCM95]. Additional choices for the tapering scheme (or alternatively, the more simple slope clipping ap-
proach), and why such a scheme is necessary, are described in the GMRedi package documentation.

GM_taper_scheme = "dm95"',

* We select the advective or “bolus” form of the parameterization, which specifies that GM fluxes are parameterized
into a bolus advective transport, rather than implemented as a “skewflux” transport via added terms in the
diffusion tensor (see Griffies 1998 [Gri98]). The skewflux form is the package default. Analytically, these forms
are identical, but in practice are discretized differently. For instance, the bolus form will, by default, advect tracers
with combined eulerian and bolus transport (i.e, residual transport) which then inherits the higher order precision
of the selected advection scheme 7. This can lead to noticeably different solutions in some setups (anecdotally,
particularly where you have steeply sloping isopycnals near boundaries). For diagnostic purposes, the bolus form
permits a straightforward calculation of the actual advective transport (from the GM part), whereas obtaining this
transport using the skewflux form is less straightforward due to discretization issues.

GM_AdvForm =.TRUE.,

File input/data.rbcs

Listing 4.20: verification/tutorial_reentrant_channel/input/data.rbcs

# RBCS package parameters:
&RBCS_PARMO1

useRBCtemp=.TRUE. ,

tauRelaxT=864000.,
relaxMaskFile='T_relax_mask.50km.bin'’
relaxTFile="temperature.50km.bin',

#- for eddy-permitting run, use files generated by gendata_5km.m:
# relaxMaskFile='T_relax_mask.5km.bin'
# relaxTFile="'temperature.5km.bin',

&

# RBCS for pTracers (read this namelist only when ptracers pkg is compiled)
&RBCS_PARMO?2
&

Setting parameter useRBCtemp to . TRUE. instructs pkg/rbes that we will be restoring temperature (and by default, it
will not restore salinity, nor velocity, nor any other passive tracers). tauRelaxT sets the relaxation timescale for 3-D
temperature restoring to 864,000 s or 10 days. The remaining two parameters are a filename for a 3-D mask of gridpoint
locations to restore (relaxMaskFile), and a filename for a 3-D field of restoring temperature values (relaxTFile). See
below for further description of these fields.
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File input/data.layers

Listing 4.21: verification/tutorial_reentrant_channel/input/data.layers

&LAYERS_PARMO1

layers_name(1l) ='TH',

layers_bounds(1:38,1)= -2.00, -1.75, -1.50, -1.25,
-1.00, -0.75, -0.50, -0.25,

0.00, 0.25, 0.50, 0.75,
1.0, 1.25, 1.50, 1.75,
2.00, 2.25, 2.50, 2.75,
3.00, 3.25, 3.50, 3.75,
4.00, 4.25, 4.50, 5.0,
5.5, 6.0, 6.5, 7.0,
7.5, 8.0, 8.5, 9.0,
9.5, 10.0

&

pkg/layers consists of online calculations which separate water masses into

specified layers, either by temperature, salinity, or density. Note that parameters here include an array index of 1; it is
possible to diagnose layers in both temperature and salinity simultaneously, for example, in which case one would add
a second set of parameters with array index 2. Even though layers_maxNum is set to 1 (i.e, only allows a for single
layers coordinate) in LAYERS_SIZE.h, the index is still required.

* The parameter layers_name is set to 'TH' which specifies temperature as our layers coordinate.

layers_name(1l) ='TH',

e Parameter layers_bounds specifies the discretization of the layers coordinate system; we span from the lowest
possible model temperature (i.e., the coldest restoring temperature at the surface or northern boundary, -2 °C) to
the warmest model temperature (i.e., the warmest restoring temperature, 10 °C). The number of values here must
be Nlayers +1, as specified in LAYERS_SIZE.h. Here, Nlayers is set to 37, so we have 38 discrete layers_bounds).
pkg/layers will not complain if the discretization does not span the full range of existing water in the model ocean;
it will simply ignore water masses (and their transport) that fall outside the specified range in layers_bounds (this
will make it impossible however to close the layer volume budget). Also note that the range must be monotonically
increasing, even if this results in a layers coordinate k=1:Nlayers that proceeds in the opposite sense as the depth
coordinate (i.e., the k=1 layers coordinate is at the ocean bottom, whereas the k=1 depth coordinate refers to the
ocean surface layer).

layers_bounds(1:38,1)= -2.00, -1.75, -1.50, -1.25,
-1.00, -0.75, -0.50, -0.25,
0.00, 0.25, 0.50, 0.75,

1.0, 1.25, 1.50, 1.75,
2.00, 2.25, 2.50, 2.75,
3.00, 3.25, 3.50, 3.75,
4.00, 4.25, 4.50, 5.0,
5.5, 6.0, 6.5, 7.0,
7.5, 8.0, 8.5, 9.0,
9.5, 10.0
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File input/data.diagnostics

Listing 4.22: verification/tutorial_reentrant_channel/input/data.diagnostics

# Diagnostic Package Choices

# dumpAtLast (logical): always write output at the end of simulation (default=F)
# diag_mnc (logical): write to NetCDF files (default=useMNC)
#--for each output-stream:

# fileName(n) : prefix of the output file name (max 80c long) for outp.stream n
# frequency(n):< 0 : write snap-shot output every |frequency| seconds

# > 0 : write time-average output every frequency seconds

# timePhase(n) : write at time = timePhase + multiple of |frequency|

# averagingFreq : frequency (in s) for periodic averaging interval

# averagingPhase : phase (in s) for periodic averaging interval

# repeatCycle : number of averaging intervals in 1 cycle

# levels(:,n) : list of levels to write to file (Notes: declared as REAL)

# when this entry is missing, select all common levels of this list
# fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n

# (see "available_diagnostics.log" file for the full list of diags)
# missing_value(n) : missing value for real-type fields in output file "n"

# fileFlags(n) : specific code (8c string) for output file "n"

# ____________________

&DIAGNOSTICS_LIST
# write pkg diagnostics output to separate subdirectory
diagMdsDir = 'Diags’

# 2D diagnostics
fields(1:3,1) = 'TRELAX ', 'MXLDEPTH', 'ETAN 'y
frequency (1) = 31104000.,
filename(1l) = '2D_diags',

# 3D state variables

fields(1:5,2) = 'THETA ', '"VVEL ', '"UVEL ',
'WVEL ', "CONVAD] ',

frequency(2) = 31104000.,

filename(2) = 'state',

# Heat budget terms

fields(1:7,3) = '"ADVx_TH ', '"ADVy_TH ', 'ADVr_TH ',
'DFXE_TH ', 'DFyE_TH ', 'DFrI_TH ',
'DFrE_TH ',

frequency(3) = 31104000.,
filename(3) = 'heat_3D',

# Residual mean flow - Layers Package
fields(1:3,4) = 'LaVHITH ', 'LaHs1TH ', 'LaValTH '
frequency(4) = 31104000.,
fileName(4) = 'layDiag',

# GM diagnostics
#- Note: comment out this diagnostics list below if useGMRedi=.FALSE.
# or you will get warnings messages in STDERR

(continues on next page)
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(continued from previous page)

fields(1:2,5) = 'GM_PsiX ', 'GM_PsiY ',
frequency(5) = 31104000.,
filename(5) = 'GM_diags',

#- Eddy-permitting run, diagnose vorticity (not computed when using uniform Ah)
# fields(1:2,6) = 'momVort3', 'momHDiv ',
# frequency(6) = 31104000.,

# filename(6) = 'state_vort',

&

F S

# Parameter for Diagnostics of per level statistics:
o

# diagSt_mnc (logical): write stat-diags to NetCDF files (default=diag_mnc)
# diagSt_regMaskFile : file containing the region-mask to read-in

# nSetReglMskFile : number of region-mask sets within the region-mask file
# set_regMask(i) : region-mask set-index that identifies the region "i"
# val_regMask(i) : region "i" identifier value in the region mask

#--for each output-stream:

# stat_fName(n) : prefix of the output file name (max 80c long) for outp.stream n
# stat_freq(n):< ® : write snap-shot output every |stat_freq| seconds

# > 0 : write time-average output every stat_freq seconds

# stat_phase(n) : write at time = stat_phase + multiple of |stat_freq|

# stat_region(:,n) : list of "regions" (default: 1 region only=global)

# stat_fields(:,n) : list of selected diagnostics fields (8.c) in outp.stream n

# (see "available_diagnostics.log" file for the full list of diags)
o

&DIAG_STATIS_PARMS

stat_fields(1:2,1) = 'THETA ','TRELAX ',

stat_freq(l) = 864000.,
stat_fName(1l) = 'dynStDiag',
&

DIAGNOSTICS_LIST - Diagnostic Package Choices

See tutorial Baroclinic Ocean Gyre for a detailed explanation of parameter settings to customize data.diagnostics to a
desired set of output diagnostics.

We have divided the output diagnostics into several separate lists (recall, 2-D output fields cannot be mixed with 3-D
fields!!!) The first two lists are quite similar to what used in tutorial Baroclinic Ocean Gyre: specifically, several key
2-D diagnostics are in one file (surface restoring heat flux, mixed layer depth, and free surface height), and several 3-D
diagnostics and state variables in another (theta, velocity components, convective adjustment index).

In diagnostics list 3, we specify horizontal advective heat fluxes (ADVx_TH and ADVy_TH in = and y directions, respec-
tively), vertical advective heat flux (ADVr_TH), horizontal diffusive heat fluxes (DFXE_TH and DFyE_TH), and vertical
diffusive heat flux (DFrI_TH and DFrE_TH). Note the latter is broken into separate implicit and explicit components,
respectively, the latter of which will only be non-zero if pkg/gmredi activated. Although we will not examine these
3-D diagnostics below when describing the model solution, the zonal terms are needed to compute zonally-averaged
meridional heat transport, and all terms needed for a diagnostic attempt at reconciling a heat budget of the model
solution.
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fields(1:7,3) = "ADVx_TH ', '"ADVy_TH ', 'ADVr_TH ',
'DFXE_TH ', 'DFyE_TH ', 'DFrI_TH ',
'DFrE_TH ',

frequency(3) = 31104000.,
filename(3) = 'heat_3D',

In diagnostics list 4, we specify several pkg/layers diagnostics. In our setup we use a linear equation of state based
solely on temperature, so we will diagnose layers of temperature in the model solution, as shown in Figure 4.12.

1
h —>V

Figure 4.12: Schematic of pkg/layers diagnostics.

fields(1:3,4) = 'LaVHITH ', 'LaHs1TH ', 'LaValTH '
frequency(4) = 31104000.,
fileName(4) = 'layDiag',

Diagnostic LaVH1TH is the integrated meridional mass transport in the layer; here we request an annual mean time
average (via the frequency parameter setting), which will effectively output the quantity vh (m? s™'). LaHs1TH is the
layer thickness i (m) calculated at “v”’ points (see Section 2.11.4). LaValTH is the layer average meridional velocity v
(m/s). These diagnostics are all 3-D fields, albeit the vertical dimension here is the layer discretization in temperature
space, which was defined in data.layers. See Section 4.3.5.1 for examples using these diagnostics to calculate the
residual circulation and the meridional overturning circulation in density coordinates.

DIAG_STATIS_PARMS - Diagnostic Per Level Statistics

Here we specify statistical diagnostics of potential temperature and surface relaxation heat flux, output every ten days,
to assess how well the model has equilibrated. See tutorial Baroclinic Ocean Gyre for a more complete description of
syntax and output produced by these diagnostics.
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File input/eedata

This file uses standard default values (single-threaded) and does not contain customizations for this experiment.

File input/bathy.50km.bin

This is a 2-D(z,y) map of Dbottom bathymetry, as generated by the MATLAB pro-
gram  verification/tutorial_reentrant_channel/input/gendata.50km.m  or  the  Python  script verifica-
tion/tutorial_reentrant_channel/input/gendata.50km.py. Input files are 32-bit single precision, by default. Our
bathymetry file has active ocean grid cells along both the eastern and western boundaries (i.e., no land points or walls
are present along either boundary), and thus our model will be fully zonally reentrant. While our northern boundary
also consists entirely of active ocean points, we prescribe a wall along the southern end of our model domain, therefore
the model is NOT meridionally reentrant.

Unlike in previous examples, where the bathymetry was discretized to match depths of defined vertical grid faces (rF,
see Figure 2.9), we have a more complicated bottom bathymetry as defined using a sine function for our bottom ridge.
The model default in such case is to round the bathymetry up or down to the nearest allowed vertical cell face level.
However, the model permits the use of “partial cells” (sometimes also referred to as “shaved” or “lopped” cells), which
can provide dramatic improvements in model solution (see Adcroft et al. 1997 [AHM97]). Here, we activate partial
cells though parameter choices hFacMin and hFacMinDr in input/data, as discussed above. The fraction of a vertical
cell that contains fluid is represented in the 3-D output variable hFacC, which will have a value of 0.0 beneath the ocean
floor (and at land points), 1.0 at an active full-depth ocean cell, and a number between hFacMin and 1.0 for a partial
ocean cell. As such, hFacC is often quite useful as a “mask” when computing diagnostics using model output.

As an example, consider horizontal location (10,15) in out setup here, located in our bottom ridge along the sloping
notch. In our bathymetry file, the vertical level is specified as -2382.3 m. This falls between vertical faces located at
-2360.1 and -2504.0 [these are grid variable rF(39:40)]. Thus, this grid cell will be included in the active ocean domain
as a thin, yet legal, partial cell: hFacC(10,15,39)=0.154.

File input/zonal_wind.50km.bin, input/SST_relax.50km.bin

These files are 2-D(z,y) maps of zonal wind stress 7, (Nm™2) and surface relaxation temperature
(°C), as generated by program verification/tutorial_reentrant_channel/input/gendata.50km.m or verifica-
tion/tutorial_reentrant_channel/input/gendata.50km.py. Note that a 2-D(zx,y) file is expected even though as
specified, both 7,, and SST field are only f(y).

File input/temperature.50km.bin

This file specifies a 3-D(z,y,z) map of temperature (°C), as generated by verifica-
tion/tutorial_reentrant_channel/input/gendata.50km.m or verification/tutorial_reentrant_channel/input/gendata.50km.py
(see Figure 4.11). Note again a 3-D(z, y, 2) file is expected despite temperature begin only f(y, z). This file is used
here for two purposes: first, as specified in input/data, these values are used for temperature initial conditions; secondly,
this file was also specified in input/data.rbcs as a 3-D field used for temperature relaxation purposes.
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File input/T_relax_mask.50km.bin

This file specifies a 3-D(z, y, z) mask, as required by /pkg/rbcs to inform the model which gridpoints to relax. These
values should be between 0.0 and 1.0, with 0.0 for no restoring, 1.0 for full restoring, with fractional values as a multi-
plicative factor to effectively weaken restoring at that location (see Section 8.3.2). Here, we select a value of 1.0 along
the model northern wall for all sub-surface depths (relaxation at the surface is specified using input/SST_relax.
50km.bin, otherwise you would be restoring the surface layer twice), and use a fractional value for the zz plane of
grid cells just south of the northern border (see verification/tutorial_reentrant_channel/input/gendata.50km.m or veri-
fication/tutorial_reentrant_channel/input/gendata.50km.py).

4.3.4 Building and running the model

This model can be built and run using the standard procedure described in Section 3.5 and Section 3.6. (see also
README).

For testing purposes the model is set to run 10 time steps. For a reasonable solution, we suggest running for 30 years,
which requires changing nTimeSteps to 933120. When making this edit, also change monitorFreq to something more
reasonable, say 10 days (=864000.). Using a single processor core, it should take 12 hours or so to run 30 years;
to speed this up using MPI, re-compile using nPy=4, and nSy=1, in SIZE.h and recompile with the -mpi flag (see
Section 3.6.1 for instructions how to run using MPI, here you will be using 4 cores). As an exercise, see if you can
speed it up further using additional processor cores, e.g., by decreasing the tile size in « and increasing nPx.

As configured, the model runs with pkg/gmredi activated, i.e., useGMRedi=. TRUE. in data.pkg. In Section 4.3.5.1 we
will also examine a model solution using old-fashioned large horizontal diffusion with pkg/gmredi deactivated. The
same executable can be used for the non-GM run. Set useGMRedi=.FALSE. in data.pkg, and also set diff KhT=1000.
in data namelist PARMO1. Also, comment out the lines for diagnostics list 5 in data.diagnostics or you will get (non-fatal)
warning messages in STDERR.

In Section 4.3.5.2 we will present results with the resolution increased by an order of magnitude, eddy-permitting.
Additional required changes to the code and parameters are discussed.

4.3.5 Model Solution

Our primary focus in this section is physical interpretation of the model solution, not how to generate plots from
MITgem output, and thus in parallel we strongly recommend carefully going through our Python analysis code, doc-
umented in Jupyter Notebook format, see verification/tutorial_reentrant_channel/analysis/py_notebook.ipynb. This
notebook reads in grid data, discusses (and plots) the setup and forcing data files in additional detail, and gener-
ates figures shown in the tutorial. MATLAB analysis code to generate tutorial output figures is available at verifi-
cation/tutorial_reentrant_channel/analysis/matlab_plots.m.

4.3.5.1 Coarse Resolution Solution

Before examining the circulation and temperature structure of the solution, let’s first assess whether the solution is
approaching a quasi-equilibrium state after 30 years of integration. Typically, one might expect a solution given this
setup to equilibrate over a timescale of a hundred years or more, given the depth of the domain and the prescribed weak
vertical diffusivity. As in tutorial Baroclinic Ocean Gyre, we will make use of the ‘Diagnostic Per Level Statistics’
to assess equilibrium; specifically, we will look at the change in surface (restoring) heat flux over time, as well as the
potential temperature field. In this tutorial we use standard native Fortan (binary) output files (using pkg/mdsio) rather
than netCDF output (as done in tutorial Baroclinic Ocean Gyre). Important note: when using pkg/mdsio, the statistical
diagnostics output is written in plain text, NOT binary format. An advantage is that this permits a simple unix cat or
more command to display the file to the terminal window as integration proceeds, i.e., for a quick check that results look
reasonable. The disadvantage however is that some additional parsing is required (when using MATLAB) to generate

4.3. Southern Ocean Reentrant Channel Example 203


https://github.com/MITgcm/MITgcm/blob/master//pkg/rbcs
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/input/gendata.50km.m
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/input/gendata.50km.py
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/input/gendata.50km.py
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/README.md
http://mitgcm.org/lxr/ident/MITgcm?_i=nTimeSteps
http://mitgcm.org/lxr/ident/MITgcm?_i=monitorFreq
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://mitgcm.org/lxr/ident/MITgcm?_i=nPy
http://mitgcm.org/lxr/ident/MITgcm?_i=nSy
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/code/SIZE.h
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://mitgcm.org/lxr/ident/MITgcm?_i=nPx
https://github.com/MITgcm/MITgcm/blob/master/pkg/gmredi
http://mitgcm.org/lxr/ident/MITgcm?_i=useGMRedi
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/input/data.pkg
https://github.com/MITgcm/MITgcm/blob/master/pkg/gmredi
http://mitgcm.org/lxr/ident/MITgcm?_i=useGMRedi
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/input/data.pkg
http://mitgcm.org/lxr/ident/MITgcm?_i=diffKhT
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/input/data
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/input/data.diagnostics
https://www.python.org/
https://jupyter.org/
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/analysis/py_notebook.ipynb
https://www.mathworks.com/
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/analysis/matlab_plots.m
https://github.com/MITgcm/MITgcm/blob/master/verification/tutorial_reentrant_channel/analysis/matlab_plots.m
https://github.com/MITgcm/MITgcm/blob/master/pkg/mdsio
http://www.unidata.ucar.edu/software/netcdf
https://github.com/MITgcm/MITgcm/blob/master/pkg/mdsio
https://www.mathworks.com/

MITgcm Documentation, Release 2d7a4a2

some plots using these data. Making use of MITgcm shell script utils/scripts/extract_StD, in a terminal window (in the
run directory) type

% ../../../utils/scripts/extract_StD dynStDiag.0000000000.txt STATDIAGS dat

where dynStDiag.0000000000. txt is the name of our statistical diagnostics output file, STATDIAGS is a name we
chose for files generated by running the script, with extension dat. This shell script extracts data into the following
(plain text) files:

e STATDIAGS_head.dat - header file containing metadata

* STATDIAGS_Iter.dat - list of iteration numbers for which statdiags dumped

* STATDIAGS_THETA.dat - statdiags for field THETA (diagnostic field specified in input/data.diagnostics)

» STATDIAGS_TRELAX dat - statdiags for field TRELAX (diagnostic field specified in input/data.diagnostics)

The files STATDIAGS _Iter.dat and STATDIAGS_«DIAGNAME».dat are simple column(s) of data that can be loaded
or read in as an array of numbers using any basic analysis tool. Here we will make use of another MITgcm utility,
utils/matlab/Read_StD.m, which uses MATLAB to make life a bit more simple for reading in all statistical diagnostic
data. In a MATLAB session type

>> [nIter,regList,time,stdiagout,listFlds,listK]=read_StD('STATDIAGS','dat','all_flds');

where
¢ nlter = number of iterations (i.e., time records) dumped
* regList = list of region numbers (=0 here, as we did not define any regions, by default global output only)
e time(:,1) = iteration numbers ; time(:,2) = time in simulation (seconds)
¢ listFlds = list of fields dumped
¢ listK = for each field, lists number of k levels dumped

* stdiagout = 5 dimensional output array ( kLev, time_rec, region_rec, [ave,std,min,max,vol], fld_rec ) where
kLev=1 is depth-average, kLev=2:50 is for depths rC(1:49)

A function to parse statistical diagnostics MITgem output is also available in the python package MITgcmutils. Exe-
cuting the python command

stdiags_bylev,stdiags_2D,iters = readstats('dynStDiag.0000000000.txt"')

will load up the level-by-level statistical diagnostics into stdiags_bylev (e.g., stdiags_bylev['THETA'][:,0,
0] is the time series for top level average temperature), stdiags_2D given column-integrated or 2-D fields (e.g.,
stdiags_2D['TRELAX'][:,0] is the time series for surface heat flux), and iters is iteration number for the time
series (e.g. iters['TRELAX'] is a series of iteration numbers for the THETA diagnostic, the user is left to convert into
time units). See the MITgcmutils documention for more information.

On the left side of Figure 4.13 we show time series of global surface heat flux. In the first decade there is rapid
adjustment, with a much slower trend in both mean and standard deviation in years 10-30. In the mean there remains
a significant heat flux into the ocean in the run without GM (solid), whereas with GM (dashed) the net heat uptake is
also positive, but smaller. The panels on the right show potential temperature at the surface, mid-level (270 m) and
at depth. Note in particular the warming trend at depth in the run without GM. The SST series display a much less
obvious trend (as might be expected given rapid restoring of SST). Examining these results, we see that after 30 years
our run is not at full equilibrium, presumably due to the long timescale for vertical diffusion. And, we infer that less
surface heating is penetrating to depth in the GM solution. This difference is also obvious in Figure 4.14 where we plot
zonal mean temperature: note the deeper thermocline in the left panel (without GM), in addition to the deeper mixed
layer (and warmer surface) in the southern half of the model domain. The differences in convective adjustment are
remarkable, as shown in Figure 4.15; here we plot a plan view of diagnostic CONVADJ, which is the fraction of the time
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steps a grid cell is convectively unstable, at 92 m depth. Note that at this depth, convection is limited to grid cells near
the southern boundary in the GM run, whereas a significant portion of the domain is convecting in the non-GM run: as
discussed in Gent (2011) [Genl 1], the Deacon cell advects cold water northward at the surface, resulting in unstable
water columns and excessively deep mixed layers. Clearly, the temperature structure of the model solution is sensitive
to our mesoscale eddy parameterization (we will explore this further).
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Figure 4.13: Left: time series of area-integrated heat flux into the surface ocean (blue) and its standard deviation
(magenta). Right: area-mean temperature at the surface (top, cyan), in the thermocline (middle, green), and at depth
(bottom, red). In all panels, solid curves show non-GM run, dashed curves include GM.

Figure 4.16 shows the barotropic streamfunction without GM (left) and with GM (right). The pattern is quite similar in
both simulations, characterized by a jet centered in the latitude bands with the deep notch, with some deflection to the
south after the jet squeezes through the notch. There is a balance between negative relative vorticity, as the jet curves
northward through the notch and then southward again, and increasing f to the north (from the beta-plane) such that
barotropic potential vorticity is conserved. North of the notch, we see in Figure 4.14 the ocean is much more stratified,
with dynamics presumably more baroclinic.

Figure 4.17 shows the Eulerian meridional overturning circulation for the non-GM run (left) and GM run (right).
Again, they appear quite similar; what we are observing here is known as a “Deacon Cell” (Deacon 1937 [Dea37];
Bryan 1991 [Bry91]) forced by surface Ekman transport to the north (see also D66s and Webb 1994 [DW94], Speer
et al. 2000 [SS00]), with downwelling in the northern half of the basin and upwelling in the south. The magnitude of
this cell, on the order of 1-2 Sverdrups, may not seem very impressive, but it is important to consider our zonal domain
spans only about 1/20th of the 60th parallel south; scaled up, the magnitude of this cell is quite large. Some local
recirculation occurs in the latitude bands where the ridge slopes down to the center of the deep notch. The centers of
these recirculations occur in the bottom 2000 m, where stratification is quite weak, so much of water recirculated here
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Figure 4.14: Zonal-mean temperature (shaded) and zonal-mean mixed layer depth (black line) averaged over simulation
year 30. Left plot is from non-GM run, right using GM.
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Figure 4.15: Convective adjustment index: O= never convectively unstable during year 30, 1= always convectively
unstable. Left plot is from non-GM run, right using GM.
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Figure 4.16: Barotropic streamfunction averaged over over simulation year 30. Left plot is from non-GM run, right
using GM. Contour interval is 20 Sv.
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falls within a very narrow density class. The deep ridge effectively creates east-west sidewalls at depth, thus able to
support an overturning in thermal wind balance, whereas no sidewalls exist in the upper portion of the water column.
There is little overturning associated with the deep jet flowing through the flat bottom of the notch.

Also worth noting is that we see some evidence of noise (jaggedy contours) in Figure 4.17, despite our rather large
choice of A;=2000 m? s~ for (uniform) horizontal viscosity and our higher-order advective scheme. These noise
artifacts increase fairly dramatically for smaller choices of Aj, although we tested the solution remains stable for Ay,
decreased by an order of magnitude.
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Figure 4.17: Eulerian meridional overturning circulation (shaded) averaged over simulation year 30. Left plot is from
non-GM run, right using GM. Contour interval is 0.5 Sv.

When using pkg/gmredi, it is often desirable to diagnose an eddy bolus velocity, or a bolus transport, in order to compute
the residual circulation (Ferrari 2003 [FP03]), the Lagrangian transport in the ocean (i.e., which effects tracer transport;
see, for example, Wolfe 2014 [Wol14]). Unfortunately the bolus velocity is not directly available from MITgcm, but
must be computed from other GM diagnostics, which differ if the skew flux or bolus/advective form of GM is selected.
Here we choose the later form in data.gmredi (GM_AdvForm =.TRUE.), for which a bolus streamfunction diagnostic is
available, thus the bolus velocity can be readily computed (see matlab_plots.m; obtaining the bolus velocity, for reasons
of gridding, is a bit more straightforward using the advective form). In Figure 4.18 we’ve computed and added the
bolus velocity to the Eulerian velocity. We see that the upper meridional overturning cell has weakened in magnitude,
particularly in the northern half of the domain. The eddy parameterization will attempt to flatten sloping isopycnals
seen in Figure 4.14, creating a bolus overturning circulation in the opposite sense to the Deacon Cell. The magnitude
of the GM thickness diffusion effectively controls the strength of the eddy transport; here we observed only partial
cancellation of the Deacon Cell shown in Figure 4.17. In global ocean general circulation models, an observation of
near-cancellation in the Southern Ocean Deacon Cell when the GM parameterization was used was first reported in
Danabasoglu et al. (1994) [DMG94].

Now let’s use pkg/layers output to examine the residual meridional overturning circulation, shown in Figure 4.19. We
integrate the time- and zonal-mean transport in isopycnal layers (see Figure 4.12) to obtain a streamfunction in density
coordinates. See Abernathy et al. (2011) [AMF11] for a more detailed explanation of this calculation; this approach
is the tried-and-true method to diagnose the residual circulation in an eddy-permitting regime, as required when we
run this setup at higher resolution (Section 4.3.5.2). Note that pkg/layers automatically includes bolus transport from
pkg/gmredi in its calculations, assuming GM is used. With temperature as the ordinate in Figure 4.19, vertical flows
reflect diabatic processes. The green dashed lines represent the maximum and minimum SST for a given latitude band,
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Figure 4.18: Meridional overturning circulation (shaded) from GM simulation including bolus advective transport,
averaged over simulation year 30. Contour interval is 0.5 Sv.

thus representing upper layer circulation within this band. On the left side, without GM, we again see a robust Deacon
cell, with a strong diabatic component, presumably due to horizontal diffusion occurring across sloping isopycnals
(i.e. the so-called “Veronis effect”, see Veronis (1975) [Ver75] as well as other numerous papers prior to the wide-
spread adoption of the GM parameterization in ocean models). [As an aside, it is for lack of a better name that we
label this left plot of Figure 4.19, lacking either eddies or GM, as the residual circulation, as indeed it is identical to
the Eulerian circulation in density coordinates]. On the right side, with GM, the Deacon cell is much weaker due to
partial cancellation from the bolus circulation, as noted earlier, but also note that interior contours of streamfunction
run roughly horizontal in the plot. We see some evidence of a deep cell in the lowest temperature classes, less obvious
in the Eulerian MOC Figure 4.17. One might ask: what happened to the deep recirculating cells seen in Figure 4.18?
Recall that our discretization of temperature layers is fairly crude, 0.25 K in the coldest temperatures, and presumably
much of this recirculation is “lost” as recirculation within a single density class. If this deep circulation were of interest,
one could simply re-run the model with finer resolution at depth (perhaps increasing the number of layers used, which
requires changing LAYERS_SIZE.h and recompiling).

Finally, let’s convert the residual circulatiom shown in Figure 4.19 back into depth coordinates, see Figure 4.20. Solid
lines now display contours of zonal mean temperature. On the left, consistent with previous analyses, we see a small,
upper ocean counter-clockwise circulation in the southern sector, where deep mixed layers occur (Figure 4.14), with
the dominant feature again being the (clockwise) Deacon cell. In contrast, using GM, we see a weak residual clockwise
cell aligned along temperature surfaces in the thermocline, with a weak deep counter-clockwise cell aligned with the
coldest temperature contour (i.e., the deep cell seen in Figure 4.19).
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Figure 4.19: Residual meridional overturning circulation (shaded) as computed in density (i.e., temperature) coordi-
nates, averaged over simulation year 30. Contour interval is 0.5 Sv. Green dashed curves show maximum and minimum

SST in each latitude band. Left plot is from non-GM run, right using GM.
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Figure 4.20: Residual meridional overturning circulation (shaded) as computed in density coordinates and converted
back into (zonal mean) depth coordinates, averaged over simulation year 30. Black lines show zonal mean temperature,
contour interval 1 °C. Left plot is from non-GM run, right using GM.
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4.3.5.2 Eddy Permitting Solution
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In this section we discuss a model solution with the horizontal grid space reduced from 50 km to 5 km, which is
sufficiently resolved to permit eddies to form (see above, which shows SST, surface relative vorticity, and surface
current speed, left to right, toward the end of the 30-year simulation). Vertical resolution is unchanged. While we
provide instructions on how to compile and run in this new configuration, it will require parallelizing (using MPI) on
at least a hundred processor cores or else a 30-year integration will take on the order of a month or longer — in other
words, this requires a large cluster or high-performance computing (HPC) facility to run efficiently.

Running with higher resolution requires re-compiling the code after changing the tile size and number of processors,
see code/SIZE.h_eddy (as configured here, for 100 processors; for faster results change the tile size and use 200 or
even 400 processors). Note we will NOT enable pkg/gmredi in our eddy run, so it can be eliminated from the list in
packages.conf' (make sure to set useGMRedi=.FALSE. in data.pkg).

In conjunction with the change in code/SIZE.h_eddy, uncomment these lines in PARM®4 in data:

delX=200%5.E3,
delY=400*5.E3,

to specify 5 km resolution in 200 x 400 grid cells in = and y. New files for bathymetry, forcing fields, and initial tem-
perature can be generated using the MATLAB program verification/tutorial_reentrant_channel/input/gendata_5km.m
or Python script verification/tutorial_reentrant_channel/input/gendata.5km.py (don’t forget to change the filenames in
data.rbcs and PARMOS5 in data).

Running at higher resolution requires a smaller time step for stability. Revisiting Section 4.3.2.1, to maintain advective
stability (CFL condition, (4.24)) one could simply decrease the time step by the same factor of 10 decrease as Az —
stability of inertial oscillations is no longer a limiting factor, given a smaller At in (4.25) — but to speed things up
we’d like to keep At as large as possible. With a rich eddying solution, however, is it clear that horizontal velocity
will remain order ~1 ms™'? As a compromise, we suggest setting parameter DeltaT=250. (seconds) in data, which we
found to be stable. For this choice, a 30-year integration requires setting nTimeSteps=3732480.

While it would be possible to decrease (spatially uniform) harmonic viscosity to a more appropriate value for this
resolution, or perhaps use bi-harmonic viscosity (see Section 2.14.5), we will make use of one of the nonlinear viscosity
schemes described in Section 2.19, geared toward large eddy simulations, where viscosity is a function of the resolved
motion. Here, we employ the Leith viscosity (Leith 1968, Leith 1996 [Lei68] [Lei96]). Set the following parameters
in PARMO1 of data:

! Note it is not stricly necessary to remove pkg/gmredi from your high-resolution build — however, if kept in the list of packages included in
packages.conf, it then becomes necessary to deactivate in data.pkg for this run by setting useGMRedi=.FALSE.. If by chance you set a use«PKG»
flag to . TRUE. in data.pkg but have not included the package in the build, the model will terminate with error on startup. But you can alway set a
use«PKG» flag to . FALSE. whether or not the package is included in the build.
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viscC2Leith = 1.,
useFullLeith=.TRUE.,
viscAhGridMax = 0.5,

(and comment out the line viscAh =2000. ). viscC2Leith is a scaling coefficient which we set to 1.0, useFullLeith
=.TRUE. uses unapproximated gradients in the Leith formulation (see Section 2.19.1.4). Parameter viscAhGridMax
places a maximum limit on the Leith viscosity so that the CFL condition is obeyed (see Section 2.19.1.7 and (4.26)
in discussion of Numerical Stability Criteria). The values of viscAh that the Leith scheme generates in this solution
generally range from order 1 m? s™! in regions of weak flow to over 100 m? s™! in jets. Note that while it would have
been possible to use the Leith scheme in the 50 km resolution setup, the scheme was not really designed to be used at
such a large Az, and the Ay, it generates about an order of magnitude below the constant A;, = 2000 m? s~ employed
in the coarse model runs, resulting in a very noisy solution.

Finally, we suggest adding the parameter useSingleCpulO =. TRUE. in PARMO1 of data. This will produce global output
files generated by the master MPI processor, rather than a copious amount of single-tile files (each processor dumping
output for its specific sub-domain).

To compare the eddying solution with the coarse-resolution simulations, we need to take a fairly long time average;
even in annual means there is noticeably variability in the solution. Figure 4.21 through Figure 4.23 plot similar figures
as Figure 4.14-Figure 4.20, showing a time mean over the last five years of the simulation.

Zonal Mean Temperature (°C) and ML Depth Eulerian MOC (Sv): Eddying Run
Eddying Run 0
— -500
-500 8
-1000
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® 1500 | o)
o 0O -2500
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0 500 1000 1500 2000 -4000 : : :
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y-coordinate (km)

y-coordinate (km)

Figure 4.21: Left: Zonal-mean temperature (shaded) and zonal-mean mixed layer depth (black line) from eddying
simulation averaged over years 26-30. Right: Eulerian meridional overturning circulation (shaded) from eddying sim-
ulation averaged over years 26-30. Contour interval is 0.5 Sv.

In general, our coarse resolution solutions are not a bad likeness of the (time mean) eddying solution, particularly
when we use pkg/gmredi to parameterize mesoscale eddies. More detailed comments comparing these solutions are
as follows:

* The superiority of the GM solution is clear in the plot of zonal mean temperature (Figure 4.21 left panel vs.
Figure 4.14) and the residual overturning circulation (Figure 4.23 vs. Figure 4.19 and Figure 4.20). Differences
among the Eulerian MOC plots (Figure 4.21 right panel vs. Figure 4.17) are less obvious, but note that in the
more stratified northern section of the domain, the eddying MOC looks more like the coarse “Eulerian + Bolus”
GM solution (Figure 4.18). However, these two fields are not expected to be equal, since the eddying MOC
calculated by layers also includes a stationary eddy component (Viebahn and Eden 2012 [VE12]; Dufour et al.
2012 [DSZ+12])).
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Figure 4.22: Barotropic streamfunction from eddying simulation averaged over years 26-30. Contour interval is 20 Sv.
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Figure 4.23: Left: Residual meridional overturning circulation (shaded) as computed in density (i.e., temperature)
coordinates, from eddying simulation averaged over years 26-30. Contour interval is 0.5 Sv. Green dashed curve
shows maximum and minimum (instantaneous) SST in each latitude band. Right: Residual meridional overturning
circulation (shaded) as computed in density coordinates and converted back into depth coordinates, from eddying
simulation averaged over years 26-30. Black lines show zonal mean temperature, contour interval 1 °C.

* A large anticyclonic barotropic vortex is present away from the topographic ridge as shown in a plot of the

barotropic streamfunction (Figure 4.22; recall, our domain is located in the Southern Hemisphere, so anticyclonic
is counter-clockwise). As such, the flow passing through the deep notch is somewhat less than obtained in the
coarse solution (Figure 4.16). Yet, similar constraints on barotropic potential vorticity conservation lead to a
similar overall pattern.

Examining the residual circulation generated from pkg/layers diagnostics (see Figure 4.23 vs. Figure 4.19, Figure
4.20), the non-GM solution seems quite poor, which would certainly have implications on tracer transport had
any additional tracers been included in the simulation. In the GM solution, eddies seem to only partially cancel
the cell forced by northward Ekman transport (Deacon Cell). In the eddying solution, the residual circulation is
oriented in the opposite sense: eddy fluxes resulting from baroclinic instability due to the northern sponge layer
(stratification) overwhelms the Deacon Cell. This would seem to suggest than our parameterization of eddies by
GM, or more specifically, our choice for parameter GM_background_K of 1000 m? s~!, may be too low, at least
for this idealized setup! Parameterizing eddies in the Southern Ocean is a topical research question, but some
studies suggest this value of GM thickness diffusivity may indeed be low for values in the Southern Ocean (e.g.,
Ferriera et al. 2005 [FMHO05]). A weak residual deep cell, oriented with rising flow along the sponge layer, is
also present. Note that the area enclosed by the dashed green lines in Figure 4.23 is quite large, due to episodic
large deviations in SST associated with eddies.

As might be suggested by the orientation of the residual MOC, in the eddying solution temperature relaxation
in the sponge layer is associated with heat gain in the thermocline. In the coarse runs, however, the sponge layer
is effectively cooling, particularly in the non-GM run. Although at present there is no diagnostic available in
pkg/rbes which directly tabulates these fluxes, computing them is quite simple: the heat flux (in watts) into a grid
cell in the sponge layer is computed as pC, Vg * %ﬁb“(”k) * My, where C,, is HeatCapacity_Cp (3994.0
J kg’1 K~! by default), V, is the grid cell volume (rA(i,j) * drF(k) * hFacC(i,j,k); see Section 4.3.3.2 for defi-
nition of hFacC), (i, j, k) is gridpoint potential temperature (°C), 6(i, j, k)b is gridpoint relaxation potential
temperature (°C, as prescribed in file input/temperature.5km.bin or input/temperature.50km.bin),
7r is the restoring timescale tauRelaxT (as set in data.rbes to 864,000 seconds or 10 days), and M, is a 3-D
restoring mask (values between 0.0 and 1.0 as discussed above) as specified in file T_relax_mask.5km.bin or
T_relax_mask.50km.bin.
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4.4 Ocean Gyre Advection Schemes

(in directory: verification/tutorial_advection_in_gyre/)

This set of examples is based on the barotropic and baroclinic gyre MITgecm configurations, that are described in Section
4.1 and Section 4.2. The examples in this section explain how to introduce a passive tracer into the flow field of the
barotropic and baroclinic gyre setups and looks at how the time evolution of the passive tracer depends on the advection
or transport scheme that is selected for the tracer.

Passive tracers are useful in many numerical experiments. In some cases tracers are used to track flow pathways, for
example in Dutay et al. (2002) [DBD+02] a passive tracer is used to track pathways of CFC-11 in 13 global ocean
models, using a numerical configuration similar to the example described in Section 4.13). In other cases tracers
are used as a way to infer bulk mixing coefficients for a turbulent flow field, for example in Marshall et al. (2006)
[MSJHO6] a tracer is used to infer eddy mixing coefficients in the Antarctic Circumpolar Current region. Typically, in
biogeochemical and ecological simulations large numbers of tracers are used that carry the concentrations of biological
nutrients and concentrations of biological species. When using tracers for these and other purposes it is useful to have
a feel for the role that the advection scheme employed plays in determining properties of the tracer distribution. In
particular, in a discrete numerical model, tracer advection only approximates the continuum behavior in space and time
and different advection schemes introduce different approximations so that the resulting tracer distributions vary. In
the following text we illustrate how to use the different advection schemes available in MITgcm, and discuss which
properties are well represented by each scheme. The advection schemes selections also apply to active tracers (e.g., T’
and S) and the character of the schemes also affects their distributions and behavior.

4.4.1 Advection and tracer transport

In general, the tracer problem we want to solve can be written

% — 0.vC+sS (4.29)

where C is the tracer concentration in a model cell, U = (u,v,w) is the model 3-D flow field. In (4.29), S represents
source, sink and tendency terms not associated with advective transport. Example of terms in S include (i) air-sea
fluxes for a dissolved gas, (ii) biological grazing and growth terms (for a biogeochemical problem) or (iii) convective
mixing and other sub-grid parameterizations of mixing. In this section we are primarily concerned with

1. how to introduce the tracer term, C, into an integration

2. the different discretized forms of the —U - VC term that are available

4.4.2 Introducing a tracer into the flow

The MITgcem ptracers package (see section Section 8.3.3 for a more complete discussion of the ptracers package and
section Section 8.1.1 for a general introduction to MITgcm packages) provides pre-coded support for a simple passive
tracer with an initial distribution at simulation time ¢ = 0 of C(z, y, z). The steps required to use this capability are

1. Activating the ptracers package. This simply requires adding the line ptracers to the file code/packages.conf.
2. Setting an initial tracer distribution.

Once the two steps above are complete we can proceed to examine how the tracer we have created is carried by the flow
field and what properties of the tracer distribution are preserved under different advection schemes.
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4.4.3 Selecting an advection scheme

* flags in input/data and input/data.ptracers
* overlap width

e #define CPP option PTRACERS_ALLOW_DYN_STATE in code/PTRACERS_OPTIONS.h as required for
SOM case

4.4.4 Comparison of different advection schemes

1. Conservation
2. Dispersion
3. Diffusion

4. Positive definite
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Figure 4.24: Dye evolving in a double gyre with different advection schemes. The figure shows the dye concentration
one year after injection into a single grid cell near the left boundary.

4.5 Global Ocean Simulation

(in directory: verification/tutorial_global_oce_latlon/)

This example experiment demonstrates using the MITgcm to simulate the planetary ocean circulation. The simulation
is configured with realistic geography and bathymetry on a 4° x 4° spherical polar grid. Fifteen levels are used in the
vertical, ranging in thickness from 50 m at the surface to 690 m at depth, giving a maximum model depth of 5200 m.
Different time-steps are used to accelerate the convergence to equilibrium (see Bryan 1984 [Bry84]) so that, at this
resolution, the configuration can be integrated forward for thousands of years on a single processor desktop computer.
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Figure 4.25: Maxima, minima and standard deviation (from left) as a function of time (in months) for the gyre circu-
lation experiment from Figure 4.24.

4.5.1 Overview

The model is forced with climatological wind stress data from Trenberth (1990) [TOL90] and NCEP surface flux data
from Kalnay et al. (1996) [KKK+96]. Climatological data (Levitus and Boyer 1994a,b [LB94a, LB94b]) is used to
initialize the model hydrography. Levitus and Boyer seasonal climatology data is also used throughout the calculation
to provide additional air-sea fluxes. These fluxes are combined with the NCEP climatological estimates of surface heat
flux, resulting in a mixed boundary condition of the style described in Haney (1971) [Han71]. Altogether, this yields
the following forcing applied in the model surface layer.

Tz

Fu = e (4.30)
_ Ty
Fy = v 4.31)
. 1
Fo=—Ao(0 —0") — mg (4.32)
Fe=—-XA(S— 5%+ ASE (E-P-R) (4.33)

where F,,, F,, Fy, Fs are the forcing terms in the zonal and meridional momentum and in the potential temperature
and salinity equations respectively. The term Az, represents the top ocean layer thickness in meters. It is used in
conjunction with a reference density, po (here set to 999.8 kg m™), a reference salinity, Sy (here set to 35 ppt), and a
specific heat capacity, C,, (here set to 4000 J kg'! K'), to convert input dataset values into time tendencies of potential
temperature (with units of °C s™), salinity (with units ppt s') and velocity (with units m s). The externally supplied
forcing fields used in this experiment are 7, 7, 8%, S*, Q and £ — P — R. The wind stress fields (7, 7,) have units of
N m™. The temperature forcing fields (6* and () have units of °C and W m™ respectively. The salinity forcing fields
(S* and £ — P — R) have units of ppt and m s respectively. The source files and procedures for ingesting this data
into the simulation are described in the experiment configuration discussion in section Section 4.5.3.
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4.5.2 Discrete Numerical Configuration

The model is configured in hydrostatic form. The domain is discretized with a uniform grid spacing in latitude and
longitude on the sphere A¢p = AX = 4°, so that there are 90 grid cells in the zonal and 40 in the meridional direction.
The internal model coordinate variables x and y are initialized according to

x =rcos(¢), Az =rcos(Ag)
Yy =7l Ay =rAX

Arctic polar regions are not included in this experiment. Meridionally the model extends from 80°S to 80°N. Vertically
the model is configured with fifteen layers with the following thicknesses:

Az =50m
Azy =70m
AZg =100 m
Azs =140 m
Az =190 m
Azg =240 m
Az7 =290 m
Azg =340 m
Azg =390 m
Azm =440 m
Az11 =490 m
Az1a =540 m
Az13 =590 m
Az14 =640 m
Az15 =690 m

(here the numeric subscript indicates the model level index number, k) to give a total depth, H, of -5200 m. The implicit
free surface form of the pressure equation described in Marshall et al. (1997) [MHPA97] is employed. A Laplacian
operator, V2, provides viscous dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.

Wind-stress forcing is added to the momentum equations in (4.34) for both the zonal flow u and the meridional flow
v, according to equations (4.30) and (4.31). Thermodynamic forcing inputs are added to the equations in (4.35) for
potential temperature, 6, and salinity, .S, according to equations (4.32) and (4.33). This produces a set of equations
solved in this configuration as follows:

Du 10p’ 0 ou Fu (surface)
— = ——— —Vh - (ApVau) — — | A, — | =
Dt fot p Ox n (AnViu) 0z ( z) {O (interior)
(4.34)
Dv 10p' 0 v Fy  (surface)
— ——— = Vn - (A Vo) — — A, — | =
Dt et p 0 n (AnVav) 0z ( z) {O (interior)
on L
E + Vh - 0
Do 0 00 Fy (surface)
— — Vi (KpVp0) — — (IN(K,)=— | =
Dt n (KnVi) 82’( ( )82) {O (interior)
(4.35)
DS 0 oS Fs (surface)
— — Vi (KpVpS)— — | T(K,)— | =
Dt n (KaVaS) 0z < ( )82) {O (interior)
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where u = % =r cos(¢)% and v = % = r% are the zonal and meridional components of the flow vector, U, on
the sphere. As described in Section 2, the time evolution of potential temperature 6 equation is solved prognostically.

The total pressure p is diagnosed by summing pressure due to surface elevation 1 and the hydrostatic pressure.

4.5.2.1 Numerical Stability Criteria
The Laplacian dissipation coefficient, A, is set to 5 x 10° m s™'. This value is chosen to yield a Munk layer width (see
Adcroft 1995 [Adc95])),

Ap
B

of ~600 km. This is greater than the model resolution in low-latitudes, Az = 400 km, ensuring that the frictional
boundary layer is adequately resolved.

M =r(2L)s (4.36)

The model is stepped forward with a time step Aty = 24 hours for thermodynamic variables and At, = 30 minutes
for momentum terms. With this time step, the stability parameter to the horizontal Laplacian friction (Adcroft 1995
[Adc95])

evaluates to 0.6 at a latitude of ¢ = 80°, which is above the 0.3 upper limit for stability, but the zonal grid spacing
Az is smallest at ¢ = 80° where Az = r cos(¢)A¢ ~ 77 km and the stability criterion is already met one grid cell
equatorwards (at ¢ = 76°).

The vertical dissipation coefficient, A, is set to 1 X 1073 m? s'L. The associated stability limit

A At,
Sty =4 Azf (4.38)

evaluates to 0.0029 for the smallest model level spacing (Az; = 50 m) which is well below the upper stability limit.

The numerical stability for inertial oscillations (Adcroft 1995 [Adc95])
Sinert = f2At,? (4.39)
evaluates to 0.07 for f = 2wsin(80°) = 1.43 x 10~* s}, which is below the S; < 1 upper limit for stability.

The advective CFL (Adcroft 1995 [Adc95]) for a extreme maximum horizontal flow speed of || =2 m s

|| AL,

4.40
s (4.40)

Sadv =

evaluates to 5 x 102, This is well below the stability limit of 0.5.

The stability parameter for internal gravity waves propagating with a maximum speed of ¢, = 10 m s (Adcroft 1995
[Adc95])

VAN

Se = Az

4.41)

evaluates to 2.3 x 10~!. This is close to the linear stability limit of 0.5.
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4.5.3 Experiment Configuration

The experiment files
* verification/tutorial_global_oce_latlon/input/data
* verification/tutorial_global_oce_latlon/input/data.pkg
* verification/tutorial_global_oce_latlon/input/eedata
e verification/tutorial_global_oce_latlon/input/trenberth_taux.bin
e verification/tutorial_global_oce_latlon/input/trenberth_tauy.bin
e verification/tutorial_global_oce_latlon/input/lev_s.bin
e verification/tutorial_global_oce_latlon/input/lev_t.bin
e verification/tutorial_global_oce_latlon/input/lev_sss.bin
e verification/tutorial_global_oce_latlon/input/lev_sst.bin
e verification/tutorial_global_oce_latlon/input/bathymetry.bin
* verification/tutorial_global_oce_latlon/code/SIZE.h

contain the code customizations and parameter settings for these experiments. Below we describe the customizations
to these files associated with this experiment.

4.5.3.1 Driving Datasets
Figure 4.26-Figure 4.31 show the relaxation temperature (£*) and salinity (S™*) fields, the wind stress components (7,
and 7,), the heat flux (Q)) and the net fresh water flux (£ — P — R) used in equations (4.30)-(4.33). The figures also

indicate the lateral extent and coastline used in the experiment. Figure (— missing figure — ) shows the depth contours
of the model domain.

4.5.3.2 File input/data

Listing 4.23: verification/tutorial_global_oce_latlon/input/data

#
# | Model parameters |
#
#
# Continuous equation parameters
&PARMO1

tRef = 15%20.,

sRef = 15%35.,

viscAr=1.E-3,

viscAh=5.E5,

diffKhT=0.,

diffKrT=3.E-5,

diffKhS=0.,

diffKrS=3.E-5,

rhoConst=1035.,
rhoConstFresh=1000.,

(continues on next page)
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Figure 4.27: Annual mean of relaxation salinity (g/kg)
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Figure 4.29: Annual mean of meridional wind stress component (N m™)
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Figure 4.30: Annual mean heat flux (W m2)
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Figure 4.31: Annual mean freshwater flux (Evaporation-Precipitation) (m s™!)
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(continued from previous page)

eosType = 'IMD95Z',
ivdc_kappa=100.,
implicitDiffusion=.TRUE.,
allowFreezing=.TRUE.,
exactConserv=.TRUE.,
useRealFreshWaterFlux=.TRUE.,
useCDscheme=.TRUE.,
# turn on looped cells
hFacMin=.05,

hFacMindr=50.,
# set precision of data files
readBinaryPrec=32,

&

# Elliptic solver parameters
&PARMO?2

cg2dMaxIters=500,
cg2dTargetResidual=1.E-13,
&

# Time stepping parameters

&PARMO3

nlter®= 0,

nTimeSteps = 20,

# 100 years of integration will yield a reasonable flow field

# startTime = 0.,
# endTime = 3110400000.,
deltaTmom = 1800.,
tauCD = 321428.,

deltaTtracer= 86400.,
deltaTClock = 86400.,
deltaTfreesurf= 86400.,
abEps = 0.1,
pChkptFreq= 1728000.,
dumpFreq= 864000. ,
taveFreq=  864000.,
monitorFreq=1.,

# 2 months restoring timescale for temperature
tauThetaClimRelax= 5184000.,

# 6 months restoring timescale for salinity
tauSaltClimRelax = 15552000.,
periodicExternalForcing=.TRUE.,
externForcingPeriod=2592000.,
externForcingCycle=31104000.,

&

# Gridding parameters
&PARNMO4
usingSphericalPolarGrid=.TRUE.,
delR= 50., 70., 100., 1460., 190.,
240., 290., 340., 390., 440.,
490., 540., 590., 640., 690.,

(continues on next page)
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(continued from previous page)

ygOrigin=-80.,
dySpacing=4.,
dxSpacing=4.,
&

# Input datasets

&PARMO5

bathyFile= 'bathymetry.bin',
hydrogThetaFile="'lev_t.bin',
hydrogSaltFile= 'lev_s.bin',

zonalWindFile= 'trenberth_taux.bin',
meridWindFile= 'trenberth_tauy.bin',
thetaClimFile= 'lev_sst.bin',
saltClimFile= 'lev_sss.bin',
surfQnetFile= 'ncep_gnet.bin',
the_run_name= 'global_oce_latlon',

# fresh water flux is turned on, comment next line to it turn off
# (maybe better with surface salinity restoring)

EmPmRFile= 'ncep_emp.bin',

&

This file specifies the main parameters for the experiment. The parameters that are significant for this configuration are

e Lines 7-8,
tRef= 15%20.,
sRef= 15%35.,

set reference values for potential temperature and salinity at each model level in units of °C and ppt. The entries
are ordered from surface to depth. Density is calculated from anomalies at each level evaluated with respect to
the reference values set here.

e Line 9,

viscAr=1.E-3,

this line sets the vertical Laplacian dissipation coefficient to 1 x 10~ m? s'. Boundary conditions for this

operator are specified later.

Line 10,

viscAh=5.E5,

this line sets the horizontal Laplacian frictional dissipation coefficient to 5 x 10° m? s”!. Boundary conditions
for this operator are specified later.

Lines 11, 13,

diffKhT=0.,
diffKhS=0.,

set the horizontal diffusion coefficient for temperature and salinity to O, since pkg/gmredi is used.

Lines 12, 14,
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diffKrT=3.E-5,
diffKrS=3.E-5,

set the vertical diffusion coefficient for temperature and salinity to 3 x 10~° m? s™'. The boundary condition on

this operator is -2 = 0 at both the upper and lower boundaries.

0z
Lines 15-17,

rhoConst=1035.,
rhoConstFresh=1000.,
eosType = 'JIMD95Z',

set the reference densities for sea water and fresh water, and selects the equation of state (Jackett and McDougall
1995 [JM95])

Lines 18-19,

ivdc_kappa=100.,
implicitDiffusion=.TRUE.,

specify an “implicit diffusion” scheme with increased vertical diffusivity of 100 m?/s in case of instable stratifi-
cation.

Line 28,

readBinaryPrec=32,

Sets format for reading binary input datasets containing model fields to use 32-bit representation for floating-point
numbers.

Line 33,

cg2dMaxIters=500,

Sets maximum number of iterations the two-dimensional, conjugate gradient solver will use, irrespective of
convergence criteria being met.

Line 34,

cg2dTargetResidual=1.E-13,

Sets the tolerance which the 2-D conjugate gradient solver will use to test for convergence in (2.15) to 1 x 10713,
Solver will iterate until tolerance falls below this value or until the maximum number of solver iterations is
reached.

Line 39,

nIter0=0,

Sets the starting time for the model internal time counter. When set to non-zero this option implicitly requests a
checkpoint file be read for initial state. By default the checkpoint file is named according to the integer number
of time step value nlter0. The internal time counter works in seconds. Alternatively, startTime can be set.

Line 40,

nTimeSteps=20,
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Sets the time step number at which this simulation will terminate. At the end of a simulation a checkpoint file is
automatically written so that a numerical experiment can consist of multiple stages. Alternatively endTime can
be set.

e Line 44,

deltaTmom=1800.,

Sets the timestep At, used in the momentum equations to 30 minutes. See Section 2.2.

¢ Line 45,

tauCD=321428.,

Sets the D-grid to C-grid coupling time scale 7¢p used in the momentum equations.

¢ Lines 46-48,

deltaTtracer=86400.,
deltaTClock = 86400.,
deltaTfreesurf= 86400.,

Sets the default timestep, Aty, for tracer equations and implicit free surface equations to 24 hours. See Section
2.2.

e Line 76,

bathyFile="bathymetry.bin'

This line specifies the name of the file from which the domain bathymetry is read. This file is a 2-D (x, y) map
of depths. This file is assumed to contain 32-bit binary numbers giving the depth of the model at each grid cell,
ordered with the = coordinate varying fastest. The points are ordered from low coordinate to high coordinate for
both axes. The units and orientation of the depths in this file are the same as used in the MITgcm code. In this
experiment, a depth of 0 m indicates a solid wall and a depth of <0 m indicates open ocean.

¢ Lines 79-80,

zonalWindFile="trenberth_taux.bin'
meridWindFile="trenberth_tauy.bin'

These lines specify the names of the files from which the x- and y- direction surface wind stress is read. These
files are also 3-D (z, y, teme) maps and are enumerated and formatted in the same manner as the bathymetry file.

Other lines in the file input/data are standard values that are described in the Section 3.8.

4.5.3.3 File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.
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4.5.3.4 File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

4.5.3.5 Files input/trenberth_taux.bin and input/trenberth_tauy.bin

The input/trenberth_taux.bin and input/trenberth_tauy.bin files specify 3-D (z, y, time) maps of wind
stress (7, 7,), based on values from Treberth et al. (1990) [TOL90]. The units are N m™.

4.5.3.6 File input/bathymetry.bin

The input/bathymetry.bin file specifies a 2-D (z, y) map of depth values. For this experiment values range be-
tween 0 and -5200 m, and have been derived from ETOPOS5. The file contains a raw binary stream of data that is
enumerated in the same way as standard MITgcm 2-D horizontal arrays.

4.5.3.7 File code/SIZE.h

Listing 4.24: verification/tutorial_global_oce_latlon/code/SIZE.h

e
o5}
o
o

IROUTINE: SIZE.h
| INTERFACE:
include SIZE.h
IDESCRIPTION: \bv

| SIZE.h Declare size of underlying computational grid.

* *

| The design here supports a three-dimensional model grid
| with indices I,J and K. The three-dimensional domain

| is comprised of nPx*nSx blocks (or tiles) of size sNx

| along the first (left-most index) axis, nPy*nSy blocks
| of size sNy along the second axis and one block of size
| Nr along the vertical (third) axis.

| Blocks/tiles have overlap regions of size OLx and OLy

| along the dimensions that are subdivided.

\ev

Voodoo numbers controlling data layout:

N OO0 nNnnN

sNx :: Number of X points in tile.

sNy :: Number of Y points in tile.

OLx :: Tile overlap extent in X.

OLy :: Tile overlap extent in Y.

nSx :: Number of tiles per process in X.

nSy :: Number of tiles per process in Y.

nPx :: Number of processes to use in X.

nPy :: Number of processes to use in Y.

Nx :: Number of points in X for the full domain.
Ny :: Number of points in Y for the full domain.
Nr :: Number of points in vertical direction.

(@)
[x2]
o
o

(continues on next page)
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(continued from previous page)

INTEGER sNx
INTEGER sNy
INTEGER OLx
INTEGER OLy
INTEGER nSx
INTEGER nSy
INTEGER nPx
INTEGER nPy
INTEGER Nx
INTEGER Ny
INTEGER Nr
PARAMETER (

Qo R0 Qo Qo Qo Qo Qo Qo Qo Qo Qo

C MAX_OLX ::
C MAX_OLY

INTEGER MAX_OLX
INTEGER MAX_OLY
PARAMETER ( MAX_OLX
MAX_OLY

&

sNx =
sNy =

OLx
OLy
nSx
nSy
nPx
nPy
Nx
Ny
Nr

Set

1l I
== NN

1l
—_

sNx*nSx*nPx,
sNy*nSy*nPy,
= 15)

to the maximum overlap region size of any array

that will be exchanged. Controls the sizing of exch
routine buffers.

OLx,
OLy )

Four lines are customized in this file for the current experiment

e Line 45,

sNx=45,

this line sets the number of grid points of each tile (or sub-domain) along the x-coordinate axis.

Line 46,

sNy=40,

this line sets the number of grid points of each tile (or sub-domain) along the y-coordinate axis.

Lines 49,51,

nSx=2,
nPx=1,

these lines set, respectively, the number of tiles per process and the number of processes along the z-coordinate
axis. Therefore, the total number of grid points along the z-coordinate axis corresponding to the full domain
extent is No = sNz x nSx x nPx = 90.
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e Line 55,

Nr=15

this line sets the vertical domain extent in grid points.

4.6 Global Ocean Simulation in Pressure Coordinates

(in directory: verification/tutorial_global_oce_in_p/)

This example experiment demonstrates using MITgem to simulate the planetary ocean circulation in pressure coor-
dinates, that is, without making the Boussinesq approximations. The simulation is configured as a near copy of tuto-
rial_global_oce_latlon (Section 4.5). with realistic geography and bathymetry on a 4° x 4° spherical polar grid. Fifteen
levels are used in the vertical, ranging in thickness from 50.4089 dbar ~ 50 m at the surface to 710.33 dbar ~ 690 m
at depth, giving a maximum model depth of 5302.3122 dbar ~ 5200 m. At this resolution, the configuration can be
integrated forward for thousands of years on a single processor desktop computer.

4.6.1 Overview

The model is forced with climatological wind stress data from Trenberth (1990) [TOL90] and surface flux data from
Jiang et al. (1999) [JSMR99]. Climatological data (Levitus and Boyer 1994a,b [LB94a, LB94b]) is used to initialize
the model hydrography. Levitus and Boyer seasonal climatology data is also used throughout the calculation to provide
additional air-sea fluxes. These fluxes are combined with the Jiang et al. climatological estimates of surface heat flux,
resulting in a mixed boundary condition of the style described in Haney (1971) [Han71]. Altogether, this yields the
following forcing applied in the model surface layer.

Tz
Fu = gAps 4.42)
_ Ty
Fo=g Ap. (4.43)
1
Fo=—gho(0—0°) —
9 gAe( ) CoiAps Q (4.44)
S
Fs = +gprw (E-P-R) (4.45)
pPAps

where F,, Fy,, Fy, Fs are the forcing terms in the zonal and meridional momentum and in the potential temperature and
salinity equations respectively. The term Ap; represents the to